
Compilation
0368-3133		2016/17a

Lecture	12
Assemblers,	linkers,	loaders

Noam	Rinetzky

1



What	is	a	compiler?

“A	compiler	is	a	computer	program	that	transforms	
source	code	written	in	a	programming	language	
(source	language)	into	another	language	(target	
language).

The	most	common	reason	for	wanting	to	transform	
source	code	is	to	create	an	executable	program.”

--Wikipedia



AS
T	
+	
Sy
m
.	T
ab
.

Stages	of	compilation
Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

Context
Analysis

Portable/Retarg
etable code	
generation

Target	code

(executable)

As
se
m
bl
y

IRTe
xt

To
ke
n	
st
re
am

AS
T

Code
Generation



Compilation	è Execution

AS
T	
+	
Sy
m
.	T
ab
.

Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

Context
Analysis

Portable/Retarg
etable code	
generation

Target	code

(executable)

IRTe
xt

To
ke
n	
st
re
am

AS
T

Code
Generation

Li
nk
er

As
se
m
bl
er

Lo
ad
er

Sy
m
bo

lic
	A
dd

r

O
bj
ec
t	F

ile

Ex
ec
ut
ab
le
	F
ile

im
ag
e

Executing	
program

Ru
nt
im

e	
Sy
st
em



Program	Runtime	State

Code

Static	
Data
Stack

Heap

Registers 0x11000

0x22000

0x33000

0x99000

G,	extern_G

foo,	extern_foo
printf

x

0x88000



Challenges

§ goto L2	è JMP	0x110FF
§ G:=3	èMOV	0x2200F,	0..011
§ foo()è CALL	0x130FF
§ extern_G :=	1	èMOV	0x2400F,	0..01
§ extern_foo()	è CALL	0x140FF
§ printf()	è CALL		0x150FF

§ x:=2	èMOV	FP+32,	0…010
§ goto L2	è JMP	[PC	+]	0x000FF

Code

Static	
Data
Stack

Heap

0x11000

0x22000

0x33000

0x99000

G,	extern_G

foo,	extern_foo
printf

x

0x88000



Assembly	è Image

Assembler

Compiler

Linker

Loader

Source	program

Assembly	lang.	program	(.s)

Machine	lang.	Module	(.o):	program	(+library)	modules	

Executable	(“.exe”):	

Image	(in	memory):	

“compilation”	time

“execution”	time
Libraries	(.o)

(dynamic	loading)



Outline

§ Assembly
§ Linker	/	Link	editor
§ Loader

§ Static	linking
§ Dynamic	linking



Assembly	è Image

Linker

Loader

Assembler

Compiler

Source	file	(e.g., utils)

Assembly	(.s)

Executable	(“.elf”)

Image	(in	memory):	

Assembler

Compiler

Source	file	(e.g.,	main)

Assembly	(.s)

Assembler

Compiler

library

Assembly	(.s)

Object	(.o)Object	(.o) Object	(.o)



Assembler
§ Converts	(symbolic)	assembler	to	binary	(object)	code

§ Object	files	contain	a	combination	of	machine	 instructions,	data,	and	
information	needed	to	place	instructions	properly	in	memory

§ Yet	another(simple)	compiler
§ One-to	one	translation

§ Converts	constants	to	machine	repr.	(3è0…011)
§ Resolve	internal	references
§ Records	info	for	code	&	data	relocation



Object	File	Format

§ Header:	Admin	info	+	“file	map”
§ Text	seg.:	machine	instruction
§ Data	seg.:	(Initialized)	data	in	machine	format
§ Relocation	info:	instructions	and	data	that	depend	
on	absolute	addresses

§ Symbol	table:	“exported”	references	+	unresolved	
references

Header Text	
Segment

Data
Segment

Relocation	
Information

Symbol	
Table

Debugging	
Information



Handling	Internal	Addresses



Resolving	Internal	Addresses

§ Two	scans	of	the	code
§ Construct	a	table	label	® address
§ Replace	labels	with	values

§ One	scan	of	the	code	(Backpatching)	
§ Simultaneously	construct	the	table	and	resolve	symbolic	
addresses
§ Maintains	list	of	unresolved	labels

§ Useful	beyond	assemblers



Backpatching



Handling	External	Addresses

§ Record	symbol	table	in	“external”	table
§ Exported	(defined)	symbols

§ G,	foo()

§ Imported	(required)	symbols
§ Extern_G,	extern_bar(),	printf()

§ Relocation	bits
§ Mark	instructions	that	depend	on	absolute	(fixed)	
addresses	
§ Instructions	using	globals,		



Example

External	references	
resolved	by	the	
Linker using	the	
relocation	info.



Example	of	External	Symbol	Table



Assembler	Summary

§ Converts	symbolic	machine	code	to	binary
§ addl %edx,	%ecxÞ 000	0001	11	010	001	=	01	D1	(Hex)

§ Format	conversions
§ 3	è 0x0..011		or	0x000000110…0

§ Resolves	internal	addresses

§ Some	assemblers	support	overloading
§ Different	opcodes based	on	types



Linker

§ Merges	object	files	to	an	executable
§ Enables	separate	compilation

§ Combine	memory	layouts	of	object	modules
§ Links	program	calls	to	library	routines

§ printf(),	malloc()

§ Relocates	instructions	by	adjusting	absolute	references
§ Resolves	references	among	files



Linker

Code	
Segment	1

Data

Segment	1

Code	
Segment	2

Data

Segment	2

0

200

100

0

450

300

120

ext_bar()

380

ext_bar 150
zoo 180

Data

Segment	1

Code	
Segment	2

Data

Segment	2

0

400

100

500

420

580

ext_bar 250
zoo 280

650

Code	
Segment	1

foo	foo	



Relocation	information

• Information	needed	to	change	addresses

§ Positions	in	the	code	which	contains	addresses
§ Data
§ Code

§ Two	implementations
§ Bitmap
§ Linked-lists



External	References

§ The	code	may	include	references	to	external	
names	(identifiers)
§ Library	calls
§ External	data

§ Stored	in	external	symbol	table



Example	of	External	Symbol	Table



Example



Linker	(Summary)

§ Merge	several	executables
§ Resolve	external	references
§ Relocate	addresses

§ User	mode

§ Provided	by	the	operating	system
§ But	can	be	specific	for	the	compiler

§ More	secure	code
§ Better	error	diagnosis



Linker	Design	Issues

§ Merges
§ Code	segments
§ Data	segments
§ Relocation	bit	maps
§ External	symbol	tables

§ Retain	information	about	static	length
§ Real	life	complications

§ Aggregate	initializations	
§ Object	file	formats
§ Large	library
§ Efficient	search	procedures



Loader

§ Brings	an	executable	file	from	disk	into	memory	and	starts	it	
running	
§ Read	executable	file’s	header	to	determine	the	size	of	text	and	data	

segments	
§ Create	a	new	address	space	for	the	program
§ Copies	instructions	and	data	into	memory
§ Copies	arguments	passed	to	the	program	on	the	stack	

§ Initializes	the	machine	registers	including	the	stack	ptr
§ Jumps	to	a	startup	routine	that	copies	the	program’s	arguments	
from	the	stack	to	registers	and	calls	the	program’s	main	routine	



Program	Loading

Registers

Loader	Image

Code	
Segment	2

Data

Segment	2

0

400

100

500

420

580

ext_bar 250
zoo 280

650

Code	
Segment	1

Data

Segment	1

Code	
Segment

Static	
Data

Stack

Heap

Program	Executable

foo	



Loader	(Summary)

§ Initializes	the	runtime	state

§ Part	of	the	operating	system
§ Privileged	mode

§ Does	not	depend	on	the	programming	language

§ “Invisible	activation	record”



Static	Linking	(Recap)

§ Assembler	generates	binary	code	
§ Unresolved	addresses
§ Relocatable	addresses

§ Linker	generates	executable	code
§ Loader	generates	runtime	states	(images)



Dynamic	Linking

§ Why	dynamic	linking?
§ Shared	libraries

§ Save	space
§ Consistency

§ Dynamic	loading
§ Load	on	demand



What’s	the	challenge?

Assembler

Compiler

Linker

Loader

Source	program

Assembly	lang.	program	(.s)

Machine	lang.	Module	(.o):	program	(+library)	modules	

Executable	(“.exe”):	

Image	(in	memory):	

“compilation”	time

“execution”	time
Libraries	(.o)

(dynamic	linking)



Position-Independent	Code	(PIC)

§ Code	which	does	not	need	to	be	changed		regardless	of	the	
address	in	which	it	is	loaded	
§ Enable	loading	the	same	object	file	at	different	addresses

§ Thus,	shared	libraries	and	dynamic	loading

§ “Good”	instructions	for	PIC:	use	relative	addresses
§ relative	jumps
§ reference	to	activation	records

§ “Bad”	instructions	for	:	use	fixed	addresses
§ Accessing	global	and	static	data
§ Procedure	calls

§ Where	are	the	library	procedures	located?	



How?

“All	problems	in	computer	science	can	be	solved	by	
another	level	of	indirection"	

Butler	Lampson



PIC:	The	Main	Idea

§ Keep	the	global	data	in	a	table
§ Refer	to	all	data	relative	to	the	designated	register



Per-Routine	Pointer	Table

§ Record	for	every	routine	in	a	table

&foo

&D.S.	1

PT	ext_bar

&ext_bar

&D.S.	2

&zoo

&D.S.	2

PT	ext_bar

&D.S.	2

foo	



Per-Routine	Pointer	Table

§ Record	for	every	routine	in	a	table

Data

Segment	1

Code	
Segment	2

Data

Segment	2 580

ext_bar
zoo	

Code	
Segment	1

foo	

&foo

&D.S.	1

PT	ext_bar

&ext_bar

&D.S.	2

&zoo

&D.S.	2

PT	ext_bar

&D.S.	2 ext_g

foo	



Per-Routine	Pointer	Table
§ Record	for	every	routine	in	a	table
§ Record	used	as	a	address	to	procedure

Caller:
1. Load	Pointer	table	address	

into	RP
2. Load	Code	address	from	

0(RP)	into	RC
3. Call	via	RC

Callee:
1. RP	points	to	pointer	table
2. Table	has	addresses	of	pointer	table	

for	sub-procedures

Other	data

RP
.func



PIC:	The	Main	Idea

§ Keep	the	global	data	in	a	table
§ Refer	to	all	data	relative	to	the	designated	register

§ Efficiency:	use	a	register	to	point	to	the	beginning	
of	the	table
§ Troublesome	in	CISC	machines



ELF-Position	Independent	
Code

§ Executable	and	Linkable	code	Format
§ Introduced	in	Unix	System	V

§ Observation
§ Executable	consists	of	code	followed	by	data
§ The	offset	of	the	data	from	the	beginning	of	the	code	is	known	at	

compile-time

GOT
(Global	Offset	Table)Data

Segment

Code
Segment

XX0000

call	L2
L2:	

popl %ebx
addl $_GOT[.-..L2],	%ebx



ELF:	Accessing	global	data



ELF:	Calling	Procedures	
(before	1st	call)



ELF:	Calling	Procedures	
(after	1st	call)



PIC	benefits	and costs
§ Enable	loading	w/o	
relocation

§ Share	memory	locations	
among	processes

§ Data	segment	may	need	to	
be	reloaded

§ GOT	can	be	large
§ More	runtime	overhead
§ More	space	overhead	



Shared	Libraries

§ Heavily	used	libraries
§ Significant	code	space	

§ 5-10	Mega	for	print
§ Significant	disk	space
§ Significant	memory	space

§ Can	be	saved	by	sharing	the	same	code
§ Enforce	consistency
§ But	introduces	some	overhead

§ Can	be	implemented	either	with	static	or	dynamic	loading



Shared	Libraries

§ Heavily	used	libraries
§ Significant	code	space	

§ 5-10	Mega	for	print
§ Significant	disk	space
§ Significant	memory	space

§ Can	be	saved	by	sharing	the	same	code
§ Enforce	consistency
§ But	introduces	some	overhead



Content	of	ELF	file

Call
PLT

GOT

Te
xt

Da
ta

Routine
PLT

GOT

Te
xt

Da
ta

Program Libraries



Consistency

§ How	to	guarantee	that	the	code/library	used	the	
“right” library	version



Loading	Dynamically	Linked	
Programs
§ Start	the	dynamic	linker
§ Find	the	libraries
§ Initialization
§ Resolve	symbols	
§ GOT

§ Typically	small

§ Library	specific	initialization

§ Lazy	procedure	linkage



Microsoft	Dynamic	Libraries		(DLL)

§ Similar	to	ELF
§ Somewhat	simpler
§ Require	compiler	support	to	address	dynamic	
libraries

§ Programs	and	DLL	are	Portable	Executable	(PE)
§ Each	application	has	it	own	address
§ Supports	lazy	bindings



Dynamic	Linking	Approaches

§ Unix/ELF	uses	a	single	name	space	space	and	
MS/PE	uses	several	name	spaces

§ ELF	executable	lists	the	names	of	symbols	and	
libraries	it	needs

§ PE	file	lists	the	libraries	to	import	from	other	
libraries

§ ELF	is	more	flexible
§ PE	is	more	efficient	



Costs	of	dynamic	loading

§ Load	time	relocation	of	libraries
§ Load	time	resolution	of	libraries	and	executable
§ Overhead	from	PIC	prolog
§ Overhead	from	indirect	addressing
§ Reserved	registers



Summary

§ Code	generation	yields	code	which	is	still	far	from	
executable
§ Delegate	to	existing	assembler

§ Assembler	translates	symbolic	instructions	into	
binary	and	creates	relocation	bits

§ Linker	creates	executable	from	several	files	
produced	by	the	assembly

§ Loader	creates	an	image	from	executable


