Compilation 0368-3133 2016/17a Lecture 10

Register Allocation Noam Rinetzky

What is a Compiler?

Registers

- Dedicated memory locations that
- can be accessed quickly,
- can have computations performed on them, and

Registers

- Dedicated memory locations that
- can be accessed quickly,
- can have computations performed on them, and
- Usages
- Operands of instructions
- Store temporary results
- Can (should) be used as loop indexes due to frequent arithmetic operation
- Used to manage administrative info
- e.g., runtime stack

Register allocation

- Number of registers is limited
- Need to allocate them in a clever way
- Using registers intelligently is a critical step in any compiler
- A good register allocator can generate code orders of magnitude better than a bad register allocator

Register Allocation: IR

Source
code
(program)

Lexical	Syntax Analysis	AST
Analysis		
Parsing		
	Symbol Table etc.	

Inter.	Code Reperation
(IR)	

Target code
 (executable)

Simple approach

- Straightforward solution:
- Allocate each variable in activation record
- At each instruction, bring values needed into registers, perform operation, then store result to memory
$x=y+z$

mov 16(\%ebp), \%eax mov 20(\%ebp), \%ebx add \%ebx, \%eax mov \%eax, 24(\%ebp)

- Problem: program execution very inefficientmoving data back and forth between memory and registers

Simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg,reg,reg (*)
- assume that we have all registers available for our use
- Ignore registers allocated for stack management
- Treat all registers as general-purpose

simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg,reg,reg (*)

Fixed number of Registers!

Register allocation

- In TAC, there is an unlimited number of variables (temporaries)
- On a physical machine there is a small number of registers:
- x86 has 4 general-purpose registers and a number of specialized registers
- MIPS has 24 general-purpose registers and 8 special-purpose registers
- Register allocation is the process of assigning variables to registers and managing data transfer in and out of registers

simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg,reg,reg (*)

Fixed number of Registers!

- We will assume that we have all registers available for any usage
- Ignore registers allocated for stack management
- Treat all registers as general-purpose

Plan

- Goal: Reduce number of temporaries (registers)
- Machine-agnostic optimizations
- Assume unbounded number of registers
- Machine-dependent optimization
- Use at most K registers
- K is machine dependent

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
- Minimizes number of temporaries for a single expression

Generating Compound Expressions

- Use registers to store temporaries
- Why can we do it?
- Maintain a counter for temporaries in c
- Initially: c=0
- $\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let $A=\operatorname{cgen}\left(e_{1}\right)$
$\mathrm{c}=\mathrm{C}+1$
Let $B=\operatorname{cgen}\left(e_{2}\right)$
$\mathrm{c}=\mathrm{C}+1$
Emit(_tc = A op B;) // _tc is a register
Return _tc

Improving cgen for expressions

- Observation - naïve translation needlessly generates temporaries for leaf expressions
- Observation - temporaries used exactly once
- Once a temporary has been read it can be reused for another sub-expression
- cgen $\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let _t1 = $\operatorname{cgen}\left(\mathrm{e}_{1}\right)$
Let _t2 $=\operatorname{cgen}\left(\mathrm{e}_{2}\right)$
Emit (_t1 =_t1 op _t2;)
Return _t1
\}

- Temporaries cgen $\left(\mathrm{e}_{1}\right)$ can be reused in $\operatorname{cgen}\left(\mathrm{e}_{2}\right)$

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees
- Basic blocks
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (whole program)

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
- Minimizes number of temporaries for a single expression

Example (optimized): b*b-4*a*c

Generalizations

- More than two arguments for operators
- Function calls
- Multiple effected registers
- Multiplication
- Spilling
- Need more registers than available
- Register/memory operations

Simple Spilling Method

- Heavy tree - Needs more registers than available
- A "heavy" tree contains a "heavy" subtree whose dependents are "light"
- Simple spilling
- Generate code for the light tree
- Spill the content into memory and replace subtree by temporary
- Generate code for the resultant tree

Example (optimized): b*b-4*a*c

Example (spilled): x := b*b-4*a*

t7 := b * b

$$
x:=t 7-4 * a * c
$$

Example: b*b-4*a*c

Example (simple): b*b-4*a*c

Example (optimized): b*b-4*a*c

Spilling

- Even an optimal register allocator can require more registers than available
- Need to generate code for every correct program
- The compiler can save temporary results
- Spill registers into temporaries
- Load when needed
- Many heuristics exist

Simple Spilling Method

- Heavy tree - Needs more registers than available
- A `heavy’ tree contains a `heavy’ subtree whose dependents are 'light'
- Generate code for the light tree
- Spill the content into memory and replace subtree by temporary
- Generate code for the resultant tree

Spilling

- Even an optimal register allocator can require more registers than available
- Need to generate code for every correct program
- The compiler can save temporary results
- Spill registers into temporaries
- Load when needed
- Many heuristics exist

Simple approach

- Straightforward solution:
- Allocate each variable in activation record
- At each instruction, bring values needed into registers, perform operation, then store result to memory
$x=y+z$

mov 16(\%ebp), \%eax mov 20(\%ebp), \%ebx add \%ebx, \%eax mov \%eax, 24(\%ebx)

- Problem: program execution very inefficientmoving data back and forth between memory and registers

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees (tree-local)
- Basic blocks (block-local)
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (global register allocation)

Example (optimized): b*b-4*a*c

Example (spilled): x := b*b-4*a*

t7 := b * b

$$
x:=t 7-4 * a * c
$$

Simple Spilling Method

```
    Available register set \ Target register;
    WHILE Node /= No node:
    Compute the weights of all nodes of the tree of Node;
    SET Tree node TO Maximal non_large tree (Node);
    Generate code
        (Tree node, Target register, Auxiliary register set);
    IF Tree node /= Node:
        SET Temporary location TO Next free temporary location();
        Emit ("Store R" Target register ",T" Temporary location);
        Replace Tree node by a reference to Temporary location;
        Return any temporary locations in the tree of Tree node
            to the pool of free temporary locations;
    ELSE Tree node = Node:
        Return any temporary locations in the tree of Node
            to the pool of free temporary locations;
        SET Node TO No node;
FUNCTION Maximal non_large tree (Node) RETURNING a node:
    IF Node . weight <= Size of Auxiliary register set: RETURN Node;
    IF Node . left , weight > Size of Auxiliary register set:
        RETURN Maximal non_large tree (Node .left);
```


Register Memory Operations

- Add_Mem X, R1
- Mult_Mem X, R1

- No need for registers to store right operands

Example: b*b-4*a*c

Can We do Better?

- Yes: Increase view of code
- Simultaneously allocate registers for multiple expressions
- But: Lose per expression optimality
- Works well in practice

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees
- Basic blocks
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (whole program)

Basic Blocks

- basic block is a sequence of instructions with
- single entry (to first instruction), no jumps to the middle of the block
- single exit (last instruction)
- code execute as a sequence from first instruction to last instruction without any jumps
- edge from one basic block B1 to another block B2 when the last statement of B1 may jump to B2

control flow graph

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- nodes $\mathrm{V}=$ basic blocks
- edges $\mathrm{E}=$ control flow
- $(B 1, B 2) \in E$ when control from B1 flows to B2

$$
t_{2}:=a\left[t_{1}\right]
$$

$$
\mathrm{t}_{4}:=\mathrm{b}\left[\mathrm{t}_{3}\right]
$$

- Leaders-based construction
- Target of jump instructions
- Instructions following jumps

$$
\begin{aligned}
& \text { prod }:=0 \\
& \mathrm{i}:=1 \\
& \mathrm{t}_{1}:=4 * \mathrm{i}
\end{aligned}
$$

$$
\mathrm{t}_{3}:=4 * i
$$

$$
t_{5}:=t_{2} * t_{4}
$$

$$
\mathrm{t}_{6}:=\operatorname{prod}+\mathrm{t}_{5}
$$

$$
\operatorname{prod}:=\mathrm{t}_{6}
$$

$$
\mathrm{t}_{7}:=\mathrm{i}+1
$$

$$
\mathrm{i}:=\mathrm{t}_{7}
$$

$$
\text { if } \mathrm{i}<=20 \text { goto } \mathrm{B}_{2}
$$

control flow graph

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- nodes $V=$ basic blocks
- edges E = control flow
- ($\mathrm{B} 1, \mathrm{~B} 2$) $\in \mathrm{E}$ when control from B1 flows to B2

AST for a Basic Block


```
```

int n;

```
```

int n;
n := a + 1;
n := a + 1;
x := b + n * n + c;
x := b + n * n + c;
n := n + 1;
n := n + 1;
y := d * n;

```
```

y := d * n;

```
```

Dependency graph

```
int n;
n:=a+1;
n := n + 1;
y := d * n;
```


Simplified Data

 Dependency Graph

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	C,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
```


Question: Why " y "?

y , dead or alive?

x, dead or alive?

Another Example

Creating Basic Blocks

- Input: A sequence of three-address statements
- Output: A list of basic blocks with each three-address statement in exactly one block
- Method
- Determine the set of leaders (first statement of a block)
- The first statement is a leader
- Any statement that is the target of a jump is a leader
- Any statement that immediately follows a jump is a leader
- For each leader, its basic block consists of the leader and all statements up to but not including the next leader or the end of the program

source

for i from 1 to 10
do
for \mathbf{j} from 1 to 10
do
$a[i, j]=0.0 ;$
for i from 1 to 10 do
$a[i, i]=1.0 ;$

Example: Code Block

$$
\begin{aligned}
& \text { \{ int } \mathrm{n} ; \\
& \quad \begin{array}{l}
\mathrm{n}:=\mathrm{a}+1 ; \\
\mathrm{x}:=\mathrm{b}+\mathrm{n} * \mathrm{n}+\mathrm{c} ; \\
\mathrm{n} \\
\quad \mathrm{y}=\mathrm{n}+1 ; \\
\mathrm{y}:=\mathrm{d} * \mathrm{n} ;
\end{array}
\end{aligned}
$$

Example: Basic Block

$$
\begin{aligned}
& \mathrm{n}:=\mathrm{a}+1 ; \\
& \mathrm{x}:=\mathrm{b}+\mathrm{n} * \mathrm{n}+\mathrm{c} ; \\
& \mathrm{n}:=\mathrm{n}+1 ; \\
& \mathrm{y}:=\mathrm{d} * \mathrm{n} ;
\end{aligned}
$$

AST of the Example

Optimized Code (gcc)

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,R2
Mult_Reg	R1,R2
Add_Mem	b,R2
Add_Mem	C,R2
Store_Reg	R2, x
Add_Const	1,R1
Mult_Mem	d,R1
Store_Reg	R1,Y

Register Allocation for B.B.

- Dependency graphs for basic blocks
- Transformations on dependency graphs
- From dependency graphs into code
- Instruction selection
- linearizations of dependency graphs
- Register allocation
- At the basic block level

Dependency graphs

- TAC imposes an order of execution
- But the compiler can reorder assignments as long as the program results are not changed
- Define a partial order on assignments
$-\mathrm{a}<\mathrm{b} \Leftrightarrow \mathrm{a}$ must be executed before b
- Represented as a directed graph
- Nodes are assignments
- Edges represent dependency
- Acyclic for basic blocks

Running Example

Sources of dependency

- Data flow inside expressions
- Operator depends on operands
- Assignment depends on assigned expressions
- Data flow between statements
- From assignments to their use
- Pointers complicate dependencies

Sources of dependency

- Order of subexpresion evaluation is immaterial
- As long as inside dependencies are respected
- The order of uses of a variable X are immaterial as long as:
- X is used between dependent assignments
- Before next assignment to X

Creating Dependency Graph from AST

- Nodes AST becomes nodes of the graph
- Replaces arcs of AST by dependency arrows
- Operator \rightarrow Operand
- Create arcs from assignments to uses
- Create arcs between assignments of the same variable
- Select output variables (roots)
- Remove ; nodes and their arrows

Running Example

Dependency Graph Simplifications

- Short-circuit assignments
- Connect variables to assigned expressions
- Connect expression to uses
- Eliminate nodes not reachable from roots

Running Example

Cleaned-Up Data Dependency Graph

Common Subexpressions

- Repeated subexpressions
- Examples

$$
\begin{aligned}
& x=a^{*} a+2{ }^{*} a * b+b^{*} b ; \\
& y=a{ }^{*} a-2{ }^{*} a * b+b{ }^{*} b ; \\
& n[i]:=n[i]+m[i]
\end{aligned}
$$

- Can be eliminated by the compiler
- In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

- Linearize the dependency graph
- Instructions must follow dependency
- Many solutions exist
- Select the one with small runtime cost
- Assume infinite number of registers
- Symbolic registers
- Assign registers later
- May need additional spill
- Possible Heuristics
- Late evaluation
- Ladders

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1, X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	c,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

Non optimized vs Optimized Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1, X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	C,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1, Y

Load_Mem	a,R1
Add_Const	$1, R 1$
Load_Reg	R1,R2
Load_Reg	R2,R1
Mult_Reg	R2,R1
Add_Mem	b, R1
Add_Mem	C,R1
Store_Reg	R1, X
Load_Reg	R2,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

dd_Mem	a, R1
l_Const	1, R1
1d_Reg	R1, R2
.t_Reg	R1, R2
L_Mem	b, R2
L_Mem	c, R2
re_Reg	R2, x
L_Const	1, R1
.t_Mem	d, R1
re_Reg	R1, Y

Register Allocation

- Maps symbolic registers into physical registers
- Reuse registers as much as possible
- Graph coloring (next)
- Undirected graph
- Nodes = Registers (Symbolic and real)
- Edges = Interference
- May require spilling

Register Allocation for Basic Blocks

- Heuristics for code generation of basic blocks
- Works well in practice
- Fits modern machine architecture
- Can be extended to perform other tasks
- Common subexpression elimination
- But basic blocks are small
- Can be generalized to a procedure

Problem
Technique
Quality
Expression trees, using register-register or memory-register instructions
with sufficient registers:
with insufficient registers:
Dependency graphs, using register-register or memory-register instructions

Expression trees, using any Bottom-up tree rewritinstructions with cost func- ing:
tion
with sufficient registers:
with insufficient registers:
Register allocation when all interferences are known

Weighted trees;
Figure 4.30

Optimal
Optimal
Ladder sequences; Heuristic
Section 4.2.5.2

Section 4.2.6
Optimal
Heuristic
Graph coloring; Heuristic Section 4.2.7

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees
- Basic blocks
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (global register allocation)

Register Allocation: Assembly

Source
code
(program)

Lexical Analysis	Syntax Analysis Parsing

AST	Symbol Table etc.	Inter. Rep.

Target code (executable)

Register Allocation: Assembly

Source code
(program)

Lexical	Syntax Analysis	AST	Symbol Analysis Table etc.

Assembly

Target code
(executable)

Register Allocation: Assembly

Source code
(program)

Lexical Analysis	Syntax Analysis Parsing	AST	Symbol Table etc.

AST + Sym. Tab.
IR
"Optimized" IR
"Assembly"
Assembly

Modern compiler implementation in C Andrew A. Appel

"Global" Register Allocation

- Input:
- Sequence of machine instructions ("assembly")
- Unbounded number of temporary variables
- aka symbolic registers
- "machine description"
- \# of registers, restrictions
- Output
- Sequence of machine instructions using machine registers (assembly)
- Some MOV instructions removed

Variable Liveness

- A statement $x=y+z$
- defines x
- uses y and z
- A variable x is live at a program point if its value (at this point) is used at a later point

$$
\begin{aligned}
& y=42 \\
& z=73 \\
& x=y+z \\
& \operatorname{print}(x) ;
\end{aligned}
$$

x undef, y live, z undef
x undef, y live, z live
x is live, y dead, z dead
x is dead, y dead, z dead
(showing state after the statement)

Computing Liveness Information

- between basic blocks - dataflow analysis (previous lecture)
- within a single basic block?
- idea
- use symbol table to record next-use information
- scan basic block backwards
- update next-use for each variable

Computing Liveness Information

- INPUT: A basic block B of three-address statements. symbol table initially shows all non-temporary variables in B as being live on exit.
- OUTPUT: At each statement $i: x=y+z$ in B, liveness and next-use information of x, y, and z at i.
- Start at the last statement in B and scan backwards
- At each statement $i: x=y+z$ in B, we do the following:

1. Attach to i the information currently found in the symbol table regarding the next use and liveness of x, y, and z.
2. In the symbol table, set x to "not live" and "no next use."
3. In the symbol table, set y and z to "live" and the next uses of y and z to i

Computing Liveness Information

- Start at the last statement in B and scan backwards
- At each statement $i: x=y+z$ in B, we do the following:

1. Attach to i the information currently found in the symbol table regarding the next use and liveness of x, y, and z.
2. In the symbol table, set x to "not live" and "no next use."
3. In the symbol table, set y and z to "live" and the next uses of y and z to i

$$
\begin{aligned}
& x=1 \\
& y=x+3 \\
& z=x * 3 \\
& x=x * z
\end{aligned}
$$

can we change the order between 2 and 3 ?

simple code generation

- translate each TAC instruction separately
- For each register, a register descriptor records the variable names whose current value is in that register
- we use only those registers that are available for local use within a basic block, we assume that initially, all register descriptors are empty
- As code generation progresses, each register will hold the value of zero or more names
- For each program variable, an address descriptor records the location(s) where the current value of the variable can be found
- The location may be a register, a memory address, a stack location, or some set of more than one of these
- Information can be stored in the symbol-table entry for that variable

simple code generation

For each three-address statement $\mathrm{x}:=\mathrm{y}$ op z ,

1. Invoke getreg ($x:=y$ op z) to select registers R_{x}, R_{y}, and R_{z}
2. If Ry does not contain y, issue: $L D R_{y}, y^{\prime}$ for a location y^{\prime} of y
3. If $R z$ does not contain z, issue: $L D R_{z}, z^{\prime}$ for a location z^{\prime} of z
4. Issue the instruction $O P R_{x}, R_{y}, R_{z}$
5. Update the address descriptors of x, y, z, if necessary

- R_{x} is the only location of x now, and
R_{x} contains only x (remove R_{x} from other address descriptors)

The function getreg is not defined yet, for now think of it as an oracle that gives us 3 registers for an instruction

Find a register allocation

variable	register	register
a	$?$	eax
b	$?$	
c	$?$	ebx

$b=a+2$
$\mathrm{c}=\mathrm{b} * \mathrm{~b}$
$b=c+1$
return b * a

Is this a valid allocation?

variable	register	register	
a	eax	eax	
b	ebx		
C	eax	ebx	Overwrites previous
$b=a+2$		$e \mathrm{ebx}=\mathrm{eax}+2$	
$\mathrm{c}=\mathrm{b} * \mathrm{~b}$		$=e b x * e b x$	
$b=c+1$		$=e a x+1$	
return $\mathrm{b}^{*} \mathrm{a}$		urn ebx * eax	

Is this a valid allocation?

variable	register	register
a	eax	eax
b	ebx	ebx
c	eax	

$b=a+2$
$\mathrm{c}=\mathrm{b} * \mathrm{~b}$
$b=c+1$
return b^{*} a
$e b x=e a x+2$
$e a x=e b x * e b x$
$e b x=e a x+1$
return ebx * eax

Value of 'c' stored in eax is not needed anymore so reuse it for 'b'

Main idea

- For every node n in CFG, we have out[n]
- Set of temporaries live out of n
- Two variables interfere if they appear in the same out[n] of any node n
- Cannot be allocated to the same register
- Conversely, if two variables do not interfere with each other, they can be assigned the same register
- We say they have disjoint live ranges
- How to assign registers to variables?

Interference graph

- Nodes of the graph = variables
- Edges connect variables that interfere with one another
- Nodes will be assigned a color corresponding to the register assigned to the variable
- Two colors can't be next to one another in the graph

Interference graph construction

$$
\begin{aligned}
& b=a+2 \\
& c=b * b \\
& b=c+1
\end{aligned}
$$

return b^{*} a

Interference graph construction

$$
\begin{aligned}
& b=a+2 \\
& c=b * b \\
& b=c+1 \\
& \text { return } b * a \quad\{b, a\}
\end{aligned}
$$

Interference graph construction

$$
\begin{aligned}
& b=a+2 \\
& c=b * b \\
& b=c+1
\end{aligned} \quad\{a, c\},
$$

Interference graph construction

$$
\begin{array}{ll}
b=a+2 & \\
c=b * b & \{b, a\} \\
b=c+1 & \{a, c\} \\
\text { return } b^{*} a & \{b, a\}
\end{array}
$$

Interference graph construction

\{a\}
$b=a+2$
\{b, a\}
$c=b * b$
$\{\mathrm{a}, \mathrm{c}\}$
$b=c+1$
$\{b, a\}$
return b* a

Interference graph

Colored graph

Graph coloring

- This problem is equivalent to graphcoloring, which is NP-hard if there are at least three registers
- No good polynomial-time algorithms (or even good approximations!) are known for this problem
- We have to be content with a heuristic that is good enough for RIGs that arise in practice

Coloring by simplification [Kempe 1879]

- How to find a k-coloring of a graph
- Intuition:
- Suppose we are trying to \boldsymbol{k}-color a graph and find a node with fewer than \boldsymbol{k} edges
- If we delete this node from the graph and color what remains, we can find a color for this node if we add it back in
- Reason: fewer than k neighbors \rightarrow some color must be left over

Coloring by simplification [Kempe 1879]

- How to find a k-coloring of a graph
- Phase 1: Simplification
- Repeatedly simplify graph
- When a variable (i.e., graph node) is removed, push it on a stack
- Phase 2: Coloring
- Unwind stack and reconstruct the graph as follows:
- Pop variable from the stack
- Add it back to the graph
- Color the node for that variable with a color that it doesn't interfere with

Coloring k=2

stack:

Coloring k=2

stack:
b
a
e
c

Coloring k=2

stack:

Coloring k=2

stack:

Coloring k=2

stack:

Coloring k=2

stack:

Failure of heuristic

- If the graph cannot be colored, it will eventually be simplified to graph in which every node has at least K neighbors
- Sometimes, the graph is still K-colorable!
- Finding a K-coloring in all situations is an NP-complete problem
- We will have to approximate to make register allocators fast enough

Coloring k=2

stack:

eax
ebx

Coloring k=2

Some graphs can't be colored in K colors:

stack:
c
b
e
a
d

eax
ebx

Coloring k=2

Some graphs can't be colored in K colors:

eax
ebx

Coloring k=2

Some graphs can't be colored in K colors:

eax
ebx

stack:
e
a
d
no colors left for e!

Chaitin's algorithm

- Choose and remove an arbitrary node, marking it "troublesome"
- Use heuristics to choose which one
- When adding node back in, it may be possible to find a valid color
- Otherwise, we have to spill that node

Spilling

- Phase 3: spilling
- once all nodes have K or more neighbors, pick a node for spilling
- There are many heuristics that can be used to pick a node
- Try to pick node not used much, not in inner loop
- Storage in activation record
- Remove it from graph
- We can now repeat phases 1-2 without this node
- Better approach - rewrite code to spill variable, recompute liveness information and try to color again

eax
ebx

stack:
e
a
d
no colors left for e!

Coloring k=2

Some graphs can't be colored in K colors:

stack:
b
e
a
d

Coloring k=2

Some graphs can't be colored in K colors:

Coloring k=2

Some graphs can't be colored in K colors:

Coloring k=2

Some graphs can't be colored in K colors:

stack:
 d

Coloring k=2

Some graphs can't be colored in K colors:

Handling precolored nodes

- Some variables are pre-assigned to registers
- Eg: mul on x86/pentium
- uses eax; defines eax, edx
- Eg: call on x86/pentium
- Defines (trashes) caller-save registers eax, ecx, edx
- To properly allocate registers, treat these register uses as special temporary variables and enter into interference graph as precolored nodes

Handling precolored nodes

- Simplify. Never remove a pre-colored node - it already has a color, i.e., it is a given register
- Coloring. Once simplified graph is all colored nodes, add other nodes back in and color them using precolored nodes as starting point

Optimizing move instructions

- Code generation produces a lot of extra mov instructions
mov t5, t9
- If we can assign $t 5$ and t9 to same register, we can get rid of the mov
- effectively, copy elimination at the register allocation level
- Idea: if t5 and t9 are not connected in inference graph, coalesce them into a single variable; the move will be redundant
- Problem: coalescing nodes can make a graph un-colorable
- Conservative coalescing heuristic

"Global" Register Allocation

- Input:
- Sequence of machine code instructions (assembly)
- Unbounded number of temporary registers
- Output
- Sequence of machine code instructions (assembly)
- Machine registers
- Some MOVE instructions removed
- Missing prologue and epilogue

Basic Compiler Phases
 $\downarrow \quad$ Source program (string)

lexical analysis
Tokens
syntax analysis
Abstract syntax tree
semantic analysis

Translate

Instruction selection Assembly
Global Register Allocation
Fin. Assembly

Graph Coloring by Simplification

Artificial Example K=2

Coalescing

- MOVs can be removed if the source and the target share the same register
- The source and the target of the move can be merged into a single node (unifying the sets of neighbors)
- May require more registers
- Conservative Coalescing
- Merge nodes only if the resulting node has fewer than K neighbors with degree $>\mathrm{K}$ (in the resulting graph)

Constrained Moves

- A instruction $\mathrm{T} \leftarrow \mathrm{S}$ is constrained
- if S and T interfere
- May happen after coalescing
$\mathrm{X} \leftarrow \mathrm{Y} \quad / * \mathrm{X}, \mathrm{Y}, \mathrm{Z} * /$

$$
\mathrm{Y} \leftarrow \mathrm{Z}
$$

- Constrained MOVs are not coalesced

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes with less than K neighbors; Push removed nodes into stack

\downarrow

Coalesce: Conservatively merge unconstrained MOV related nodes with fewer than K "heavy" neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

Potential-Spill: Spill some nodes and remove nodes Push removed nodes into stack Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Pre-Colored Nodes

- Some registers in the intermediate language are pre-colored:
- correspond to real registers (stack-pointer, frame-pointer, parameters,)
- Cannot be Simplified, Coalesced, or Spilled (infinite degree)
- Interfered with each other
- But normal temporaries can be coalesced into precolored registers
- Register allocation is completed when all the nodes are pre-colored

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes with less than K neighbors; Push removed nodes into stack

\downarrow

Coalesce: Conservatively merge unconstrained MOV related nodes with fewer that K "heavy" neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

Potential-Spill: Spill some nodes and remove nodes Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Optimizing MOV instructions

- Code generation produces a lot of extra mov instructions

$$
\operatorname{mov} \mathrm{t} 5, \mathrm{t} 9
$$

- If we can assign $t 5$ and t9 to same register, we can get rid of the mov
- effectively, copy elimination at the register allocation level
- Idea: if t 5 and t 9 are not connected in inference graph, coalesce them into a single variable; the move will be redundant
- Problem: coalescing nodes can make a graph un-colorable
- Conservative coalescing heuristic

Coalescing

- MOVs can be removed if the source and the target share the same register
- The source and the target of the move can be merged into a single node (unifying the sets of neighbors)
- May require more registers
- Conservative Coalescing
- Merge nodes only if the resulting node has fewer than K neighbors with degree $>K$ (in the resulting graph)

Constrained Moves

- A instruction $T \leftarrow S$ is constrained
- if S and T interfere
- May happen after coalescing

- Constrained MOVs are not coalesced

Constrained Moves

- A instruction $T \leftarrow S$ is constrained
- if S and T interfere
- May happen after coalescing

- Constrained MOVs are not coalesced

Constrained Moves

- A instruction $T \leftarrow S$ is constrained
- if S and T interfere
- May happen after coalescing

- Constrained MOVs are not coalesced

Graph Coloring with Coalescing

Build: Construct the interference graph
Simplify: Recursively remove non-MOV nodes with less than K neighbors; Push removed nodes into stack

Coalesce: Conservatively merge unconstrained MOV related nodes with fewer than K "heavy" neighbors

Freeze: Give-Up Coalescing on some MOV related nodes with low degree of interference edges

Special case: merged node has less than k neighbors

All non-MOV related nodes are "heavy"

Potential-Spill: Spill some nodes and remove nodes Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Pre-Colored Nodes

- Some registers in the intermediate language are precolored:
- correspond to real registers (stack-pointer, frame-pointer, parameters,)
- Cannot be Simplified, Coalesced, or Spilled
- infinite degree
- Interfered with each other
- But normal temporaries can be coalesced into pre-colored registers
- Register allocation is completed when all the nodes are pre-colored

Caller-Save and Callee-Save Registers

- callee-save-registers (MIPS 16-23)
- Saved by the callee when modified
- Values are automatically preserved across calls
- caller-save-registers
- Saved by the caller when needed
- Values are not automatically preserved
- Usually the architecture defines caller-save and calleesave registers
- Separate compilation
- Interoperability between code produced by different compilers/languages
- But compilers can decide when to use caller/callee registers

Caller-Save vs. Callee-Save Registers

f1(); g1(b); return $(\mathrm{b}+2)$;
void bar (int y) \{ int $\mathrm{x}=\mathrm{y}+1$;
f2(y);
g2(2);
\}

Saving Callee-Save Registers

enter: $\operatorname{def}\left(\mathrm{r}_{7}\right)$

enter: $\operatorname{def}\left(\mathrm{r}_{7}\right)$

$$
\mathrm{t}_{231} \leftarrow \mathrm{r}_{7}
$$

$$
\mathrm{r}_{7} \leftarrow \mathrm{t}_{231}
$$

exit: $\operatorname{use}\left(\mathrm{r}_{7}\right)$
exit: use $\left(\mathrm{r}_{7}\right)$

A Complete Example

```
int f(int a, int b) {
        int d=0;
        int e=a;
        do {d= d+b;
        e = e-1;
        } while (e>0);
        return d;
```

\}

A Complete Example

```
int f(int a, int b) {
    int d=0;
    int e=a;
    do {d= d+b;
        e = e-1;
    } while (e>0);
    return d;
}
```

enter: $\quad c \leftarrow r_{3}$
$a \leftarrow r_{1}$
$b \leftarrow r_{2}$
$d \leftarrow 0$
$e \leftarrow a$
loop: $\quad d \leftarrow d+b$
$e \leftarrow e-1$
if $e>0$ goto loop
$r_{1} \leftarrow d$
$r_{3} \leftarrow c$
return $\quad\left(r_{1}, r_{3}\right.$ live out $)$

A Complete Example

A Complete Example

A Complete Example

$$
\begin{array}{ll}
\text { enter: } & c_{1} \leftarrow r_{3} \\
& M\left[c_{\text {loc }}\right] \leftarrow c_{1} \\
& a \leftarrow r_{1} \\
& b \leftarrow r_{2} \\
& d \leftarrow 0 \\
\text { loop: } & d \leftarrow a \\
& d \leftarrow d+b \\
e \leftarrow e-1 \\
& \text { if } e>0 \text { goto loop } \\
& r_{1} \leftarrow d \\
& c_{2} \leftarrow M\left[c_{\text {loc }}\right] \\
& r_{3} \leftarrow c_{2} \\
& \text { return }
\end{array}
$$

A Complete Example

Interprocedural Allocation

- Allocate registers to multiple procedures
- Potential saving
- caller/callee save registers
- Parameter passing
- Return values
- But may increase compilation cost
- Function inline can help

Summary

- Two Register Allocation Methods
- Local of every IR tree
- Simultaneous instruction selection and register allocation
- Optimal (under certain conditions)
- Global of every function
- Applied after instruction selection
- Performs well for machines with many registers
- Can handle instruction level parallelism
- Missing
- Interprocedural allocation

The End

global register allocation

- idea: compute "weight" for each variable
- for each use of v in B prior to any definition of v add 1 point
- for each occurrence of v in a following block using v add 2 points, as we save the store/load between blocks
$-\operatorname{cost}(v)=\Sigma_{B} u s e(v, B)+2 * \operatorname{live}(v, B)$
- use(v, B) is is the number of times v is used in B prior to any definition of v
- live (v, B) is 1 if v is live on exit from B and is assigned a value in B
- after computing weights, allocate registers to the "heaviest" values

Two Phase Solution Dynamic Programming Sethi \& Ullman

- Bottom-up (labeling)
- Compute for every subtree
- The minimal number of registers needed (weight)
- Top-Down
- Generate the code using labeling by preferring "heavier" subtrees (larger labeling)

"Global" Register Allocation

- Input:
- Sequence of machine code instructions (assembly)
- Unbounded number of temporary registers
- Output
- Sequence of machine code instructions (assembly)
- Machine registers
- Some MOVE instructions removed
- Missing prologue and epilogue

Basic Compiler Phases
 $\downarrow \quad$ Source program (string)

lexical analysis
Tokens
syntax analysis
Abstract syntax tree
semantic analysis

Translate

Instruction selection Assembly
Global Register Allocation
Fin. Assembly

13:
beq t128, $\$ 0,10 / * \$ 0$, t128 */
11: or t131, \$0, t128/* \$0, t128, t131 */ addi t132, t128, $-1 / * \$ 0, \mathrm{t} 131, \mathrm{t} 132 * /$
or $\$ 4, \$ 0, \mathrm{t} 132 / * \$ 0, \$ 4, \mathrm{t} 131$ */
jal nfactor $/ * \$ 0, \$ 2$, t131 */ or t130, \$0, \$2/* \$0, t130, t131 */ or t133, \$0, t131/* \$0, t130, t133 */ mult t133, t130/* \$0, t133 */ mflo t133 /* \$0, t133 */ or t129, \$0, t133 /* \$0, t129 */ 12: or t103, \$0, t129 /* \$0, t103 */
b lend /* \$0, t103 */ 10: addi t129, \$0, $1 \quad / * \$ 0$, t129 */ b 12 /* \$0, t129 */

Global Register Allocation Process

Construct the interference graph
Color graph nodes with machine registers
Adjacent nodes are not colored by the same register
Spill a temporary into memory
Until no more spill

Constructing interference graphs

(take 1)

- Compute liveness information at every statement
- Variables 'a' and 'b' interfere when there exists a control flow node n such that 'a', 'b' $\in \operatorname{Lv}[n]$

A Simple Example

Constructing interference graphs (take 2)

- Compute liveness information at every statement
- Variables 'a' and 'b' interfere when there exists a control flow edge (m, n) with an assignment $\mathrm{a}:=\exp$ and ' b ' $\in \operatorname{Lv}[\mathrm{n}]$

Constructing interference graphs (take 3)

- Compute liveness information at every statement
- Variables 'a' and 'b' interfere when there exists a control flow edge (m, n) with an assignment $\mathrm{a}:=\exp$ and ' b ' $\in \operatorname{Lv}[\mathrm{n}]$ and 'b' $\neq \exp$

13:
beq t128, $\$ 0,10 / * \$ 0$, t128 */
11: or t131, \$0, t128/* \$0, t128, t131 */ addi t132, t128, $-1 / * \$ 0, \mathrm{t} 131, \mathrm{t} 132 * /$
or $\$ 4, \$ 0, \mathrm{t} 132 / * \$ 0, \$ 4, \mathrm{t} 131$ */
jal nfactor $/ * \$ 0, \$ 2$, t131 */ or t130, \$0, \$2/* \$0, t130, t131 */ or t133, \$0, t131/* \$0, t130, t133 */ mult t133, t130/* \$0, t133 */ mflo t133 /* \$0, t133 */ or t129, \$0, t133 /* \$0, t129 */ 12: or t103, \$0, t129 /* \$0, t103 */
b lend /* \$0, t103 */ 10: addi t129, \$0, $1 \quad / * \$ 0$, t129 */ b 12 /* \$0, t129 */

Challenges

- The Coloring problem is computationally hard
- The number of machine registers may be small
- Avoid too many MOVEs
- Handle "pre-colored" nodes

Theorem

[Kempe 1879]

- Assume:
- An undirected graph G(V, E)
- A node $v \in V$ with less than K neighbors
$-\mathrm{G}-\{\mathrm{v}\}$ is K colorable
- Then, G is K colorable

Coloring by Simplification [Kempe 1879]

- K
- the number of machine registers
- $G(V, E)$
- the interference graph
- Consider a node $\mathrm{v} \in \mathrm{V}$ with less than K neighbors:
- Color $\mathrm{G}-\mathrm{v}$ in K colors
- Color v in a color different than its (colored) neighbors

Graph Coloring by Simplification

Artificial Example K=2

Coalescing

- MOVs can be removed if the source and the target share the same register
- The source and the target of the move can be merged into a single node (unifying the sets of neighbors)
- May require more registers
- Conservative Coalescing
- Merge nodes only if the resulting node has fewer than K neighbors with degree $>\mathrm{K}$ (in the resulting graph)

Constrained Moves

- A instruction $\mathrm{T} \leftarrow \mathrm{S}$ is constrained
- if S and T interfere
- May happen after coalescing
$\mathrm{X} \leftarrow \mathrm{Y} \quad / * \mathrm{X}, \mathrm{Y}, \mathrm{Z} * /$

$$
\mathrm{Y} \leftarrow \mathrm{Z}
$$

- Constrained MOVs are not coalesced

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes with less than K neighbors; Push removed nodes into stack

\downarrow

Coalesce: Conservatively merge unconstrained MOV related nodes with fewer than K "heavy" neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

Potential-Spill: Spill some nodes and remove nodes Push removed nodes into stack Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Spilling

- Many heuristics exist
- Maximal degree
- Live-ranges
- Number of uses in loops
- The whole process need to be repeated after an actual spill

Pre-Colored Nodes

- Some registers in the intermediate language are pre-colored:
- correspond to real registers (stack-pointer, frame-pointer, parameters,)
- Cannot be Simplified, Coalesced, or Spilled (infinite degree)
- Interfered with each other
- But normal temporaries can be coalesced into precolored registers
- Register allocation is completed when all the nodes are pre-colored

Caller-Save and Callee-Save Registers

- callee-save-registers (MIPS 16-23)
- Saved by the callee when modified
- Values are automatically preserved across calls
- caller-save-registers
- Saved by the caller when needed
- Values are not automatically preserved
- Usually the architecture defines caller-save and callee-save registers
- Separate compilation
- Interoperability between code produced by different compilers/languages
- But compilers can decide when to use calller/callee registers

Caller-Save vs. Callee-Save Registers

int foo(int a) int $b=a+1$;

$$
\begin{gathered}
\mathrm{fl}() \\
\mathrm{g} 1(\mathrm{~b})
\end{gathered}
$$

return $(b+2)$;
void bar (int y) \{ int $\mathrm{x}=\mathrm{y}+1$;
f2(y);
g2(2);
\}

$$
\text { \} }
$$

Saving Callee-Save Registers

enter: $\operatorname{def}\left(\mathrm{r}_{7}\right)$

enter: $\operatorname{def}\left(\mathrm{r}_{7}\right)$

$$
\mathrm{t}_{231} \leftarrow \mathrm{r}_{7}
$$

$$
\mathrm{r}_{7} \leftarrow \mathrm{t}_{231}
$$

exit: $\operatorname{use}\left(\mathrm{r}_{7}\right)$
exit: use $\left(\mathrm{r}_{7}\right)$

A Complete Example

enter:

$$
\begin{array}{ll}
\mathrm{c}: \mathrm{r}^{-} \mathrm{r} 3 & \text { caller save } \\
\mathrm{a}: \stackrel{\mathrm{r}}{=} \mathrm{r} 1 & \text { callee-save } \\
\mathrm{b}:=\mathrm{r} 2 \\
\mathrm{~d}:=0 \\
\mathrm{e}:=\mathrm{a} &
\end{array}
$$

loop:

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{d}+\mathrm{b} \\
\mathrm{e} & :=\mathrm{e}-1
\end{aligned}
$$

if $\mathrm{e}>0$ goto loop
r1 := d
r3:=c
return /* r1,r3 */

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes with less than K neighbors; Push removed nodes into stack

\downarrow

Coalesce: Conservatively merge unconstrained MOV related nodes with fewer that K "heavy" neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

Potential-Spill: Spill some nodes and remove nodes Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

A Complete Example

enter:

$$
\begin{aligned}
& \mathrm{c}:: \mathrm{r} 1 \mathrm{r} \mathrm{r}^{\mathrm{r} 2} \\
& \text { caller save } \\
& \mathrm{a}:=\mathrm{r} 3 \text { callee-save } \\
& \mathrm{b}:=\mathrm{r} 2 \\
& \mathrm{~d}:=0 \\
& \mathrm{e}:=\mathrm{a}
\end{aligned}
$$

loop:

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{d}+\mathrm{b} \\
\mathrm{e} & :=\mathrm{e}-1
\end{aligned}
$$

if $\mathrm{e}>0$ goto loop
r1 := d
$\mathrm{r} 3:=\mathrm{c}$
return $/ *$ r1, r3*/

A Complete Example

enter:

$$
\begin{aligned}
\mathrm{c}:=\mathrm{r} 3 \\
\mathrm{a}:=\mathrm{r} 1 \\
\mathrm{~b}:=\mathrm{r} 2 \\
\mathrm{~d}:=0 \\
\mathrm{e}:=\mathrm{a}
\end{aligned}
$$

loop:

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{d}+\mathrm{b} \\
\mathrm{e} & :=\mathrm{e}-1
\end{aligned}
$$

if $\mathrm{e}>0$ goto loop
r1 := d
r3:= c
return /* r1,r3 */

A Complete Example

enter:

$$
\begin{aligned}
\mathrm{c}:=\mathrm{r} 3 \\
\mathrm{a}:=\mathrm{r} 1 \\
\mathrm{~b}:=\mathrm{r} 2 \\
\mathrm{~d}:=0 \\
\mathrm{e}:=\mathrm{a}
\end{aligned}
$$

loop:

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{d}+\mathrm{b} \\
\mathrm{e} & :=\mathrm{e}-1
\end{aligned}
$$

if $\mathrm{e}>0$ goto loop
r1 := d
r3:= c
return /* r1,r3 */

A Complete Example

Live Variables Results

enter:

$$
\begin{aligned}
\mathrm{c} & :=\mathrm{r} 3 \\
\mathrm{a} & :=\mathrm{r} 1 \\
\mathrm{~b} & :=\mathrm{r} 2 \\
\mathrm{~d} & :=0 \\
\mathrm{e} & :=\mathrm{a}
\end{aligned}
$$

loop:

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{d}+\mathrm{b} \\
\mathrm{e} & :=\mathrm{e}-1
\end{aligned}
$$

if $\mathrm{e}>0$ goto loop
r1 := d
r3:= c
return /* r1,r3 */
enter: $\quad / *$ r2, r1, r3 */

$$
\begin{aligned}
\mathrm{c} & :=\mathrm{r} 3 / * \mathrm{c}, \mathrm{r} 2, \mathrm{r} 1 * / \\
\mathrm{a} & :=\mathrm{r} 1 / * \mathrm{a}, \mathrm{c}, \mathrm{r} 2 * / \\
\mathrm{b} & :=\mathrm{r} 2 / * \mathrm{a}, \mathrm{c}, \mathrm{~b} * / \\
\mathrm{d} & :=0 / * \mathrm{a}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{e} & :=\mathrm{a} / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * /
\end{aligned}
$$

loop:

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{d}+\mathrm{b} / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{e} & :=\mathrm{e}-1 / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * /
\end{aligned}
$$

if $\mathrm{e}>0$ goto loop $/ * \mathrm{c}, \mathrm{d} * /$

$$
\begin{aligned}
& \mathrm{r} 1:=\mathrm{d} / * \mathrm{r} 1, \mathrm{c} * / \\
& \mathrm{r} 3:=\mathrm{c} / * \mathrm{r} 1, \mathrm{r} 3 * /
\end{aligned}
$$

return $/ *$ r1, r3 */

$$
\begin{gathered}
\mathrm{c}:=\mathrm{r} 3 / * \mathrm{c}, \mathrm{r} 2, \mathrm{r} 1 * / \\
\mathrm{a}:=\mathrm{r} 1 / * \mathrm{a}, \mathrm{c}, \mathrm{r} 2 * / \\
\mathrm{b}:=\mathrm{r} 2 / * \mathrm{a}, \mathrm{c}, \mathrm{~b} * / \\
\mathrm{d}:=0 / * \mathrm{a}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{e}:=\mathrm{a} / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
\\
\mathrm{loop}: \\
\mathrm{d}:=\mathrm{d}+\mathrm{b} / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{e}:=\mathrm{e}-1 / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
\text { if } \mathrm{e}>0
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{r} 1:=\mathrm{d} / * \mathrm{r} 1, \mathrm{c} * / \\
& \mathrm{r} 3:=\mathrm{c} / * \mathrm{r} 1, \mathrm{r} 3 * /
\end{aligned}
$$

return $/ *$ r1,r3 */

spill priority $=($ uo $+10 \mathrm{ui}) / \mathrm{deg}$

enter:

$$
\begin{aligned}
/^{*} \mathrm{r} 2, \mathrm{r} 1, \mathrm{r} 3 * / \\
\mathrm{c}:=\mathrm{r} 3 \quad * \mathrm{c}, \mathrm{r} 2, \mathrm{r} 1^{* /} \\
\mathrm{a}:=\mathrm{r} 1 / * \mathrm{a}, \mathrm{c}, \mathrm{r} 2 * / \\
\mathrm{b}:=\mathrm{r} 2 / * \mathrm{a}, \mathrm{c}, \mathrm{~b} * / \\
\mathrm{d}:=0 \quad / * \mathrm{a}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{e}:=\mathrm{a} \quad / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * /
\end{aligned}
$$

loop:
$\mathrm{d}:=\mathrm{d}+\mathrm{b} / * \mathrm{e}, \mathrm{c}, \mathrm{b}, \mathrm{d}^{* /}$
$\mathrm{e}:=\mathrm{e}-1 / * \mathrm{e}, \mathrm{c}, \mathrm{b}, \mathrm{d} * /$
if $\mathrm{e}>0$ goto loop $/ * \mathrm{c}, \mathrm{d} * /$
$\mathrm{r} 1:=\mathrm{d} / * \mathrm{r} 1, \mathrm{c} * /$
$\mathrm{r} 3:=\mathrm{c} / * \mathrm{r} 1, \mathrm{r} 3 * /$
return /* r1,r3 */
$\left.\begin{array}{|ccccc}\hline & \begin{array}{c}\text { use }+ \\ \text { def }\end{array} & \begin{array}{c}\text { use }+ \\ \text { def } \\ \text { outside } \\ \text { loop }\end{array} & \begin{array}{c}\text { deg } \\ \text { within } \\ \text { loop }\end{array} & \\ \text { a } & 2 & 0 & 4 & 0.5 \\ \text { priority }\end{array}\right]$

Optimizing MOV instructions

- Code generation produces a lot of extra mov instructions

$$
\operatorname{mov} \mathrm{t} 5, \mathrm{t} 9
$$

- If we can assign $t 5$ and t9 to same register, we can get rid of the mov
- effectively, copy elimination at the register allocation level
- Idea: if t 5 and t 9 are not connected in inference graph, coalesce them into a single variable; the move will be redundant
- Problem: coalescing nodes can make a graph un-colorable
- Conservative coalescing heuristic

Coalescing

- MOVs can be removed if the source and the target share the same register
- The source and the target of the move can be merged into a single node (unifying the sets of neighbors)
- May require more registers
- Conservative Coalescing
- Merge nodes only if the resulting node has fewer than K neighbors with degree $>K$ (in the resulting graph)

Constrained Moves

- A instruction $T \leftarrow S$ is constrained
- if S and T interfere
- May happen after coalescing

- Constrained MOVs are not coalesced

Constrained Moves

- A instruction $T \leftarrow S$ is constrained
- if S and T interfere
- May happen after coalescing

- Constrained MOVs are not coalesced

Constrained Moves

- A instruction $T \leftarrow S$ is constrained
- if S and T interfere
- May happen after coalescing

- Constrained MOVs are not coalesced

Graph Coloring with Coalescing

Build: Construct the interference graph
Simplify: Recursively remove non-MOV nodes with less than K neighbors; Push removed nodes into stack

Coalesce: Conservatively merge unconstrained MOV related nodes with fewer than K "heavy" neighbors

Freeze: Give-Up Coalescing on some MOV related nodes with low degree of interference edges

Special case: merged node has less than k neighbors

All non-MOV related nodes are "heavy"

Potential-Spill: Spill some nodes and remove nodes Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Spilling

- Many heuristics exist
- Maximal degree
- Live-ranges
- Number of uses in loops
- The whole process need to be repeated after an actual spill

Pre-Colored Nodes

- Some registers in the intermediate language are precolored:
- correspond to real registers (stack-pointer, frame-pointer, parameters,)
- Cannot be Simplified, Coalesced, or Spilled
- infinite degree
- Interfered with each other
- But normal temporaries can be coalesced into pre-colored registers
- Register allocation is completed when all the nodes are pre-colored

Caller-Save and Callee-Save Registers

- callee-save-registers (MIPS 16-23)
- Saved by the callee when modified
- Values are automatically preserved across calls
- caller-save-registers
- Saved by the caller when needed
- Values are not automatically preserved
- Usually the architecture defines caller-save and calleesave registers
- Separate compilation
- Interoperability between code produced by different compilers/languages
- But compilers can decide when to use caller/callee registers

Caller-Save vs. Callee-Save Registers

f1(); g1(b); return $(\mathrm{b}+2)$;
void bar (int y) \{ int $\mathrm{x}=\mathrm{y}+1$;
f2(y);
g2(2);
\}

Saving Callee-Save Registers

enter: $\operatorname{def}\left(\mathrm{r}_{7}\right)$

enter: $\operatorname{def}\left(\mathrm{r}_{7}\right)$

$$
\mathrm{t}_{231} \leftarrow \mathrm{r}_{7}
$$

$$
\mathrm{r}_{7} \leftarrow \mathrm{t}_{231}
$$

exit: $\operatorname{use}\left(\mathrm{r}_{7}\right)$
exit: use $\left(\mathrm{r}_{7}\right)$

A Complete Example

```
int f(int a, int b) {
        int d=0;
        int e=a;
        do {d= d+b;
        e = e-1;
        } while (e>0);
        return d;
```

\}

A Complete Example

```
int f(int a, int b) {
    int d=0;
    int e=a;
    do {d= d+b;
        e = e-1;
    } while (e>0);
    return d;
}
```

enter: $\quad c \leftarrow r_{3}$
$a \leftarrow r_{1}$
$b \leftarrow r_{2}$
$d \leftarrow 0$
$e \leftarrow a$
loop: $\quad d \leftarrow d+b$
$e \leftarrow e-1$
if $e>0$ goto loop
$r_{1} \leftarrow d$
$r_{3} \leftarrow c$
return $\quad\left(r_{1}, r_{3}\right.$ live out $)$

A Complete Example

A Complete Example

A Complete Example

$$
\begin{array}{ll}
\text { enter: } & c_{1} \leftarrow r_{3} \\
& M\left[c_{\text {loc }}\right] \leftarrow c_{1} \\
& a \leftarrow r_{1} \\
& b \leftarrow r_{2} \\
& d \leftarrow 0 \\
\text { loop: } & d \leftarrow a \\
& d \leftarrow d+b \\
e \leftarrow e-1 \\
& \text { if } e>0 \text { goto loop } \\
& r_{1} \leftarrow d \\
& c_{2} \leftarrow M\left[c_{\text {loc }}\right] \\
& r_{3} \leftarrow c_{2} \\
& \text { return }
\end{array}
$$

A Complete Example

Interprocedural Allocation

- Allocate registers to multiple procedures
- Potential saving
- caller/callee save registers
- Parameter passing
- Return values
- But may increase compilation cost
- Function inline can help

Summary

- Two Register Allocation Methods
- Local of every IR tree
- Simultaneous instruction selection and register allocation
- Optimal (under certain conditions)
- Global of every function
- Applied after instruction selection
- Performs well for machines with many registers
- Can handle instruction level parallelism
- Missing
- Interprocedural allocation

The End

Spill C

stack

Coalescing $a+e$

Coalescing $b+r 2$

Coalescing $a e+r 1$

rlae and d are constrained

Simplifying d

Pop d

d is assigned to r 3

Pop c

enter:

$$
\begin{aligned}
& \mathrm{c}:=\mathrm{r} 3 / * \mathrm{c}, \mathrm{r} 2, \mathrm{r} 1 * / \\
& \mathrm{a}:=\mathrm{r} 1 / * \mathrm{a}, \mathrm{c}, \mathrm{r} 2 * / \\
& \mathrm{b}:=\mathrm{r} 2 / * \mathrm{a}, \mathrm{c}, \mathrm{~b} * / \\
& \mathrm{d}:= 0 / * \mathrm{a}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
& \mathrm{e}:= \mathrm{a} / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * / \\
& \text { loop: }
\end{aligned}
$$

$$
\mathrm{d}:=\mathrm{d}+\mathrm{b} / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * /
$$

$$
\mathrm{e}:=\mathrm{e}-1 / * \mathrm{e}, \mathrm{c}, \mathrm{~b}, \mathrm{~d} * /
$$

if $\mathrm{e}>0$ goto loop $/ * \mathrm{c}, \mathrm{d} * /$

$$
\begin{aligned}
& \mathrm{r} 1:=\mathrm{d} / * \mathrm{r} 1, \mathrm{c} * / \\
& \mathrm{r} 3:=\mathrm{c} / * \mathrm{r} 1, \mathrm{r} 3 * /
\end{aligned}
$$

return $/ * \mathrm{r} 1, \mathrm{r} 3$ */
enter: \quad * r2, r1, r3 */
$\mathrm{c} 1:=\mathrm{r} 3 / * \mathrm{c} 1, \mathrm{r} 2, \mathrm{r} 1 * /$
$\mathrm{M}\left[\mathrm{c} _\right.$loc $]:=\mathrm{c} 1 / * \mathrm{r} 2 * /$

$$
\mathrm{a}:=\mathrm{r} 1 / * \mathrm{a}, \mathrm{r} 2 * /
$$

$$
\mathrm{b}:=\mathrm{r} 2 / * \mathrm{a}, \mathrm{~b} * /
$$

$$
\mathrm{d}:=0 \quad / * \mathrm{a}, \mathrm{~b}, \mathrm{~d} * /
$$

$$
\mathrm{e}:=\mathrm{a} / * \mathrm{e}, \mathrm{~b}, \mathrm{~d} * /
$$

loop:
$\mathrm{d}:=\mathrm{d}+\mathrm{b} / * \mathrm{e}, \mathrm{b}, \mathrm{d} * /$
$\mathrm{e}:=\mathrm{e}-1 / * \mathrm{e}, \mathrm{b}, \mathrm{d} * /$
if e >0 goto loop $/ * \mathrm{~d}^{* /}$

$$
\mathrm{rl}:=\mathrm{d} / * \mathrm{rl} * /
$$

$\mathrm{c} 2:=\mathrm{M}\left[\mathrm{c} _\right.$loc $] / * \mathrm{r} 1, \mathrm{c} 2 * /$

$$
\mathrm{r} 3:=\mathrm{c} 2 / * \mathrm{r} 1, \mathrm{r} 3 * /
$$

return /* r1,r3 */
enter: /* r2, r1, r3 */

$$
\begin{gathered}
\mathrm{c} 1:=\mathrm{r} 3 / * \mathrm{c} 1, \mathrm{r} 2, \mathrm{r} 1 * / \\
\mathrm{M}\left[\mathrm{c} _\mathrm{loc}\right]:=\mathrm{c} 1 / * \mathrm{r} 2 * / \\
\mathrm{a}:=\mathrm{r} 1 / * \mathrm{a}, \mathrm{r} 2 * / \\
\mathrm{b}:=\mathrm{r} 2 / * \mathrm{a}, \mathrm{~b} * / \\
\mathrm{d}:=0 / * \mathrm{a}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{e}:=\mathrm{a} / * \mathrm{e}, \mathrm{~b}, \mathrm{~d} * / \\
\text { loop: } \\
\mathrm{d}:=\mathrm{d}+\mathrm{b} / * \mathrm{e}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{e}:=\mathrm{e}-1 / * \mathrm{e}, \mathrm{~b}, \mathrm{~d} * / \\
\mathrm{if} \mathrm{e}>0 \text { goto loop } / * \mathrm{~d} * / \\
\mathrm{r} 1:=\mathrm{d} / * \mathrm{r} 1 * / \\
\mathrm{c} 2:=\mathrm{M}\left[\mathrm{c} _l \mathrm{loc}\right] / * \mathrm{r} 1, \mathrm{c} 2 * / \\
\mathrm{r} 3:=\mathrm{c} 2 / * \mathrm{r} 1, \mathrm{r} 3 * / \\
\mathrm{return} / * \mathrm{r} 1, \mathrm{r} 3 * /
\end{gathered}
$$

Coalescing c1+r3; c2+c1r3

stack

stack

Coalescing $\mathrm{a}+\mathrm{e} ; \mathrm{b}+\mathrm{r} 2$

stack

Coalescing ae +rl

stack

r1ae and d are constrained

Simplify d

stack

Pop d

enter:

$$
\begin{gathered}
\mathrm{c} 1:=\mathrm{r} 3 \\
\mathrm{M}\left[\mathrm{c} _\mathrm{loc}\right]:=\mathrm{c} 1 \\
\mathrm{a}:=\mathrm{r} 1 \\
\mathrm{~b}:=\mathrm{r} 2 \\
\mathrm{~d}:=0 \\
\mathrm{e}:=\mathrm{a}
\end{gathered}
$$

loop:

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{d}+\mathrm{b} \\
\mathrm{e} & :=\mathrm{e}-1
\end{aligned}
$$

if $\mathrm{e}>0$ goto loop

$$
\begin{gathered}
\mathrm{r} 1:=\mathrm{d} \\
\mathrm{c} 2:=\mathrm{M}\left[\mathrm{c} _\mathrm{loc}\right]
\end{gathered}
$$

$$
\mathrm{r} 3:=\mathrm{c} 2
$$

return $/ *$ r1,r3 */
enter:

$$
\mathrm{r} 3:=\mathrm{r} 3
$$

$$
\mathrm{M}[\mathrm{c} \text { _loc }]:=\mathrm{r} 3
$$

$$
\begin{aligned}
\mathrm{r} 1 & :=\mathrm{r} 1 \\
\mathrm{r} 2 & :=\mathrm{r} 2 \\
\mathrm{r} 3 & :=0 \\
\mathrm{r} 1 & :=\mathrm{r} 1
\end{aligned}
$$

loop:
r3 : $=$ r3+r2
$\mathrm{r} 1:=\mathrm{r} 1-1$
if $\mathrm{rl}>0$ goto loop
r1:=r3
r3 := M [c_loc]
r3: r3
return $/ *$ r1,r3 */
enter:

$$
\begin{gathered}
\mathrm{r} 3:=\mathrm{r} 3 \\
\mathrm{M}\left[\mathrm{c} _\mathrm{loc}\right]:=\mathrm{r} 3 \\
\mathrm{r} 1:=\mathrm{r} 1 \\
\mathrm{r} 2:=\mathrm{r} 2 \\
\mathrm{r} 3:=0 \\
\mathrm{r} 1:=\mathrm{r} 1
\end{gathered}
$$

loop:

$$
\begin{gathered}
\mathrm{r} 3:=\mathrm{r} 3+\mathrm{r} 2 \\
\mathrm{r} 1:=\mathrm{r} 1-1
\end{gathered}
$$

$$
\text { if } \mathrm{rl}>0 \text { goto loop }
$$

$$
\mathrm{r} 1:=\mathrm{r} 3
$$

$$
\mathrm{r} 3:=\mathrm{M}\left[\mathrm{c} _\mathrm{loc}\right]
$$

$$
\mathrm{r} 3:=\mathrm{r} 3
$$

return $/ * \mathrm{r} 1, \mathrm{r} 3 * /$
enter:

$$
\begin{gathered}
\mathrm{M}\left[\mathrm{c} _ \text {loc }\right]:=\mathrm{r} 3 \\
\mathrm{r} 3:=0
\end{gathered}
$$

loop:
r3 : $=\mathrm{r} 3+\mathrm{r} 2$
$\mathrm{r} 1:=\mathrm{r} 1-1$
if $\mathrm{rl}>0$ goto loop

$$
\mathrm{r} 1:=\mathrm{r} 3
$$

r3:=M[c_loc]
return $/ * \mathrm{r} 1, \mathrm{r} 3$ */
main: addiu $\$ \mathrm{sp}, \$ \mathrm{sp},-\mathrm{K} 1$ nfactor: addiu $\$ \mathrm{sp}, \$ \mathrm{sp},-\mathrm{K} 2$
L4: sw $\quad \$ 2,0+\mathrm{K} 1(\$ \mathrm{sp})$
or $\$ 25, \$ 0, \$ 31$
sw $\$ 25,-4+\mathrm{K} 1(\$ \mathrm{sp})$ addiu $\$ 25, \$ \mathrm{sp}, 0+\mathrm{K} 1$
or $\$ 2, \$ 0, \$ 25$
addi $\$ 25, \$ 0,10$
or $\$ 4, \$ 0, \$ 25$ jal nfactor
lw \$25,-4+K1
or $\$ 31, \$ 0, \$ 25$
b L3
L3: addiu \$sp,\$sp,K1
j $\$ 31$

L6: sw $\$ 2,0+\mathrm{K} 2(\$ s p)$ or $\$ 25, \$ 0, \$ 4$
or $\$ 24, \$ 0, \$ 31$
sw $\$ 24,-4+\mathrm{K} 2(\$ \mathrm{sp})$
sw $\$ 30,-8+\mathrm{K} 2(\$ \mathrm{sp})$
beq $\$ 25, \$ 0, \mathrm{~L} 0$
L1: or $\$ 30, \$ 0, \$ 25$
lw $\$ 24,0+\mathrm{K} 2$
or $\$ 2, \$ 0, \$ 24$
addi $\$ 25, \$ 25,-1$
or $\$ 4, \$ 0, \$ 25$ jal nfactor
or $\$ 25, \$ 0, \$ 2$
mult $\$ 30, \$ 25$
mflo \$30
L2: or $\$ 2, \$ 0, \$ 30$
lw $\$ 30,-4+\mathrm{K} 2(\$ \mathrm{sf}$ or $\$ 31, \$ 0, \$ 30$
lw $\$ 30,-8+\mathrm{K} 2(\$ \mathrm{sf}$
b L5
L0: addi $\$ 30, \$ 0,1$
b L2
L5: addiu $\$ \mathrm{sp}, \$ \mathrm{sp}, \mathrm{K}$
j $\$ 31$

Interprocedural Allocation

- Allocate registers to multiple procedures
- Potential saving
- caller/callee save registers
- Parameter passing
- Return values
- But may increase compilation cost
- Function inline can help

Summary

- Two Register Allocation Methods
- Local of every IR tree
- Simultaneous instruction selection and register allocation
- Optimal (under certain conditions)
- Global of every function
- Applied after instruction selection
- Performs well for machines with many registers
- Can handle instruction level parallelism
- Missing
- Interprocedural allocation

Challenges in register allocation

- Registers are scarce
- Often substantially more IR variables than registers
- Need to find a way to reuse registers whenever possible
- Registers are complicated
- x86: Each register made of several smaller registers; can't use a register and its constituent registers at the same time
- x86: Certain instructions must store their results in specific registers; can't store values there if you want to use those instructions
- MIPS: Some registers reserved for the assembler or operating system
- Most architectures: Some registers must be preserved across function calls

The End

The End

