
Compilation
0368-3133		2016/17a

Lecture	10

Register	Allocation
Noam	Rinetzky

1

What	is	a	Compiler?

2

Registers

• Dedicated	memory	locations	that
– can	be	accessed	quickly,
– can	have	computations	performed	on	them,	and

Registers

• Dedicated	memory	locations	that
– can	be	accessed	quickly,
– can	have	computations	performed	on	them,	and

• Usages
– Operands	of	instructions
– Store	temporary	results
– Can	(should)	be	used	as	loop	indexes	due	to	frequent	
arithmetic	operation	

– Used	to	manage	administrative	info	
• e.g.,	runtime	stack

Register	allocation

• Number	of	registers	is	limited

• Need	to	allocate them	in	a	clever	way
– Using	registers	intelligently	is	a	critical	step	in	
any	compiler
• A	good	register	allocator	can	generate	code	orders	
of	magnitude	better	than	a	bad	register	allocator

Register	Allocation:	IR

6

Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target	code

(executable)

Simple	approach

• Problem: program	execution	very	inefficient–
moving	data	back	and	forth	between	memory	
and	registers

x	=	y	+	z

mov 16(%ebp),	%eax
mov 20(%ebp),	%ebx
add	%ebx,	%eax
mov %eax,	24(%ebp)

• Straightforward	solution:
• Allocate	each	variable	in	activation	record
• At	each	instruction,	bring	values	needed	into	
registers,	perform	operation,	then	store	result	to	
memory

Simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• assume	that	we	have	all	registers	available	for	
our	use
– Ignore	registers	allocated	for	stack	management
– Treat	all	registers	as	general-purpose

simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem

• ST mem, reg
• OP reg,reg,reg (*)

Fixed	number	of	
Registers!

Register	allocation
• In	TAC,	there	is	an	unlimited	number	of	
variables	(temporaries)

• On	a	physical	machine	there	is	a	small	number	
of	registers:
– x86 has	4 general-purpose	registers	and	a	number	
of	specialized	registers

– MIPS has	24 general-purpose	registers	and	8
special-purpose	registers

• Register	allocation is	the	process	of	assigning	
variables	to	registers	and	managing	data	
transfer	in	and	out	of	registers

simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• We	will	assume	that	we	have	all	registers	
available	for	any	usage
– Ignore	registers	allocated	for	stack	management
– Treat	all	registers	as	general-purpose

Fixed	number	of	
Registers!

Plan

• Goal:	Reduce	number	of	temporaries	
(registers)
– Machine-agnostic	optimizations

• Assume	unbounded	number	of	registers

– Machine-dependent	optimization
• Use	at	most	K	registers
• K	is	machine	dependent	

Sethi-Ullman translation

• Algorithm	by	Ravi	Sethi and	Jeffrey	D.	Ullman
to	emit	optimal	TAC
– Minimizes	number	of	temporaries	for	a	single	
expression

Generating	Compound	Expressions
• Use	registers	to	store	temporaries

– Why	can	we	do	it?

• Maintain	a	counter	for	temporaries	in	c
• Initially:	c	=	0
• cgen(e1 op e2)	=	{

Let	A	=	cgen(e1)
c	=	c	+	1
Let	B	=	cgen(e2)
c	=	c	+	1
Emit(_tc =	A	op B;)	//	_tc is	a	register
Return	_tc

}

Why	
Naïve?	

Improving	cgen for	expressions
• Observation	– naïve	translation	needlessly	generates	

temporaries	for	leaf	expressions
• Observation	– temporaries	used	exactly	once

– Once	a	temporary	has	been	read	it	can	be	reused	for	
another	sub-expression

• cgen(e1 op e2)	=	{
Let	_t1	=	cgen(e1)
Let	_t2	=	cgen(e2)
Emit(_t1	=_t1	op _t2;)
Return	_t1

}
• Temporaries	cgen(e1)	can	be	reused	in	cgen(e2)

Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees
– Basic	blocks

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(whole	program)

Sethi-Ullman translation

• Algorithm	by	Ravi	Sethi and	Jeffrey	D.	Ullman
to	emit	optimal	TAC
– Minimizes	number	of	temporaries	for	a	single	
expression

Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Generalizations

• More	than	two	arguments	for	operators
– Function	calls

• Multiple	effected	registers
– Multiplication

• Spilling	
– Need	more	registers	than	available

• Register/memory	operations

Simple	SpillingMethod

• Heavy	tree	– Needs	more	registers	than	
available

• A	“heavy”	tree	contains	a	“heavy”	subtree
whose	dependents	are	“light”

• Simple	spilling
– Generate	code	for	the	light	tree
– Spill	the	content	into	memory	and	replace	
subtree by	temporary

– Generate	code	for	the	resultant	tree

Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Example	(spilled):	x	:=	b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c

Example:	b*b-4*a*c

-

*

b b

*

4 *

a c

Example	(simple):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 2

3

5 6

74

8

9

Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Spilling

• Even	an	optimal	register	allocator	can	
require	more	registers	than	available

• Need	to	generate	code	for	every	correct	
program

• The	compiler	can	save	temporary	results
– Spill	registers	into	temporaries
– Load	when	needed

• Many	heuristics	exist

Simple	Spilling	Method

• Heavy	tree	– Needs	more	registers	than	
available

• A	`heavy’ tree	contains	a	`heavy’ subtree
whose	dependents	are	‘light’

• Generate	code	for	the	light	tree
• Spill	the	content	into	memory	and	replace	
subtree by	temporary

• Generate	code	for	the	resultant	tree

Spilling

• Even	an	optimal	register	allocator	can	
require	more	registers	than	available

• Need	to	generate	code	for	every	correct	
program

• The	compiler	can	save	temporary	results
– Spill	registers	into	temporaries
– Load	when	needed

• Many	heuristics	exist

Simple	approach

• Problem: program	execution	very	inefficient–
moving	data	back	and	forth	between	memory	
and	registers

x	=	y	+	z

mov 16(%ebp),	%eax
mov 20(%ebp),	%ebx
add	%ebx,	%eax
mov %eax,	24(%ebx)

• Straightforward	solution:
• Allocate	each	variable	in	activation	record
• At	each	instruction,	bring	values	needed	into	
registers,	perform	operation,	then	store	result	to	
memory

Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees	(tree-local)
– Basic	blocks	(block-local)

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(global	register	allocation)

Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Example	(spilled):	x	:=	b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c

Simple	Spilling	Method

Register	Memory	Operations

• Add_Mem X,	R1
• Mult_Mem X,	R1
• No	need	for	registers	to	store	right	
operands		

Hidden	Registers

Example:	b*b-4*a*c

-

b b 4

a c

0 1

1

0 1

10

1

2

Mult_Mem Mult_Mem

Mult_Mem

Can	We	do	Better?

• Yes:	Increase	view	of	code
– Simultaneously	allocate	registers	for	multiple	
expressions

• But:	Lose	per	expression	optimality	
– Works	well	in	practice

Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees
– Basic	blocks

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(whole	program)

Basic	Blocks
• basic	block is	a	sequence	of	instructions	with

– single	entry	(to	first	instruction),	no	jumps	to	the	middle	
of	the	block

– single	exit	(last	instruction)
– code	execute	as	a	sequence	from	first	instruction	to	last	
instruction	without	any	jumps

• edge	from	one	basic	block	B1	to	another	block	B2	
when	the	last	statement	of	B1	may	jump	to	B2

control	flow	graph

• A	directed	graph	G=(V,E)
• nodes	V	=	basic	blocks
• edges	E	=	control	flow

– (B1,B2)	Î E	when	control	from	B1	
flows	to	B2

• Leaders-based	construction
– Target	of	jump	instructions
– Instructions	following	jumps

B1

B2t1 :=	4	*	i
t2 :=	a	[t1]
t3 :=	4	*	i
t4 :=	b	[t3]
t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
t7 :=	i	+	1
i	:=	t7
if	i	<=	20	goto B2

prod	:=	0
i	:=	1

B1

B2

…

…

False

True

control	flow	graph

• A	directed	graph	G=(V,E)
• nodes	V	=	basic	blocks
• edges	E	=	control	flow

– (B1,B2)	Î E	when	control	
from	B1	flows	to	B2

B1

B2t1 :=	4	*	i
t2 :=	a	[t1]
t3 :=	4	*	i
t4 :=	b	[t3]
t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
t7 :=	i	+	1
i	:=	t7
if	i	<=	20	goto B2

prod	:=	0
i	:=	1

B1

B2

…

…

AST	for	a	Basic	Block
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Dependency	graph{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Simplified	Data	
Dependency	Graph

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Pseudo	Register	Target	Code

Question:	Why	“y”?
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

y,		dead or	alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

x,		dead or	alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

Another	Example

False

B1

B2 B3

B4

True

t1 :=	4	*	i
t2 :=	a	[t1]
if	t2 <=	20	goto B3

t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
goto B4

t7 :=	i	+	1
i	:=	t2
Goto B5

t3 :=	4	*	i
t4 :=	b	[t3]
goto B4

B1

B2

B3

B4

…

…

Creating	Basic	Blocks

• Input:		A	sequence	of	three-address	statements
• Output:		A	list	of	basic	blocks	with	each	three-address	

statement	in	exactly	one	block
• Method

– Determine	the	set	of	leaders (first	statement	of	a	block)
• The	first	statement	is	a	leader
• Any	statement	that	is	the	target	of	a	jump	is	a	leader
• Any	statement	that	immediately	follows	a	jump	is	a	leader

– For	each	leader,	its	basic	block	consists	of	the	leader	
and	all	statements	up	to	but	not	including	the	next	
leader	or	the	end	of	the	program

example
1) i	=	1
2) j	=1
3) t1	=	10*I
4) t2	=	t1	+	j
5) t3	=	8*t2
6) t4	=	t3-88
7) a[t4]	=	0.0
8) j	=	j	+	1
9) if	j	<=	10	goto (3)
10) i=i+1
11) if	i	<=	10	goto (2)
12) i=1
13) t5=i-1
14) t6=88*t5
15) a[t6]=1.0
16) i=i+1
17) if	I	<=10	goto (13)

i	=	1

j	=	1

t1	=	10*I
t2	=	t1	+	j
t3	=	8*t2
t4	=	t3-88
a[t4]	=	0.0
j	=	j	+	1

if	j	<=	10	goto B3

i=i+1
if	i	<=	10	goto B2

i	=	1

t5=i-1
t6=88*t5
a[t6]=1.0
i=i+1

if	I	<=10	goto B6

B1

B2

B3

B4

B5

B6

for	i	from	1	to	10	
do
for	j	from	1	to	10	
do
a[i,	j]	=	0.0;

for	i	from	1	to	10
do
a[i,	i]	=	1.0;

source
IR CFG

Example:	Code	Block

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Example:	Basic	Block

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

AST	of	the	Example
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Optimized	Code	(gcc)

{

int n;

n := a + 1;

x := b + n * n + c;

n := n + 1;

y := d * n;

}

Register	Allocation	for	B.B.

• Dependency	graphs	for	basic	blocks
• Transformations	on	dependency	graphs
• From	dependency	graphs	into	code

– Instruction	selection	
• linearizations of	dependency	graphs

– Register	allocation
• At	the	basic	block	level

Dependency	graphs
• TAC	imposes	an	order	of	execution

– But	the	compiler	can	reorder	assignments	as	
long	as	the	program	results	are	not	changed

• Define	a	partial	order	on	assignments
– a	<	b	Û a	must	be	executed	before	b
– Represented	as	a	directed	graph

• Nodes	are	assignments
• Edges	represent	dependency

– Acyclic	for	basic	blocks

Running	Example

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Sources	of	dependency

• Data	flow	inside	expressions
– Operator	depends	on	operands
– Assignment	depends	on	assigned	expressions

• Data	flow	between	statements
– From	assignments	to	their	use

– Pointers	complicate	dependencies

Sources	of	dependency

• Order	of	subexpresion evaluation	is	
immaterial
– As	long	as	inside	dependencies	are	respected

• The	order	of	uses	of	a	variable	X	are	
immaterial	as	long	as:
– X	is	used	between	dependent	assignments
– Before	next	assignment	to	X

Creating	Dependency	Graph	
from	AST

• Nodes	AST	becomes	nodes	of	the	graph
• Replaces	arcs	of	AST	by	dependency	arrows

– Operator	® Operand
– Create	arcs	from	assignments	to	uses
– Create	arcs	between	assignments	of	the	same	
variable

• Select	output	variables	(roots)
• Remove	;	nodes	and	their	arrows

Running	Example

Dependency	Graph	
Simplifications

• Short-circuit	assignments
– Connect	variables	to	assigned	expressions
– Connect	expression	to	uses

• Eliminate	nodes	not	reachable	from	roots

Running	Example

Cleaned-Up	Data	Dependency	Graph

Common	Subexpressions

• Repeated	subexpressions
• Examples
x	=	a	*	a		+			2	*	a	*	b	+	b	*	b;
y	=	a	*	a		– 2	*	a	*	b	+	b	*	b;
n[i]	:=	n[i]	+m[i]

• Can	be	eliminated	by	the	compiler
– In	the	case	of	basic	blocks	rewrite	the	DAG

From	Dependency	Graph	into	Code
• Linearize	the	dependency	graph

– Instructions	must	follow	dependency
• Many	solutions	exist
• Select	the	one	with	small	runtime	cost
• Assume	infinite	number	of	registers

– Symbolic	registers
– Assign	registers	later	

• May	need	additional	spill

– Possible	Heuristics
• Late	evaluation
• Ladders

Pseudo	Register	Target	Code

Non	optimized	vs Optimized	Code

{

int n;

n := a + 1;

x := b + n * n + c;

n := n + 1;

y := d * n;

}

Register	Allocation

• Maps	symbolic	registers	into	physical	
registers
– Reuse	registers	as	much	as	possible
– Graph	coloring	(next)

• Undirected	graph
• Nodes	=	Registers	(Symbolic	and	real)
• Edges	=	Interference
• May	require	spilling

Register	Allocation	for	Basic	Blocks

• Heuristics	for	code	generation	of	basic	
blocks

• Works	well	in	practice
• Fits	modern	machine	architecture
• Can	be	extended	to	perform	other	tasks

– Common	subexpression	elimination
• But	basic	blocks	are	small
• Can	be	generalized	to	a	procedure

Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees
– Basic	blocks

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(global	register	allocation)

Register	Allocation:	Assembly

76

Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target	code

(executable)

AS
T	
+	
Sy
m
.	T
ab
.

“O
pt
im

ize
d”
	IR

Register	Allocation:	Assembly

77

Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation Target	code

(executable)

In
st
ru
ct
io
n	
se
le
ct
io
n

IR
	O
pt
im

iza
tio

n

Gl
ob

al
	re

gi
st
er
	

al
lo
ca
tio

n

IR
	(T
AC

)	g
en

er
at
io
n

“A
ss
em

bl
y”

As
se
m
bl
y

IR

AS
T	
+	
Sy
m
.	T
ab
.

“O
pt
im

ize
d”
	IR

Register	Allocation:	Assembly

78

Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation Target	code

(executable)

In
st
ru
ct
io
n	
se
le
ct
io
n

IR
	O
pt
im

iza
tio

n

Gl
ob

al
	re

gi
st
er
	

al
lo
ca
tio

n

IR
	(T
AC

)	g
en

er
at
io
n

“A
ss
em

bl
y”

As
se
m
bl
y

IR
Modern	compiler	implementation	in	C
Andrew	A.	Appel

“Global”	Register	Allocation
• Input:	

– Sequence	of	machine	instructions	(“assembly”)
• Unbounded	number	of	temporary	variables	

– aka	symbolic	registers

– “machine	description”
• #	of	registers,	restrictions	

• Output
– Sequence	of	machine	instructions	using	machine	
registers	(assembly)

– Some	MOV	instructions	removed

Variable	Liveness

• A	statement	x	=	y	+	z
– defines x
– uses y	and	z

• A	variable	x	is	live	at	a	program	point	if	its	
value	(at	this	point)	is	used	at	a	later	point	

y	=	42
z =	73
x	=	y	+	z
print(x);

x	is	live,	y	dead,	z	dead
x	undef,	y	live,	z	live
x	undef,	y	live,	z	undef

x	is	dead,	y	dead,	z	dead

(showing	state	after	the	statement)

Computing	Liveness	Information

• between	basic	blocks	– dataflow	analysis	
(previous	lecture)

• within	a	single	basic	block?
• idea

– use	symbol	table	to	record	next-use	
information

– scan	basic	block	backwards
– update	next-use	for	each	variable

Computing	Liveness Information

• INPUT:	A	basic	block	B	of	three-address	statements.	
symbol	table	initially	shows	all	non-temporary	variables	in	
B	as	being	live	on	exit.

• OUTPUT:	At	each	statement	i:	x	=	y	+	z	in	B,	liveness and	
next-use	information	of	x,	y,	and	z	at	i.

• Start	at	the	last	statement	in	B	and	scan	backwards
– At	each	statement	i:	x	=	y	+	z	in	B,	we	do	the	following:
1. Attach	to	i	the	information	currently	found	in	the	symbol	table	

regarding	the	next	use	and	liveness of	x,	y,	and	z.
2. In	the	symbol	table,	set	x	to	"not	live"	and	"no	next	use.“
3. In	the	symbol	table,	set	y	and	z	to	"live"	and	the	next	uses	of	y	

and	z	to	i

Computing	Liveness Information
• Start	at	the	last	statement	in	B	and	scan	backwards

– At	each	statement	i:	x	=	y	+	z	in	B,	we	do	the	following:
1. Attach	to	i	the	information	currently	found	in	the	symbol	

table	regarding	the	next	use	and	liveness of	x,	y,	and	z.
2. In	the	symbol	table,	set	x	to	"not	live"	and	"no	next	use.“
3. In	the	symbol	table,	set	y	and	z	to	"live"	and	the	next	uses	

of	y	and	z	to	i

can	we	change	the	order	between	2	and	3?

x	=	1
y	=	x	+	3
z	=	x	*	3
x	=	x	*	z

simple	code	generation
• translate	each	TAC	instruction	separately

• For	each	register,	a	register	descriptor records	the	variable	names	
whose	current	value	is	in	that	register	
– we	use	only	those	registers	that	are	available	for	local	use	within	a	basic	

block,	we	assume	that	initially,	all	register	descriptors	are	empty	
– As	code	generation	progresses,	each	register	will	hold	the	value	of	zero	

or	more	names

• For	each	program	variable,	an	address	descriptor	records the	
location(s)	where	the	current	value	of	the	variable	can	be	found	
– The	location	may	be	a	register,	a	memory	address,	a	stack	location,	or	

some	set	of	more	than	one	of	these	
– Information	can	be	stored	in	the	symbol-table	entry	for	that	variable

simple	code	generation
For	each	three-address	statement	x := y op z,	
1. Invoke	getreg (x := y op z)	to	select	registers	Rx,	Ry,	and	Rz
2. If	Ry does	not	contain	y,	issue:	LD Ry,y’ for	a	location	y’	of	y	
3. If	Rz does	not	contain	z,	issue:	LD Rz,z’ for	a	location	z’	of	z	
4. Issue	the	instruction	OP Rx,Ry,Rz
5. Update	the	address	descriptors	of	x,	y,	z,	if	necessary

– Rx is	the	only	location	of	x	now,	and	
Rx contains	only	x	(remove	Rx from	other	address	descriptors)

The	function	getreg is	not	defined	yet,	for	now	think	of	it	as	
an	oracle	that	gives	us	3	registers	for	an	instruction

Find	a	register	allocation

b	=	a	+	2

c	=	b	*	b

b	=	c	+	1

return	b	*	a

eax

ebx

registerregistervariable

?a	

?b	

?c	

Is	this	a	valid	allocation?

eax

ebx

register

b	=	a	+	2

c	=	b	*	b

b	=	c	+	1

return	b	*	a

registervariable

eaxa	

ebxb	

eaxc	

ebx =	eax +	2

eax =	ebx *	ebx

ebx =	eax +	1

return	ebx *	eax

Overwrites	previous	
value	of	‘a’	also	
stored	in	eax

Is	this	a	valid	allocation?

eax

ebx

register

b	=	a	+	2

c	=	b	*	b

b	=	c	+	1

return	b	*	a

registervariable

eaxa	

ebxb	

eaxc	

ebx =	eax +	2

eax =	ebx *	ebx

ebx =	eax +	1

return	ebx *	eax

Value	of	‘c’	stored	in	
eax is	not	needed	
anymore	so	reuse	it	
for	‘b’

Main	idea

• For	every	node	n in	CFG,	we	have	out[n]
– Set	of	temporaries	live	out	of	n

• Two	variables	interfere if	they	appear	in	the	
same	out[n]	of	any	node	n
– Cannot	be	allocated	to	the	same	register

• Conversely,	if	two	variables	do	not	interfere	
with	each	other,	they	can	be	assigned	the	
same	register
– We	say	they	have	disjoint	live	ranges

• How	to	assign	registers	to	variables?

Interference	graph

• Nodes of	the	graph	=	variables
• Edges connect	variables	that	interfere	with	
one	another

• Nodes	will	be	assigned	a	color
corresponding	to	the	register	assigned	to	
the	variable

• Two	colors	can’t	be	next	to	one	another	in	
the	graph

Interference	graph	construction

b	=	a	+	2

c	=	b	*	b

b	=	c	+	1

return	b	*	a

Interference	graph	construction

b	=	a	+	2

c	=	b	*	b

b	=	c	+	1
{b,	a}

return	b	*	a

Interference	graph	construction

b	=	a	+	2

c	=	b	*	b
{a,	c}

b	=	c	+	1
{b,	a}

return	b	*	a

Interference	graph	construction

b	=	a	+	2
{b,	a}

c	=	b	*	b
{a,	c}

b	=	c	+	1
{b,	a}

return	b	*	a

Interference	graph	construction

{a}
b	=	a	+	2

{b,	a}
c	=	b	*	b

{a,	c}
b	=	c	+	1

{b,	a}
return	b	*	a

Interference	graph

a

cb

eax

ebx

color register

{a}
b	=	a	+	2

{b,	a}
c	=	b	*	b

{a,	c}
b	=	c	+	1

{b,	a}
return	b	*	a

Colored	graph

a

cb

eax

ebx

color register

{a}
b	=	a	+	2

{b,	a}
c	=	b	*	b

{a,	c}
b	=	c	+	1

{b,	a}
return	b	*	a

Graph	coloring

• This	problem	is	equivalent	to	graph-
coloring,	which	is	NP-hard	if	there	are	at	
least	three	registers

• No	good	polynomial-time	algorithms	(or	
even	good	approximations!)	are	known	for	
this	problem
– We	have	to	be	content	with	a	heuristic	that	is	
good	enough	for	RIGs	that	arise	in	practice

Coloring	by	simplification	[Kempe 1879]

• How	to	find	a	k-coloring	of	a	graph
• Intuition:

– Suppose	we	are	trying	to	k-color	a	graph	and	
find	a	node	with	fewer	than	k edges

– If	we	delete	this	node	from	the	graph	and	color	
what	remains,	we	can	find	a	color	for	this	node	
if	we	add	it	back	in

– Reason:	fewer	than	k	neighbors	d some	color	
must	be	left	over

Coloring	by	simplification	[Kempe 1879]

• How	to	find	a	k-coloring	of	a	graph
• Phase	1:	Simplification

– Repeatedly	simplify	graph	
– When	a	variable	(i.e.,	graph	node)	is	
removed,	push	it	on	a	stack

• Phase	2:	Coloring
– Unwind	stack	and	reconstruct	the	graph	as	
follows:

– Pop	variable	from	the	stack
– Add	it	back	to	the	graph
– Color	the	node	for	that	variable	with	a	
color	that	it	doesn’t	interfere	with

simplify

color

Coloring	k=2

b

ed

a

c
stack:

eax

ebx

color register

Coloring	k=2

b

ed

a

stack:

c

c

eax

ebx

color register

Coloring	k=2

b

ed

a

stack:

e
c

c

eax

ebx

color register

Coloring	k=2

b

ed

a

stack:

a
e
c

c

eax

ebx

color register

Coloring	k=2

b

ed

a

stack:
b
a
e
c

c

eax

ebx

color register

Coloring	k=2

b

ed

a

stack:
d
b
a
e
c

c

eax

ebx

color register

Coloring	k=2

b

ed

eax

ebx

color register

a

stack:

b
a
e
c

c

Coloring	k=2

b

e

a

stack:

a
e
c

c

eax

ebx

color register

d

Coloring	k=2

e

a

stack:

e
c

c

eax

ebx

color register

b

d

Coloring	k=2

e

stack:

c

c

eax

ebx

color register

a

b

d

Coloring	k=2

stack:
c

eax

ebx

color register

e

a

b

d

Failure	of	heuristic

• If	the	graph	cannot	be	colored,	it	will	
eventually	be	simplified	to	graph	in	which	
every	node	has	at	least	K	neighbors

• Sometimes,	the	graph	is	still	K-colorable!
• Finding	a	K-coloring	in	all	situations	is	an	
NP-complete problem
– We	will	have	to	approximate	to	make	register	
allocators	fast	enough

Coloring	k=2

stack:
c

eax

ebx

color register

e

a

b

d

Coloring	k=2

c

eax

ebx

color					register

e

a

b

d

stack:
c
b
e
a
d

Some	graphs	can’t	be	colored	
in	K	colors:

Coloring	k=2

c

eax

ebx

color					register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
b
e
a
d

Coloring	k=2

c

eax

ebx

color					register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
e
a
d

Coloring	k=2

c

eax

ebx

color register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
e
a
d

no colors left for e!

Chaitin’s algorithm

• Choose	and	remove	an	arbitrary	node,	
marking	it	“troublesome”
– Use	heuristics	to	choose	which	one
– When	adding	node	back	in,	it	may	be	possible	
to	find	a	valid	color

– Otherwise,	we	have	to	spill that	node

Spilling

• Phase	3: spilling
– once	all	nodes	have	K	or	more	neighbors,	pick	a	node	
for	spilling
• There	are	many	heuristics	that	can	be	used	to	pick	a	node
• Try	to	pick	node	not	used	much,	not	in	inner	loop
• Storage	in	activation	record

– Remove	it	from	graph
• We	can	now	repeat	phases	1-2	without	this	node
• Better	approach	– rewrite	code	to	spill	variable,	
recompute	liveness	information	and	try	to	color	
again

Coloring	k=2

c

eax

ebx

color register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
e
a
d

no colors left for e!

Coloring	k=2

c

eax

ebx

color register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
b
e
a
d

Coloring	k=2

c

eax

ebx

color register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
e
a
d

Coloring	k=2

c

eax

ebx

color register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
a
d

Coloring	k=2

c

eax

ebx

color register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:
d

Coloring	k=2

c

eax

ebx

color register

e

a

b

d

Some	graphs	can’t	be	colored	
in	K	colors:

stack:

Handling	precolored	nodes

• Some	variables	are	pre-assigned	to	
registers
– Eg:	mul on	x86/pentium

• uses	eax;	defines	eax,	edx
– Eg:	call	on	x86/pentium

• Defines	(trashes)	caller-save	registers	eax,	ecx,	edx

• To	properly	allocate	registers,	treat	these	
register	uses	as	special	temporary	variables	
and	enter	into	interference	graph	as	
precolored	nodes

Handling	precolored	nodes

• Simplify. Never	remove	a	pre-colored	node	
– it	already	has	a	color,	i.e.,	it	is a	given	
register

• Coloring. Once	simplified	graph	is	all	
colored	nodes,	add	other	nodes	back	in	and	
color	them	using	precolored	nodes	as	
starting	point

Optimizing	move	instructions
• Code	generation	produces	a	lot	of	extra	mov

instructions
mov t5,	t9

• If	we	can	assign	t5	and	t9	to	same	register,	we	can	get	
rid	of	the	mov
– effectively,	copy	elimination	at	the	register	allocation	level

• Idea: if	t5	and	t9	are	not	connected	in	inference	graph,	
coalesce	them	into	a	single	variable;	the	move	will	be	
redundant

• Problem: coalescing	nodes	can	make	a	graph
un-colorable
– Conservative	coalescing	heuristic

“Global” Register Allocation
• Input:

– Sequence of machine code instructions
(assembly)

• Unbounded number of temporary registers

• Output
– Sequence of machine code instructions

(assembly)
– Machine registers
– Some MOVE instructions removed
– Missing prologue and epilogue

Basic Compiler Phases
Source program (string)

Fin. Assembly

lexical analysis

syntax analysis

semantic analysis

Translate

Instruction selection

Global Register Allocation

Tokens

Abstract syntax tree

Intermediate representation

Assembly

Frame

Graph Coloring by Simplification

Build: Construct the interference graph

Simplify: Recursively remove nodes with less than K
neighbors ; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Artificial Example K=2

t1 t3

t2

t4

t7

t8

t5

t6

Coalescing

• MOVs can be removed if the source and the target
share the same register

• The source and the target of the move can be
merged into a single node
(unifying the sets of neighbors)

• May require more registers
• Conservative Coalescing

– Merge nodes only if the resulting node has fewer than K
neighbors with degree ë K (in the resulting graph)

Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X Y

Z

X ¬Y /* X, Y, Z */

Y¬Z

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes
with less than K neighbors; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer than K “heavy” neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

Pre-Colored Nodes

• Some registers in the intermediate language are
pre-colored:
– correspond to real registers

(stack-pointer, frame-pointer, parameters,)
• Cannot be Simplified, Coalesced, or Spilled

(infinite degree)
• Interfered with each other
• But normal temporaries can be coalesced into pre-

colored registers
• Register allocation is completed when all the nodes

are pre-colored

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes
with less than K neighbors; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer that K “heavy” neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

Optimizing	MOV	instructions
• Code	generation	produces	a	lot	of	extra	mov

instructions
mov t5,	t9

• If	we	can	assign	t5	and	t9	to	same	register,	we	can	get	
rid	of	the	mov
– effectively,	copy	elimination	at	the	register	allocation	level

• Idea: if	t5	and	t9	are	not	connected	in	inference	graph,	
coalesce	them	into	a	single	variable;	the	move	will	be	
redundant

• Problem: coalescing	nodes	can	make	a	graph
un-colorable
– Conservative	coalescing	heuristic

Coalescing

• MOVs	can	be	removed	if	the	source	and	
the	target	share	the	same	register

• The	source	and	the	target	of	the	move	can	
be	merged	into	a	single	node	
(unifying	the	sets	of	neighbors)
– May	require	more	registers
– Conservative	Coalescing

• Merge	nodes	only	if	the	resulting	node	has	fewer	
than	K	neighbors	with	degree	ë K	(in	the	resulting	
graph)

Constrained	Moves

• A	instruction	T	¬ S	is	constrained
– if	S	and	T	interfere

• May	happen	after	coalescing

• Constrained	MOVs	are	not	coalesced

X Y

Z

X	¬ Y
Y	¬ Z					

Constrained	Moves

• A	instruction	T	¬ S	is	constrained
– if	S	and	T	interfere

• May	happen	after	coalescing

• Constrained	MOVs	are	not	coalesced

X,Y

Z

X	¬ Y
Y	¬ Z					

Constrained	Moves

• A	instruction	T	¬ S	is	constrained
– if	S	and	T	interfere

• May	happen	after	coalescing

• Constrained	MOVs	are	not	coalesced

X,Y

Z

X	¬ Y
Y	¬ Z					

Graph	Coloring	with	Coalescing
Build:	Construct	the	interference	graph

Simplify:	Recursively	remove	non-MOV nodes	with	
less	than	K	neighbors;	Push	removed	nodes	into	stack

Potential-Spill:	Spill	some	nodes	and	remove	nodes
Push	removed	nodes	into	stack

Select:	Assign	actual	registers	(from	simplify/spill	
stack)

Actual-Spill:	Spill	some	potential	spills	and	repeat	the	
process

Coalesce:	Conservatively	merge	unconstrained	MOV	
related	nodes	with	fewer	than	K	“heavy” neighbors	

Freeze:	Give-Up	Coalescing	on	some	MOV	related	
nodes	with	low	degree	of	interference edges

Special	case:	
merged	node	
has	less	than	k	
neighbors	

All	non-MOV	
related	nodes	
are	“heavy”

Pre-Colored	Nodes

• Some	registers	in	the	intermediate	language	are	pre-
colored:
– correspond	to	real	registers

(stack-pointer,	frame-pointer,	parameters,)

• Cannot	be	Simplified,	Coalesced,	or	Spilled	
– infinite	degree

• Interfered	with	each	other
• But	normal	temporaries	can	be	coalesced	into	pre-colored	

registers
• Register	allocation	is	completed	when	all	the	nodes	are	

pre-colored

Caller-Save	and	Callee-Save	Registers
• callee-save-registers	(MIPS	16-23)

– Saved	by	the	callee when	modified
– Values	are	automatically	preserved	across	calls

• caller-save-registers
– Saved	by	the	caller	when	needed
– Values	are	not	automatically	preserved

• Usually	the	architecture	defines	caller-save	and	callee-
save	registers
– Separate	compilation
– Interoperability	between	code	produced	by	different	

compilers/languages	

• But	compilers	can	decide	when	to	use	caller/callee
registers

Caller-Save	vs.		Callee-Save	Registers

int foo(int a) {
int b=a+1;
f1();
g1(b);
return(b+2);

}

void bar (int y) {
int x=y+1;
f2(y);
g2(2);

}

Saving	Callee-Save	Registers

enter: def(r7)

…

exit: use(r7)

enter: def(r7)
t231 ¬ r7

…

r7 ¬ t231

exit: use(r7)

A	Complete	Example
Callee-saved	registers

Caller-saved	registers

A	Complete	Example

A	Complete	Example

Spill	c

r2	&	b

a	&	e

(Alt:	ae+r1)

c

c

c

Deg. of	
r1,ae,d	<	K

A	Complete	Example

ae &	r1

pop	d

Simplify	d

(Alt:	ae+r1)

(Alt:	…)c

dc

c

d

pop	c	…

freeze	r1ae-d

A	Complete	Example

c1&r3,	c2	&r3

a&e,	b&r2

A	Complete	Example
ae &	r1

Simplify	d

Pop	d d

gen	code“opt”

Interprocedural	Allocation

• Allocate	registers	to	multiple	procedures
• Potential	saving

– caller/callee	save	registers
– Parameter	passing
– Return	values

• But	may	increase	compilation	cost
• Function	inline	can	help

Summary

• Two	Register	Allocation	Methods
– Local	of	every	IR	tree

• Simultaneous	instruction	selection	and	register	
allocation

• Optimal	(under	certain	conditions)

– Global	of	every	function
• Applied	after	instruction	selection
• Performs	well	for	machines	with	many	registers
• Can	handle	instruction	level	parallelism

• Missing
– Interprocedural allocation

The	End

global	register	allocation

• idea:	compute	“weight”	for	each	variable
– for	each	use	of	v	in	B	prior	to	any	definition	of	v	add	1	point	
– for	each	occurrence	of	v	in	a	following	block	using	v	add	2	

points,	as	we	save	the	store/load	between	blocks
– cost(v)	=	SBuse(v,B)	+	2*live(v,B)

• use(v,B)	is	is the	number	of	times	v	is	used	in	B	prior	to	any	
definition	of	v

• live(v,	B)	is	1	if	v	is	live	on	exit	from	B	and	is	assigned	a	value	in	B
– after	computing	weights,	allocate	registers	to	the	“heaviest”	

values

Two Phase Solution
Dynamic Programming

Sethi & Ullman

• Bottom-up (labeling)
– Compute for every subtree

• The minimal number of registers needed (weight)

• Top-Down
– Generate the code using labeling by preferring

“heavier” subtrees (larger labeling)

“Global” Register Allocation
• Input:

– Sequence of machine code instructions
(assembly)

• Unbounded number of temporary registers

• Output
– Sequence of machine code instructions

(assembly)
– Machine registers
– Some MOVE instructions removed
– Missing prologue and epilogue

Basic Compiler Phases
Source program (string)

Fin. Assembly

lexical analysis

syntax analysis

semantic analysis

Translate

Instruction selection

Global Register Allocation

Tokens

Abstract syntax tree

Intermediate representation

Assembly

Frame

{$0, t131, t132}

{$0, t131, t128}

{$0, t103}

{$0, t103}

{$0, t129}

{$0, t133}

{$0, t133}

{$0, t133, t130}

{$0, t130, t131}

{$0, t131, $2}

{$0, t131, $4}

l3: beq t128, $0, l0
l1: or t131, $0, t128

addi t132, t128, -1
or $4, $0, t132

jal nfactor
or t130, $0, $2
or t133, $0, t131
mult t133, t130

mflo t133
or t129, $0, t133

l2: or t103, $0, t129
b lend

l0: addi t129, $0, 1
b l2

use {t128, $0} def {}
use {t128, $0} def {t131}

use {t128} def {t132}

use {$0, t132} def {$4}

use {$4} def {$2}

use {$0, $2} def {t130}

use {$0, t131} def {t133}

use {t133, t130} def {t133}

use {t133} def {t133}

use {$0, t133} def {t129}

use {$0, t129} def {t103}

use {} def {}

use {$0} def {t129}

use {} def {}

use {t103} def {$2}{$0, $2}

{$0, t128}

{$0, t129}

{$0, t128}

{$0, t129}

l3: beq t128, $0, l0 /* $0, t128 */
l1: or t131, $0, t128 /* $0, t128, t131 */

addi t132, t128, -1 /* $0, t131, t132 */
or $4, $0, t132 /* $0, $4, t131 */
jal nfactor /* $0, $2, t131 */

or t130, $0, $2 /* $0, t130, t131 */
or t133, $0, t131 /* $0, t130, t133 */

mult t133, t130 /* $0, t133 */
mflo t133 /* $0, t133 */

or t129, $0, t133 /* $0, t129 */
l2: or t103, $0, t129 /* $0, t103 */

b lend /* $0, t103 */
l0: addi t129, $0, 1 /* $0, t129 */

b l2 /* $0, t129 */

t128

t133

$2

$0

$4

t128

t129

t130

t131

t132

t103

t132

t131

t130

t133

t129

t103

l3: beq t128, $0, l0
l1: or t131, $0, t128

addi t132, t128, -1
or $4, $0, t132

jal nfactor
or t130, $0, $2
or t133, $0, t131
mult t133, t130

mflo t133
or t129, $0, t133

l2: or t103, $0, t129
b lend

l0: addi t129, $0, 1
b l2

t128

t133

$2

$0

$4

t128

t129

t130

t131

t132

t103

t132

t131

t130

t133

t129

t103

Global Register Allocation
ProcessRepeat

Construct the interference graph
Color graph nodes with machine registers

Adjacent nodes are not colored by the same register
Spill a temporary into memory

Until no more spill

Constructing interference graphs
(take 1)

• Compute liveness information at every
statement

• Variables ‘a’ and ‘b’ interfere when there
exists a control flow node n such that
‘a’, ‘b’ Î Lv[n]

A Simple Example
/* c */

L0: a := 0
/* ac */

L1: b := a + 1
/* bc */

c := c + b
/* bc */

a := b * 2
/* ac */

if c < N goto L1
/* c */

return c

a b

c

ac

bc

bc

ac

c

c < N

c

a :=0

b := a +1

c := c +b

a := b * 2

c ³ N

Constructing interference graphs
(take 2)

• Compute liveness information at every
statement

• Variables ‘a’ and ‘b’ interfere when there
exists a control flow edge (m, n) with an
assignment a := exp and ‘b’ Î Lv[n]

Constructing interference graphs
(take 3)

• Compute liveness information at every
statement

• Variables ‘a’ and ‘b’ interfere when there
exists a control flow edge (m, n) with an
assignment a := exp and ‘b’ Î Lv[n] and
‘b’ ¹ exp

l3: beq t128, $0, l0 /* $0, t128 */
l1: or t131, $0, t128 /* $0, t128, t131 */

addi t132, t128, -1 /* $0, t131, t132 */
or $4, $0, t132 /* $0, $4, t131 */
jal nfactor /* $0, $2, t131 */

or t130, $0, $2 /* $0, t130, t131 */
or t133, $0, t131 /* $0, t130, t133 */

mult t133, t130 /* $0, t133 */
mflo t133 /* $0, t133 */

or t129, $0, t133 /* $0, t129 */
l2: or t103, $0, t129 /* $0, t103 */

b lend /* $0, t103 */
l0: addi t129, $0, 1 /* $0, t129 */

b l2 /* $0, t129 */

t128

t133

$2

$0

$4

t128

t129

t130

t131

t132

t103

t132

t131

t130

t133

t129

t103

Challenges

• The Coloring problem is computationally
hard

• The number of machine registers may be
small

• Avoid too many MOVEs
• Handle “pre-colored” nodes

Theorem
[Kempe 1879]

• Assume:
– An undirected graph G(V, E)
– A node v ÎV with less than K neighbors
– G – {v} is K colorable

• Then, G is K colorable

Coloring by Simplification
[Kempe 1879]

• K
– the number of machine registers

• G(V, E)
– the interference graph

• Consider a node v ÎV with less than K neighbors:
– Color G – v in K colors
– Color v in a color different than its (colored) neighbors

Graph Coloring by Simplification

Build: Construct the interference graph

Simplify: Recursively remove nodes with less than K
neighbors ; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Artificial Example K=2

t1 t3

t2

t4

t7

t8

t5

t6

Coalescing

• MOVs can be removed if the source and the target
share the same register

• The source and the target of the move can be
merged into a single node
(unifying the sets of neighbors)

• May require more registers
• Conservative Coalescing

– Merge nodes only if the resulting node has fewer than K
neighbors with degree ë K (in the resulting graph)

Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X Y

Z

X ¬Y /* X, Y, Z */

Y¬Z

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes
with less than K neighbors; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer than K “heavy” neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

Spilling

• Many heuristics exist
– Maximal degree
– Live-ranges
– Number of uses in loops

• The whole process need to be repeated after
an actual spill

Pre-Colored Nodes

• Some registers in the intermediate language are
pre-colored:
– correspond to real registers

(stack-pointer, frame-pointer, parameters,)
• Cannot be Simplified, Coalesced, or Spilled

(infinite degree)
• Interfered with each other
• But normal temporaries can be coalesced into pre-

colored registers
• Register allocation is completed when all the nodes

are pre-colored

Caller-Save and Callee-Save Registers

• callee-save-registers (MIPS 16-23)
– Saved by the callee when modified
– Values are automatically preserved across calls

• caller-save-registers
– Saved by the caller when needed
– Values are not automatically preserved

• Usually the architecture defines caller-save and
callee-save registers
– Separate compilation
– Interoperability between code produced by different

compilers/languages
• But compilers can decide when to use calller/callee

registers

Caller-Save vs. Callee-Save Registers

int foo(int a) {
int b=a+1;

f1();
g1(b);

return(b+2);
}

void bar (int y) {
int x=y+1;

f2(y);
g2(2);
}

Saving Callee-Save Registers

enter: def(r7)

…

exit: use(r7)

enter: def(r7)
t231 ¬ r7

…

r7 ¬ t231

exit: use(r7)

A Complete Example

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d+b
e := e-1

if e>0 goto loop
r1 := d
r3 := c

return /* r1,r3 */

r1, r2 caller save
r3 callee-save

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non MOVE nodes
with less than K neighbors; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer that K “heavy” neighbors

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

A Complete Example

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d+b
e := e-1

if e>0 goto loop
r1 := d
r3 := c

return /* r1,r3 */

r1, r2 caller save
r3 callee-save

use{r3} def{c}

use{r1} def{a}

use{r2} def{b}

use{} def{d}

use{a} def{e}

use{d, b} def{d}

use{e} def{e}

use{e} def{}

use{d} def{r1}

use{c} def{r3}{r1, r3}
{r1, c}

{c, d}

{c, d, e}

{c, d, e}

A Complete Example

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d+b
e := e-1

if e>0 goto loop
r1 := d
r3 := c

return /* r1,r3 */

use{r3} def{c}

use{r1} def{a}

use{r2} def{b}

use{} def{d}

use{a} def{e}

use{d, b} def{d}

use{e} def{e}

use{e} def{}

use{d} def{r1}

use{c} def{r3}{r1, r3}
{r1, c}

{c, d, e, b}

{c, d, e}

{c, d, e}

{c, d, e, b}

A Complete Example

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d+b
e := e-1

if e>0 goto loop
r1 := d
r3 := c

return /* r1,r3 */

use{r3} def{c}

use{r1} def{a}

use{r2} def{b}

use{} def{d}

use{a} def{e}

use{d, b} def{d}

use{e} def{e}

use{e} def{}

use{d} def{r1}

use{c} def{r3}{r1, r3}
{r1, c}

{c, d, e, b}

{c, d, e, b}

{c, d, e}

{c, d, e, b}

A Complete Example

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d+b
e := e-1

if e>0 goto loop
r1 := d
r3 := c

return /* r1,r3 */

use{r3} def{c}

use{r1} def{a}

use{r2} def{b}

use{} def{d}

use{a} def{e}

use{d, b} def{d}

use{e} def{e}

use{e} def{}

use{d} def{r1}

use{c} def{r3}{r1, r3}
{r1, c}

{c, d, e, b}

{c, d, e, b}

{c, d, e, b}

{c, d, e, b}

{c, d, b, a}

{c, b, a}

{c, a, r2}

{c, r2, r1}

{ r2, r1, r3}

Live Variables Results
enter:

c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d+b
e := e-1

if e>0 goto loop
r1 := d
r3 := c

return /* r1,r3 */

enter: /* r2, r1, r3 */
c := r3 /* c, r2, r1 */
a := r1 /* a, c, r2 */
b := r2 /* a, c, b */

d := 0 /* a, c, b, d */
e := a /* e, c, b, d */

loop:
d := d+b /* e, c, b, d */
e := e-1 /* e, c, b, d */

if e>0 goto loop /* c, d */
r1 := d /* r1, c */
r3 := c /* r1, r3 */

return /* r1, r3 */

enter: /* r2, r1, r3 */
c := r3 /* c, r2, r1 */
a := r1 /* a, c, r2 */
b := r2 /* a, c, b */

d := 0 /* a, c, b, d */
e := a /* e, c, b, d */

loop:
d := d+b /* e, c, b, d */
e := e-1 /* e, c, b, d */

if e>0 goto loop /* c, d */
r1 := d /* r1, c */
r3 := c /* r1, r3 */

return /* r1,r3 */

enter: /* r2, r1, r3 */
c := r3 /* c, r2, r1 */
a := r1 /* a, c, r2 */
b := r2 /* a, c, b */

d := 0 /* a, c, b, d */
e := a / * e, c, b, d */

loop:
d := d+b /* e, c, b, d */
e := e-1 /* e, c, b, d */

if e>0 goto loop /* c, d */
r1 := d /* r1, c */
r3 := c /* r1, r3 */

return /* r1,r3 */

use+
def

outside
loop

use+
def

within
loop

deg spill
priority

a 2 0 4 0.5

b 1 1 4 2.75

c 2 0 6 0.33

d 2 2 4 5.5

e 1 3 3 10.3

spill priority = (uo + 10 ui)/deg

Optimizing	MOV	instructions
• Code	generation	produces	a	lot	of	extra	mov

instructions
mov t5,	t9

• If	we	can	assign	t5	and	t9	to	same	register,	we	can	get	
rid	of	the	mov
– effectively,	copy	elimination	at	the	register	allocation	level

• Idea: if	t5	and	t9	are	not	connected	in	inference	graph,	
coalesce	them	into	a	single	variable;	the	move	will	be	
redundant

• Problem: coalescing	nodes	can	make	a	graph
un-colorable
– Conservative	coalescing	heuristic

Coalescing

• MOVs	can	be	removed	if	the	source	and	
the	target	share	the	same	register

• The	source	and	the	target	of	the	move	can	
be	merged	into	a	single	node	
(unifying	the	sets	of	neighbors)
– May	require	more	registers
– Conservative	Coalescing

• Merge	nodes	only	if	the	resulting	node	has	fewer	
than	K	neighbors	with	degree	ë K	(in	the	resulting	
graph)

Constrained	Moves

• A	instruction	T	¬ S	is	constrained
– if	S	and	T	interfere

• May	happen	after	coalescing

• Constrained	MOVs	are	not	coalesced

X Y

Z

X	¬ Y
Y	¬ Z					

Constrained	Moves

• A	instruction	T	¬ S	is	constrained
– if	S	and	T	interfere

• May	happen	after	coalescing

• Constrained	MOVs	are	not	coalesced

X,Y

Z

X	¬ Y
Y	¬ Z					

Constrained	Moves

• A	instruction	T	¬ S	is	constrained
– if	S	and	T	interfere

• May	happen	after	coalescing

• Constrained	MOVs	are	not	coalesced

X,Y

Z

X	¬ Y
Y	¬ Z					

Graph	Coloring	with	Coalescing
Build:	Construct	the	interference	graph

Simplify:	Recursively	remove	non-MOV nodes	with	
less	than	K	neighbors;	Push	removed	nodes	into	stack

Potential-Spill:	Spill	some	nodes	and	remove	nodes
Push	removed	nodes	into	stack

Select:	Assign	actual	registers	(from	simplify/spill	
stack)

Actual-Spill:	Spill	some	potential	spills	and	repeat	the	
process

Coalesce:	Conservatively	merge	unconstrained	MOV	
related	nodes	with	fewer	than	K	“heavy” neighbors	

Freeze:	Give-Up	Coalescing	on	some	MOV	related	
nodes	with	low	degree	of	interference edges

Special	case:	
merged	node	
has	less	than	k	
neighbors	

All	non-MOV	
related	nodes	
are	“heavy”

Spilling

• Many	heuristics	exist
– Maximal	degree
– Live-ranges
– Number	of	uses	in	loops

• The	whole	process	need	to	be	repeated	
after	an	actual	spill

Pre-Colored	Nodes

• Some	registers	in	the	intermediate	language	are	pre-
colored:
– correspond	to	real	registers

(stack-pointer,	frame-pointer,	parameters,)

• Cannot	be	Simplified,	Coalesced,	or	Spilled	
– infinite	degree

• Interfered	with	each	other
• But	normal	temporaries	can	be	coalesced	into	pre-colored	

registers
• Register	allocation	is	completed	when	all	the	nodes	are	

pre-colored

Caller-Save	and	Callee-Save	Registers
• callee-save-registers	(MIPS	16-23)

– Saved	by	the	callee when	modified
– Values	are	automatically	preserved	across	calls

• caller-save-registers
– Saved	by	the	caller	when	needed
– Values	are	not	automatically	preserved

• Usually	the	architecture	defines	caller-save	and	callee-
save	registers
– Separate	compilation
– Interoperability	between	code	produced	by	different	

compilers/languages	

• But	compilers	can	decide	when	to	use	caller/callee
registers

Caller-Save	vs.		Callee-Save	Registers

int foo(int a) {
int b=a+1;
f1();
g1(b);
return(b+2);

}

void bar (int y) {
int x=y+1;
f2(y);
g2(2);

}

Saving	Callee-Save	Registers

enter: def(r7)

…

exit: use(r7)

enter: def(r7)
t231 ¬ r7

…

r7 ¬ t231

exit: use(r7)

A	Complete	Example
Callee-saved	registers

Caller-saved	registers

A	Complete	Example

A	Complete	Example

Spill	c

r2	&	b

a	&	e

(Alt:	ae+r1)

c

c

c

Deg. of	
r1,ae,d	<	K

A	Complete	Example

ae &	r1

pop	d

Simplify	d

(Alt:	ae+r1)

(Alt:	…)c

dc

c

d

pop	c	…

freeze	r1ae-d

A	Complete	Example

c1&r3,	c2	&r3

a&e,	b&r2

A	Complete	Example
ae &	r1

Simplify	d

Pop	d d

gen	code“opt”

Interprocedural	Allocation

• Allocate	registers	to	multiple	procedures
• Potential	saving

– caller/callee	save	registers
– Parameter	passing
– Return	values

• But	may	increase	compilation	cost
• Function	inline	can	help

Summary

• Two	Register	Allocation	Methods
– Local	of	every	IR	tree

• Simultaneous	instruction	selection	and	register	
allocation

• Optimal	(under	certain	conditions)

– Global	of	every	function
• Applied	after	instruction	selection
• Performs	well	for	machines	with	many	registers
• Can	handle	instruction	level	parallelism

• Missing
– Interprocedural allocation

The	End

c

stackstack

Spill C

c

stack

c

stack

Coalescing a+e

Coalescing b+r2

c

stack

c

stack

Coalescing ae+r1

c

stack

c

stack

r1ae and d are constrained

Simplifying d

d
c

stack

c

stack

Pop d

d
c

stack

c

stack

d is assigned to r3

Pop c

c

stack
stack

actual spill!

c

enter: /* r2, r1, r3 */
c1 := r3 /* c1, r2, r1 */
M[c_loc] := c1 /* r2 */

a := r1 /* a, r2 */
b := r2 /* a, b */

d := 0 /* a, b, d */
e := a / * e, b, d */

loop:
d := d+b /* e, b, d */
e := e-1 /* e, b, d */

if e>0 goto loop /* d */
r1 := d /* r1 */

c2 := M[c_loc] /* r1, c2 */
r3 := c2 /* r1, r3 */

return /* r1,r3 */

enter: /* r2, r1, r3 */
c := r3 /* c, r2, r1 */
a := r1 /* a, c, r2 */
b := r2 /* a, c, b */

d := 0 /* a, c, b, d */
e := a / * e, c, b, d */

loop:
d := d+b /* e, c, b, d */
e := e-1 /* e, c, b, d */

if e>0 goto loop /* c, d */
r1 := d /* r1, c */
r3 := c /* r1, r3 */

return /* r1,r3 */

enter: /* r2, r1, r3 */
c1 := r3 /* c1, r2, r1 */
M[c_loc] := c1 /* r2 */

a := r1 /* a, r2 */
b := r2 /* a, b */

d := 0 /* a, b, d */
e := a / * e, b, d */

loop:
d := d+b /* e, b, d */
e := e-1 /* e, b, d */

if e>0 goto loop /* d */
r1 := d /* r1 */

c2 := M[c_loc] /* r1, c2 */
r3 := c2 /* r1, r3 */

return /* r1,r3 */

Coalescing c1+r3; c2+c1r3

stackstack

Coalescing a+e; b+r2

stackstack

Coalescing ae+r1

stackstack

d

r1ae and d are constrained

Simplify d

d

stackstack

d

Pop d

stack

d

stack

d

a r1
b r2
c1 r3
c2 r3
d r3
e r1

enter:
c1 := r3

M[c_loc] := c1
a := r1
b := r2
d := 0
e := a

loop:
d := d+b
e := e-1

if e>0 goto loop
r1 := d

c2 := M[c_loc]
r3 := c2

return /* r1,r3 */

a r1
b r2
c1 r3
c2 r3
d r3
e r1

enter:
r3 := r3

M[c_loc] := r3
r1 := r1
r2 := r2
r3 := 0
r1 := r1

loop:
r3 := r3+r2
r1 := r1-1

if r1>0 goto loop
r1 := r3

r3 := M[c_loc]
r3 := r3

return /* r1,r3 */

enter:
r3 := r3

M[c_loc] := r3
r1 := r1
r2 := r2
r3 := 0
r1 := r1

loop:
r3 := r3+r2
r1 := r1-1

if r1>0 goto loop
r1 := r3

r3 := M[c_loc]
r3 := r3

return /* r1,r3 */

enter:
M[c_loc] := r3

r3 := 0
loop:
r3 := r3+r2
r1 := r1-1

if r1>0 goto loop
r1 := r3

r3 := M[c_loc]
return /* r1,r3 */

main: addiu $sp,$sp, -K1
L4: sw $2,0+K1($sp)

or $25,$0,$31
sw $25,-4+K1($sp)
addiu $25,$sp,0+K1

or $2,$0,$25
addi $25,$0,10

or $4,$0,$25
jal nfactor

lw $25,-4+K1
or $31,$0,$25

b L3
L3: addiu $sp,$sp,K1

j $31

nfactor: addiu $sp,$sp,-K2
L6: sw $2,0+K2($sp)

or $25,$0,$4
or $24,$0,$31

sw $24,-4+K2($sp)
sw $30,-8+K2($sp)

beq $25,$0,L0
L1: or $30,$0,$25

lw $24,0+K2
or $2,$0,$24

addi $25,$25,-1
or $4,$0,$25

jal nfactor

or $25,$0,$2
mult $30,$25

mflo $30
L2: or $2,$0,$30

lw $30,-4+K2($sp)
or $31,$0,$30

lw $30,-8+K2($sp)
b L5

L0: addi $30,$0,1
b L2

L5: addiu $sp,$sp,K2
j $31

Interprocedural Allocation

• Allocate registers to multiple procedures
• Potential saving

– caller/callee save registers
– Parameter passing
– Return values

• But may increase compilation cost
• Function inline can help

Summary

• Two Register Allocation Methods
– Local of every IR tree

• Simultaneous instruction selection and register
allocation

• Optimal (under certain conditions)
– Global of every function

• Applied after instruction selection
• Performs well for machines with many registers
• Can handle instruction level parallelism

• Missing
– Interprocedural allocation

Challenges	in	register	allocation
• Registers	are	scarce

– Often	substantially	more	IR	variables	than	registers
– Need	to	find	a	way	to	reuse	registers	whenever	possible

• Registers	are	complicated
– x86:	Each	register	made	of	several	smaller	registers;	can't	use	a	

register	and	its	constituent	registers	at	the	same	time
– x86:	Certain	instructions	must	store	their	results	in	specific	

registers;	can't	store	values	there	if	you	want	to	use	those	
instructions

– MIPS:	Some	registers	reserved	for	the	assembler	or	operating	
system

– Most	architectures:	Some	registers	must	be	preserved	across	
function	calls

The	End

The	End

