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Relaxed Effective Callback Freedom:
A Parametric Correctness Condition for
Sequential Modules With Callbacks

Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodriguez-Nunez™, Albert Rubio, and Mooly Sagiv

Abstract—Callbacks are an essential mechanism for event-driven programming. Unfortunately, callbacks make reasoning challenging
because they introduce behaviors where calls to the module are interleaved. We present a parametric method that, from a particular
invariant of the program, allows reducing the problem of verifying the invariant in the presence of callbacks, to the callback-free setting.
Intuitively, we allow callbacks to introduce behaviors that cannot be produced by callback free executions, as long as they do not affect
correctness. A chief insight is that the user is aware of the potential effect of the callbacks on the program state. To this end, we present
a parametric verification technique which accepts this insight as a relation between callback and callback free executions. We
implemented our approach and applied it successfully to a large set of real-world programs.

Index Terms—Smart contract verification, Event-driven programming, Unbounded re-entrancy, Callbacks

1 INTRODUCTION

ALLBACKS occur in sequential programs when a method
Cof one module invokes a method of another module,
and the latter, either directly or indirectly, invokes one or
more of the former module methods before the original
method invocation returns. Callbacks are useful: They pro-
vide an effective mechanism for implementing event-driven
programming by allowing a callee module to delegate the
execution back to the caller [19]. For example, in Ethereum,
a module (“smart contract”) transferring cryptocurrency to
another module may be probed by the recipient to obtain
more information about the on-going transaction. Though
effective, callbacks can lead to subtle mistakes because they
introduce behaviors where calls to the module are inter-
leaved, which, as in concurrent programming [19], [22], can
be very tricky to understand and reason about. This is par-
ticularly true in open environments, e.g., Ethereum, where
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callbacks can originate from added new code. Indeed, sev-
eral high profile attacks on smart contracts exploit call-
backs [4], [5], [6], [9], [20], [26].

The danger of callback attacks, also called reentrancy attacks,
led to many suggestions for syntactical program restrictions,
e.g., delaying external calls [8], [19]. However, these restric-
tions are overly severe and several realistic programs violate
them. Seeking to tame the unruly behavior of callbacks with-
out restricting programming led Grossman et al. [15] to intro-
duce Effective Callback Freedom (ECF)—a correctness condition
for sequential modules which guarantees that callbacks are
well-behaved. Intuitively, a module is effectively callback free
if for every execution trace of the module with callbacks, there
exists “an equivalent” trace comprised of a sequence of invoca-
tions of the module methods without any interfering callbacks,
dubbed a callback free execution, which starts and ends in the
same states as the original execution.

Example 1. We consider the execution with callbacks &
illustrated in Fig. 1to show the intuition of the ECF
approach. In order to prove the safety of ¢, this approach
considers callback-free executions—as &; and £&— where
the executed procedures have been reordered to remove
the callbacks, and checks if they are final-state equiva-
lent to the original execution (i.e., they start and finish at
the same states as &). In this case, the execution &; is not
final-state equivalent to ¢ as they end in different states
(e.g., if they start at the initial state = 0, then £ ends
with x = 6 and & with x = 10). However, the execution
& is final-state equivalent to & as switching the order
between the instructions + =z +1 and v =z + 5 does
not modify the final result. Hence, the original execution
& is safe as there exists a final-state equivalent callback-
free execution.

The benefit of ECF is that it allows reasoning about module
invariants (properties of the module’s state at quiescent points,
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Fig. 1. Execution with a callback (£) and possible callback-free reorder-
ings. We use dashed lines for the callback.

i.e., when its methods are not being executed), by considering
only callback free executions: Any state the module might be in
after executing a trace with callbacks is reproducible by a call-
back free trace. Hence, it is possible to prove module invariants
assuming that callbacks do not occur, and these invariants
hold even in the presence of callbacks. This use of the ECF cor-
rectness condition was suggested in [15] and made possible
in [1] which describes an effective conservative static tech-
nique for verifying that a module is ECF.!

Neither the definition of ECF [15] nor the sound static anal-
ysis [1] which verifies it place syntactical restrictions on pro-
grammers. However, they do impose a rather severe
semantical constraint: Callbacks are not allowed to introduce
new behaviors, even when these may be considered benign or
even desired by the programmer. While in general, and per-
haps in most cases, the assurance ECF brings is that no surpris-
ing unintended states might arise due to callbacks is welcome,
neither the property nor its verification method can be used
when the module is allowed to have richer behaviors due to
callbacks. Intuitively speaking, in these cases, we need a cor-
rectness condition (and a static analysis) that allow modules to
exhibit unique behaviors in the presence of callbacks, yet still
restrict these behaviors to a manageable, understandable set of
behaviors. The price to pay for such an inclusive condition is
that we will no longer have a “one-size fits all” correctness
property, as ECF is, but rather a parametric property which
encompasses the programmer’s view of what constitutes
benign callback-induced behaviors. These allowed deviations
will naturally depend on the properties the module is
designed to preserve.

In this article, we propose Relaxed Effective Callback Free-
dom (R-ECF), a parametric property-guided correctness con-
dition which allows modules to have non-ECF, yet benign,
behaviors by integrating the programmer’s feedback into
the correctness condition. Technically, the programmer
defines the deviant behaviors that callbacks are allowed to
introduce using a reflexive and transitive relation (i.e., a pre-
order) Jp on module states. A module is R-ECF if every
quiescent state o1 of the module which can be produced by
an arbitrary execution starting at some state o, has a
“smaller” state a’i’f (i.e., o1 Jgo}’) resulting from a callback-
free execution starting at 0. The condition is a strict generali-
zation of the ECF property which can be instantiated by
using state equivalence = as the underlying preorder. The
intended users of R-ECF are highly sophisticated pro-
grammers who develop systems where unique behaviors of
callbacks are essential. The number of this kind of

1. The original work [15] showed that verifying ECF is undecidable
and provided a conservative dynamic technique to check that a given
trace is ECF, i.e., has an equivalent callback-free trace.
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programmers is small, as typical solutions for reentrancy
attacks are based on forbiding any deviant behaviour intro-
duced by callbacks. This way, ECF accounts for most con-
tracts in the wild, where programmers do not wish to
burden themselves with reasoning about complicated
behaviors introduced by callbacks. On the other hand,
R-ECF is necessary to verify complex systems where call-
backs are allowed if they introduce benign behaviours.

We accompany the new correctness condition with a ver-
ification methodology which allows establishing module
invariants while considering only callback free executions.
The technique expects the user to (i) prove that the desired
invariant I holds in all callback free executions of the module,
(ii) provide a preorder Jz on module states which respects I,
i.e., Jp should ensure that if a state ¢” satisfies I then all
states o' Jpo” “bigger” than o¢” satisfy it too, and
(iii) establish that the module is R-ECF with respect to the
given preorder. Once the user fulfills the aforementioned
requirements, the methodology ensures that the desired
property I is indeed a module invariant. Interestingly, we
show that, in some cases, the required preorder Jz can be
synthesized from the property I the module is designed to
preserve (see Section 4.1).

To assist the user establish the third requirement, we pro-
vide a conservative static analysis algorithm that validates
that a module is R-ECF with respect to the given preorder
Jr . The algorithm requires that the latter is J-monotonic
(see Section 3.1.) Intuitively, a module is Jz-monotonic if
the execution of code segments between invocations of
methods preserves the order of states. Technically, the algo-
rithm generalizes the commutativity and projection-based
technique of [1] to consider R-ECF as the desired correct-
ness condition instead of ECF. The generalization of the
algorithm (and of the correctness property) is crucial: it
allows proving safety of modules which have executions
with callbacks that reach states that are not reachable with-
out using callbacks but are considered harmless.

1.1 Motivating Example

We show the benefits of R-ECF using the standard example
for callback safety, the DAO (Decentralized Autonomous
Organization) contract [6]. The contract acts as a “bank”
which allows client contracts to deposit funds and with-
draw them later. Thus, it is critical that the contract would
always be solvent, i.e., has enough cryptocurrency to pay
back the deposited funds. The contract, as we show, is not
ECF. Nevertheless, we describe how (i) we can prove the
solvency property considering only callback free executions
by using the R-ECF correctness condition parameterized
with an appropriate preorder on states, and (ii) establish
that the contract is R-ECF by considering only simple execu-
tions [15], i.e., executions comprised of a series of procedure
invocations which can be interrupted whenever a method
of another module is invoked by an arbitrary sequence of
invocations of the module’s procedures, however, these
interrupting procedures themselves never get interrupted.

1.1.1  The DAO contract

Fig. 2 shows a simplified version of the DAO contract. The
variable shares maps users to the sum of the individual
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1 contract DAO({

2 uint[] shares;
3 uint balance;
4 bool lock;
6

8

function deposit () payable{

// require (!lock);

shares [msg.sender] += msg.value;
9 balance += msg.value;

12 function withdraw () {
13 require (!lock);

14 if (shares[msg.sender] > 0) {

15 lock = true;

16 balance -= shares[msg.sender];

17 msg.sender.transfer (shares[msg.sender]);
18 shares[msg.sender] = 0;

19 lock = false;

20 }}}

Fig. 2. Simplification of the DAO contract that uses a lock to forbid call-
backs to withdraw. The contract is not ECF, but it is R-ECF.

funds they deposited in the contract. The variable balance is
holding the total amount of funds owned by the contract.?
The state of the contract can be manipulated using two pro-
cedures: deposit and withdraw. deposit stores funds in the
contract by increasing the caller’s shares by the value sent
as a parameter. In Solidity, msg is a special variable that
always exists, providing information about the current
transaction. The field sender of msg stores the caller’s
‘address’, which uniquely identifies it, and the field value
stores the funds (in cryptocurrency) transferred in the trans-
action. The withdraw procedure inverts deposits: A user call-
ing withdraw pulls out all their funds stored in the contract
based on the value of shares, decreasing the current amount
from the contract’s own balance and transferring it to the
caller’s balance. The transfer is implemented using the oper-
ation transfer in Line 17. The semantics of the virtual
machine allows the recipient of the money to execute their
own code upon receiving funds. Thus, we refer to such an
operation as a call node. The significance of the call node des-
ignation is that the recipient’s code might execute a callback
to the DAO code. If the transfer call succeeds, the caller’s
shares value is set to zero. If it fails, the contract’s state
implicitly reverts back to its state before withdraw was
invoked.

In the original DAO contract, Line 13 was omitted, and
hence the contract was vulnerable to an attack utilizing call-
backs: Initially, an attacker would invoke withdraw, and in
Line 17 control would be yielded to the attacker, thus,
allowing the attacker to call back to the DAO contract by
invoking the method withdraw again. Notably, the attacker
already received the value stored in its entry at the shares
map, but by calling withdraw again before the value of
shares was updated, the attacker is able to receive the same
amount a second time. This callback bug can be avoided by
adding a lock variable to the contract that must be false to
execute the body of withdraw, as shown in Line 13: A call-
back invocation of withdraw will find lock set to true and the
execution will revert, without being able to maliciously
reduce the balance. Such a fix has been introduced to many
smart contracts to avoid similar problems.

2. In Ethereum, the balance variable is maintained by the executing
virtual machine. However, for clarity of the presentation, we avoid
using the predefined variable and the special instructions used for
money transfer and implement them by explicit updates to the state.
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Using lock to prevent invocations of withdraw as call-
backs is sufficient to render the contract correct with respect
to the solvency property, i.e., it ensures that the balance of
the contract shown in Fig. 2 is always sulfficient to allow all
users to withdraw their funds. However, it does not make
the contract ECF: A user calling deposit as a callback would
send funds to the contract, but immediately after complet-
ing the execution of the callback and the return of control to
withdraw, the shares entry of the user is nullified, thus the
user would not be able to withdraw the sent funds. Such a
sequence of actions would result in a state where the
balance of the contract is higher than the sum of its shares,
a situation which is impossible to recreate using callback
free executions.

1.1.2 \Verifying solvency using callback free executions

If we consider only callback free executions then it is rather
easy to verify that the DAO contract is solvent. However, as
the DAO contract is not ECF, we cannot apply the approach
of [1] to use this fact to prove solvency.” However, if we
carefully examine the effect of callbacks to deposit on the
contract’s state, we see that from the viewpoint of the sol-
vency correctness property, they are rather harmless: exe-
cuting deposit as a callback is not dangerous as it may only
result in the contract gaining funds. We can utilize this
observation to allow such “benevolent” callbacks as we dis-
cuss below.

Example 2. We consider the contract in Fig. 2, and the sol-
vency property defined on the contract’s state:

I(o) = o[balance > Z shares].

If solvency is a module invariant of the contract, then we
can ensure that the contract always has enough balance
to give back to its clients the shares they have in their
accounts. It can be easily proven that callback-free execu-
tions preserve property I, but as the contract is not ECF,
we need to show it holds for executions with callbacks
too. However, instead of employing a verification proce-
dure which explicitly considers executions with call-
backs, we lift the fact that the solvency property holds
for callback free executions to the general case with the
help of the R-ECF correctness condition parameterized
with the following relation on states:

01 droy <(o1[shares] = oa[shares])
A (o1[balance] > oa]balance))
A (o1[lock] = o9lock])) .

The intuition behind the choice of Jp is that we allow
executions with callbacks when their final state is
“better” than a state that is reachable without using call-
backs (in the sense that it stores the same shares in the
accounts but may have a greater balance): We write o —
t — o1 to denote an execution that starts in a state o and
ends in a state o, via the trace ¢. If we manage to prove

3.1t is possible to make the contract ECF by using lock to prevent
callbacks to deposit too. Indeed, it was shown in [1] that if we uncom-
ment the command in Line 7, the contract is solvent.
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that the contract is R-ECF with respect to Jz then for any
execution o — t — o7 there is a callback-free execution o —
el — oﬁf such that o; J Ra‘{f , L.e., for every execution of
the contract there is a callback free execution from the
same initial state that ends with a “worse” state. We can
now prove that the contract is solvent: The execution o —
tf — 6%/ does not contain callbacks, thus it preserves the
property I. Hence, if I(o) holds then I (a{{f )=
o' balance > ¥ shares] also holds. The states o; and o
satisfy o1 Jp a‘l’f , therefore o[balance — Y shares] >
o' [balance — ¥ shares] > 0. Hence, I(0;) holds, and the
execution o — t — o1 preserves I. We conclude that [ is a
module invariant of the contract, and thus the contract is
immune to reentrancy attacks.
We note that an invariant of this form:

I'(0) = olbalance = Z shares]

will be also allowed in our framework. However, we
achieve more flexibility in our provided invariant (o)
since we only require to have enough balance to cover all
users. This allows for example that a user quits leaving
her shares to the contract.

1.1.3 Verification of R-ECF Using Simple Executions

To complete our proof of solvency we need to verify that the
contract in Fig. 2 is R-ECF with respect to the Jj preorder
defined in Example 2. We do so by generalizing the static anal-
ysis of ECF given in [1] to our setting, as we explain below.

The static analysis of [1] is based on a reduction given in [15]
which says that if a module is not ECF then there is a simple
execution which exemplifies it, i.e., if a module is not ECF then
there is a simple execution o — ¢t — o of the module which can-
not be matched with a callback free execution of the form o —
t¢f — 6%/ where o, = 0/ Thus, to prove that a module is ECF it
suffices to show that no such problematic simple trace exists.
The analysis performs this check conservatively by determin-
ing whether it is possible to transform every simple execution
o1 —t — 09 to a callback free execution o7 — ¢t/ — oy via a
sequence of commutation and projection operations on .

Our analysis is based on a generalization of the above
reduction to R-ECF: We show that if the module is not
R-ECF with respect to a given preorder on state Jp then
there is a simple execution o — t — oy of the module which
cannot be matched with a callback free execution o — ¢t/ —
aj’f such that o1 3 Raff . The reduction, however, does not
apply to any preorder, it holds only if the analyzed module
is R-monotonic with respect to Jp (see Definition 7). Intui-
tively, a module is R-monotonic if for every intraprocedural
execution o, —t — o, of every procedure of the module,
starting either at the procedure’s entry or at a call node, end-
ing at the procedure’s exit or at a call node, and for every
state o/, “smaller” than o, (i.e., o, Jr0’) there exists another
execution o, —t' — o, with the same starting and ending
points such that o, Jzo’,. With monotonic preorders, we
find ourselves again at the fortunate situation where the
proof of a module is reduced to reasoning about properties
of callback free and simple executions. Our analysis consists
of two parts. First, we verify that the analyzed module is
R-monotonic. Then, we conservatively verify the absence of
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problematic simple traces by determining whether it is pos-
sible to transform every simple execution oy —t — o3 to a
callback free execution oy — t</ — ogf such that oy 3 Rogf via
a sequence of swap and remove operations of all possible
different interrupting invocations.

Example 3. Any simple execution o — ¢ — oy of the contract
shown in Fig. 2 which contains an invocation of withdraw
leads to a failed require command in line 13. This failure
would cause the state of the module to revert back to its
initial state (i.e., 0 = 07), and thus allow us to match o —
t — o1 with the empty execution. (Recall that the Jp rela-
tion is reflexive.) Any simple execution o —t—o; in
which only deposit is invoked as a callback can be
replaced by a callback free execution o — ¢ — oif in
which the sequence of callback invocations occurs right
before the invocation of the withdraw procedure they
interrupt. As deposit increases the balance of the contract
but the corresponding increase to the shares map get nul-
lified by withdraw we get that o4 Jpo?.

1.2 Summary of Contributions
The main contributions of this paper can be summarized as
follows.

1)  We present Relaxed Effectively Callback Freedom (R-ECF),
a novel parametric correctness condition for sequential
modules with callbacks which allows to conveniently
specify the behavior of modules with meaningful call-
backs—ones which introduce benign behaviors leading
to states that cannot be reached in callback-free
executions.

2) We provide an effective conservative static analysis
for verifying the module is R-ECF with respect to a
given preorder _p .

3) Weintroduce a verification framework which allows
to establish module invariants by considering only
callback-free executions for R-ECF modules.

4)  We present a methodology for automatically synthe-
sizing a preorder relation from the desired invariant.

5) We implemented a prototype verifier based on our
technique and apply it successfully to a large set of
real-world smart contracts.

This article extends our OOPSLA’21 paper [1] by generaliz-
ing both the definition and the analysis of ECF to R-ECF. The
relevance of R-ECF is that it enables more relaxed relations
that are necessary to verify modules in which meaningful call-
backs are allowed. Our extended experiments confirm that we
are able to ensure the correctness of contracts that could not be
verified using previous approaches as ECF.

1.3 Organization of the Article

The rest of the article is structured as follows: Section 2 defines
the necessary notations and basic definitions and formalizes
the notion of ECF. Section 3 defines R-ECF and describes our
static analysis technique for checking R-ECF. Section 4 dis-
cusses our technique for verifying module invariants and
presents our approach for synthesizing the required preorder
from the desired invariant. Section 5 presents the implementa-
tion and its evaluation on Ethereum smart contracts. Section 6
discusses related work and concludes.
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withdraw:

p1 : shares[sender] > 0:  pg : balance’ = balance—
lock” = true
»( 1o

N\

false

»( 11

po : lock == shares[sender

P4 T == Success :
lock! = false

shares[sender] =0

p2 : shares[sender] <0

ps = Tl = success :

revert

pe : lock == true :

revert
deposit:

> 16

s
O p7 : shares[sender] = shares[sender] + msg.value

balance’ = balance + value

Fig. 3. CFGs for withdraw and deposit procedures from Fig. 2 written in
our programming language.

2 BACKGROUND

We formalize our results using a (simple) imperative pro-
gramming language in which a program Pr is a (finite) collec-
tion of procedures pi,...py. Each procedure has its own
(finite) set of local variables which only it can access, and all the
procedures share access to a (finite) set of global variables. Pro-
cedures are represented using control-flow graphs (CFGs).
Fig. 3 depicts the CFGs of the withdraw and deposit proce-
dures from Fig. 2. Every edge e of the CFG is annotated with a
preconditionc and a set of variable assignments a. Every proce-
dure has a unique entry node, to which no edge leads, and a
unique exit point, from which no edge leaves. In addition,
some of the program locations of a procedure may be call
nodes. Every time a procedure reaches a call node it may
invoke arbitrary procedures an arbitrary number of times and
then finally havoc the value of a specially designated return
variable r by setting it to an arbitrary value. In Fig. 3, ng and n4
are the entry and exit nodes of the withdraw procedure, resp.
We mark its sole call node (n3) using a double circle.

A trace is a (finite) sequence of transitions ¢t = py;...; 0,. A
trace is a trace of procedure p if all its transitions come from p’s
transition system, and it is complete if it starts at p’s entry node
and ends at p’s exit node. We refer to complete traces of proce-
dures as function traces. We denote the set of traces of proce-
dures in Pr by TR(Pr), and set of traces in Pr starting at
program location n and ending at n’ by TR(n,n) ={t e
TR(Pr) | start(t) = n A end(t) = n'} (with start(t) and end(t)
representing the starting and ending location of the trace ¢
resp.). For example, if we consider the program in Fig. 3, then
TR(no,ma) = {003 15 P35 P1 » PO} P13 P33 P5 + Po3 P2 » Pet- A
trace t is a complete callback-free trace of a program Prif ¢t =
t1;...;t, with every t; a function trace. Thus, the execution of
the procedures of a complete callback-free trace is not split
due to an incoming call. For example, the trace py; o1; o3; 05 is
callback-free, but the trace py; p;; p3; p7; P4 is not as the call to
deposit (p;) is intercalated.

A state is an assignment to all local and global variables
as well as the current node. We write ¢ — ¢t — o; to denote
an execution that starts in a state o, ends in a state o via the
trace t. We say that a state o is feasible for a trace ¢ if ¢ can be

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

fully executed starting at o, i.e., there exists a state ¢’ such
that o — t — ¢’ is an execution. We denote the set of feasible
states for ¢ by Feasible(t). For example, if we consider
again the program in Fig. 3, then the feasible states for
the trace py;p; are those in which lock = false and
shares[msg.sender] > 0 since only in such states we can
execute both transitions.

2.1 Segments and Segment-Sequences

We use the notion of segment to characterize all traces that
can arise from executing a fragment of code. Segments rep-
resent potentially unbounded number of traces, going
between start, exit, and call nodes. For the ease of the pre-
sentation, in the definition of segment we refer to the start
and exit nodes of a procedure as call nodes too.

Definition 1 (Segments). Given two call nodes n and n’, the
segment between n and n' is the set of traces TR(n,n'). If n is
the start node of a procedure and v’ is its exit node, the segment
represents the set of all function traces of the procedure.

Given a segment t, we say that o — v — o' if and only if
there exists a trace t € t such that o — t — o’

Example 4. The segment . for the program shown in Fig. 3 for
no and ng is to = {py; p1; p3}, forngand nyis 11 = {p4 , ps}
and for ng and ny is 7o = {po; P1; P3; Pa s P03 P13 P33 P5
P03 P2 5 P}

Importantly, the notion of segments applies to programs
with loops, as the next example illustrates. Consider the fol-
lowing procedure (whose CFG is shown to the right):

22 int aux = 0; po /711\ P /n) ps ng

n

23 do { aux += val; } @ A~/
24 while (aux < 10); P2
25}

21 function loop (int val) {

As there are no call nodes, the procedure loop has only
one segment that goes from the start to the end node,
although this segment might contain an infinite number of
traces (as val can be negative). In particular, the segment
TR(ng,n3) contains the traces that start in the node ng and
end in n3, but there might be an unbounded number of
these traces since we can take the path p;; p, as many times
as we like before taking the transition p; and end at n3. We
can manage these unbounded segments representing loops
by considering compact abstract representations of the sets
using standard techniques for loops abstraction, or unroll-
ing them a finite number of times. As usual, we might gain
precision by the unrolling, but it only ensures the correct-
ness of the analysis up to a number of iterations.

We use sequences of segments (segment-sequences) in
order to represent execution traces and prove properties
about them; the notation t is used for segments and = for
segment-sequences.

Definition 2 (Segment-sequence). A segment-sequence is a
non-empty sequence of segments of the program. We say that a

trace t is represented by a segment-sequence T = T1; Ta;. . .; Tp if
and only if t = ty;ts;...;t, for some traces ty, ta,...,t, such
that for every i = 1,...,n we have that t; € t;.

Given a segment-sequence w, we say that o — w — o' if and

only if there exists a trace t represented by m such that
O_/
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Following Example 4, the segment-sequence for the exe-
cution trace py; py; p3; Pg; p4 would be 7; ); 71, where we
have primed the segment 7}, of the callback procedure that
interleaves its execution.

2.2 (Static) Effective Callback Freedom

The notion of Effectively Callback Free (ECF) programs was
introduced by [15] as a way of proving modularity in the
presence of callbacks. As usual, modularity ensures that
external calls to other programs cannot affect the behavior
of a program, hence its verification can be done indepen-
dently. As mentioned earlier, a program is ECF if for every
trace with callbacks, there exists a final state-equivalent call-
back-free trace. ECF ensures that the use of callbacks cannot
generate unexpected behaviours as any execution can be
simulated without using callbacks.

Definition 3 (dECF). An execution o —t — oy is dECF if
there is a callback-free execution o —t/ — oy such that
01 = 09.

The static definition of ECF ensures the property for a
given program by relying on dynamic ECF (dECF) defined
for executions above.

Definition 4 (ECF). A program Pr is ECF if every execution of
Pris dECF.

3 STATIC ANALYSIS OF RELAXED-ECF

In this article, we develop a generalization of ECF that is not
restricted to checking final-state equivalence but allows con-
sidering other (more relaxed) relations and that, besides, can
be statically checked. We are interested in preorder relations
on states R (i.e., binary relations that are reflexive and transi-
tive), hence instead of requiring that the final states of two exe-
cutions o and o3 are equal (o) = o3 in Definition 3), we can
check if they satisfy a more relaxed (weaker) relation oy 3 0.

Let R be a preorder relation on states for the entirety of
this article. We generalize the notions of an ECF execution
and ECF program to the (relaxed) relation R.

Definition 5 (R-dECF). An execution o — t — oy is R-dECF if
there is a callback-free execution o —t* — a‘{f such that
o1dR a(ff .

Definition 6 (R-ECF). A program Pr is R-ECF if every execu-
tion of Pris R-dECF.

The basis for our static analysis of R-ECF is the following
reduction: if there is a violation of the R-ECF property in a
trace with arbitrary nested callback calls, then there is one
where callbacks are not nested. Traces of executions
without nested callbacks are called simple traces: the exe-
cution of a simple trace can be interrupted at call nodes
by an arbitrary sequence of executions of other proce-
dures, however these interrupting procedures themselves
never get interrupted.

This reduction holds if we consider the final-state equiva-
lence relation, thus we can check if a program is ECF by
only studying the execution of its simple traces.

Lemma 1. If all executions of simple traces of a program Pr are
AdECF then Pris ECF.
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However, for a weaker relation, this reduction from vio-
lations in traces with nested callbacks to violations in simple
traces is unsound as the following example shows:

Example 5. We consider the following program Pr and the
reflexive and transitive relation on states o) Jroy =
(o1[z] = oa[z]):

27 contract No_R-ECF{

28 wint x; jz qunc=ti3o.n set_3(){
29 function set_2 () { s call (; 3

30 x = 2; i 12

3 call(); * )

32 if( x == 4) . } ’

33 x = 0; 0

34 } o}

All executions of simple traces of Pr are R-ECF: the
possible final states oy are [r =2], [t =3] and [z = 4],
thus we can always find a callback-free execution whose
final state o, verifies o1 Jr o3 (it is enough to consider the
execution of sety that leads to the state [x = 2]). However,
the program is not R-ECF, as there are executions with
nested callbacks that lead to states o that do not satisfy
o1Jroy for any state oy reachable without using call-
backs. For example, consider the following execution of a
trace with a nested callback to set, inside a callback to
sets.

(s‘ufffsctf

This execution is not R-ECF as the states o9 reachable
without using callbacks ([z = 2] and [z = 3]) do not sat-
isfy 01 Jp o9 wrt. the final state of the execution oy = [z =
0]. Therefore, Pr is not R-ECF although all executions of
simple traces of Pr are R-ECF.

The rest of the section is organized as follows. In Sec-
tion 3.1, we introduce some properties for the relations and
the programs that make it possible to develop a R-ECF anal-
ysis based on simple traces: our goal is to find conditions for
a program Pr such that if they hold for a relation R then we
can reduce the analysis of verifying that Pris R-ECF to veri-
fying that all executions of simple traces of Pr are R-ECF. In
Section 3.2, we define the basic operations of the analysis:
namely, commutation and projection operations on pro-
gram segments. Finally, Section 3.3 outlines the analysis
algorithm used to prove R-ECF and hence ensure callback
safety, and Sections 3.4 and 3.5 introduce generalizations of
the algorithm for handling procedures with multiple call
nodes with less and more accuracy.

3.1 R-Monotonicity

The main condition that will allow us to soundly use a rela-
tion R in our analysis of simple traces is monotonicity. Mono-
tonicity relates between a relation R and a segment of the
analyzed program.

Definition 7 (R-monotonocity). Given a segment t, we say
that © is R-monotone if for all states o1, o' and o9, such that
01dpo’ and o1 — T — oy, there exists a state oy such that o —
T — oh and o9 Jp o).

2
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Fig. 4. Scheme of the relations between the states of the different execu-
tions that we consider during the reasoning.

First, we show the intuition behind how R-monotonicity
enables the reduction to simple traces. We consider a program
Pr such that all executions of simple traces of Pr are R-ECF.
Lett = t,;t.; t; be a trace of Pr where ¢, is a simple trace (that
is executed as a callback), and ¢, and t, are traces that belong
to the “prefix” and the “suffix” segments of a procedure f,
respectively. We consider the following execution:
o1 —t, — oy —t. — o3 —t, — 04. Fig. 4 illustrates this execu-
tion and the relations satisfied by the states of the different
executions that we are going to consider during the reasoning.
First, we observe that the execution oy — t. — 03 is R-ECF as t,.
is a simple trace. Hence, there is a callback-free trace tﬁf such
that oy — t&/ — o and o3 Jpo%. However, this does not imply
that the execution of ¢, from the state o, leads to a state o, that
satisfies 04 Jpo), as we observed in Example 5. But, if we
require the segment representing the suffix ts to be R-monotone,
then we can ensure that there is a trace ¢/, € 7, such that o}, —
! — o) and o4 Jp o). Finally, we consider the execution: oy —
t, — oy —tf — o} — /. — o/, The executed trace is simple, thus
the execution is R-ECF. Hence, there is a callback-free trace ¢/
such that oy — ¢/ — ¢4/ and o, Dz 0. The relation R is reflex-
ive and transitive, thus o, Jp oif is also satisfied.

In our analysis of a program Pr and a desired relation R,
we require that:

e All procedures of the program are R-monotone.

o All suffixes of call nodes of the program are
R-monotone.

We define R-monotonicity for procedures and call nodes:

Definition 8. A procedure f of a program Pr is R-monotone if
and only if the segment that represents the procedure (the one
that contains all traces of the procedure) is R-monotone.

Definition 9. A call node c of a program Pr is R-monotone if
and only if all its right segments (segments TR(c,c') that go
from the call node c to the exit node or to another reachable call
node of the procedure) are R-monotone.

Finally, we extend this notion to the entire program:

Definition 10. A program Pr is R-monotone if and only if all its
procedures and call nodes are R-monotone.

If a program Pr is R-monotone, our following result
ensures that in order to show that Pr is R-ECF, it is suffi-
cient to check that all executions of simple traces of Pr are
R-ECF.

Lemma 2. Let Pr be a R-monotone program. If all executions of
simple traces of Pr are R-dECF then Pris R-ECF.

Example 6. The program in Fig. 2 is R-monotone with
respect to the relation Jp introduced in Example 2.
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Hence, it is only necessary to analyze the executions of
simple traces of the program to prove that it is R-ECF.

3.2 Commutativity/Projection Checks

The static analysis for checking R-ECF is based on commu-
tativity / projection operations between segments that can be
realized using SMT solvers. The intuition is the following;:
the analysis uses commutation and projection checks on
program segments to remove the callbacks and construct an
equivalent callback-free execution, but it considers a gener-
alization of these operations that is not restricted to check-
ing final-state equivalence.

Definition 11 (R-Commutation, and left and right
R-projection). Given two segments t1 and to, and a preorder
relation on states R,

o We say that v, R-commutes with Ty for the state o €
Feasible(t1; t2) if and only if, o € Feasible(t2;11)
and, if o — 11570 — o’ and o — 19511 — 0", then o' Jp
o’

o Wesay that v R-left-projects with t, for the state o €
Feasible(ty; t2) if and only if, if o — 11570 — 0’ and
o—1 —0", then o’ Jpo”.

o We say that v, R-right-projects with t, for the state
o € Feasible(ty;19) if and only if, o € Feasible(ts)
and, ifo — 11,19 — o’ and 0 — 19 — o, then o’ Jpo”.

Basically, the above definition generalizes the well-
known commutation and projection operations that check
final-state equivalence to satisfy a reflexive and transitive
relation R. The standard operations are a particular case of
these R-operations using the equivalence relation oy Jp_
09 & 01 = 09. Indeed, R_ is the strongest relation that we
can consider: in case two segments R_-commute for a state
o, then they R-commute for any reflexive relation.

Example 7. Consider the program in Fig. 2. The segments
74, T, represent the procedures deposit and withdraw,
respectively. The segment 7, defined in Example 4, repre-
sents the traces of withdraw until its call node. We study the
R-commutation and R-projection of these segments accord-
ing to different relations. First, we consider the relation R_.
If the procedure deposit includes the require instruction,
then both 7¢; 7y and 7¢; 7, R—-left-project for any feasible
state: their execution leads to the same final state as execut-
ing 7 alone, since 7y sets lock to true and in such state both
deposit and withdraw revert. But if deposit does not include
the require, then ty;t; does not R_-commute or R_-left-
project, e.g., the execution of 7p; 74 from the initial state oy =
[shares = [msg.sender — 10|, balance = 10, msg.value = 5]
leads to o1 = [shares = [msg.sender — 15], balance = 5],
but 74579 and 1) lead to different states (o9 = [shares =
[msg.sender — 15], balance = 0] and o3 = [shares =
[msg.sender — 10], balance = 0], respectively). However, if
we consider the relation R introduced in Example 2, then t,
R-commutes with 7; for any state in Feasible(ty; 74). For
example, if we consider again the initial state oy, the states
o1, 03 satisfy o1 Jp 05 thus the segments R-commute.

The analysis works by applying left and right move-
ments of callbacks constructing a callback free execution,
where callbacks no longer appear at call nodes, and which
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lead to a “smaller” state compared to the original one. For
this purpose, we define the notion of movement for a rela-
tion R, referred to as R-movement, as a combination of
R-commutativity and R-projection properties. In particular,
an R-Left-movement expresses that for all feasible states we
can either R-commute or R-left-project, R-right-movement
expresses that we can either R-commute or R-right-project.

Example 8. Consider the segments 4, 7,5, 7o and t; defined
in previous examples. If we take the relation R_, then
70; Ty R--left-moves as 7y R_-left-projects with t,, for all
feasible states, but 7y; 74 only R_-left-moves if the proce-
dure deposit includes the require instruction. However, if
we consider the relation R introduced in Example 2, then
both procedures deposit and withdraw R-left-move with
79, as 7p; Tq R-commutes and 7; 7,, R-left-projects for any
feasible state for executing these segments.

Given an execution that leads to a state o, the basic idea
of the analysis is to apply R-movements to construct a call-
back-free execution whose final state o’ satisfies the relation
o Jgo'. Following Example 8, consider the execution of the
sequence Ty; 74; 71 from an initial state o), we denote o to
its final state and o; to the intermediate state that we reach
after executing the callback (e, 09— 1p;7¢—o7 and
or — 11 — o). It is clear that 7(; 7, R-commutes for the state
0y, thus the execution from this state of the trace 74; 1) leads
to a state o’ such that o; Jp0’. The segment 7, is R-mono-
tone, hence we have succeeded in constructing a callback-
free sequence 74; To; 71 whose execution from oy leads to a
state 0;1‘ = [shares = [0], balance = 0] such that op Jp a}f is
satisfied, as the segment 7, preserves the relation R.

3.3 Outline of the Analysis Algorithm

We introduce a constructive algorithm for reordering (by
relying on the commutativity and projection operations of
Section 3.2) simple callback traces into R-equivalent call-
back-free traces such that R-ECF is ensured. The intuition of
the algorithm is the following: given a procedure f with a
single call node n, it partitions f into two segments: prefix
and suffix. The segment prefix represents the set of traces
from the start node to the call node n, and the segment
suffix the traces from the call node to the end node (the
notion of segments is introduced in Definition 1). Then, it
considers sequences 7' of the form prefix ; A ; suffix where
A € F*. F is the set of all procedures of the program being
analyzed. The set F* represents all possible sequences of
unbounded length consisting of procedure calls of our pro-
gram. We assume that the execution of 7" from a initial state
oy leads to the state o;. Our goal is to find subsequences
G, H of procedures calls in A such that execution of the call-
back-free sequence G ; prefix ; suffix ; H from the state oy
leads to a state o/ that satisfies the relation oy Jpo’. A pseu-
docode of the algorithm for checking this constructive
R-ECF definition is given in Fig. 1. It corresponds to a
restricted version of the general algorithm presented later
that assumes that functions contain at most one call node.
We will generalize to any number of call nodes in Sections 3.4
and 3.5. The algorithm receives as parameters the relation R
to be used and the procedure f € F to be checked (that has a
single call node n). It operates by extracting the segments
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prefix (line 3) and suffix (line 4) that represent the parts of the
code of f before and after the call node n, respectively. The
algorithm then computes the set of Left (line 5) and Right
movers (line 6). From the sets of left and right movers we can
construct the subsequences G, H mentioned above. The com-
putation of movers is encapsulated within the functions
get R-left movers and get_R-right_movers that use the notion
of R-movements introduced in the previous section. A pro-
cedure g belongs to Left if it R-left-moves with the segment
prefix, and it belongs to Right if it R-right-moves with the seg-
ment suffix.

Algorithm 1. Pseudocode of an Algorithm for Checking
a Procedure With a Single Call Node, That Allows Bidi-
rectional Movement of Callbacks

1: procedure CHECK_R-ECF_SINGLE_CALLNODE(R, f)

2 let n = get_callnode(f)

3 let prefix = extract_prefix(f, n)

4: let suffix = extract_suffix(f, n)

5: let Left = get R-left movers(R, prefix)

6: let Right = get_R-right_movers(R, suffix)

7 returncheck_no_move_collisions(R, Left, Right)
8

9:  procedure CHECK_NO_MOVE_COLLISIONS(R, Left, Right)
10: let MLeft = check_Right_collisions(R, Right)
11: let MRight = check_Left collisions(R, Left)
12: if (MLeft N MRight) == () then

13: return R-ECF

14: else

15: returnMayNotBe R-ECF
16:

17:  procedure CHECK_RIGHT_COLLISIONS(R, Right)
18: let MLeft =F \ Right
19: while MLeft changes do

20: MLeft = MLeft U get_not_R-right_movers(R, MLeft)
21: returnMLeft
22:

23:  procedure CHECK_LEFT_COLLISIONS(R, Left)

24: let MRight =F \ Left

25: while MRight changes do

26: MRight = MRight U get_not_R-left movers(R, MRight)
27: returnMRight

In case all procedures are in Left or all are in Right , the pro-
gram is trivially R-ECF as we can always move all callbacks
to the left or to the right respectively, but this does not cover
all possible legal movements, i.e., the algorithm does not
require all callbacks to move to one determined side. Instead,
as long as all callbacks can be moved to either side, and call-
backs cannot block the movement of another callback
(referred to as “collision”), we can combine left and right
movements. To illustrate the problem of collisions, we con-
sider the program in Example 9 (presented below) and the
final-state equivalence relation R_. The procedure g1 must
move to the right of the call node, the procedure g2 must
move to the left, and g1 cannot move to the right of g2 . Then,
for a sequence of callbacks g1;g2 we cannot prove the exis-
tence of an equivalent execution using the reordering tech-
nique. The function check,onmovecollisions generalizes this
check for any potential sequence of callbacks by computing
sets MLeft (line 10) and MRight (line 11) that represent the set
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of callbacks that cannot move to the right and to the left,
respectively. These sets are updated iteratively until a fixed
point is reached, starting from the F\ Right and F\ Left
sets, and updated in each round using the functions
get_not_R-right_movers (line 20) and get_not_R-left_movers
(line 26).

Example 9. Consider the following program and the rela-
tion R_.

43 contract coll({
4 uint x, vy, z;

so function gl () 55 function g2 ()

45 function f(){ s1 { 56

6 X = X * 2; 52 x=x+1; 5 y=y+1;
47 call(); 53 z = 0; sz = 1;

48 vy =y x 2; 54} 59

49 } 60 }

The procedure g1 R_-commutes with the suffix (but
not with the prefix) of f, and g2 R_-commutes with the
prefix (but not with the suffix) of f. Then, it is clear that
gl € F\ Left and g2 € F\ Right, hence we need to con-
sider the possible collisions between these procedures.
The sequence g1;g2 does not R_-move, thus the algo-
rithm cannot verify the program.

Importantly, the correctness of the algorithm is only
ensured if the program is R-monotone: if a R-monotone
program is verified by the algorithm then all executions of
simple traces of the program are R-ECF.

Theorem 1. Given a reflexive and transitive relation R, if the
function check_R-ECF_single_callnode outlined in Fig. 1
returns R-ECF for all the procedures f of a R-monotone pro-
gram Pr, then Pris R-ECF.

Example 10. Consider the program Pr of Fig. 2. This program
contains a single call node in the procedure withdraw, and
the prefix and suffix of this procedure are the segments 7
and 1, defined in Example 4, respectively. First, we consider
the relation on states R_. If the procedure deposit does not
include the require instruction then the procedure deposit
belongs to neither Left nor Right, as we discussed in Example
7. Thus, the algorithm cannot verify the program. However,
if we consider the relation R introduced in Example 2 then
deposit and withdraw R-left-move with the prefix, therefore
both of them belong to Left. Hence, the set MRight is empty
and the algorithm verifies the program. Pr is R-monotone
as we discussed in Example 6, hence it is R-ECF.

The problem of checking if two segments commute or proj-
ect is undecidable if the segments can contain loops. However,
we can express the complexity of the algorithm outlined in
Fig. 1in terms of these checks. The worst-case occurs when not
all functions belong to Left or Right , and the algorithm needs
to check the possible collisions between the left and right-mov-
ers. This may involve checking the commutation/ projection of
every pair of functions of the program, therefore the number
of commutation checks performed by the algorithm is qua-
dratic with respect to the number of functions.

3.4 Generalization of the Algorithm for Multiple Call
Nodes

The case of programs with procedures with several call

nodes is more challenging. The first difficulty is that in
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order to study the possible reorderings of an execution it is
not enough to consider the complete prefix and suffix of
each one these call nodes (i.e., the segment from the start
node to the call node and the one from the call node to the
end node of the procedure, respectively) as we need to
consider any possible execution that might callback in the
intermediate call nodes. For example, the procedure p intro-
duced in the example below (Example 11) contains two con-
secutive call nodes n; and n», so it is not sound to consider
the segment 7, = {p;; po } to check if we can move a callback
in the first call node to the end of the execution as the possi-
ble callbacks in the node ny could block this movement, i.e.,
a procedure g could R-commute with p;;p, but not with
01; h; py (with h a callback in the second call node). This is
the reason why when defining the segments on which
the operations are applied, for the soundness of the anal-
ysis, we need to take the minimal segments, i.e., segments
that do not include any other call node apart from the
start and end node of the segment. For example, given
the previous procedure we consider three different seg-
ments: one from the start node to n;, one between the
call nodes n; and n,, and finally one from n, to the end
node.

Second, the presence of multiple call nodes is challenging
as we cannot consider the movements of each one of the call
nodes in isolation because different call nodes can generate
cycles when we try to reorder their callbacks.

Example 11. The following example illustrates how differ-
ent call nodes can generate cycles when we try to reorder
their callbacks. The procedure p contains two consecutive
call nodes (n; and ns), and we consider the movements of
the procedure f.

. taf =ax2 ' =241 trl=ax2
p . @p\, x T * mpl T T+ @/J_} T x '®
) i -

f' :/}3::1':.7:+1

If we consider the relation R, then f is only in the set
of right movers of the node n; as it only R_-commutes
with its minimal right segment, and it is only in the set of
left movers of the node n; as it only R_-commutes with
its minimal left segment. This shows a circularity that
implies that we cannot move a callback to f in n; out of
the trace since it will be moved to ny (by commutation)
and then back to n; (by commutation) again.

We forbid cycles by ensuring that if we move a proce-
dure in one direction then it is not going to get blocked in
an intermediate call node during the reordering (i.e., once
we start moving a procedure to the right (resp. left) then it
is not going to reach a call node where it cannot move to the
right (resp. left)). Hence, we can only ensure R-ECF if we
impose that for any pair of call nodes ¢; and ¢; such that c;
is reachable from ¢, if a procedure needs to move to the
right of ¢; then it can move to the right of ¢,, and if it needs
to move to the left of ¢, it can move to the left of ¢;.

A pseudocode of the algorithm for checking R-ECF in
procedures with multiple call nodes is given in Fig. 2. This
algorithm can handle programs with any number of call
nodes, and follows the same constructive approach that we
introduced in the previous section.
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The function check_callnode returns the set of proce-
dures that cannot move to the left and right of a given call
node n. It follows the intuition of the algorithm for checking
procedures with a single call node outlined in Fig. 1: first it
extracts the minimal right and left segments of the call node
(lines 2 and 3) and computes the procedures that R-left-
move with the left segment (Left) and the ones that R-right-
move with the right segment (Right). Finally, it calculates
the sets of procedures that cannot move to the left (MRight)
and to the right (MLeft) taking into account the possible col-
lisions between callbacks.

Finally, the function check R-ECF_multiple_callnodes
checks that there are not cycles like the one in Example 11.
For every pair of call nodes n; and nsy such that n, is reach-
able from n,; (lines 14 and 15), it verifies that the procedures
can either move to the right or to the left of the call nodes by
checking that there are not procedures that cannot move to
the left of n; and to the right of n, at the same time (line 16).
In case this function returns R-ECF then it is always possi-
ble to reorder the callbacks of a given execution to gen-
erate a callback-free execution whose final state satisfies
the relation R with respect to the final state of the origi-
nal execution. As in the previous section, the correctness
of the algorithm is only ensured if the program is
R-monotone.

Theorem 2. Given a reflexive and transitive relation R, if the
function check_R-ECF_multiple_callnodes outlined in Fig. 2
returns R-ECF for all the procedures f of a R-monotone pro-
gram Pr, then Pris R-ECF.

Algorithm 2. Pseudocode of an Algorithm for Checking
a Procedure With Multiple Call Nodes, That Allows
Bidirectional Movement of Callbacks

1:  procedure CHECK CALLNODE(R, n, f)

2 let left_segments = extract_minimal_left_segments(f, n)
3 letright_segments = extract_minimal_right_segments(f, n)
4. let Left = get R-left_ movers(R, left_segments)

5: let Right = get_R-right_movers(R, right_segments)

6: let MRight = check_Left_collisions(R, Left)

7 let MLeft = check_Right_collisions(R, Right)

8 returnMRight, MLeft

10:  procedure cHECK_R-ECF_MULTIPLEC.ALLNODES(R, f)
11: let callnodes = get_callnodes(f)

12: for n in callnodes do

13: let MRight[n], MLeft[n] = check_callnode(R, n, f)
14: forn_1,n_2 in callnodes do

15: if n_ 1 ==n_2 orn_2is reachable from n_1 then
16: if MLeft[n_2] N MRight[n_1] != () then

17: returnMayNotBe_R-ECF

18: returnR-ECF

We can use this approach based on considering minimal
segments to analyze programs that contain loops, even
when they include call nodes inside the loops. In the follow-
ing example we show how the definition of minimal seg-
ments applies to these programs.

Example 12. Consider the procedure loop1 that contains the
call node n3 in the loop. The left segments of this call node
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represent traces from a call node (the initial ny or n3) to ng
and its right segments from n3 to a call node (n5 or ny).

61 function loopl (int wval) {

62 int aux = 0;

¢ do { p1 Ps

64 if (val != 0)

65 aux += val; Po P2 143 P4
O EEED )
67 aux = call();

68 } while (aux < 10); P

69}

We first consider the segment that goes from n, to ns:
it contains all the traces between these two nodes that do
not include any other call node apart from themselves.
There might be an unbounded number of such traces
since we can take the path p;; ps; o3 as many times as we
like before taking the transition p, to end at n3. The same
happens for the traces from n; to n3 and the ones from ng
to ns. Then, using the notation ¢ = p;; p5; 3,

SLeft = {{po;P2 , Postipa, Poitit; oy, ..},
A {pe; P33 P25 Pg; P33t 02 5 - }}
SRight = {{pe;Ps » P& P3}P1;P5:Ps 5 -}

)

{063 03502 5 Pg; P33 L5 02

3.5 Segments Join

The technique we have considered in the previous section is
powerful, but it can be more accurate if, once we have
solved a call node (i.e., removed all the callbacks that
entered into it), we allow “joining” its left and right seg-
ments. For instance, consider the procedure p defined in
Example 11. If we prove that all procedures are moving
with respect to call node n, (via commutation or projection
with p; and p,), then we have proven that no callback inter-
rupts the two segments p;, p, thus we can elide them into a
single segment. The reason for performing the join opera-
tion is that having larger segments leads to strictly more
accurate results. The following example shows a case where
we gain accuracy by joining segments:

70 contract Example_no_ECF ({

71 uint c;

72 function discount2 () { 7 function mult () {
73 c=c~-1; 80 c =cCc * 2;

74 call(); o } ’

75 c=c¢c - 1; 2}

76 call(); ‘

77 c = 0;

78 }
po:cd =c—1

: /)3:(1/:(3*2@

Example 13. Consider the program above whose procedure
discount2 has three transitions and two call nodes while
the procedure multiply has a single transition and no call
nodes, and the final-state equivalence relation R_.
Assume that our trace has a callback (to multiply) at each
call node: py; p3; p1; Ph; Py (We have primed the second use
of multiply). The minimal segments of discount2 are (i) the
set of traces from ng to ny, ie., 19 = {py}, (i) the set of
traces from n; to n, ie., 7y = {p;}, and (iii) the set of
traces from ny to ns, i.e., 2 = {py}. We use mul for the
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function segment {p;} of multiply. Now, the segment-
sequence representing our trace is to; mul; t1; mul; 7o. We
start by handling the second call node, n,, first. We
R_-right-project mul; 2 to 72 and obtain the new seg-
ment-sequence (that is final-state equivalent to our origi-
nal trace) tp;mul; 7;72. But now we cannot go further
and solve n; since we cannot apply any R_-movement on
70; mul or mul; ;. However, if we use the fact that n, has
already been solved, we can consider that ny is no longer
a call node, since we have removed all the callbacks that
entered into it, then our CFG would be:

o:c =c—1 i =c—1 o =0
@/o mm 7/712\ P2 ,Q
A\ N NG

Hence, the right segment of n; is the segment 7;;» =
{p1; po}, which is the join of segments t; and 7o, thus the
sequence we have to consider now is tp; mul; 11,2. Then,
we can R_-right-project mul; 71,2 to 71,2, and obtain the
sequence Tp; Ty;2.

We will thus consider that we can apply an operation to
remove call nodes that enables a more accurate static analysis for
procedures with multiple call nodes. However, once we intro-
duce this operation, the order in which call nodes are solved
might affect the accuracy of the analysis results. For example, if
we consider again the procedure discount2 and try to solve the
call node n; first, we cannot verify that the program is R_-ECF
as the procedure multiply does not commute or project with the
left and right segment of the call node (zj and t; resp.).

Algorithm 3. Pseudocode of an Algorithm for Checking
a Single Call Node Following a Given Order O

1:  procedure cHECK R-ECF_CALLNODE(R, n, £, C)
2: let left_segments = extract_left segments_order(f, n, C)

3: let right_segments = extract_right_segments_order(f, n,
O
4. let Left = get R-left_ movers(R, left_segments)
5 let Right = get_R-right_movers(R, right_segments)
6: let MRight = check_Left collisions(R, Left)
7: let MLeft = check_Right_collisions(R, Right)
8: returnMRight N MLeft ==
9:
10:  procedure check_.ECF_ordered(R, f, O)
11: let remaining_c = get_callnodes(f)
12: for smallest ¢ in remaining_c according to O do
13: let is solved = check R-ECF callnode(R,c,f,
remaining_c)
14: if not is_solved then
15: returnMayNotBe_R-ECF
16: let remaining_c = remaining ¢ \ {c}

17: returnR-ECF

We can verify that a program is R-ECF if we can find an
order for solving all its call nodes. The difference with the
previous algorithms is that we check the call nodes one by
one following the order O, and join their left and right seg-
ments once we prove them (e.g., we need to follow the order
O =ny < my to prove that discount2 is safe as we need to
join the left and right segments of the node n, before
checking n4). In this case it is not necessary to add condi-
tions to ensure that we are not generating cycles. Once

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

we remove the solved call nodes, it is not possible to
generate cycles.

The function check_R-ECF_callnode checks if a call node
n of a procedure f is R-ECF considering that the nodes in C
are the only call nodes of the procedure. Hence,
extract_left_segments and extract_right_segments (lines 2
and 3) compute the minimal segments of the node n only
considering the nodes in C as call nodes (i.e., segments go
from a node of C to n and do not traverse any other node in
C), and then the procedure checks if the call node is solvable
by computing the sets of left and right movers (MLeft and
MRight).

Given a total ordering of the call nodes O =n;, < n;, <

. < ny, the function check_R-ECF_ordered applies this
check to all the call nodes of a procedure f by following the
order O (i.e,, it first proves the smallest and so on). Initially,
it considers that we have not removed any call node, so the
set of remaining call nodes remaining-c contains all the call
nodes of the procedure (line 11). Then, the function consid-
ers the call nodes in remaining; one by one following the
order O and studies if they are R-ECF (line 13). Once the
algorithm checks that a node cis R-ECF it considers that it is
no longer a call node as we can move all its callbacks to other
call nodes (via commutation or projection), thus it removes
the node from the set of remaining call nodes (line 16).

For example, we consider the procedure discount2 of
Example 13, and the order O = ny < n;. The right segment
of the node n; according to this order is the segment 7;,; =
{p1; P, } as the set of remaining call nodes when we study n;
is {n;}, but if we consider the order O = n; < ny then the
right segment of the node is 1, = {p,} as the set of remain-
ing call nodes is {n,ns}.

Theorem 3. Given a reflexive and transitive relation R, if there
exists an order O such that the function check_R-ECF_ordered
outlined in Fig. 3 returns R-ECF for all the procedures f of a
R-monotone program Pr, then Pris R-ECF.

Example 14. Consider the procedure discount2 of Example
13, if we take O as ny < m; we have that the only right
segment of ns is 72 = {p,}, and the only right segment of
ny is 112 = {p1; po}. Thus, both discount2 and multiply
belong to Right of ny and n; resp. as they R_-move with
their right segments, hence the program is R_-ECF.

This approach is strictly more accurate than Fig. 2. In fact,
if we can verify a program using Fig. 2, then we can verify it
using Fig. 3 choosing any order for solving the call nodes.

A possibility for checking if a program is R-ECF is to try
all orderings and find if one of them is able to verify the pro-
gram. In practice, trying all possible call node orders, given
that there are procedures that have over 10 call nodes, may
be too expensive due to the number of required SMT
queries. Our implementation follows a predetermined call
node ordering: going linearly from latest (in program-order)
call nodes to earlier call nodes, as it is a good fit for well-
written contracts that make sure to place call nodes after all
updates to the global state were performed. For these con-
tracts, this approach would lead to faster proofs of R-ECF.

Finally, let us mention that we can apply the notion of
callback invariants introduced by [1] to improve the accuracy
of the three algorithms outlined in this section. As a

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on May 18,2023 at 13:50:30 UTC from IEEE Xplore. Restrictions apply.



ALBERT ET AL.: RELAXED EFFECTIVE CALLBACK FREEDOM: A PARAMETRIC CORRECTNESS CONDITION FOR SEQUENTIAL MODULES

standard invariant, a callback invariant of a call node cis a
property that holds whenever we reach the call node but, in
addition, it must also hold after executing any possible
sequence of callbacks. Thus, we can exploit the information
given by callback invariants to improve the precision of the
commutation and projection checks of our algorithms (e.g.,
if I = z > 0 is a callback invariant of the call node ¢, then it
is enough to consider the states that satisfy I to check if a
procedure R-right-moves with the suffix of ¢).

4 PROPERTY-GUIDED VERIFICATION USING
R-ECF

We introduce in this section an important application of
R-ECF for proving invariant properties that ensure safety in
the presence of for callbacks. The problem is challenging as
it is not enough to verify that the properties are preserved
by callback-free executions, but we need to consider all pos-
sible sequences of callbacks as they can generate unex-
pected behaviors.

Example 15. Let us consider the (simplified) attacked DAO,
that is like the program in Fig. 2 without including the
require instructions of the procedures deposit and
withdraw (line 7 and 13 resp.). The use of callbacks intro-
duces unexpected behaviors that are actually malicious
as they do not preserve the solvency property established
in Section 1.1 that ensures that the program always has
enough balance to give back to its clients the shares that
they have in their accounts:

I(o) = olbalance > Z shares]

The property I is preserved by the procedures deposit
and withdraw, so it is preserved by any execution of the
program that does not contain callbacks. However, there
are executions with callbacks that do not preserve the
property. For example, the execution in which we invoke
withdraw from the initial state o = {balance = 20, shares =
[10,10]} and then callback to withdraw again leads to the
final state oy = {balance = 0, shares = [0,10]}, and (o)
does not hold.

Before introducing our approach, we define the notions
of program invariant and callback-free program invariant to
distinguish the properties that are preserved by any execu-
tion and by any callback-free execution, respectively.

Definition 12 (Program invariant). Given a program Pr and
a property on states I, the property I is a program invariant of
Pr if for any execution of the program o — t — o, the states o
and oy satisfy I(o) = I(o1).

Definition 13 (Callback-free program invariant). Given a
program Pr and a property on states I, the property I is a call-
back-free program invariant of Pr if for any callback-free execu-
tion of the program o —t — o1, the states o and o, satisfy
I(0) = I(01).

It is clear that any program invariant is a callback-free
program invariant, but the reverse does not hold. For
instance, the property I(o)= o[balance > )" shares] is a
callback-free invariant of the attacked DAO, but it is not a
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program invariant. However, if a program is ECF, then any
execution of the program is final-state equivalent to a call-
back-free execution. Thus, properties preserved by callback-
free executions are also preserved by executions with
callbacks.

Lemma 3. Given a program Pr and a property on states I, if Pr
is ECF and I is a callback-free program invariant of Pr, then I
is a program invariant of Pr.

We generalize this result for R-ECF in the next theorem
that constitutes the main result of this section. R-ECF is a
weaker property than ECF, hence we need to define the
requirements that a relation has to fulfill to be suitable to
verify a property 1.

Theorem 4. Given a property on states I and a preorder relation
on states R such that for all states o and o', we have (0 Jp
o' N1(o")) = I(0). Then, for any program Pr, if I is a call-
back-free program invariant of the program and Pr is R-ECF,
I is a program invariant of Pr.

It is not necessary to add the R-monotonicity require-
ment in this theorem as the result is based on the general
definition of R-ECF (Definition 6) that does not require the
R-motononicity of the program. In case a program is R-ECF
wrt. a non-monotone relation, the result in Theorem 4 holds
although our algorithms are not able to verify that the pro-
gram is R-ECF.

4.1 Guiding the Choice of Relations From Invariants
We introduce now results that enable the automatic synthe-
sis of relations that satisfy the requirements introduced in
Theorem 4 with respect to a given property on states.

The first result shows that we can generate appropriate
relations satisfying the requirements for any property that
can be expressed via an inequality.

Proposition 1. If I is a property that can be expressed using an
inequality olexpr] > 0 then the relation o Jpo’ = olexpr] >
o'[expr] is a preorder and satisfies: (0 Jpo’ A I(0')) = I(o).

The following proposition handles the case of properties
that can be expressed as the conjunction of other properties,
and proposes a candidate relation for satisfying the
requirements.

Proposition 2. If I is a property such that I = I} A ... A I, with
Ry, ..., R, being preorder relations such that o g, o’ A I;(0") =
I;(0) then the relation c Jgo’ =0 dp, 6’ A...ANodp, 0’ isa
preorder and satisfies: (o0 Jpo’ A I(0")) = I(o).

Finally, the proposition below proves that given any
property I, we can always consider the relation 0 Jpo’ =
(I(o") = I(0)) as it verifies the requirements introduced in
Theorem 4.

Proposition 3. Given a property on states I, the relation c Jpo’ =
(I(0') = I(0)) is a preorder and satisfies: (c ro’ N I(0”)) =
I(o).

Intuitively, given a program Pr and property I, Pr is not
always R-monotone with respect to the relations that we
can define using the previous propositions, even when I is
a program invariant of Pr. In fact, it may be R-monotone for
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some of the relations but not for others, as the following
example shows.

Example 16 (Non-monotone relations). We consider the
following program Pr and the property I = (x > 10) that
is a callback-free program invariant of Pr, and study the
R-monotonicity of the program with respect to different
relations that we can generate using the results of this
section:

83 contract not_monotone({

84 int x;

85 function £ () { 91 function g () {
86 x = 5; 92 if(x == 5)
87 call(); 93 x = 0;

88 if(x >= 0) 94 }

89 x = 10; 95 }

1)  We consider the relation odg o' = ofz] > o'[z].
This relation is a preorder, but Pr is not R;-mono-
tone as the procedure g is not R;-monotone.

2)  We consider the relation 0 Jp, o’ = (I(¢0') = I(0)).
In this case, the procedures f and g are R;-mono-
tone, but the suffix of the procedure f is not, thus
Pris not Ry-monotone.

3) We consider the relation Rs: 0 dg, 0’ & (I(0') =
I(0)) A (o'[x] > 0 = ofx] > 0). Pris Rz-monotone,
e.g., the suffix of the procedure f is R3-monotone
as for any two states oy and oy, such that o9 3, o[,
holds, og[z] > 0 = o¢[z] > 0. Thus, in case oy)[z] >
0 executing the suffix from the states oy and o,
leads to the final states o; and o} resp. that satisfy
oi[z] > 10 and o}[z] > 10, so oy Jg, 0} holds. In
case opylz] < 0, the suffix does not modify the
state (0} = o), hence o1 Jp, o} trivially holds.

The overall approach thus works by first using one of the
algorithms outlined in Section 3 to verify that a program Pr
is R-ECF, and then using the relation R to prove that the
property I is a program invariant of Pr. For the above exam-
ple, the first algorithm is enough to verify that the program
Pris R3-ECF, as the procedure f contains a single call node
and both f and g R3-right-move with its suffix. Finally, [ is a
callback-free program invariant of Pr, R3 is a preorder rela-
tion, and they satisfy that (¢ Jg, 0’ A I(0”)) = I(0). Thus, I
is a program invariant of Pr.

Example 17. This example shows how we can apply our
approach to verify that the property obalance >
> shares] is a program invariant of the code in Fig. 2,
(this property was not preserved by the vulnerable code
and cannot be proven by [1]). We consider the program
Pr, the relation R introduced in Example 2, and the prop-
erty on states I(0) = ofbalance > ) shares]. For any two
states 0,0/, if 0dgro’ and I(o’) are satisfied, then
olbalance — Y shares] > o'[balance — Y, shares] > 0.
Thus, I (o) is satisfied. The program Pris R-ECF and I is a
callback-free program invariant of Pr, hence I is a pro-
gram invariant of Pr.

Finally, note that the relation o Jpo’ = (I(¢’) = I(0)) is
the weakest relation that satisfies (0 Jgo’ A I(¢)) = I(0),
but sometimes it is not adequate for verifying an invariant
I. In fact, in Example 16, the program Pr is only monotone
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wrt. R3, that is a relation stronger than R, but weaker than
R, (and Pr is not monotone wrt. any of these relations).

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented a generic framework for decompiling
EVM bytecode [29] to an intermediate representation,
enabling the implementation of static analyses as well as
generating and discharging verification conditions using
SMT solvers, such as Z3 [10] and CVC4 [3]. Since the EVM
bytecode does not contain a notion of procedures or func-
tions, and the Solidity compiler generates generic ‘dispatch’
code to jump to the appropriate function code, we split out
the function implementations from the large EVM bytecode.
Furthermore, users can write relations for checking R-ECF.
The language for specifying the relations uses comparison
operators to express equalities and inequalities between
arithmetic expressions (=, <,>, <, >). In order to build or
combine these expressions, the language accepts basic arith-
metic and boolean operators (A, V, =, +, *, ...). The relations
may refer to primitive member fields in contracts. In addi-
tion, the user can add conjuncts to the relation for express-
ing equality over all keys of a Solidity [11] mapping.*

Motivated by the real smart contracts analyzed, we
picked a benchmark consisting of the top 150 most used
smart contracts in the Ethereum blockchain. The contracts
were found using BigQuery® that allows making SQL-like
queries on the blockchain contracts of Ethereum and it is
updated on real-time. The query was made on 2019-12-31
and asked for the address and bytecode of the 150 contracts
that had had more transactions up-to that date.

To scale the experiment, we started by checking the
equality relation = as our choice of R. This choice relieved
us of checking monotonicity since the equality relation over
all states is monotone for all programs. Additionally, if we
manage to prove R-ECF for the equality relation, it means
any invariant can be checked on the callback free traces. For
the examples that could not be proven R-ECF with the
equality relation because it is too strict, we wrote the desired
invariants and their suitable relations, and re-ran the algo-
rithm on the customized settings.

The actual algorithm implemented is based on Fig. 3, but
with a predetermined call node ordering: going linearly
from latest (in program-order) call nodes to earlier call
nodes. The considerations for choosing this particular
approach are:

e The ordered approach is strictly more precise than
the minimal segments approach, thanks to join
operations.

e Nevertheless, trying all possible call node orders,
given that some functions may have over 10 call
nodes, may be impractical due to the number of
required SMT queries.

e The later-to-early call node order is a good fit for
well-written contracts that make sure to place call
nodes after all updates to the global state were

4. We expressed summations over mappings by instrumenting the
code to track the total sum of elements using ghost variables.

5. https:/ /cloud.google.com/blog/products/data-analytics/
ethereum-bigquery-public-dataset-smart-contract-analytics
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TABLE 1
Summarized ECF Results. ‘CN’ Stands for ‘Call Node’, and ‘f’ for
‘Function’
#fs % all % fs Avg. T
fs w. CN (sec.)
ECF Verified (>0 CNs) 242 8.9 62.7 30
ECF Violated 133 49 34.5 132
Timeout 11 0.4 2.8 1240
Analysis of violations (# fs)
Confirmed violations 18
No source code 18
FPs due to call node choice* 56
FPs due to the implementation 30
Failed to verify as ECF 11

performed. For these contracts, the approach would
lead to faster proofs of R-ECF.

We have run all of our benchmarks on an Amazon AWS
cbn.2xlarge machine. The SMT solver used is Z3, with a
timeout of 60 seconds per query. To each call node we set a
timeout of 5 minutes for analyzing it, requiring all needed
SMT queries to run within the time span.

Choice of call nodes

Call nodes are detected in a conservative manner—any
instance of a call instruction, except for STATICCALL, is con-
sidered a call node. The STATICCALL instruction is not consid-
ered a call node because it enforces the VM to avoid any writes
to the global state in all calls until the STATICCALL returns,
and therefore trivially projects. Our method assumes a
completely open environment, in which only the contract
checked is fixed and known. Another call node optimization
can be done on contracts that invoke library contracts, that are
guaranteed not to trigger a callback. In such cases, it is possible
to ignore these call nodes, leading to a greater number of veri-
fied contracts (those marked * in Table 1).

Delegate calls

Two special instructions in the EVM bytecode are
DELEGATECALL and CALLCODE. These instructions
allow executing an external code, that is not necessarily
known at compile-time, and execute it in the context of the
caller’s state. We are treating these instructions as regular
call nodes in order to prove R-ECF, but importantly it
should be established that the state accessed by the the
callee is separate from the caller’s for soundness.

5.1 Experiments in a Realistic Setting

To validate the usefulness of our approach in a realistic set-
ting, we conducted two experiments. First, we picked as a
benchmark set the most used and invoked smart contracts,
taking the top-150 contracts based on volume of usage, as of
December 31st, 2019.° Second, we took a case-study of a

6. up to Ethereum blockchain block number 9193265 until 2019-12-
31 23:59:45 UTC

2269

callback related bug, and proved the bug patch as R-ECF.
The case-study presents a contract which was drained $7
million recently by attackers, using malicious callbacks
behavior [16]. We show a non-trivial fix that renders an
important invariant correct even in the presence of call-
backs, while still allowing meaningful behaviors with call-
backs that cannot be otherwise implemented. The proof of
the invariant implies that such thefts cannot occur in the
corrected code.

Top used contracts benchmark

Out of the top-150 contracts benchmark, a total of 132 con-
tracts were successfully decompiled, but 38 of them do not
contain call nodes and were therefore excluded. Since the
ECF property that we check is based on the results for all
functions, we give in Table 1 the summarized results for all
functions extracted out of all contracts. As mentioned ear-
lier, for this experiment we used = as our preorder.

Out of the total 2733 functions extracted, 386 contained
call nodes, and thus are candidates to ECF verification. Out
of these 386 functions, 242 are verified to be ECF (62.7%),
133 are reported as violating ECF (34.5%), and 11 time out
(2.8%) before a definite answer is returned.

Manual assesment of the violations

We manually analyzed 115 of the violations (18 did not have
source code). 18 functions are confirmed to be true viola-
tions—not only do these contracts violate ECF, the non-ECF
behavior is buggy according to natural invariants of the con-
tracts”. The majority of the violations (56) are due to the
over-conservative choice of call nodes. After a careful
inspection, we believe those call nodes can be omitted,
because they are calling into contracts that cannot generate
callbacks. As our analysis considers just the contract
inspected for ECF, it cannot infer properties of the callees.
We therefore conclude that by extending the analysis tool to
allow the user fine-grained control over the choice of call
nodes, the precision of the analysis increases significantly.
30 of the violations are a result of overapproximations in the
tool, mainly due to the intricacies of analyzing low-level
EVM such as pointer arithmetic based on hashing and com-
piler-generated copy loops. The remaining 11 violations are
true false-positives for ECF, since we found that the func-
tions in fact do satisfy the original ECF property, but it can-
not be proven using the ordered approach—namely, it is
possible to construct an equivalent execution using a differ-
ent function from the one being checked.

The contracts exhibiting these violations were selected for
testing the usability of the parametric R-ECF approach, by us
analyzing the contracts and writing invariants and preorders
for use in R-ECF. Therefore, we focused on these 11 contracts
to show the benefits of our property-guided approach. We
manually analyzed the contracts and identified properties that
describe the integrity of the system. In most cases, the proper-
ties are similar to the one we used for our running example:
I(0) = o[balance >} shares]. Many of these contracts func-
tion as “banks”, thus it is fundamental to ensure that they

7. We have contacted the code owners but did not get a response
from them.
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TABLE 2
Results of Applying R-ECF to Prove Properties That Describe
the Integrity of Contracts That are not ECF. We Denote by R, the
Relation I(s3) = I(s1), by R, the Relation Ry A Authority(s;),
and by R; the Relation 0Of fers Represents the Same Multiset

ID Invariant R Result
Oe6 _supply + currentAirdropAmount Ry Verified
— airdropBSupply = X _balances
86f _supply = 3, balances|x] R, Verified
89d _supply = 3, _balances|x] Ry Verified
359 totalSupply = X balances|x] R, Verified
doa E0S.supply = 2 balances|x]A R; Non-exp.
Vp.dailyTotals[p] = 3, userBuys|p|[x]
2a0 balance > 3, tokens|0][x] R; Not mon.
14f N/A R3 Non-exp.
397 N/A R3; Non-exp.
426 totalSupply = 2 balances|x] R, Verified
dlc jackpotSize + lockedInBets < balance R; Notmon.
dlc jackpotSize + lockedInBets < balance R; Notmon.

always have enough balance to give back to their clients. From
those invariants, we derived relations that satisfy Theorem 4,
following the method used in Section 4.1. We then applied our
tool for checking R-ECF against this benchmark.

Table 2 presents the results of the evaluation. Five contracts
out of 11 were proven R-ECF with respect to the chosen rela-
tion, meaning that it suffices to prove the invariants on call-
back free executions of the contracts. Three contracts could not
be proven because our language for expressing relations is not
rich enough: In two of them, we need to express an equality
between multisets defined by the collection of values in a
Solidity mapping, which is beyond the reach of our expression
language at the time of writing. For the third we have an
invariant that connects the sum of balances in the contract to a
supply variable in another contract. One contract could not be
proven R-ECF because monotonicity of the relation could not
be proven. For two other contracts the relations that we wrote
are not monotonic.

All in all, we argue that our approach provides a new
look into the callback problem that will be key to prove call-
back safety of contracts. As witnessed in our experiments,
failing to prove the desired invariants and/or the monoto-
nicity of the relation allows the user to understand the
potential effect of the callbacks on the program state and
integrate her feedback into the verification process.

Threats to validity

The main threat to validity in our experiments is that in some
cases we had to instrument the code. Specifically, we intro-
duced ghost variables to track properties involving the
(unbounded) sum of elements in a data structure. In addition,
the intended behavior of the contract, as captured by the veri-
fied invariant, was prescribed by us. It is possible that the
authors of the contracts had other properties in mind. In gen-
eral, even if the invariants were given by the programmers,
there is the inherent gap between the intended behavior and
its formalization by an invariant. (However, this is always the
case when user-specification is needed.) Also, while we rigor-
ously inspected our implementation, we did not verify it
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9¢ contract Origin{
97 uint totalCoins;
98 uint ousdSupply;

99 mapping (address => uint) credits;

100 uint sumCredits;

101 uint creditsPerToken;

102 // uint outstanding;

103

104 function mint (

105 address to,

106 uint amount) private {

107 //amount min (amount, outstanding)

108 //outstanding —= amount;

109 uint creditAmount = amountx
creditsPerToken;

110 credits[to] += creditAmount;

111 sumCredits += creditAmount;

112 ousdSupply += amount;

113 }

114

115 function rebase () public {
116 // requi out standinc

117 // out ding = 0;

118 if (totalCoins > ousdSupply) {

119 ousdSupply = totalCoins;

120 creditsPerToken = sumCredits/ousdSupply
7

121 require (creditsPerToken > 0);

122 }

123 }

124

125 function depositMultiple (

126 address|[] assets,

127 uint[] amounts) public {

128 require (assets.length == amounts.length)
7

129 uint total = 0;

130 for (uint j = 0; j < assets.length; j++)
{

131 total += amounts[]j];

132 }

133 rebase () ;

134 for (uint i = 0; 1 < assets.length; i++)
{

135 totalCoins += amounts[i];

136 // outstanding += amounts[i];

137 assets[i].transferFrom/(

138 msg.sender, this, amounts[i]);

139 }

140 mint (msg.sender, total);

141}

Fig. 5. A simplified version of the Origin code. The invariant maintained is
totalCoins > ousdSupply. The private modifier ensures that mint can
only be called by functions within the contract, and thus in particular, can-
not be called as a callback. The totalCoins can be changed by func-
tions not presented in this simplified version.

formally. Thus, it might contain latent bugs. However, our
technique produces verification conditions which amount to
claims about the commutativity of code blocks with respect to
a given order relation, and these claims may be verified by an
external tool. Finally, our approach is sound, but not com-
plete, i.e., our tool may report the existence of a possible bug,
where in fact no such bug exists.

5.2 CASE STuDY: R-ECF FOR NON TRIVIAL
SOLVENCY

We present a case study based on the Origin code that was
hacked for $7 million [16] in order to demonstrate how our
approach and tool can be used to produce safe code without
hamstringing callbacks. In Fig. 5 we show a snippet of the
contract, with the lines used to fix it marked as comments. It
implements a ‘rebasing’ stablecoin called OUSD. The con-
tract is designed so that a single OUSD token is always
worth $1, thus its value is stable. This value is backed by
users’ deposit of other stablecoin assets, which also have
unit worth of $1. In code omitted from here, those assets are
invested, gaining interest, and can be later rebased to
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distribute the revenues among all token holders. To main-
tain the ownership of the token, the contract tracks units of
credits, and uses a ratio denoted as creditsPerToken to convert
credit amounts to token amounts and vice versa:
totalCoins holds the total amount of token that the contract
has (including revenues from interest). ousdSupply tracks
how many of the tokens were distributed to the depositors.
The rebase operation distributes the new wealth to all depos-
itors by decreasing the credits per token ratio to increase the
worth of credits, and updates the new supply of OUSD.

The hack on the contract involved calling an external con-
tract that unexpectedly triggers a callback. In depositMultiple
the depositer provides an array of stablecoin identifiers, and
amounts (in $) to be deposited out of each stablecoin. The
code first sums over the stablecoins how much money enters
the contract. Then, it rebases any unaccounted revenues from
previous transactions. Only then it may transfer the new
assets into the contract by again looping over the assets and
calling their transferFrom method. Afterwards, it can mint
new OUSD based on the previously computed amount sum.
The attack exploited the fact that between the rebase and mint
operations there could be funds stored in the contract that are
not owned by any user—especially after the first iteration of
the loop, in which a positive amount of tokens was transferred
to the contract and totalCoins was updated to reflect the new
balance. Thus, if another rebase occurs between the transfer-
ring of funds via transferFrom and the mint, the contract
would be fooled to think that the deposited money was
gained by interest, and decrease the credits per token ratio.
After the callback returns, the contract would mint the
attacker’s deposit according to the new ratio. However, any
previous amount the attacker had would be worth more due
to the new credits per token ratio. As a result, ousdSupply
would be bigger than totalCoins and the contract would not
be able to pay back all the depositors if everybody were to
withdraw.

The core issue here is that transferred funds are
accounted twice: both in a premature rebase (where they
are mistaken for interest gains) and in minting (where they
are generated and allocated to the account who deposited
them). The suggested fix to the code fixes the double
accounting of deposited amounts by keeping track of the
outstanding supply not assigned to any particular user.
Tracking the outstanding supply makes sure that the invari-
ant that the total number of stablecoins deposited is greater
or equal to the supply of OUSD, holds using our R-ECF
framework. However, the fix does not render this contract
ECF. This is because the final credits per token ratio can be
different depending on the sequence of callbacks invoked.
Specifically, any attempt to attack the contract would end
up with the attacker losing money.

Our tool is able to ensure the safety of the fixed program by
proving that all executions preserve the desired invariant
(totalCoins > ousdSupply), while previous approaches based
on ECF fail.

5.3 COMPARISON TO OTHER TOOLS

We compared our implementation to other existing tools
whose premise is to handle ‘reentrancy bugs’: Securify2 [25]
and Slither [12]. Notably the properties checked by these
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tools are more restrictive than ECF: Securify and Slither
check that there are no global state updates following a call
instruction. When we ran our case study (as well as our
lock-based example of Fig. 2, Securify and Slither both failed
to show that it is actually safe (Securify times out after hours
of running on the Amazon machine). In addition,
neither Securify nor Slither were able to prove the correctness
of the lock-based example of Fig. 2.

We compared Securify and Slither against our tool on a
compatible subset of 110 contracts from the benchmark. We
could not compare all contracts from the benchmark
because the other tools accept Solidity source code and
sometimes even specific Solidity versions, rather than EVM
bytecode. Because of that we could only compare Securify to
10 contracts, and the results were aligned with ours in nine
contracts. Securify crashed on the last contract.

For Slither, there were 15 examples where the results did
not agree. In two of them Slither reported a bug, but our tool
was able to prove the contracts correct. In the other
two Slither missed real bugs, and our tool detected them. In
the remaining 11, our tool detected false bugs while Slither
proved them correct. These bugs were caused by our con-
servative choice of call nodes and overapproximations in
the static analysis.

There are strong connections between our work and the
ECF framework [1]: We both establish the correctness of a pro-
gram by considering only callback-free executions. However,
despite the similarity in names, there is a profound difference
between the two frameworks. ECF allows establishing a
generic correctness condition that ensures that callbacks do
not introduce new behaviors, which, in our experience,
amounts in most cases to verify that certain “callback
protection” mechanisms are utilized correctly. Indeed, when
looking at the benchmarks used to verify ECF we see that in
most cases the contracts were correct due to the introduction
of locks and command reorderings which push calls to other
contracts to the end of the method. These procedures account
for most contracts in the wild, where programmers do not
wish to burden themselves with reasoning about complicated
behaviors and tricky invariants. In contrast, the R-ECF frame-
work proves a custom program-specific property, and as such,
we intend it to be used by developers of systems in which
unique behaviors of callbacks are allowed, and the correctness
of the program lies in preserving a particular relation between
executions with callbacks and callback-free ones. It stands to
reason, that the number of the latter kind of programs is a
mere fraction of the former. Thus, it is no surprise that we
found a very small number of non-ECF examples. It is encour-
aging, however, that in most of these cases R-ECF is applicable
in practice. Indeed, we were able to prove that five of the 11
functions that we were not able to verify as ECF are correct
with respect to R-ECF and a suitable ordering relation,
improving by 2% the number of verified functions with
respect to ECF.

6 CONCLUSIONS AND RELATED WORK

Since the advent of smart contracts, reentrancy problems
were identified as a dangerous source of correctness
bugs [2], [17]. Our work contributes to the line of research
started by Grossman et al. [15], who introduced ECF as a
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means to ensure that contracts are immune to reentrancy
attacks and to enable modular reasoning. However, the
analysis of [15] is dynamic, hence it cannot be used to verify
ECF safety for all executions. In this article, we have pro-
posed a static R-ECF analysis that, as already discussed in
detail along the article, enables more relaxed modularity
relations and relies on them to prove contract invariants. In
the rest of this section, we review other closely related work.

Focusing on the domain of smart contracts, Want ef al. [28]
presents a tool for static verification, called VERISOL, that
allows inferring invariant properties preserved by all proce-
dures of the contract. However, the analysis does not consider
reentrant calls, thus executions with callbacks may not pre-
serve these properties (according to our terminology, the
inferred properties are callback-free program invariants, but
they may not be program invariants). We believe that our
approaches are complementary as once an invariant property
is inferred by VERISOL, we can apply R-ECF to ensure that
the property is also preserved by executions with callbacks.
Cecchetti et al. [7] presents a different approach to verifying
invariant properties in the presence of callbacks based on
information flow control. This approach considers that a con-
tract is reentrancy-secure if allowing reentrancy does not
change which properties are invariants, i.e., if all callback-free
program invariants of the contract are program invariants.

Mavridou et al. [18] presents a framework, called FSolidM,
that prevents reentrancy using a built-in locking mechanism.
In contrast, we present a technique for verifying the absence of
reentrancy bugs that allows the benign use of callbacks.
Schneidewind et al. [21] and Grishchenko et al. [14] introduce
an over-approximation of the single-reentrancy property
which, intuitively, states that a contract is single-entrant if it
cannot perform any more calls once it has been reentered. This
restriction, however does not mean that callbacks may not
have dangerous behaviors which cannot be reproduced by
callback-free executions. Tsankov et al. [25] reports on a
parametric static verification tool which can detect whether a
contract violates a given security property encoded as a bad
pattern in the contract’s data-flow graph. To detect reentrancy
bugs, they use a pattern which forbids writes after calls. Thus,
their restrictions are more severe than the ones imposed by
R-ECF. Similar patterns are used by [12], [24].

A key benefit of our semantic equivalence based
approach, when compared to pattern-based techniques, is
that it enables to modularly check properties of contracts,
that is one of the challenges of smart contracts verification
as Sergey et al. [22] note when discussing the similarity of
smart contracts to concurrent objects.

A deductive methodology for verifying module (object)
invariants is presented in [19]. The main idea is to associate
every module with a boolean ghost field valid which indi-
cates whether the module satisfies the module invariant or
not. Procedures which assume the module invariant as a
precondition require the user to prove that its valid field is
true when they are invoked. Procedures which mutate the
module’s state set the valid field to false before any muta-
tion and set it back to true after the invariant is reestab-
lished. As a result, it is not possible to prove the module is
correct if it is used in the context of a program that invokes
a procedure of the module as a callback while the module’s
state is being updated. We, on the other hand, do not
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assume that the user respects the module’s specification
and establish properties that hold in arbitrary executions,
and, in particular, allow for state-mutating callbacks.

As reentrant calls behave in the same way as thread
interleavings (i.e., they might change the global state
when they interrupt), we also need to compare our work
to verification of concurrent programs. The closest work
to the ECF analysis is the atomicity analysis of Flanagan
and Qadeer [13] and Wang et al. [27]. These analyses try
to prove that all executions of the program are equivalent
to one in which those code blocks execute without inter-
ruption by other threads. Same as Albert et al. [1], equiva-
lence in this framework is checked by means of final-state
equivalence. It will be interesting to study whether such
atomicity analyses can be relaxed to use weaker equiva-
lence relations as we have proposed in this article. Also,
[13], [27] do not allow bidirectional movements that could
lead to further accuracy. Another related work is Sousa
and Dillig [23]: Def. 6 is similar to the cartesian Hoare triple
of [23] used for verifying k-safety properties. The similar-
ity is that both definitions rely on a generic relation R
applied on two fragments of code to prove the equiva-
lence of executions. The main difference as regards the
problem definition is that we apply R-ECF on a single
program with reentrant calls from an initial state, while
[23] applies the cartesian Hoare triples over different pro-
grams possibly starting from different initial states. The
constructive analysis in [23] is fundamentally different
from ours, as it relies on a series of logic rules defined at
the level of simple instructions, and it does not include
our powerful commutation and projection operators
defined over segments of code. We believe that our opera-
tors could strengthen their k-safety analysis and it is plan
of our future research to investigate it.
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