Abalone

Detailed Design

Abstract

This document presents the detailed design of the Abalone application, as well as the interfaces exposed by the application.

Part 1: Explains the overall structure of the program.

Part 2: Details of the major classes and interfaces. Where relevant, the algorithms used are also described.

Part 3: Describes the bootstrapping mechanism of the application.

Part 4: Gives an account of the tests performed and the results of these tests.

PART 1

Program Structure and Data Flow:

The program is comprised of the following main modules:

[image: image1.png]

1. The main class is the game's manager, which controls both players and alternately prompts them to move.

2. The 2 players can be TD players (computer ruled) or Gui players (Human ruled), in any combination. Shown above is one of each.

3. A game composed of 2 TD Players will be computed with no GUI presentation, and ruled exclusively by the game manager. A game with at least one Human player will include a GUI, where the TD Player's move will be shown once done, and turns will alternate as usual.

4. The TD player moves according to a game strategy it develops while playing. This improves from game to game (see bootstrapping).

5. The game Manager has all the control in the game. All the other classes are limited on purpose, to their specific functionality, and have limited, if any, knowledge of other elements in the game. This way the game has high flexibility in expending itself with minimal changes to the other classes in the game.

Game Modes:

An encapsulating main class allows various modes of play:

· Bootstrapping: when running the application for the first time, the program first runs a training session which develops a good player. To run this mode type the command: java -cp Abalone.jar gui.Main init. This may take a while, roughly 5-6 hours.

· Human to human: exposes GUI and allows two human players to play. To run this mode, type the command: java -cp Abalone.jar gui.Main myname hisname.

· Computer to human: exposes GUI and conducts matches between our TD-player and a Gui player. To run this mode, type the command: java -cp Abalone.jar gui.Main myname. “myname” may not be 'init'.

PART 2:

This section details the program's main modules, including a description and a full interface of the classes involved.

Game Manager

This class manages games of any two players, human or computer.

The game manager alternately passes the turn between the players, and delegates their moves to the board. It may refresh the GUI view for the Player, and arrange whole games for computer controlled players.

It notifies the players that the turn has changed, and has a current player updated at all times. This is referenced by the GUI board later for presentation, and allows a human player to know when her turn is ready.

Game Manager Interface

/**

 * C'tor for the game-manager

 *

 * @param type1 - the type of the first player. HUMAN or COMPUTER

 * @param type2 - the type of the second player. HUMAN or COMPUTER

 * @param name1 - the name of the first player

 * @param name2 - the name of the second player

 * @param props - if any of the players is a COMPUTER, the properties

 *

file for the TD function should not be null

 * @param board - the board for the game

 *

 * @throws Exception - if there was a problem with the prop file

 */

public GameManager(int type1, int type2, String name1, String name2,

File props, IBoard board) throws Exception {

/**

 * Play a game

 *

 * @param player1 - first player

 * @param player2 - second player

 */

public void play(IPlayer player1, IPlayer player2)

/**

 * Register a listener on changes to this class

 *

 * @param listener - a ChangeListener

 */

public void addChangeListener(ChangeListener listener)

/**

 * Unregister a listener

 *

 * @param listener - a ChangeListener

 */

public void removeChangeListener(ChangeListener listener)

/**

 * Check if it's the player's turn (called by the player)

 *

 * @param player - the player making the inquiry

 * @return true if it's the player's turn

 */

public boolean isMyTurn(IPlayer player)

/**

 * Delegates the action to the board, and passes the turn to the

 * other player (called by the player)

 *

 * @param move - the move to perform

 */

public void makeMove (IMove move)

Board:

The board is a data container, much like the players, but has the ability to analyze several things, including the moves available for a given player. It holds 2 board arrays, enabling for a quick “undo” of a move before it is committed and the turn is passed. The board does not intervene in a game, and has no knowledge of the player's or game manager. All the games are made with a single board instance, but it is not a singleton, to enable move simulation using a different instance.

Board interface:

/**

 * lists all possible moves on the board (for later use).

 * @param player

 * @return a list of all the moves available to said player.

 */

public LinkedList<IMove> getmoves(IPlayer player);

/**

 * @return the game board (one of the two board arrays)

 */

public int[] getGameboard();

/**

 * sets the game board (one of the two board arrays)

 * @param gamboard

 */

public void setGameboard(int[] gameboard);

/**

 * places value in the requested square.

 * @param position

 * @param value

 */

public void setboardsquare(int position, int value);

/**

 * @param position

 * @return the value in the requested square.

 */

public int getboardsquare(int position) ;

/**

 * prints the board into the console

 */

public void printBoard() ;

/**

 * verifies if the given location is in the legitimate board

 * squares, or off them.

 * @param location

 * @return true if the location is on the board,

 * and false otherwise

 */

public boolean isin(int location);

/**

 * Preforms Undo on the board, by swapping the values

 * in the arrays (the start array, always a step behind

 * the game board.

 */

public void undoboard();

/**

 * submits the move on the board as done, does not allow Undo.

 */

public void submitboard();

/**

 * if a move was executed on the board, returns true.

 * @return true if a move was made on the board (pre-

 * submission), false otherwise

 */

public boolean wasmoved();

/**

 * sets a board to a starting position. can be one of the

 * two board arrays used in this class.

 * @param board

 */

public void setboard(int[] board);

/**

 * Allows to reset the game boards.

 */

public void setboards();

/**

 * @return a string representation of the board.

 */

public String saveBoard();

/**

 * loads the string representation of a board onto this board.

 * @param setting

 */

public void loadBoard(String setting);

/**

 * makes a move onto the board,

 * by getting the details from a player's move.

 * @param direction

 * @param currentplayer

 * @return the move we made.

 */

public IMove makeMove (int direction, IPlayer currentplayer);

/**

 * makes a move onto the board.

 * @param move

 * @return the move we made

 */

public IMove makeMove (IMove move);

/**

 * @param side

 * @return the player correspoding to the side

 * (true for light, false for dark)

 */

public IPlayer getPlayer(boolean side);

/**

 * resets both playing boards to starting position.

 */

public void resetBoard();

Move:

The move is a class defining a move for a player on a board. It contains tokens (represented as their location on the board) for both the player's tokens and her opponent's tokens she may push. The move also declares if a token may be pushed off the board, and in which direction it will be moving. Much like the Board class, it's only a container with basic self-analyzing skill, including the ability to determine if its own structure and direction are legal.

Move Interface:

/**

 * Determine if this move, containing 3 marbles, is legitimate.

 * @param token1

 * @param token2

 * @param token3

 * @param board

 * @param direction

 * @return true if the move given in legal, false otherwise.

 */

public boolean islegal3move(int token1, int token2, int token3, IBoard board,int direction);

/**

 * Determine if this move, containing 2 marbles, is legitimate.

 * @param token1

 * @param token2

 * @param board

 * @param direction

 * @return true if the move given in legal, false otherwise.

 */

public boolean islegal2move(int token1, int token2, IBoard board, int direction);

/**

 * Determine if this move, containing 1 marble, is legitimate.

 * @param token1

 * @param board

 * @param direction

 * @return true if the move given in legal, false otherwise.

 */

public boolean islegal1move(int token, IBoard board, int direction);

/**

 * Verifies the current move, of any size, is legitimate.

 * @param board

 * @param direction

 * @return true if this move (whole class) is currently legal.

 * False otherwise.

 */

public boolean islegalmove(IBoard board, int direction);

/**

 * Determines if the 3 marbles given are in a movable

 * formation. return the formation.

 * @param token1

 * @param token2

 * @param token3

 * @return 1 if the formation is a legal horizontal,

 * 2 if it's a legal main diagonal,

 * and 3 if it's a legal secondary diagonal.

 */

public int islegal3formation(int token1, int token2, int token3);

/**

 * Determines of the 2 marbles given are in a movable

 * fomration. return the formation.

 * @param token1

 * @param token2

 * @return 1 if the formation is a legal horizontal,

 * 2 if it's a legal main diagonal,

 * and 3 if it's a legal secondary diagonal.

 */

public int islegal2formation(int token1, int token2);

and Various setters and getters for attributes.

Player:

The player class is inherited by two classes: The TDPlayer handles the computer controlled player needs, and the GUIPlayer handles the GUI actions relevant to the player. As a rule, the player class is a container for attributes needed for any player, and has minimal knowledge of other classes. The game manager holds two players, instanced in its constructor. The player contains a move inside, which on call can order the board to make the move.

Player interface:

public static final int OUTCOME_WIN = 1;

public static final int OUTCOME_LOOSE = -1;

public static final int OUTCOME_TIE = 0;

/**

 * Creates a basic player, with only a name.

 * other attributes must be initialized seperately.

 * @param name

 */

public Player (String name);

/**

 * Creates a full player.

 * @param name

 * @param token

 * @param tokencode

 * @param selectedtoken

 * @param tokenselectedcode

 */

public Player (String name, String token, int tokencode, String selectedtoken, int tokenselectedcode);

/**

* handle game -init

*/

public void gameInit();

/**

 * handle game-over

 * @param outcome - win, loose or tie

 */

public void gameOver(int outcome);

various setters and getters for attributes such as token code and name, move, etc.

/**

 * C'tor - init this player and its TD(lambda) function

 * @param name - the name of this player

 * @param props - the properties-file to init the function from

 * @param game - the game manager

 * @param board - the board for the game

 * @throws Exception - if there was a problem with the file

 */

public TDPlayer(String name, File props, GameManager game, IBoard board) throws Exception;

/**

 * @param name - the name of this player

 * @param props - the properties-file to init the function from

 * @param game - the game manager

 * @param board - the board for the game

 * @param token

 * @param tokencode

 * @param selectedtoken

 * @param tokenselectedcode

 * @throws Exception - if there was a problem with the file

 */

public TDPlayer(String name, File props, GameManager game, IBoard board, String token, int tokencode, String selectedtoken, int tokenselectedcode) throws Exception;

/**

 * Explicitly modify the function of this player

 * @param theta - the parameters-vector to set

 */

public void setFuncParameters(double[] theta);

/**

 * Get the parameters-vector of the function

 *

 * @return the parameters-vector of the function

 */

public double[] getFuncParameters();

/**

 * Set the exploration affinity of the player

 *

 * @param exploration - the exploration affinity to set

 */

public void setExploration(double exploration);

and handles for change events, which enables the player to receive communication from the game manager.

/**

 * creates a new gui player, without attributes.

 * Those will be added later.

 * @param game

 * @param name

 */

public GUIPlayer(GameManager game, String name);

/**

 * creates a full GUI player.

 * @param game

 * @param name

 * @param token

 * @param tokencode

 * @param selectedtoken

 * @param tokenselectedcode

 */

public GUIPlayer(GameManager game, String name, String token, int tokencode, String selectedtoken, int tokenselectedcode);

and an action listener for GUI events the human player may generate.

Function:

The class Function handles the approximation function of the optimal policy, and is used by a TDPlayer to choose his moves. The Function class implements the TD(λ) algorithm.

The optimal move a TDPlayer can make in each board configuration is calculated by evaluating each possible move according to the current approximation function.

If an optimal move was chosen, the function updates itself:

[image: image6.jpg]s
s
5

£

2

GUIPlayt
[y,
makesmove ®o°® e
_"’:\ NG, [
refresh view

Board

Where

[image: image2.png]

And

[image: image3.png]

If a random move is chosen, the vector e is reset.

All the relevant parameters ε, α, γ, and λ are kept in a properties file, and can be tuned in order to find an optimal configuration. The class Function is instantiated from this property file.

Function Interface:

public static final String PROP_FILE_NAME = "tdProps.properties";

public static final int NUM_FEATURES = 14;

/**

 * With probability 1-_epsilone choose the best move and update

 * the function's parameters.

 * Else return a random move and replace the traces.

 *

 * @param board - the current board

 * @return - the next move

 */

public IMove getNextMove(IBoard board);

/**

 * Decrease the exploration affinity of the player.

 */

public void decreaseExploration();

/**

 * @param exploration - the exploration affinity to set

 */

public void setExploration(double exploration);

/**

 * Prepare for a new game.

 */

public void gameInit();

/**

 * @return the parameters-vector of the function

 */

public double[] getTheta();

/**

 * @param theta - the parameters-vector to set

 */

public void setTheta(double[] theta);

/**

 * Calculate V(s) according to the current approximation

 * function

 * @param s - the board's state

 * @return V(s)

 */

public double V(State s);

/**

 * Update the parameters of the function according to the

 * temporal difference between the evaluations of V(s) and

* r+V(s').

 * @param prevS - previous state

 * @param v - value of the next state

 * @param reward - immediate reward

 */

public void updateFuncParams(State prevS, double v, int reward);

/**

 * Store the current values of epsilone and theta in the

 * property file.

 * @throws IOException - if there was an IO exception while

 * writing to the file

 */

public void saveFunction() throws IOException;

State:

The application encodes the board's position into a 'State' according to the following features:

[image: image4]
– The Number of stones in the center of the board;

– The Number of stones in the middle of the board;

– The Number of stones in the border of the board;

– The Material Advantage;

– Protection (the number of “flower” formations);

– The Average Distance of the stones to the center of the board;

– The Number of stones threatened;

And the same parameters for the opponent.

The state vector is multiplied by the current theta vector in order to get V(s).

State Interface:

/**

 * creates a theta representation of a board state,

 * by analyzing it statically.

 * @param boardstate

 * @param side

 */

public State(String boardstate, boolean side);

/**

 *

 * @param c

 * @return true if the location given is

 * in the center of the board. false otherwise.

 */

private boolean isCenter(char c);

/**

 *

 * @param c

 * @return true if the location given is

 * in the middle of the board. false otherwise.

 */

private boolean isMiddle(char c);

/**

 *

 * @param c

 * @return true if the location given is

 * in the border of the board. false otherwise.

 */

private boolean isBorder(char c);

/**

 *

 * @param setting

 * @param a

 * @param b

 * @param c

 * @param d

 * @param e

 * @param f

 * @param g

 * @return true if the setting includes all 6 alphanumeric

 * parameters. Assuming the 6 given are a protection flower,

 * this can give you the number of protection per side. False

 * otherwise.

 */

private boolean isSix(String setting, int a, int b, int c, int d, int e, int f, int g);

/**

 * counts the number of protection flowers on the board.

 * @param setting

 * @return the number of protection flowers.

 */

private int countProtection(String setting);

/**

 *

 * @param boardstate

 * @param side

 * @return the number of threated tokens.

 */

private int countThreat(String boardstate, boolean side);

/**

 *

 * @return the array representation of the state.

 */

public double[] toArray();

GUIBoard:

An interface for the board, allowing the human player to control choosing the token and making a move. Has the ability to communicate with the game manager, and the board, but otherwise only deals with graphical representation.

GUIBoard Interface:

/**

* creates a gui interface around the board.

* @param gm

*/

public GuiBoard (GameManager gm);

/**

 *

 * @param name

 * @return the item all wrapped up.

 */

private JMenuItem setupitem (String name);

/**

 * draws the board on screen, given the board class.

 * @param board

 * @return the revised boardlines, with the new labels

 * corresponding to the board given.

 */

public JPanel[] redraw (IBoard board);

/**

 * Adds a gui player as a listener on the

 * directional buttons.

 * @param player

 */

public void listenPlayer(GUIPlayer player);

/**

 * Prints information regarding the player on the

 * information panel in the right side of the GUI.

 *

 */

public void info ();

/**

 * Updates the buttons on the menu, to show available moves.

 *

 */

public void enableMoveButtons();

/**

 *

 * @param path

 * @param description

 * @return an imageicon object instance.

 */

protected static ImageIcon createImageIcon(String path, String description);

/**

 * Executes a move (given partially in selected tokens)

 * with a selected direction.

 * @param direction

 */

public void makemove (int direction);

/**

 * Handles the button panel commands, and the menu commands.

 */

public void actionPerformed(ActionEvent arg0);

PART 3

Bootstrapping:

Based on previous works of various people on Abalone-RL, it appears that the game is not ideal for this method. The signal that the application is supposed to track is very weak, and any features used did not produce a function which can be approximated by a linear function in a satisfactory way. So we had to use some heuristics in order to produce a good player:

Dependency on initial theta values:

Since the real score function is apparently quite wild, it is clear that the function might converge to a local maximum, depending on the initial theta values. We therefore decided to let the application choose random initial values of theta for several initial players, let them play against each other and have the best player win.

Evolutionary algorithm:

To further decrease the dependency on the initial values, and to improve the player, we decided to use an evolutionary algorithm:

· We first create 16 random players, and have them train against each other.

· Than we run a tournament between them all, and choose the best four players.

· We breed the four players into new 16 players (creating all possible 4*4 couples, and randomly choosing values from their theta vectors to create a new theta vector).

· We repeat the process 3 times and eventually choose the winner of the last tournament.

PART 4

Tests Results:

We performed the following tests on our application, in order to verify that the players do improve as a result of the training:

Basic training:

Test scenario: create two random players and save their initial theta vectors. Than let them play against each other for 100 games.

Than let the players play against their “old self” for 10 games. I.e. we created two new players, one with the initial theta and the other with the resulting theta after the training session, and ran a competition between them.

Results:

We ran this test 5 times.

Almost each time we ran this test, the trained player managed to win at least 1 game against his “old self”, and sometimes much more (even up to 9 out of 10 games), while the “old self” almost never managed to win a game against his “trained self”.

Further more – the winner of the training session always managed to win more games against his “old self” than the looser.

Winner
Looser

Old self
Trained self
Old self
Trained self

2
6
1
3

1
9
4
1

2
8
1
7

2
7
0
6

1
9
0
3

Total: 8
Total: 39
Total: 6
Total: 20

Number of wins out of 10 games, for winner and looser of each training session

Conclusions: it is clear from the results that the players do improve as a result of the training. It is also evident that the initial theta values affect the learning curve of the player, as well as the quality of the resulting player. This indicates, in our opinion, convergence into local maxima, which is not surprising in light of previous works on Abalone.

Test: Full training

Test scenario: run a full training session, save several good ancestors. Run a contest between the winner of the training session (the selected TD-Player for the application) and his ancestors. 20 games are played, no exploratory moves are taken.

Results:

This test was conducted twice.

Ancestor 1
Ancestor 2
Ancestor 3
Ancestor 4
Ancestor 5
Ancestor 6
Ancestor 7
Ancestor 8

2:2
0:0
2:3
3:0
8:0
10:0
4:0
2:2

Ancestor 1
Ancestor 2
Ancestor 3
Ancestor 4
Ancestor 5
Ancestor 6
Ancestor 7
Ancestor 8

0:3
0:0
1:0
0:0

Number of wins out of 20 matches, winner vs. ancestor

Conclusions: we can see that the winner of the training session is usually at least as good as his ancestors, or better then them.

Note: we observed that usually the ancestors start winning only after several rounds, which may indicate an improvement of the ancestor as a result of playing against a skilled opponent. This can be expected in RL.

As a result of this test we decided to increase the number of matches in the tournament part of the training from 10 to 30.

Test: Fine-Tuning:

Test scenario: In the following set of tests we checked how modifying different parameters of the TD(λ) algorithm affects the efficiency of the learning process.

For these tests we chose three couples of random initial players which displayed a good learning curve, and let them train with each other while on each session one of the parameters has slightly changed.

Each training session was of 150 games, and after we had all of the trained players, we conducted a contest between each baseline player (a player which trained with the baseline parameters: ε=0.1, γ=0.95, λ=0.5, α=0.1) and his corresponding players who trained with a modified parameter.

So we had 6 random players who trained several times, under different conditions, and based on the competitions between them we could identify the best training conditions.

Results:

Dynamic ε
γ=0.8
γ=0.6
γ=0.4
λ=0.9
λ=0.7
λ=0.3
α=0.01

Player 1
0:2
2:4
0:4
0:2
0:2
2:4
0:6
3:0

Player 3
1:3
5:1
3:2
4:2
8:2
7:0
5:0
0:5

Player 5
1:1
0:4
0:7
1:2
7:0
4:1
4:2
10:0

Player 6
2:6
3:6
0:4
3:5
3:4
1:8
5:4
2:8

Player 4
4:2
9:0
5:3
5:5
7:1
6:2
9:1
2:6

Player 8
3:5
5:1
7:1
4:3
5:2
6:2
4:4
8:1

Number of wins out of 10 matches, baseline vs. modified

Conclusions: player 4 yielded results which were inconsistent with the rest of the results, but based on the other results we decided on the following configuration:

· We chose a learning rate of α=0. 1, since a smaller value did not produce better results.

· We chose a discount factor of γ=0.9. We did not see conclusive evidence that smaller values perform better. We chose a high discount rate since rewards in Abalone are scarce.

· We chose λ=0.5. This value gave better results than high or low values, so it seems that the right model for Abalone is midway between TD(0) and MC.

· We chose to use a decreasing ε, but we hard-coded it to never go below 0.1, because we want to maintain exploration at all times. Abalone has a huge amount of possible board configuration, so we believe it would always benefit our player to occasionally try new moves.

"No-Goes"

Initially we tried to implement a minimax tree in order to choose actions based on possible future results, but because of the huge branching factor, looking even 1 step ahead resulted in a substantial decrease in performance. Since in each board configuration there are approximately 70-100 possible moves, even the most sophisticated pruning would still result in a bootstrapping process of 2-3 weeks, rather than ~6 hours. And since we got satisfying results without looking ahead, we decided not to use the minimax tree.

[image: image5.png]B=Border,M=Middle,C=Center

