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12.1 Introduction

In this lecture we consider Combinatorial Auctions (abbreviated CA), that is, auctions
where instead of competing for a single resource we have multiple resources. The resources
assignments and bids are defined on subsets of resources and each player has a valuation
defined on subsets of the resource set he was assigned. The interesting case here is when the
valuation of a given set of resources is different from the sum of valuations of each resource
separately (the whole is different from the sum of its parts). That could happen when we
have a set of complementary products, that is, each product alone is useless but the group
has a significantly larger value (for example - left and right shoes). On the other hand we
might have a set of substitutional products where the opposite takes place (for example -
tickets for a movie - no use of having two tickets if you are going alone).
In these cases there is an importance for pricing groups of resources rather than single
resources separately, i.e. in the absence of complementarity and substitutability (if every
participant values a set of goods at the sum of the values of its elements), one should or-
ganize the multiple auction as a set of independent simple auctions, but, in the presence of
these two attributes, organizing the multiple auction as a set or even a sequence of simple
auctions will lead to less than optimal results, in such a case we use Combinatorial Auc-
tions.

12.2 Definitions

12.2.1 The CA model

• N = {1, . . . , n} set of players.

• X = {1, . . . ,m} set of resources (products).

• Vi : 2X → R, i ∈ N
Each player has a value function, mapping a subset of products to their value.

1Based on a previous scribe done by Nir Yosef, Itamar Nabriski, Nataly Sharkov
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• V = V1 × · · · × Vn

• A = {a1, . . . , an} - The set of allocations. A feasible allocation A holds that ∀i, j ∈ A :
ai ∩ aj = ∅

• ~p = {p1, . . . , pn} - A set of payments defined for each player by the mechanism p :∈ Rn

• ui = Vi(S)− pi - Each player’s utility function, which is quasi-linear in the payment.

12.2.2 Goals and assumptions

• Our goal is to achieve Efficiency - find a pareto-optimal allocation, that is, no further
trade among the buyers can improve the situation of some trader without hurting any
of them. This is typically achieved by using an assignment which brings the sum of
benefits to a maximum.

• An alternative goal - maximizing Seller’s revenue (will not be discussed on this lecture,
but in the next lecture).

• Assumption - no-externalities : Players’ preferences are over subsets of S and do
not include full specification of preferences about the outcomes of the auction (the
resulting allocation). Thus, a player cannot express externalities, for example, that he
would prefer, if he does not get a specific resource, that this resource to be allocated
to player X and not to player Y.

12.2.3 Examples

• Substitutional products : S, T : S ∩ T = ∅, V (S ∪ T ) ≤ V (S) + V (T )

• Complementary Products : S, T : S ∩ T = ∅, V (S ∪ T ) ≥ V (S) + V (T )

• Additive values : ∀i ∈ N : Vi(S) =
∑

j∈S Vi({j})

Additive values are both substitutional and complementary. In order to optimally
solve (in terms of seller’s revenue and sum of benefits) such an auction, one can simply
use a seperate auction for this item.

• Unit demand : ∀i ∈ N : Vi(S) = maxj{Vi({j})}

We will use two simple assumptions:

• Motonicity(free-disposal): for every S, T ⊆ X such that S ⊆ T , the value attributed
to T will not be smaller to that of S, i.e., S ⊆ T ⇒ Vi(S) ≤ Vi(T ) for any player i.
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• Normalizing V (∅) = 0.

Following from the two above assumptions:

• ∀S ⊆ X : V (S) ≥ 0

12.3 Mechanism Design for CA

In order to get an efficient allocation where for each player telling the truth is a dominant
strategy we might use the VCG mechanism. However, using VCG with the general model
described above has a clear disadvantage: VCG requires each player’s value function, which
is O(2m) bits. We will overcome this problem by inspecting a simpler mechanism called
Single Minded Bidders (SMB)

12.3.1 Single Minded Bidders mechanism - definition

Definition Single Minded Bidder: For every player i there exists a single set si ⊆ S which

he wants and for which he is willing to pay the (non-negative) price wi.

Vi(s) =

{
wi si ⊆ S
0 otherwise

Clearly, we have a compact description for the players’ preferences < si, wi >, thus over-
coming our initial problem, next we’ll see that even for that simplified model, implementing
VCG, i.e., finding maximal allocations, is NPC.

12.3.2 Reduction from Independent Set (IS)

Claim 12.1 Finding an optimal allocation in CA with SMB bidders is NP-hard

Proof: We prove the claim by showing a reduction from the graph-theory problem of
maximum independent set to a maximum allocation problem for SMB bidders: Given an
undirected graph G = (V,E) let us build an instance of CA as follows:

• X = E: every edge is considered as a resource

• N = V : every vertex is considered as a player

• for each player (vertex) i, define si as the set of all edges (resources) coming out of
that vertex and wi = 1 .

For example, see following figure:
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Fig.1 Reduction from IS on an undirected graph to finding optimal allocation on CA with
SMB. For example: Player1 desired set of resources (s1) is {2, 5, 1}

• any feasible allocation defines an independent set (the set of all players(vertices) with
a non-zero benefit) with the same value

• on the other hand, any independent set ∆ defines a feasible allocation (Allocate si for
every player(vertex) i such that i ∈ ∆) with the same value as well.

Thus, finding a maximal social benefit is equivalent to finding a maximum independent set.
From the above reduction and since IS is in NPC, we conclude the same on the problem of
finding an optimal allocation. �

Corollary 12.2 Since no approximation scheme for IS has an approximation ratio less than
|V |1−ε, and for CA we have m ≤ n2 resources, we get a bound of m

1
2
−ε on the approximation

ratio for our problem where m is the number of resources.

12.4 The greedy allocation

As we have seen, for all practical purposes, there does not exist a polynomial-time algorithm
for computing an optimal allocation, or even for computing an allocation that is guaran-
teed to be at least the optimal times a constant, for any given constant. One approach to
meeting this difficulty is to replace the exact optimization by an approximated one. Next,
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we shall propose a family of algorithms that provide such an approximation. Each of those
algorithms runs in a polynomial time in n, the number of single-minded bidders. Finally, we
(unfortunately) see that the properties guaranteed by the mechanism (such as strategy-proof
bidding, to be defined later), disappear when using these approximated allocations.
(comment - traditional analysis of established CA mechanisms relies strongly on the fact
that the goods are allocated in an optimal manner).

General description of the algorithms:

• First phase: the players are sorted by some criteria. The algorithms of the family are
distinguished by the different criteria they use.

• Second phase: a greedy algorithm generates an allocation. Let L be the list of sorted
players obtained in the first phase. The bid of the first player of L (< s1, w1 >) is
granted, that is, the set s1 will be allocated to player 1. Then, the algorithm examines
all other player of L, in order, and grants its bid if it does not conflict with any of the
previously granted sets. If it conflicts, the bid is denied (i.e., does not grant).

Payment:
For each player i, the payment pi will be the minimal wi which he has to bid in order to win
(losers pay none).

Sort criterias: We will talk about 3 greedy algorithms, with 3 sort criterias:

• First sort criteria: f1 = wi

• Second sort criteria: f2 = wi

|si|

• Third sort criteria: f3 = wi√
|si|

12.5 Strategy-Proof Mechanism with Greedy Alloca-

tion in SMB

12.5.1 Greedy Allocation Scheme and VCG do not make a Strategy-
Proof Mechanism in SMB

The following example illustrates a case where using f2 and V CG doesn’t yield a strategy-
proof mechanism (and simiraly for any fi):
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Player < si, vi >
vi
|si| ti

R ({a}, 10) 10 8− 19 = −11
G ({a, b}, 19) 9.5 0
B ({b}, 8) 8 10− 10 = 0

Since the ti’s represent the value gained by the other players in the auction minus the
value gained by the other players had i not participated in the auction, R ends up with a
lose of 11. Had R not been strategy-proof and bid below 9.5 (f2’s

vi
|si|), he would be better

off gaining 0. Thus in this case being strategy-proof is not a dominant strategy for R and
thus this mechanism is not strategy-proof.
We now explore the conditions necessary for a strategy-proof greedy allocation mechanism
in SMB.

12.5.2 Sufficient Conditions for a Strategy-Proof Mechanism in
SMB

Theorem 12.3 The mechanism for Single Minded Bidders is strategy proof if, and only if,
it holds both of the following:

1. Monotonicity: Given a winning bid < s∗i , w
∗
i >, any < s∗i , w

′
i >, < s′i, w

∗
i > is a winning

bid, if w∗i ≤ w′i, or s′i ⊆ s∗i .

2. Critical-Fee: Winning player pays the minimal payment for him to win.

Proof: Given a truthful bid < s∗i , w
∗
i >, then u∗i ≥ 0 (the player has a non-negative gain).

We will show that any other bid < s′i, w
′
i > has a lower gain. There are two possibilities we

need to consider:

• s′i 6= s∗i :

– s′i ⊂ s∗i , in this case v′i = 0 (the player doesn’t get all the items he wanted),
meaning u′i ≤ u∗i

– s∗i ⊂ s′i, in this case, v′i = vi, yet, by the critical-fee, we know the p∗ ≤ p′, meaning
u′i ≤ u∗i

• w′i 6= w∗i :

– if he wins in both cases, we know that by the critical fee p∗ = p′.
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– if giving a different w′i made him win the auction, we know that w∗i ≤ p′ ≤ w
′
i,

thus, u′i ≤ 0.

�

Corollary 12.4 Greedy Single Minded Bidders are strategy proof.

12.5.3 First sort criteria: f1(wi) = wi

Claim 12.5 Using a greedy algorithm, with f1(wi) = wi as a sort criteria has an approxi-
mation ratio of m

Proof:
⇒ The ratio is at least m, as shown by the following example:
Suppose we have a set N = {1, . . . , n} of players of players (SMBs) and a set S = {1, . . . ,m}
of resources where m = n, and suppose:

• Player 1 asks for all the resources and his value is 1 + ε , [s1 = X, w1 = 1 + ε]

• ∀i : 2 ≤ i ≤ n player i asks for resource i and his value is 1, [si = {i}, wi = 1]

In this case it follows that OPT = m but f1 = 1 + ε

⇐ The ratio can be at most m because the value of the first player in a greedy alloca-
tion is higher than that of any player in OPT (follows immediately from the feasibility of
OPT ), so its value is at least 1

m
from OPT . �

12.5.4 Second sort criteria: f2(wi, si) = wi

|si|

Claim 12.6 Using a greedy algorithm, with f2(wi, si) = wi

|si| as a sort criteria has an approx-
imation ratio of m.

Proof:
⇒ The ratio is at least m, as shown by the following example:
Assuming we have a set of two players and a set of resources similar to the above, suppose:

• Player 1 asks for resource 1 and his value is 1 [s1 = 1, w1 = 1]

• Player 2 asks for all the resources and his value is m− ε [s2 = X, w2 = m− ε]

In this case it follows that OPT = m− ε but f2 = 1

⇐ The ratio can be at most m:
Let G2 be, any player i which his requests si were allocated by OPT and not allocated by
f2. ∀i ∈ G2 there exists a player j s.t.:
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• si ∩ sj 6= ∅

• f2(sj, wj) ≥ f2(si, wi)

For each player i ∈ G2 we match such a player j, and denote: J(i) = j, and let GJ =
{j | ∃i J(i) = j}.
Now, from the above definition of J and from the feasibility and greediness of f2, we can
conclude:
wi

|si| ≤
wJ(i)

|sJ(i)|

From which follows: wi ≤ |si|
|sJ(i)|

wJ(i)

And finally:∑
i∈G2

wi ≤
∑

i∈G2

|si|
|sJ(i)|

wJ(i) ≤
∑

j∈GJ
|si|wj ≤ m

∑
j∈GJ

wj

The second inequality follows since each j ∈ GJ can have at most |sj| players i s.t. J(i) = j.
Since

∑
i∈OPT−G2

wi =
∑

j∈f2−GJ
wj we have that OPT ≤ mf2. �

12.5.5 Third sort criteria: f3(wi, si) = wi√
|si|

Claim 12.7 Using a greedy algorithm, with f3(wi, si) = wi√
|si|

as a sort criteria has an

approximation ratio of
√
m.

Proof:
⇒ The ratio is at least

√
m, as shown by the following example:

Suppose we have a set N = {1, . . . , n} of players (SMBs) and a set X = {1, . . . ,m} of
resources where m = n, and suppose:

• Player 1 asks for all the resources and his value is m+ ε , [s1 = X, w1 = m+ ε]

• ∀i : 2 ≤ i ≤ n player i asks for resource i and his value is
√
m, [si = {i}, wi =

√
m]

In this case it follows that OPT = m
√
m but f3 = m+ ε

⇐ The ratio is at most
√
m:

Consider the following two inequalities, let rj =
wj√
|sj |

.

f3 =
∑

j∈f3 wj ≥
√∑

j∈f3 w
2
j =

√∑
j∈f3 r

2
j |sj| ,
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- Because ∀1<j<n : wj > 0

OPT =
∑

i∈OPT rj
√
|sj| ≤

√∑
i∈OPT r

2
i

√∑
i∈OPT |si| ≤

√∑
i∈OPT r

2
i

√
m.

- The first inequality follows from: Cauchy-Schwarz inequality
- The last inequality follows from: (∀i, j ∈ OPT : i 6= j) → (si ∩ sj = ∅)

Thus it is enough to compare
√∑

j∈f3 r
2
j |sj| and

√∑
i∈OPT r

2
i

Let us consider the function J(i) as in the last proof. In the same manner we can con-
clude ∀i ∈ OPT :

1. si ∩ sJ(i) 6= ∅

2. ri ≤ rJ(i)

From the feasibility of OPT it follows that for every subset sj allocated by f3, there exists
at most |sj| subsets which are allocated by OPT and rejected by f3 because of sj.
Summing for all i ∈ OPT , we get:√∑

i∈OPT r
2
i ≤

√∑
i∈OPT r

2
J(i) ≤

√∑
j∈f3 r

2
j |sj|

Where the second inequality follows since at most |sj| values of i have J(i) = j.

And finally, we get:

OPT ≤
√
m
√∑

i∈OPT r
2
i ≤

√∑
j∈f3 r

2
j |sj| ≤

√
mf3 �

12.6 Gross Substitute

Definition Gross Substitute function A value function is GS if for all prices ~p ≤ ~q the

demand for products in T = {j|pi = pj} did not fall when we changed from ~p to ~q :
For each

S ′ ∈ arg maxs(Vi(s)−
∑

j∈S pj)

There exists

S ′′ ∈ arg maxs(vi(s)− q(s))
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such that S ′ ∩ T ⊆ S ′′

A simple case of a GS value function: Unit Demand.
SMB is not a GS, for example:

S = {a, b}
w = 10

With prices (3,3) the player will require S
With prices (8,3) the player will require ∅
Thus, T = {b}

Therefore, SMB is not a GS

Definition An allocation S1, . . . , Sn with prices p1, . . . , pn is a Walrasian ε-equilibrium if:

1. j /∈
⋃
i∈N Si then pj = 0 or equivalently {j|pj > 0} ⊆

⋃
i∈N Si

2. For each i ∈ N the set Si is a Best Response w.r.t the following prices:

• pj for j ∈ Si
• pj + ε for j /∈ Si

A Walrasian ε-equilibrium does not always exist (with ε = 0)
For example: Two players, two products.

Player 1:

v1({a, b}) = 3
v1({a}) = v1({b}) = 0

Player 2:

v2({a}) = v2({b}) = v2({a, b}) = 2

If player 2 gets a then the price of b has to be 0, and the price of a ≤ 2. In that case
player 1 would like to get {a, b}. Therefore the price for both a and b is at least 2. At these
prices, player 1 would not like to get any product (and hence the prices should be 0).

The following algorithm computes an ε-Walrasian equilibrium for gross substitute bidders.
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Algorithm:
for each j ∈ X

do

pj := 0
end for

for each i ∈ N
do

Si := ∅
end for

loop
for each player i ∈ N compute the demand Di with the following prices:

do

pj when j ∈ Si
pj + ε when j /∈ Si
end for

if ∀i Di = Si
then

return (an equilibrium was found)
else

Find i such that Si 6= Di

Update:
for j ∈ Di − Si

do

pj = pj + ε
end for

Si := Di

for i 6= k
do

Sk := Sk −Di

end for

end if

end loop
returns

Allocation S1, . . . , Sn
Prices p1, . . . , pm

Claim 12.8 In each stage, for every player i: Si ⊆ Di

Proof:
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• At start Si = ∅

• Looking at an update step of player i:

– For player i itself: Si := Di and Di is the new demand of i.

– For player k 6= i: The prices in Sk did not rise after the change. Because of the
GS properties, Sk is part of his Best Response.

�

Theorem 12.9 For players with GS value function the algorithm finds:

1. A Walrasian ε-equilibrium

2. An allocation that is at most εm of the maximum social welfare.

Proof:

1. From the previous claim we can see that every item that was previously allocated will
stay allocated. Thus:

{j|pj > 0} ⊆
⋃
i∈N Si

At the end of the algorithm: Si = Di therefore it is an ε-BR for every player, and a
Walrasian ε-equilibrium.

2. Let S∗1 , . . . , S
∗
n be an allocation of the algorithm and S1, . . . , Sn some other allocation

(for ε = 0).

∀i ∈ N :

Vi(S
∗
i )−

∑
j∈S∗i

pj ≥ Vi(Si)−
∑

j∈Sj
pj

Now we sum both sides, over the players:∑
i∈N Vi(S

∗
i )−

∑
j∈

⋃
i∈N S∗i

pj ≥
∑

i∈N Vi(Si)−
∑

j∈
⋃

i∈N Si
pj

Since for any j /∈
⋃
i∈N S

∗
i : pj = 0. So we get:∑

j∈
⋃

i∈N S∗i
pj ≥

∑
j∈

⋃
i∈N Si

pj

And thus,
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∑
i∈N Vi(S

∗
i ) ≥

∑
i∈N Vi(Si)

For ε > 0:

Vi(S
∗
i )−

∑
j∈S∗i

pj ≥ Vi(Si)−
∑

j∈Si
pj − ε|Si − S∗i |

Hence, the difference from the maximum social welfare ≤ ε
∑

i∈N |Si − S∗i | ≤ εm.

�
The algorithm is not strategy-proof, For example:

a b {a, b}
Alice 4 4 4
Bob 5 5 10

In this case, the algorithm sets the prices pa = pb = 4 and allocates both to Bob. Bob pays
8, and his payoff is 10− 8 = 2.

pa = pb = 4
SBob = {a, b}
SAlice = ∅

Bob’s strategic behaviour:
If Bob bids only on a during the auction (claims value zero for b), then the auction would
stop at zero prices, allocating a to Bob and b to Alice. With this demand reduction, Bob
improves his payoff to 5.
That is: DBob = {a}
The outcome is:

pa ≈ pb ≈ 0
SBob = {a}
SAlice = {b}

Bob’s payoff = 5, Alices’s payoff = 4


