
Computational Game Theory Spring Semester, 2010

Lecture 8: May 3, 2010

Lecturer: Yishay Mansour Scribe: Itay Kirshenbaum, Mor Sela

8.1 External Regret - Reminder

Let us recall what we know about external regret. We are talking about the case of a single
player, playing against an adversary environment.

The model (single player):

• Actions A = {a1 . . . am}

• Time dependent loss function, (can also be defined as a gain function):
lti - loss of action ai at time t

The game:

a. For each step t, the player chooses a distribution pt ∈ ∆(A)

b. The adversary decides on the losses lt = (lt1 . . . l
t
m), where lti ∈ [0, 1]

c. The player’s loss at time t is ltON =
∑m

i=1 p
t
il
t
i .

The cummulative loss up to time T is

LT
ON =

T
∑

t=1

ltON

The goal: Bring the cummulative loss to a minimum

We defined: LT
i =

∑T
t=1 l

t
i as the loss when playing a static action ai.

External regret is defined as a measure of optimality (comparing our performance to the
performance of the single best action):

ER = LT
ON −min

i
LT
i

Last week we showed an algorithm such that:

LT
ON ≤ LT

best + 2
√
T lnm

Today we show algorithms that have ”stronger” guarantees then external regret.

1

2 Lecture 8: May 3, 2010

8.2 Partial Information Model

In this model the player chooses at time t a single action ati based on some distribution pt.
The opponent then sets the costs lt based on pt. The player observes only the cost of the
action he selected.

8.2.1 Reduction from Full Information

We will divide our time into T/k blocks of size k, denoted by B1...BT/k.

k k k k k k

l1 lk l1 lk l1 lk l1 lk l1 lk l1 lk

B1
... ... BT/k

During block Bt: We sample the m actions in m different times. At the rest of the
time we use some distribution pt.

At the end of block Bt: we gather the loss of the m sampled actions xt
1 · · · xt

m and
give it to a full information algorithm ER. The algorithm returns a distribution pt+1, which
we use in block Bt+1 during the non-sampling steps.

The ER algorithm will give us for any action j ∈ A:

T/k
∑

t=1

m
∑

i=1

pti · xt
i ≤

T/k
∑

t=1

xt
j+R

where R ∼=
√

T
k

logN

Now we compute the expected value of xt
i:

E[xt
i] =

1

k

∑

τ∈Bt

lτi

And therefore we have:

E[
T/k
∑

t=1

m
∑

i=1

pti · xt
i] ≤ E[

T/k
∑

t=1

xt
j]+R

⇓

E[
T/k
∑

t=1

m
∑

i=1

pti · xt
i] =

T/k
∑

τ=1

1

k

∑

t∈Bτ

lt · E[pτ (x1 · · · xt−1)] ≤ 1

k

T
∑

t=1

ltj+R

⇓

8.3. CORRELATED EQUILIBRIUM 3

1

k
E[LT

ON] ≤ 1

k
LT
j + R

Adding the losses from the sampling stage we get:

E[LT
ON] ≤ LT

j + kR +
1

k
m

We can optimize this result over k and have:

k ∼= T
1

3N
2

3

and derive:

Regret ∼ T
2

3N
2

3

8.3 Correlated Equilibrium

The model:

• N players - {1 . . . n}

• Actions of player i - Ai

• Joint action - A = Ai × . . .× An

• Utility function of player i - ui : A→ R

We will assume that the utlity range is [0, 1]

8.3.1 Internal Regret

In this section we define pure and correlated equilibria in a different manner than before. We
use a new measure, called Internal Regret:

IRi(a, x, y) =

{

ui(a
−i, y)− ui(a) a1 = x

0 a1 6= x

The meaning is measuring the loss of player i caused by playing action x instead of action y.
Definition a ∈ A is a pure equilibrium if:

∀i ∈ N, ∀x, y ∈ Ai : IRi(a, x, y) ≤ 0

4 Lecture 8: May 3, 2010

Definition Let Q ∈ ∆(A) be a distribution over the joint actions. We adapt the regret

definition in the following manner:

IRi(Q, x, y) = Ea∼Q[IRi(a, x, y)]

Using this definition, Q is a correlated equilibrium if:

∀i ∈ N, ∀x, y ∈ Ai : IRi(Q, x, y) ≤ 0

The existence of a correlated equilibrium can be derivated from the existence of Nash Equilibirum

(There is also a direct proof using zero sum games).

8.4 ǫ-Correlated Equilibrium

The demand for correlation can be relaxed, by demanding only that a player cannot gain
more than ǫ, as a result of the action change.

Definition For each player i ∈ N we’ll define deviation functions:

Fi = {f : Ai → Ai}

Definition Q is ǫ-Correlated Equilibrium if:

∀i ∈ N, ∀f ∈ Fi : Ea∼Q[ui(a)] ≥ Ea∼Q[ui(a
−i, f(ai))]− ǫ

8.4.1 Swap Regret

We define the Swap Regret to be:

SR(Q, i, f) =
∑

ai∈Ai

Pr[ai ∼ Q] · IRi(Q, ai, f(ai))

and in general:
SR(Q) = max

i∈N
max
f∈Fi

SR(Q, i, f)

Thus, Q is an ǫ-correlated equilibrium if:

SR(Q) ≤ ǫ

ǫ-Correlated Equilibrium 5

We can extend this definition for a sequence of actions: For a sequence of joint actions
~a = a1 · · · aT , we define in a similar manner:

SR(~a) = max
i∈N

max
f∈Fi

T
∑

t=1

IRi(a
t, ati, f(ati))

Claim 8.1 If for a sequence of joint actions ~a, SR(~a) ≤ ǫ · T , then the distribution Q is an

ǫ-correlated equilibrium, where:

Q(z) =

{

1
T

z = at

0 otherwise

8.4.2 Reduction of External Regret to Swap Regret

In order to achieve equilibrium, we need an algorithm which minimizes swap regret. In this
section, we will use algorithms that use the external regret measure, as a way to create an
algorithm for swap regret. For that, we will construct a reduction: external regret 7→ swap
regret.
Let’s look at a single player who is only aware of his own losses (note that we switched to
loss terminology instead of utility in order to be consistent with ER). Assume the number of
actions of the single player is |Ai| = m. We will use m (possibly different) External Regret
algorithms B1 . . . Bm as shown in figure 8.1.

Figure 8.1: Reduction of External Regret to Swap Regret algorithm

6 Lecture 8: May 3, 2010

Recall the ER assumption:

For any sequence of t losses{ltj}, LT
ON =

T
∑

t=1

ltON ≤ LT
j + R =

T
∑

t=1

ltj + R

This implies that
∀j ∈ Ai, L

T
ON ≤ LT

j + R

We will construct our algorithm using m algorithms, each guaranteeing at the most regret
R. Intuitively, each will be responsible of a single action (there are m algorithms - one for
each possible action of the player). Each algorithm outputs a vector of what it would like to
play, and we need to return to each separate algorithm its loss. We need to wrap up these
algorithms in some sort of interface which will calculate the distribution and return the loss.
Thus we have two important actions to do:

a. Calculate pt from ~qt1, · · · , ~qtm

b. ”Distribute” ~lt - return to Bi a loss vector ~lti.

Let’s start with distributing the loss: we simply return to Bi a loss vector ~lti = pti · ~lt.
We need to define now how we combine the separate ”recommendations” qi to get the

distribution p. We construct a stochastic matrix:

Mmxm =









q11 · · · q1m
...

...
qm1 · · · qmm









← ~qt1

← ~qtm

We choose p such that pM = p.

Intuition: p is the output of our algorithm - its meaning is the distribution over actions.
We can choose an action in 2 ways:

• choose an action ai ∈ A directly from among all possible actions.
This is the output of the algorithm.

• choose an algorithm Bi first (according to p) and then select an action ai ∈ A (according

to ~qti).

In defining p as above, we ensure that both ways are indeed equivalent. It’s possible to prove
in several different ways that a solution exists,

∑

pi = 1 and pi ≥ 0.

Analysis: The loss that Bi ”sees” is:

(pti · ~lt)~qti = pti(
~qti · ~lt)

ǫ-Correlated Equilibrium 7

As Bi is an algorithm for ER, for each Bi and for each action j we have a bound on the
regret (assuming all algorithms guarantee the same regret - R):

T
∑

t=1

pti(
~qti · ~lt) ≤

T
∑

t=1

pti · ltf(j) + R

When we sum up the losses, we get that for any point in time:

m
∑

i=1

(pti · ~qti) · ~lt =
m
∑

i=1

pti(
~qti · ~lt) = ~pt ·M · ~lt = ~pt · ~lt = ltON

Therefore, the loss of ONLINE is the sum of all the Bi’s losses.
When we sum over time we get that:

LT
ON =

m
∑

i=1

LT
Bi
≤

m
∑

i=1

LT
Bi,f(i)

+ R = LON,f + R

where

LT
ON,f =

m
∑

i=1

T
∑

t=1

pti · ltf(i)

and

LBi,f(i) =
T
∑

t=1

pti · ltf(i)

Recall that last week we proved that: R ∼
√
T logm so by summing over all Ri we have

that:

SR ≤ m
√

T logm

This bound can be easily improved to SR ≤
√
mT logm

Lower Bound of Ω(
√
mT) for SR

Let m = 2k and T = αk for α ≥ 3. The goal is to lower bound the swap regret by Ω(k
√
α).

Let pti be the algorithm’s probability of choosing action i in trial t, and let M t
i =

∑t
τ=1 p

τ
i be

the expected number of trials up to time t when action i is chosen. The adversary assigns
losses lti for pairs of action (2j − 1, 2j), j = 1, . . . , k, as follows:

• if M t
2j−1 + M t

2j < α/2, then (lt2j−1, l
t
2j) is (0, 1) or (1, 0) with probability 1/2 each.

• if M t
2j−1 + M t

2j ≥ α/2, then lt2j−1 = lt2j = 1

8 Lecture 8: May 3, 2010

Since
∑m

i=1 M
t
i = T , the expected loss of any algorithm is at least kα

2
1
2

+ kα
2
1 = 3

4
T .

If there is a pair with M t
2j−1 + M t

2j < α/2, then either action 2j − 1 or action 2j has a

loss of at most T/2. This implies the lower bound (3
4
T − T

2
= T

4
≤ Regret).

For any pair with M t
2j−1 + M t

2j ≥ α/2, swapping the actions of the pair appropriately given
an expected improvement of Ω(

√
α). With k such pairs, the lower bounds Ω(k

√
α) follows.

8.4.3 Swap Regret Applications

8.4.4 Dominated Actions

Definition Action ai,1 is dominated by action ai,2 if for every a−i we have

ui(a−i, ai,1) ≤ ui(a−i, ai,2)

Likewise, Action ai,1 is ǫ-dominated by action ai,2 if for every a−i we have

ui(a−i, ai,1) + ǫ ≤ ui(a−i, ai,2)

Clearly, we would like to avoid dominated actions. How can we guarantee it?

Theorem 8.2 If SR ≤ R then in at most R
ǫ
steps we play ǫ-dominated actions

Proof: For every ǫ-dominated action ai,1, there is an action ai,2 such that by playing ai,2
instead of ai,1, we would gain at least ǫ.
Therefore, if we have k steps where we play ǫ-dominated actions, we would gain at least ǫk.
Since SR ≤ R, we have ǫk ≤ R - meaning no more than R

ǫ
steps are played with ǫ-dominated

actions 2

8.4.5 Calibration

Each day a player gives a ”forecast” q (e.g, the chance of rain for tomorrow). The quality of
such a forecast may be assessed in a Calibration test - In a long sequence of probabilities p,
the average p is expected to be close to p.

Stochastic Model: Given a constant probability q for the event to occur, then it is enough
to take the average. With high probability the average until time t is close to q and the
average from time t till the end is also close to q.

ǫ-Correlated Equilibrium 9

Adversary Model: the player is limited to forecasts of the form i
m

,0 ≤ i ≤ m. After the
player forecasts pt, it observes yt ∈ {0, 1}. A player is ǫ-calibrated if for all i

m
:

∣

∣

∣

∣

ρ(
i

m
)− i

m

∣

∣

∣

∣

≤ ǫ

where (assuming that
∑T

t=1 p
t
i = Ω(T)):

ρ(
i

m
) =

∑T
t=1 p

t
iy

t

∑T
t=1 p

t
i

The algorithm is constructed by performing a reduction from SR. To this end, define a loss
function by:

l(i, yt) = (yt − i

m
)2

And a general loss function:

CT =
m
∑

i=1

(ρ(
i

m
)− i

m
)2(

T
∑

t=1

pti)

The following claim bounds the loss function as a function of the regret:

Lemma 8.3 CT ≤ SR + T
m2

Proof: Using the SR, we get:

T
∑

t=1

ptiIR(i, j) =
T
∑

t=1

pti[l(i, y
t)− l(j, yt)]

=
T
∑

t=1

pti[(y
t − i

m
)2 − (yt − j

m
)2]

=
T
∑

t=1

pti[
2(j − i)

m
− (yt − i + j

m
)]

=
2(j − i)

m

(

T
∑

t=1

pti

)

(

ρ(
i

m
)− i + j

m

)

=

(

T
∑

t=1

pti

)[

(

ρ(
i

m
)− i

m

)2

−
(

ρ(
i

m
)− j

m

)2
]

For any fixed i = 0, 1, . . . ,m the quantity maxj IR(i, j) is maximized for the value of j
minimizing (ρ(i

m
)− j

m
)2. Moreoever, there exists j such that:

∣

∣

∣

∣

ρ(
i

m
)− j

m

∣

∣

∣

∣

≤ 1

m

10 Lecture 8: May 3, 2010

Thus,
(

T
∑

t=1

pti

)

(

ρ(
i

m
)− i

m

)2

= max
j

IR(i, j) + min
j

(

T
∑

t=1

pti

)

(

ρ(
i

m
)− j

m

)2

≤ max
j

IR(i, j) +
T

m2

Summing over all the actions we get:

SR =
m
∑

i=1

(

T
∑

t=1

pti

)

max
j

IR(i, j)

which implies:

CT =
m
∑

i=1

(

T
∑

t=1

pti

)

(

ρ(
i

m
)− i

m

)2

≤
m
∑

i=1

max
j

IR(i, j) +
T

m2

≤ SR +
T

m2

2

To complete the proof of calibration, note that if an action i
m

has
∑T

t=1 p
t
i ≥ αT and

∣

∣

∣ρ(i
m

)− j
m

∣

∣

∣ ≥ ǫ, then:

CT ≥ ǫ2αT

We showed that:

CT ≤ SR +
T

m2
≤
√

mT logm +
T

m2

This implies that :

αǫ2 ≤
√

mT logm +
1

m2

For α = Ω(1) and T = m3 we have that:

ǫ = O(
1

m
)

