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6.1 Lecture Overview

In this lecture we turn our attention to the online convex optimization in the multi-
armed bandit (MAB) model. In this model, there is a set N of actions from which the
player has to choose in step t ∈ T . After choosing the action, the player can only see
the loss of her action, not the losses of the other possible actions. We will consider
convex problem c : <d → <. We will use gradient decent to solve that problem with
O(T 5/6) regret.
Later on we will consider the difference between Adaptive and Oblivious Opponents
by showing an example of Adaptive opponent for EXP3 that gets Ω(T 3/4) regret
instead of O(

√
T ) regret which we proved in Lecture 4 for Oblivious opponent.

6.2 Online Convex Optimization: MAB

The idea here is to use gradient-descent based algorithm. For convex problem c :
<d → < , the gradient-decent method calculates:

xt+1 = xt − η5 c(xt)

For stochastic problem:

ct(x) = c(x) + εt(x) where E[εt(x)] = 0

xt+1 = xt − ηOct(x)

The important thing is:

E[5ct(x)] = 5E[ct(x)] = 5c(x)

In the MAB world we don’t have ∀x the value of ct(x) we have ct(xt) for our chosen
action xt. If we don’t have a function how we will calculate the derivative?
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6.2.1 Estimating gradient with one sample

For d = 1 (one dimension)

f ′(x) ≈ f(x+ δ)− f(x− δ)
2δ

=
1

2

∑
ν∈{1,−1}

νf(x+ νδ)

δ

=
1

2
Eν [

νf(x+ νδ)

δ
]

With one sample we got a stochastic approximation to the estimation of the derivative.
In higher dimensions Of(x) = ( ∂

∂x1
, . . . , ∂

∂xd
). For u = ±ei(standard base vectors):

5f(x) ≈ E[d
f(x+ δu)

δ
u]

The gradient isn’t base depended , so we can choose a random ||u|| = 1 and the
previous identity holds. We will show that this estimator is the gradient of f̂(x)
(even when the gradient of f is not define).

f̂(x) = Eν∈B[
d

δ
f(x+ δν)ν], where B = {x | ||x|| ≤ 1}

5f̂(x) = Eν∈S [
d

δ
f(x+ δν)], where S = {x | ||x|| = 1}

We can view f̂ as a way to smooth f such that it is also continuous and differential.

Lemma 6.2.1 ∀δ > 0,Eν∈S [f(x+ δν)] = δ
d
5 f(x)

For dimension d = 1 we have ∂
∂x

∫ δ
−δ f(x+ ν)dν = f(x+ δ)− f(x− δ), d = 1

For general dimension d,We use Stoke theorem that states:

5
∫
δB
f(x+ ν)dν =

∫
δS
f(x+ u)

u

‖u‖
du (6.1)

f̂(x) = E[f(x+ δν)] =

∫
δB f(x+ ν)dν

V old−1(δS)
(6.2)

E[f(x+ δν)ν] =

∫
δS
f(x+ u)

u

‖u‖
du (6.3)

V old(δB)

V old−1(δS)
=
δ

d
(6.4)

We have the following identities,

E[f(x+ δν)] =6.3

∫
δS f(x+u)

u
‖u‖du

V old−1(δS
=6.1 5

∫
δB f(x+ν)dν

V old−1(δS
= V old(δB)

V old−1(δS)
5 f̂(x) =6.4 δ

d
5 f̂(x)
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6.3 Bandit Gradient Decent

Unknown convex function:ct : S → [−M,M ]

The algorithm BGD(α, δ, η)
At each period t:

1. xt = yt + δut where ut = randUnitV ector()

2. play xt

3. observe ct(xt)

4. yt+1 = Π(1−α)S(yt − ηct(xt)ut) where ΠA(z) is a projection of z to a set A

Assumptions:

• ct has a bounded gradient:
maxx∈S‖ 5 ct(xt)‖ ≤ G

• S is a convex set s.t:
∃r∃R, rB ⊆ S ⊆ RB , where B is the unit ball.

Lemma 6.3.1 The optimum in (1− α)S is close to the optimum in S :
minx∈(1−α)S

∑T
t=1 ct(x) ≤ 2αMT +minx∈S

∑T
t=1 ct(x)

Proof. ∀x ∈ S, we have (1− α)x ∈ (1− α)S
From the fact the ct is convex we get:
ct((1− α)x) = ct((1− α)x+ α ∗ 0) ≤ (1− α)ct(x) + αc(0) ≤ ct(x) + 2αM
Summing on the time steps we have:∑T

t=1 ct((1− α)x) ≤ 2αMT +
∑T

t=1 ct(x)
This is true for any x ∈ S , so it holds for x? = argminx∈S

∑
t ct(x) �

Lemma 6.3.2 ∀x ∈ (1−α)S the ball with radius αr where x is its center, is a subset
of S.

Proof. Mnikowsky sum of two sets is: A+B = {a+ b|a ∈ A, b ∈ B}. We have

(1− α)S + αrB ⊆ (1− αS) + αS = S

where the equality golds since S is a convex set. �

Lemma 6.3.3 ∀x ∈ (1− α)S, y ∈ S
|ct(x)− ct(y)| ≤ 2M

αr
|x− y| .
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Proof. Define 4 ,s.t y = x+4
If | 4 | > αr we finished since |ct(x)| ≤ M . Otherwise, let z = x + αr 4‖4‖ . From
previous Lemmas z ∈ S.We have

y =
‖ 4 ‖
αr

z + (1− | 4 |
αr

)x

Since ct is convex,

ct(y) ≤ ct(x) +
ct(z)− ct(x)

αr
| 4 | ≤= ct(x) +

2M

αr
|x− y|

�
We will build now the proof of the BGD.

Theorem 6.1 (correctness) ∀xt (from the algorithm) xt ∈ S

Proof. We have yt ∈ (1− α)S from Lemma 6.3.2 xt ∈ S for δ
r
≤ α ≤ 1. �

Theorem 6.2 The regret of BGD is O(T
5
6M

√
dR
r

).

Proof. The proof will be done in two steps. we first show the regret of the yt’s
w.r.t. the ĉt over the set (1− α)S.

(step A) Regret bound for yt, with functions ĉt() and over the set (1 − α)S. We
will examine the run of the algorithm for yt and consider a run of gradient decent for

ĉt(x) = Eν∈B[ct(x+ δν)].

Define: gt = d
δ
ct(yt + δut)ut. From Lemma 6.2.1 5ĉt(yt) = E[gt|yt].The Update rule:

yt+1 = Π(1−α)S(yt − η∗gt) = Π(1−α)S(yt − η∗
d

δ
ct(yt + δut)ut)

For η∗ = η δ
d

we will get our update rule.We will bound the gradient:

|gt| = |
d

δ
ct(yt + δut)ut| ≤

d

δ
M , G

From Stochastic Gradient Decent result we will get:

E[
T∑
t=1

ĉt(yt)]−miny∈(1−α)S
T∑
t=1

ĉt(y) ≤ R
dM

δ

√
T

We show that for L = 2M
αr

it by Lemma 6.3.3 . |ct(x) − ct(y)| ≤ L|x − y|.For
x ∈ (1− α)S, we have |ĉt(x)− ct(x)| ≤ δL. In addition, from Lemma 6.3.3 we have,

|ĉt(y)− ct(x)| ≤ |ĉt(yt)− ct(yt)|+ |ct(yt)− ct(xt)| ≤ 2δL
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which implies that ct(xt)−2δL ≤ ĉt(yt) and ĉt(y) ≤ ct(x)+δL. In Step A we showed:

E[
T∑
t=1

ĉt(yt)]−miny∈(1−α)S
T∑
t=1

ĉt(y) ≤ R
dM

δ

√
T

Using the bounds on ĉt(yt) we have:

E[
T∑
t=1

ct(xt)− 2δL]−miny∈(1−α)S
T∑
t=1

ĉt(y) ≤ R
dM

δ

√
T

E[
T∑
t=1

ct(xt)−2δL]−minx∈S
T∑
t=1

ct(x) ≤ R
dM

δ

√
T+3δLT+2αMT = R

dM

δ

√
T+3δ

2M

αr
T+2αMT

The regret is bounded by,

R
dM

δ

√
T + 6δ

M

αr
T + 2αMT

We need to set δ and α, and for this we solve:

min
δ,α

(
a

δ
+
δ

α
b+ αc)

The optimal parameters values δ = 3

√
a2

bc
,α = 3

√
ab
c2

which implies a bound of 3 3
√
abc =

O(T
5
6M

√
dR
r

) The resulting regret is parameters are η = R
M
√
T

= O( 1√
T

), δ =

3

√
rR2d2

12T
= O( 1

3√T
), α = 3

√
Rd

2r
√
T

= O( 1
6√T

) �

6.4 Adaptive vs Oblivious Opponent

If we can simulate the algorithm they are equal. Therefore for any deterministic
algorithm there is no difference. We shall look on example for adaptive adversary for
EXP3. In out case k = 2(only two actions). Let p be the probability of action 1 in
EXP3.

g(t) =

{
(1, 0) if p < α,

(0, 1) if p ≥ α

It’s easy to see that the probability p will stay near α that’s since
pt ≤ α⇒ pt+1 ≥ pt
pt ≥ α⇒ pt+1 ≤ pt
Let η = 1√

T
(not critical) s.t EXP3 regret is O(

√
T ). Let α = 3η

. With high probability pt ∈ [2η, 4η]
Description of the run: We have periods, when pt > α,pt will get down almost in

every step until pt < α then we will have a big jump when choosing action 1 (but it
will take a while). In every period EXP3 gain is 1+ 1

α
The question is how much time

a period last? and how much each action gains, since this is what will determine the
regret.

Let G(q) be a geometrically distributed random variable with a probability q.
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• The big jump: r.v BJ G(α),E[BJ ] = 1
α
, V ar(BJ) = 1

α2

• Slow get down: r.v GD G(1− α),E[GD] = 1
α
, V ar(GD) = 1

α

We will examine O(αT ) periods. The gain of action 2: sum of αT
2

r.v Gt(α), geometric
random variables with probability α. The gain of action 2 is

∑
Gt. For this we have,

E[
∑
Gt] = T

2
, and V ar(

∑
Gt) = T

α
. This implies that with constant probability we

have a
√

T
α

difference from the expectation. This will dominate the regret term, and

give a regret of T 3/4.
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