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2.1 Convex Learning Problems

In this lecture we continue to discuss convex learning problems. We should first begin by
formally defining what “convexity” means. There are several essentially equivalent ways to
define this term:

• A function f is convex if and only if the following holds:

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v)

for every α ∈ [0, 1] and u, v ∈ X .

• A function f is convex if and only if its epigraph is a convex set. An epigraph of a
function f : Rn → R is the set of points lying on or above its graph:

epigraph(f) = {(x, α) : x ∈ Rn, α ∈ R, f(x) ≤ α} ∈ Rn+1

(see Figure 2.1).

Informally, a set of points is convex if one could draw a line between every two points
in the set, it would also be fully contained within it (see Figure 2.2).

• a function f is convex if and only if its Hessian (matrix of second derivatives) is positive
semidefinite, i.e., if the following holds:

▽2f = H, ∀x.xTHx ≥ 0

under the condition that f is twice-differentiable.

The gradient of a function f at point w is the vector of partial derivatives of f w.r.t. its
elements, namely ▽f = (∂f(w)

∂w1

, . . . , ∂f(w)
∂wn

). Let us observe the Taylor approximation of f ,

defined as f(u) = f(w) + (u − w)▽ f(w) + (u − w)T ▽2 f(z)(u − v) = f(w) + (u − w)▽
f(w) + (u − w)THf(z)(u − v), where Hf(z) = ▽2f(z), for some z between u and v. If f is
convex it follows that Hf is P.S.D., and therefore, f(u) ≥ f(w) + (u− w)▽ f(w).

What do we do if f is not differentiable? Let us a define a sub-gradient.

1Based on lecture notes by Shai Shalev-Shwartz (November 15, 2010), and by Stephen Boyd, Lin Xiao
and Almir Mutapcic (October 1, 2003)
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f(x)

Epigraph(f)

Figure 2.1: Epigraph Example

Definition 1 Sub-gradient: a vector λ is a sub-gradient of a function f at point w if for
every u the following holds:

f(u)− f(w) ≥ (u− w) · λ
.

We shall denote the group of sub-gradients for a function f in u as ∂f(u).

Observation 1 If f is differentiable at point u, the only possible sub-gradient for f(u) is
the gradient of f itself. Otherwise, many sub-gradients are possible (see Figure 2.3).

an example: Consider f(w) = maxi(gi(w)), i ∈ [0 . . . n]. We are assured that all gi are
both differetiable and convex.

• First, we show that f(w) is convex.

Proof: f(αw + (1 − α)v) = maxi(gi(αw + (1 − α)v)), and since all gi are convex, it
follows that f(αw + (1 − α)v) ≤ maxi(αgi(w) + (1 − α)gi(u) ≤ αmaxi(gi(w)) + (1 −
α)maxi(gi(u)) ≤ αf(w) + (1− α)f(u)

• Second, we show that if argmaxi(gi(w)) = j, then the gradient of gj at u is a subgra-
dient of f at u.

Proof: f(u) ≥ gj(u), and because gj is convex, it follows that, f(u) ≥ gj(w) + (u −
w)▽ gj(w) = f(w) + (u − w) ▽ gj(w). Meaning that ▽gj is a sub-gradient of f , as
required.
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Figure 2.2: convex vs. non-convex sets

f(x) differentiable - only the gradient is possible

f(x) non-differentiable - several sub-gradients are possible

f(x)

Figure 2.3: Sub-Gradients - degrees of freedom
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2.1.1 Hinge Loss

Quite often, we face a non-convex loss function. For the class of halfspaces, for instance, we
deal with the non-convex 0 − 1 loss, which is noncontinous and cannot be efficiently used
in an optimization program. To circumvent the hardness implied by this, we would like to
upper-bound the 0 − 1 loss function using a hinge loss function. Hinge loss is defined as
follows: lH(w, x, y) = max{0, 1− y〈w, x〉} (see Figure 2.4), where w represents a separating
hyperplane (essentially, an hypothesis), x ∈ X and y ∈ [−1, 1]. The hinge loss is a max-
imum of linear functions and therefore convex. However, when 1 − y〈w, x〉 = 0, it is not
differentiable. It is easy to verify that

∂lH(w, x, y) =











−yx if 1− y〈w, x〉 > 0
0 if 1− y〈w, x〉 < 0
−αyx if 1− y〈w, x〉 = 0; α ∈ [0, 1]

zero-one loss

hinge loss

1

1

Figure 2.4: Hinge Loss

Proof: The first two cases are trivial. We are interested in the third case. lH(w, x, y) = 0,
which means that lH(u, x, y)−lH(w, x, y) = max{0, 1−y〈u, x〉}. We would like to bound this
result using a sub-gradient: 〈u−w,−αyx〉 = −αy〈u, x〉+αy〈w, x〉. We know that y〈x, w〉 =
1, therefore: 〈u−w,−αyx〉 = α(1−y〈u, w〉) ≤ max{0, 1−y〈u, x〉} = lH(u, x, y)−lH(w, x, y),
as required.
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2.2 Optimization With Sub-Gradients

A reminder: let f(w) be a convex, differentiable function which we would like to minimzie.
Gradient descent (also occasionally known as “steepest descent”) is one of the simplest
methods to achieve this - we begin with an initial vector w1 and on each iteration we follow
the update rule wt+1 = wt − αt ▽ f(wt). That is, we move from wt in the direction opposite
to the gradient, whereas αt is the step size. Because we’re following the gradient, we are
guaranteed to improve on every step (hence the “descent”), and since there’s only a single
minimum to f(w), we will eventually converge to it.

Let us define a sub-gradient method for the same optimization problem, using the following
iteration rule:

wt+1 = wt − αtgt

Where gt is any sub-gradient of f in wt.

When working with sub-gradients, we are not assured to consistently improve on each
step, so proving convergence is more difficult. We must keep track of the best result observed
thus far. Let us define a new term, f best

t , which ”remembers” the best result at step t:

Definition 2 f best
t = min{f best

t−1 , f(wt)}

Let f ∗ be the minimum value of f , and let w∗ be the w value which obtains it: f ∗ = f(w∗).
Let us assume also that the value of the sub-gradient is bound by some constant G: gt ≤ G

(this is true for Lipschitz functions).

We shall prove convergence relying on the distance between wt and w∗, rather than relying
directly on the distance between ft and f ∗.

Proof: Because w∗ yields the minimum for f , it follows that ||wt+1−w∗||22 = ||wt−αtgt−
w∗||22. This leads to ||wt+1−w∗||22 = ||wt−w∗||22− 2αt〈gt, wt−w∗〉+α2

t ||gt||22. 〈gt, wt−w∗〉 is
the sub-gradient, so 〈gt, wt−w∗〉 ≤ f(wt)−f(w∗) holds, and ||gt||22 is bound by G2, meaning
that ||wt+1−w∗||22 ≤ ||wt−w∗||22−2αt(f(wt)−f ∗)+α2

tG
2. We can repeat this step recursively

to obtain:

||wt+1 − w∗||22 ≤ ||w1 − w∗||22 − 2
t

∑

t=1

αt(f(wt)− f ∗) +G2
t

∑

t=1

α2
t

We note that 2
∑t

t=1 αt(f(wt)− f ∗) ≥ 0 because f ∗ is the minimum, and ||wt+1 − w∗||22 ≥ 0
necessarily. Reorganizing the terms of the inequality yields:

2
t

∑

t=1

αt(f(wt)− f ∗) ≤ ||w1 − w∗||22 +G2
t

∑

t=1

α2
t

Which f(wt) value brings f(wt)− f ∗ to minimum? Clearly, f best
t , therefore:

2
t

∑

t=1

αt(f
best
t − f ∗) ≤ ||w1 − w∗||22 +G2

t
∑

t=1

α2
t
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Which implies that:

f best
t − f ∗ ≤ ||w1 − w∗||22 +G2 ∑t

t=1 α
2
t

2
∑t

t=1 αt

Given that ||w1 − w∗||22 is bound by some constant D, we now have all we need in order to
determine sufficient conditions for convergence:

• For instance, if
∑

αt → ∞ and
∑

α2
t is bound, it’s clear to see that f best

t converges to
f ∗. The most intuitive example for this is selecting αt =

1
t
.

• Another example: let αt = h, then

f best
t − f ∗ ≤ D +G2h2t

2th
=

D

2th
+G2h

meaning we converge in a rate proportionate to the number of steps taken, t. Notice
that when f best

t converges, D
2Th

= G2h, and therefore h ∼ 1√
T
.

2.2.1 The Restricted Case

Let us assume we’re facing the following optimization problem: we need to find the minimum
of f(w) s.t. w ∈ K for some domain K. The naive sub-gradient algorithm will not do,
because we’ll get constantly thrown out of the domain K. We must define a projection
function Π, and use it in the update rule:

wt+1 = Π(wt − αtgt)

Let yt = wt − αtgt, then

Π(wt − αtgt) = argminx∈K ||yt − x||22

Now, ||yt − w∗||22 = ||wt − αtgt − w∗||22 ≤ ||wt − w∗||22 − 2αt(f(wt) − f ∗) + α2
tG

2. For
our algorithm to work in the current case, we must show that ||yt − w∗||22 ≥ ||wt+1 − w∗||22,
meaning to say that projecting yt can only reduce our distance from w∗.

Proof: In fact, the inequality ∀x ∈ K.||yt − x||22 ≥ ||wt+1 − x||22 is true, for geometric
reasons - when we project a point onto K, we move closer to every point in K (See Figure
2.5). ||yt−x||22 = ||(yt−wt+1)+(wt+1−x)||22 = ||yt−wt+1||22+||wt+1−x||22−2〈y−wt+1, wt+1−x〉,
and 2〈y − wt+1, wt+1 − x〉 < 0, which proves the required.
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Figure 2.5: geometric explanation why the inequality ∀x ∈ K.||yt−x||22 ≥ ||xt+1−x||22 holds

2.3 Stochastic Sub-Gradient Descent

The main difference between optimization problems and online learning is that the function
f is unknown - only fragments of it are revealed in each step. For this reason we cannot
base our algorithm on the sub-gradient (or the gradient, for that matter) of the function f

we would like to minimize, but rather use the update rule wt+1 = wt − αtrt, where rt is a
random vector whose expected value is a sub-gradient of f at wt (so we hope).

Let us consider a loss function l(w, z) denoting our loss when using w at point z. What
really interests us is the average over a given distribution: LD(w) = Ez∼D[l(w, z)]. Our
approach would be to sample z (meaning to say, select examples randomly) and take the
observed sub-gradient of our incurred losses. The following lemma formalizes this approach.

Lemma 2.1 For all w let λ = ∂l(w, z) where z is sampled: z ∼ D. Then

Ez∼D[λ] ∈ ∂LD(w)

Proof: By the definition of sub-gradients: l(u, z) − l(w, z) ≥ < u − w, λ >. Let us
take the expectations from both sides (the expectation is linear so the inequality holds):
E[l(u, z)]−E[l(w, z)] ≥ E[< u− w, λ >], which means that:

LD(u)− LD(w) ≥ < u− w,Ez∼D[λ] >

and therefore Ez∼D[λ] is a sub-gradient of LD.
We now define a stochastic sub-gradient algorithm:
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Algorithm 1 Stochastic Gradient Descent Algorithm
w1 = 0
init µ1 ∈ R (this is our “pace” parameter - the learning rate).
for t ∈ [0, . . . , T ] do
choose random vector rt s.t. E[rt] ∈ ∂f(wt)
µt =

µ1√
t

yt = wt − µtrt
wt+1 = argminw∈K ||yt − w||22

end for

return w̄ = 1
T

∑T
t=1wt

We note that we’ve seen how to produce rt s.t. E[rt] ∈ ∂f(wt) through sampling.

Theorem 2.2 Given that ρ2 ≥ E[||rt||2], and D ≥ sup||w − u|| for u, v ∈ K, then:

E[f(w̄)]− f(w∗) ≤ 1√
T
(
D2

2µ1

+ ρ2µ1)

Which means that for µ = D

ρ
√
2
we’ll get:

E[f(w̄)]− f(w∗) ≤ Dρ

√

2

T

Proof: According to Jensen’s inequality, f(w̄) ≤ 1
T

∑T
t=1 f(wt). Taking expectations

from both sides yields E[f(w̄)] ≤ E[ 1
T

∑T
t=1 f(wt)] =

1
T

∑T
t=1E[f(wt)].

As before, we will prove convergence using the distance from w∗ and not from f ∗.

Claim 2.3

∀t.E[f(wt)]− f(w∗) ≤ E[
||wt − w∗||22 − ||wt+1 − w∗||22

2µt

+ µt

ρ2

2

Proof: The proof relies on the norm ||xt − x∗||22. ||yt − w∗|| = ||wt − µtrt − w∗|| = ||wt −
w∗||22 + µ2

t ||rt||22 − 2µt < wt − w∗, rt >. Taking expectations from both sides, and using the
bound ρ2 ≥ E[||rt||2], we get: E[||yt−w∗||22] ≤ E[||wt−w∗||22]+µ2

tρ
2−2µt < wt−w∗, E[rt] >.

Since < wt − w∗, E[rt] > ≥ E[f(wt)− f(w∗)], we get:

E[||wt − w∗||22]− E[||yt − w∗||22] ≥ 2µt(E[f(wt)]− f(w∗))− µ2
tρ

2

If we replace yt with wt+1 we can only increase the left side expression of this inequality, so
it will still hold. All that’s left is to re-arrange the terms, getting:

E[f(wt)]− f(w∗) ≤ E[
||wt − w∗||22 − ||wt+1 − w∗||22

2µt

] +
ρ2µt

2
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Thus concluding the proof of our claim.
(Note: this implies that convergence is dependent on the step size and on the rate of

learning.)
We now continue, using our claim, to prove that the stochastic gradient descent algorithm

converges to the desired value. Let us consider the sum over t of the inequality proven in
the previous claim:

T
∑

t=1

E[f(wt)]− f(w∗) ≤ E[||w1 − w∗||22]
1

2µ1
+

T
∑

t=2

E[||wt − w∗||22](
1

2µt

− 1

2µt−1
)−

−E[||wT+1 − w∗||22]
1

2µT

+
ρ2

2

T
∑

t=1

µt

For all t, ||wt − w∗|| ≤ D2. Also, we note that E[||wT+1 − w∗||22] 1
2µT

is the last term of the
summation, it is negative so we can erase it without harming the inequality. Thus we obtain:

T
∑

t=1

E[f(wt)]− f(w∗) ≤ D2(
1

2µ1
+

T
∑

t=2

(
1

2µt

− 1

2µt−1
)) +

ρ2

2

T
∑

t=1

µt

Cancelling out terms and using µt =
µ1√
t
we get

= D2 1
2µT

+ ρ2µ1

2

∑T
t=1

1√
t
, and since

∑T
t=1

1√
t
is bound by 2

√
T , this leads to

T
∑

t=1

E[f(wt)]− f(w∗) ≤ D2

√
T

2µ1
+ ρ2µ1

√
T

Dividing both sides by T concludes our proof as required.
We note that the

√
T factor originates in our learning rate. If we were to select µt =

µ1

t
,

for instance, our bound for the second term would have been O(logT ). The first term,
however, whould have exploded. If in each step we could have “earned” a bit more, perhaps
the first term could have been cancelled, allowing a better bound. In the next section we’ll
see a class of functions for which this is possible.

2.4 Strongly Convex Functions

Definition 3 A function f is λ-strongly convex if H = ▽2f � λ·I, meaning that ▽2f−λ·I
is positive semidefinite. I.e., XTHx ≥ xT (λI)x = λ||x||2. This implies that for any u, w and
v ∈ ∂f(w):

〈w − u, v〉 ≥ f(w)− f(u) +
λ

2
||u− w||22

λ is, in effect, the convexity factor of f , and the term added to the ineqaulity is what
would enable us to “earn” more in each step, allowing for a more optimistic step size and a
better bound.
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Let us take the stochastic sub-gradient descent algorithm, and only modify it so that
µt =

1
λt
. If f is λ-strongly convex, the effect is rather dramatic, and is presented in the next

theorem.

Theorem 2.4 Given that ρ2 ≥ E[||rt||2], and D ≥ sup||w − u|| for u, v ∈ K (same as
before), then:

E[f(w̄)]− f(w∗) ≤ ρ2

2λT
(1 + lnT )

Proof: Let us denote ▽t = E[rt]. Then ▽t ∈ ∂f(wt), and therefore:

〈wt − w∗,▽t〉 ≥ f(wt)− f(w∗) +
λ

2
||wt − w∗||22

We may observe that

〈wt − w∗,▽t〉 ≤
E[||wt − w∗||22 −E[||wt+1 − w∗||22

2µt

+
µt

2
ρ2

This observation is true because wt+1 is the projection of yt onto K, and thus ||yt −w∗||22 ≥
||wt+1 − w∗||22, as we’ve seen in the previous section.

This means that ||wt − w∗||22 − ||wt+1 − w∗||22 ≥ ||wt − w∗||22 − ||yt − w∗||22 = 2µ2〈wt −
w∗, rt〉−µ2||rt||22. Taking expectations and considering that E[||rt||22] ≤ ρ2 yields the desired
inequality.

Combining these observations and summing over t yields:

T
∑

t=1

(E[f(wt)]− f(w∗)) ≤ E[
T
∑

t=1

||wt − w∗||22 − ||wt+1 − w∗||22
2µt

− λ

2
||wt − w∗||22

Using µt =
1
tλ
, we notice that the first sum on the right hand side of the inequality collapses

to −λ(T + 1)||wT+1 − f(w∗)||22, which is negative and thus can be taken off the inequality
without changing its correctness. This yields

T
∑

t=1

(E[f(wt)]− f(w∗)) ≤ ρ2

2λ

T
∑

t=1

1

t
≤ ρ2

2λ
(1 + lnT )

Applying Jensen’s inequality leads directly to the theorem, as required.


