
Advanced Topics in Machine Learning and Algorithmic Game Theory

Lecture 1: October 31, 2011
Lecturer: Yishay Mansour Scribe: Shai Hertz, Tamar Lavee

1.1 Regret Minimization: An Online Learning Model

In the regret minimzation model, an agent performs an action a (out of N possible actions),
for which he receives some value loss(a). We can also think of a full information model, in
which the agent gets for each action a function f that is used to calculate the loss for every
possible action: loss(a) = f(a). This process is repeated T times, where T is unknown in
advance to the agent.
The target of the agent is to minimize the sum of losses over all T iterations. Specifically,
we’ll use adverserial model, in which some adversary creates our series of losses, that is
unknown in advance. In this model the absolute loss is not bounded, so we would like to
compare it to the minimal possible loss. We define the regret as the difference between the
absolute loss of our agent and the loss of an agent who always performs a constant ’minimal
loss’ action aj:

T∑
t=1

loss(ati) ≤

(
min
j

T∑
t=1

loss(atj)

)
+Regret

We can use regret minimization to model online learning: In every step the agent receives
an input xt, chooses a hypothesis ht and outputs ht(xt). Than he sees the loss l(ht, xt).
For example, let’s think of our way from home to work as a graph in which our home is the
source s, our work is the target t and each edge has a weight that corresponds to the traffic
jam on this specific route (see figure 1). The action is choosing a specific path from s to t
(note that there’s an exponential number of such actions), and the loss is the sum of the
edges on this path. If dt is the weight function for day t, we can write our loss as:

loss(pt, dt) =
∑
e∈pt

dt(e)

In this example, the benchmark to which we’ll compare our loss is a constant path for all
days, which minimizes the sum of losses. Obviously, we can outperform this benchmark by
choosing a different (minimal) path for each day.
Typically, algorithms in this model are greedy, either randomized or regularized.

1

2 Lecture 1: October 31, 2011

s

A B C

t

D E F

5

1 9

5

3 2

11
2

Figure 1.1: A graph representing all possible routes from home to work. The weights of the
edges correspond to the traffic between two nodes. In this particular day, the best way from
home to work is: s-A-E-F-t.

1.2 Online Convex Optimization

In this model, our actions belong to a convex set K (e.g. the interval [0, 1]). In each step:

1. The learner chooses xt ∈ K.

2. The learner gets a convex cost function ft : K → R.

3. The loss is ft(xt).

Since each ft is convex, so the sum
∑

t ft is also convex and therefore its minimum is well
defined.

1.2.1 Follow the Leader (FTL)

The naive algorithm for this setting is the ”Follow the Leader” (FTL) algorithm. In this
algorithm, in each step we choose the best xt so far:

xt = argmin
x∈K

t−1∑
τ=1

fτ (x)

However, this approach can lead to unbounded loss. For example, consider K to be the real
line segment between −1 and 1, and f0 = 1

2
x, and let fi alternate between −x and x. The

FTL strategy will keep shifting between −1 and 1, always making the wrong choice. FTL

Online Convex Optimization 3

final loss will be T , while the loss of any fixed x will be 0! Thus, the high fluctuation is a
major drawback of FTL.
A possible solution to this problem is discretization. Note that this approach does not use
the convexity assumption.
Assume that the derivative of every ft is bounded, and let G = maxt | ∂∂xft|. We would like
our grid to be fine enough such that for each point, the value of ft on its neighboring grid
points will be ’close enough’ (ε-wise) to its actual value. For example, for K = [0, 1]d, we will

need
(
G
ε

)d
grid points (the number of actions in our model). Now we can use Randomized

Weighted Majority algorithm (for example) which guarantees a bound of
√
T logN . Hence

for this discretization the regret will be bounded by
√
T · d · log

(
G
ε

)
.

1.2.2 Regularized FTL

In this solution, we add regularization to the naive FTL in order to reduce its fluctuation.
Our input will be:

• η > 0 - Learning rate

• R - Regularization function, assumed to be strongly convex and smooth (has a contin-
uous second derivative)

• K - Action space, a convex set

The RTFL Algorithm is shown in algorithm 1. Note that we assume that ft is linear, and
therefore we use it as a vector.

Algorithm 1 RFTL

x1 = argmin
x∈K

R(x)

for t = 1 to T do
predict xt
observe ft
update xt+1:

xt+1 = argmin
x∈K

[
η

t∑
s=1

fT
s x+R(x)

]
︸ ︷︷ ︸

Φt(x)

end for

4 Lecture 1: October 31, 2011

Special Cases

The following examples are known algorithms that can be seen as special cases of the RFTL
algorithm.

• Multiplicative Updates:
K = ∆n = {x ∈ [0, 1]n :

∑
xi = 1}

R(x) = x · log x =
∑
xi log xi

We get that the update function is:

Φt(x) =
n∑
i=1

[
ηxi

(
t∑

s=1

fs,i

)
+ xi log xi

]
We can find analytically the x that minimizes Φt:

∂

∂xi
Φt(x) = η ·

t∑
s=1

fs,i + log xi + 1 = 0

xt+1,i = C · exp(−η ·
t∑

s=1

fs,i)

Where C is a constant, that ensures that xt+1 ∈ ∆n:

C =
1∑

j exp(−η ·
∑t

s=1 fs,j)

• Gradient Descent:
K = {x ∈ (0, 1)n : ‖x‖ = 1} (Unit ball)
R(x) = 1

2
‖x‖2

2

As before, let’s look at the derivative of Φt(x):

∂

∂xi
Φt(x) = η ·

t∑
s=1

fs,i + xi = 0

Therefore:

xt+1,i = −Cη
t∑

s=1

fs,i = −C

(
η

t−1∑
s=1

fs,i − ηft,i

)
= −C(xt,i − ηft,i)

Where C is a constant that normalizes xt+1. Thus, the updating rule is:

xt+1,i =
xt − ηft
‖xt − ηft‖2

Online Convex Optimization 5

Regret Bound for the RFTL Algorithm

Definition For a positive semi-definite matrix A, the A-norm of x will be defined as
‖x‖A =

√
xTAx, and the dual norm of this matrix norm will be denoted by ‖x‖∗A = ‖x‖A−1 .

Let’s denote the diameter of K as measured by the regularization function R by D:

D = max
u∈K

(R(u)−R(x1)).

We’ll set λ to be:
λ = max

t,x∈K
fT
t [∇2R(x)]−1ft.

So, λ is a measure of the magnitude of the cost function f , using the dual ∇2R(x)-norm.

Theorem 1.1 The RTFL algorithm guarantees that for every u:

Regret ≤
T∑
t=1

fT
t · (xt − u) ≤ 2

√
2λDT

For example, in multiplicative updates: R(x) = x · log x, ∇R(x) = log x + 1, ∇2R(x) is a
matrix whose diagonal is 1

x
.

Therefore:

λ = fT
t [∇2R(x)]−1ft =

N∑
i=1

f 2
i xi ≤

N∑
i=1

xi = 1

(We assume that every |ft| ≤ 1, and since K is a simplex)
We also know that D = R(u)−R(x1) ≤ log n.
Hence from the theorem we get that the regret bound for multiplicative updates is 2

√
2T log n.

To prove the above theorem, we’ll first use a lemma that will relate the regret to the ’stability’
in prediction:

Lemma 1.2 For every u ∈ K the RFTL algorithm guarantees the following:

T∑
t=1

[ft(xt)− ft(u)] ≤
T∑
t=1

[ft(xt)− ft(xt+1)] +
1

η
[R(u)−R(x1)]

Proof: For simplicity, we’ll use f0(x) = 1
η
R(x), and then we can write the update rule

as:

xt+1 = argmin
x∈K

t∑
x=0

fs(x)

6 Lecture 1: October 31, 2011

We’ll prove by induction on T that:

T∑
t=0

[ft(xt)− ft(u)] ≤
T∑
t=0

[ft(xt)− ft(xt+1)]

Induction base: By definition we have x1 = argmin
x∈K

R(x). Therefore we are certain that

for all u:
f0(x1) ≤ f0(u)

Thus:
f0(x0)− f0(u) ≤ f0(x0)− f0(x1)

Indcution step: We’ll assume that for T we have:

T∑
t=0

[ft(xt)− ft(u)] ≤
T∑
t=0

[ft(xt)− ft(xt+1)]

Now we’ll look at T + 1, i.e., the choice of XT+2. Since xT+2 = argmin
x∈K

∑T+1
t=0 ft(x) we have

that for every u:

T+1∑
t=0

ft(xt)−
T+1∑
t=0

ft(u) ≤
T+1∑
t=0

ft(xt)−
T+1∑
t=0

ft(xT+2)

=
T∑
t=0

[ft(xt)− ft(xT+2)] + fT+1(xT+1)− fT+1(xT+2)

≤
T∑
t=0

[ft(xt)− ft(xt+1)] + fT+1(xT+1)− fT+1(xT+2)

=
T+1∑
t=0

[ft(xt)− ft(xt+1)]

where the inequality in the third line follows form the induction assumption.
Now we can conclude:

T∑
t=0

[ft(xt)− ft(u)] =
T∑
t=1

[ft(xt)− ft(u)] + f0(x0)− f0(u)

≤
T∑
t=0

[ft(xt)− ft(xt+1)]

=
T∑
t=1

[ft(xt)− ft(xt+1)] + f0(x0)− f0(x1)

Online Convex Optimization 7

Therefore:

T∑
t=1

[ft(xt)− ft(u)] ≤
T∑
t=1

[ft(xt)− ft(xt+1)] + [−f0(x0) + f0(u) + f0(x0)− f0(x1)]

=
T∑
t=1

[ft(xt)− ft(xt+1)] +
1

η
[R(u)−R(x1)]

�
Now we can return to our theorem.

Proof: From the Taylor expansion of Φt and since K and R are convex, there exists a
point zt ∈ [xt+1, xt] for which:

Φt(xt) = Φt(xt+1) + (xt − xt+1)T∇Φt(xt+1) +
1

2
‖xt − xt+1‖2

zt

= Φt(xt+1) +
1

2
‖xt − xt+1‖2

zt

(Since xt+1 minimizes Φt, we have ∇Φt(xt+1) = 0)

Therefore:

‖xt − xt+1‖2
zt = 2[Φt(xt)− Φt(xt+1)]

= 2[Φt−1(xt)− Φt−1(xt+1)] + 2ηfT
t (xt − xt+1)

≤ 2ηfT
t (xt − xt+1)

since xt minimizes Φt−1(·).
By the generalized Cauchy-Schwartz inequality,

fT
t (xt − xt+1) ≤ ‖ft‖∗zt · ‖xt − xt+1‖zt

Combining the two together:

fT
t (xt − xt+1) ≤ ‖ft‖∗zt ·

√
2ηfT

t (xt − xt+1)

We’ll square both sides and use our defined λ to get:

fT
t (xt − xt+1) ≤ 2η(‖ft‖∗zt)

2 ≤ 2ηλ

Now we shall sum over t and use the lemma to get:

T∑
t=1

fT
t (xt − u) ≤ T · (2ηλ) +

1

η
[R(u)−R(x1)] ≤ 2ηλT +

1

η
D

8 Lecture 1: October 31, 2011

We will choose η =
√

D
2λT

to achieve the desired regret bound:

T∑
t=1

fT
t (xt − u) ≤ 2

√
2λDT

�

1.2.3 Primal-Dual Algorithm

We now turn to look at another algorithm which uses Bregman Divergence. We can think
of Bregman divergence as a generalized metric, which is not necessarily symmetric and for
which the triangle inequality doesn’t necessarily hold.

Definition Bregman divergence BR is defined as:

BR(x‖y) = R(x)−R(y)− (x− y)T · ∇R(y)

Examples:

1. R(x) = 1
2
‖x‖2

2 ⇒ ∇R(y) = y
The Bregman divergence for this function:

BR(x‖y) =
1

2
‖x‖2

2 −
1

2
‖y‖2

2 − (x− y)T · y

=
1

2
‖x‖2

2 +
1

2
‖y‖2

2 − xy

=
1

2
‖x− y‖2

2

We got that the Bregman divergence of this regularizer is proportional to the squared
Euclidean distance.

2. R(p) =
∑
pi · ln pi −

∑
pi ⇒ ∇R(q) = ln q

The Bregman divergence for this function:

BR(p‖q) =
∑

pi · ln pi −
∑

pi −
∑

qi · ln qi +
∑

qi −
∑

(pi − qi) ln qi

=
∑

pi ln
pi
qi

+
∑

qi −
∑

pi

Note that the first term of this expression is the Kullback-Leibler divergence between
p and q.

Online Convex Optimization 9

Algorithm 2 Primal-Dual

Let K be a convex set, η > 0, R(x) a convex regularization function
for t = 1 to T do

predict xt
if t = 1 then

choose y1 such that ∇R(y1) = 0
else

choose yt such that ∇R(yt) = ∇R(xt−1)− η∇ft−1(xt−1)
end if
Update using a projection according to BR:

xt = argmin
x∈K

BR(x‖yt)

end for

The Primal-Dual algorithm, like RFTL, computes the next prediction using a simple
update rule. We will use Bregman divergence to define a dual space in which the algorithm
will search for the best choice of xt+1. The specific algorithm is shown in algorithm 2.

For the special case of linear cost functions, the Primal-Dual and the RFTL algorithms
are identical - they will produce an identical set of points xt.

Regret Bound for the Primal-Dual Algorithm

Theorem 1.3 Suppose that R is such that BR(x‖y) ≥ ‖x− y‖2 for some norm.
Denote ‖ft(xt)‖∗ ≤ G∗ and B

R(x‖x1) ≤ D2.
Then, applying the Primal-Dual algorithm with η = D

2G∗
√
T
will guarantee:

Regret ≤ DG∗
√
T

Proof: Since the functions ft are convex, for any x∗ ∈ K,

ft(xt)− ft(x∗) ≤ ∇ft(xt)T · (xt − x∗)

A useful property of the Bregman Divergence is:

BR(x‖y)−BR(x‖z) +BR(y‖z)

= R(x)−R(y)− (x− y)T∇R(y)−R(x) +R(z) + (x− z)T∇R(z) +R(y)−R(z)− (y − z)T∇R(z)

= −(x− y)T∇R(y) + (x− z)T∇R(z)− (y − z)T∇R(z)

= (x− y)T(∇R(z)−∇R(y))

10 Lecture 1: October 31, 2011

From the definition of the Primal-Dual algorithm:

∇ft(xt) =
1

η
(∇R(xt)−∇R(yt+1))

Combining these properties:

[ft(xt)− ft(x∗)] ≤ ∇ft(xt)T(xt − x∗)

=
1

η
[∇R(xt)−∇R(yt+1)](xt − x∗)

=
1

η
(∇R(yt+1)−∇R(yt))

T(x∗ − xt)

=
1

η
[BR(x∗‖xt)−BR(x∗‖yt+1) +BR(xt‖yt+1)

≤ 1

η
[BR(x∗‖xt)−BR(x∗‖xt+1) +BR(xt‖yt+1)

The last inequality follows from the fact that xt+1 is the projection w.r.t the Bregman
divergence of yt+1 and x∗ ∈ K which is convex.
Summing over all iterations we get:

2Regret ≤ 1

η
[BR(x∗‖x1)−BR(x∗‖xT)] +

1

η

T∑
t=1

BR(xt‖yt+1)

≤ 1

η
D2 +

1

η

T∑
t=1

BR(xt‖yt+1)

We proceed to bound BR(xt‖yt+1). By definition of Bregman divergence, we get:

BR(xt‖yt+1) +BR(yt+1‖xt) = (∇R(xt)−∇R(yt+1)T(xt − yt+1)

= η∇ft(xt)T(xt − yt+1)

≤ η(‖∇ft(xt)‖)∗ · ‖xt − yt+1‖
≤ (η‖∇ft(xt)‖∗)2 + ‖xt − yt+1‖2

≤ η2G2
∗ + ‖xt − yt+1‖2

Where the inequality in the third row follows from the generalized Cauchy-Schwartz inequal-
ity, and the fourth row follows from the simple fact: 2xy ≤ x2 + y2.
Thus, by our assumption that BR(x‖y) ≥ ‖x− y‖2 we get:

BR(xt‖yt+1) ≤ η2G2
∗ + ‖xt − yt+1‖2 −BR(yt+1‖xt)

≤ η2G2
∗

Online Convex Optimization 11

Plugging that into the regret expression, and using η = D
2G∗
√
T

, we conclude:

Regret ≤ 1

2

[
1

η
D2 + ηTG2

∗

]
≤ DG∗

√
T

�

