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Many modern use cases of relational databases involve multi-tenancy. To allow a tenant to only access its data,

relational database systems (RDBMSs) introduced row-level security (RLS). RLS enables specifying per-row

access controls, which the database enforces by rewriting tenant queries to add an RLS policy filter that

filters out rows the tenant is not allowed to view. Unfortunately, while RLS blocks queries from returning

unauthorized data, side-effects of query execution can form a side-channel that leaks information about such

secret data.

This paper investigates how RLS query execution time can leak information about rows that the querying

tenant is restricted from viewing. We show that in PostgreSQL and SQL Server, an attacker can craft index-

using queries to learn whether a value they are not authorized to view exists in an RLS-protected table, and in

some cases, how many times such a value exists in the table. Our attack succeeds in a realistic cloud setting: we

successfully attack managed PostgreSQL and SQL Server database instances on AWS from virtual machines in

the same and different data centers.

To block the RLS time side-channel, we design a data-oblivious query scheme for the case of unique keys.

We also analyze the trade-offs created by the data-oblivious approach for non-unique keys.

To facilitate the evaluation of RLS attacks and defenses, we introduce a benchmark that supports multi-

tenancy and RLS, which are not supported by established benchmarks such as YCSB. We implement our

solution in PostgreSQL and show that it achieves security with minimal performance impact.
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1 INTRODUCTION
Modern use cases of relational databases often involve multi-tenancy, in which the database is

shared by multiple tenants. Examples of multi-tenancy range from (1) software-as-a-service (SaaS)

and web applications, which use a database to store data of multiple customers, each of whom

should only access their own data; through (2) medical applications, which store patient data in a
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database but restrict viewing it to authorized staff roles, to (3) monitoring and analytics applications,

which display a dashboard showing a subset of data the accessing user is allowed to view.

Multi-tenancy requires enforcement of a security (or isolation) policy that prevents a tenant

from accessing data they are not authorized to access. While these policies can be implemented

in application logic, doing so is restrictive, imposes significant costs and maintenance burdens,

and may be insecure (if the application logic is flawed). We elaborate on these problems in § 2, but

the bottom line is that an architecture in which the policy is enforced by the database has many

advantages over one in which the policy is specified in and enforced by client application code.

To support security policy enforcement by the database, relational database systems (RDBMSs)

introduced row-level security (RLS) [24, 30]. RLS enables defining a policy that enforces access

control on table rows. RLS policies are implemented by rewriting input tenant queries to add

a policy filter. The filter removes rows the tenant is not authorized to view from read queries

and blocks update queries the tenant is not allowed to perform. Thus, RLS provides a centralized

location for defining table access controls with minimal changes to application code.

A significant challenge in preventing a tenant from obtaining information about rows they are

not authorized to access is that of side-channels. While an unauthorized query may not explicitly

return data from unauthorized rows, side effects of the query’s execution might “leak” information

about the unauthorized rows. For instance, RLS developers found that carefully crafted queries can

leak information by throwing a divide-by-zero exception, thereby leaking that a row contains the

value that makes the query divide by zero, and this side channel was addressed by hardening the

database’s error handling mechanism [17].

RLS time side-channels. In this paper, we explore a different RLS side-channel: query execution

time. Specifically, we show that for index-using queries, RLS policy enforcement creates timing

differences in query execution, which can be exploited by an attacker to learn information about

rows they are restricted from viewing. At a high level, the problem stems from the RDBMS query

optimization efforts resulting in evaluating the RLS policy filter on the results of the tenant’s query.

Consequently, the cardinality of the policy filter’s input should be secret—it is the cardinality of the

tenant’s query output, which the tenant might not be allowed to know. For example, a tenant may

query for patients with name 𝑋 in a medical information table, without the tenant being authorized

to view 𝑋 ’s medical data. In this case, the size of the query’s output—zero or non-zero—reveals

information about 𝑋 . But while the cardinality of the RLS filter’s input should be secret, in practice,

evaluating the RLS filter on each row of the input incurs measurable overhead. The query’s overall

execution time thus reveals information about the secret cardinality to the attacker.

We demonstrate that these time side-channels are not theoretical and can be exploited in a

realistic cloud setting on two of the most popular RDBMSs [22], PostgreSQL and SQL Server.

We successfully attack managed PostgreSQL and SQL Server database instances on Amazon Web

Services (AWS) from remote virtual machines, in either the same or different AWS zones—a scenario

modeling an attacker using machines on the same cloud provider its victim.
1
In both RDBMSs, we

show that the attacker can abuse RLS to identify whether a value they are not authorized to view

exists in an RLS-protected table; and in PostgreSQL, an attacker can also learn how many times

such values exist in the table.

Mitigation. We propose a mitigation of RLS time side-channels for queries on unique keys (such

as primary table keys), by making the execution time of such queries independent of the cardinality

of the query’s result (i.e., data-oblivious). We implement our mitigation in PostgreSQL and show

that it blocks the side channel with minimal performance impact.

1
The attack is related to the underlying PostgreSQL and SQL Server database engines. The attack is not specific to any

Amazon-provided database. We only use AWS as a vehicle to demonstrate the attack under realistic conditions.
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In contrast, we find that blocking the attack on non-unique keys seems to inherently involve

significant overhead. The problem is that such mitigation requires making the execution times of

queries on low- and high-cardinality data indistinguishable, which means significantly slowing

down low-cardinality queries. As a result, we recommend not using RLS on non-unique keys.

Multi-tenancy benchmark. To facilitate the evaluation of our attacks and defenses, we intro-

duce a benchmark that supports multi-tenancy and RLS, which are not supported by established

benchmarks such as YCSB [10]. This benchmark models multi-tenant tables, RLS policies, and both

authorized and unauthorized queries. As a result, the benchmark is useful for evaluating both the

security and performance of RLS side-channel mitigations.

Contributions. To summarize, we make the following contributions:

(1) Demonstrating that exploitation of time side-channels in RLS is practical (§ 4).

(2) Introducing a solution for the side-channel for unique keys, and highlighting the trade-offs

in blocking the side-channel when keys are not unique (§ 5).

(3) Introducing a new multi-tenancy database benchmark, which can be used to evaluate RLS

workloads and side-channel mitigations (§ 6).

(4) Empirically evaluating the security and performance of our proposed mitigation (§ 7).

2 BACKGROUND: ROW-LEVEL SECURITY
Row-level security (RLS) is an RDBMS feature available in Microsoft SQL Server [24] and Post-

greSQL [30]. RLS enables creation of access-control security policies on database tables that specify

which rows each user is allowed to view or update. RLS policies are implemented by rewriting

input user queries to add a filter based on the RLS policy. For read-only queries, the filter removes

rows the user is not allowed to view from the query’s result. For update queries, the filter blocks

the user from modifying protected rows.

RLS-like object-level security mechanisms also exist outside the RDBMS domain, e.g., in Elastic’s

document-level security [13], MongoDB [1], and in generic application-layer solutions [2].

2.1 Motivation
The goal of RLS is to enable implementing row-level access control by the RDBMS, without relying

on external conditions or application code. RLS confers several benefits [12, 34], discussed next.

Direct access. Providing access control at the RDBMS level means that tenants can be allowed to

directly access the RDBMS interface, without requiring some intermediate application tier such as a

web application for enforcing access control. The result is a significantly improved tenant experience.

Tenants are not limited in how they access the RDBMS—say, with a custom service provider API—

and can use standard database access tools. Tenants also enjoy an improved performance experience

(latency and throughput) since their operations do not go through extraneous software layers.

Logical segregation. An RDBMS with RLS can be shared by multiple distrusting tenants, with the

RDBMS using RLS to prevent tenants from observing and/or modifying each other’s data. Service

providers can improve performance and reduce costs and management overhead by using RLS to

logically partition a single table among tenants instead of physically partitioning the table into

per-tenant tables or deploying a different RDBMS instance for each tenant [21].

Trustworthiness. RLS centralizes the specification and enforcement of the access control policy

in the RDBMS, without relying on any application tier or external systems. RLS thereby significantly

reduces the amount of code that needs to be trusted for access-control integrity. This reduces the

risk of bugs and security holes that could occur if access control were implemented in complex

multiple end-user applications.
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Expressiveness. RLS enables supporting complex access-control policies using standard RDBMS

query languages, i.e., without requiring developers to “open code” the security policy rules and

related data structures. RLS policies are limited only by the expressiveness of the RDBMS query

language. A policy can be as simple as checking a user name match in one of the row’s columns or

be complex and involve querying multiple auxiliary tables, using recursion, etc.

Maintenance. Having the RDBMS enforce access control makes building client facing applications

easier, as they do not need to support access control. Similarly, future access control rule changes

can occur seamlessly, by updating the RLS policy, without requiring application-level code and/or

configuration changes.

2.2 Implementation
Both Microsoft SQL Server and PostgreSQL RDBMS support RLS. We find that both implement the

RLS functionality similarly. An RLS policy consists of two parts: one for read operations (SELECT
and the read part of UPDATE and DELETE2) and one for write operations (INSERT and the write part

of UPDATE and DELETE). Both parts are defined as filter predicates on queries, with the write filter

defined to block a write operation if it does not comply with the predicate. In this paper, we focus

on the read aspect of RLS policies and how it is implemented for SELECT operations.
When using RLS for read queries, each query targeting an RLS-protected table is rewritten to

include the policy’s filter as an additional predicate. The idea is that the policy filter predicate will

be evaluated on every queried row, and if it evaluates to false for a specific row, that row will be

filtered out of the query’s response and not returned to the user. The RLS filter can query auxiliary

tables in order to make its decisions; it is not restricted to querying the protected table’s data.

Importantly, when the RLS filter runs is decided by the RDBMS’ query planning mechanism—also

called the query optimizer—which decides how to perform a query. The query optimizer determines

the execution plan of the query and hence the execution position of the policy filter with respect to

the other predicates in the query. The query optimizer’s goal is to make the execution of the query

efficient, by using indexes (when possible), removing duplicate or redundant filters, and ordering

filters to improve performance.

2.2.1 Query Execution Security Considerations. The placement of an RLS filter with respect to

the user-supplied predicates can affect security. In particular, a user predicate or function that

runs before the filter predicate executes over all rows, including rows that the policy disallows the

querying user from accessing. Certain types of predicates can create user-observable side-effects,

such as printing or logging their inputs, or including the input in a thrown error message. Therefore,

if such a user-supplied predicate runs before the RLS filter, it can circumvent the RLS policy and

leak the contents of rows that the querying user is not allowed to access by the policy.

One approach for blocking this attack is to make the RLS filter special and require the query

optimizer to run it first, which guarantees that user-supplied predicates only execute over rows

approved by the RLS policy. This is basically the approach taken by PostgreSQL. Unfortunately,

always evaluating the RLS filter first constrains the query optimizer and can dramatically reduce

query performance (§ 2.2.2). To address this problem, PostgreSQL defines functions and operators

that do not have side effects as leakproof [32]. Examples of leakproof operators include many of

the comparison operators such as “=”, “<”, “>”, and more. Leakproof predicates and functions (i.e.,

that consist only of leakproof operators) are allowed to run before the RLS filter, which gives the

query optimizer greater flexibility.

2
We refer to the initial query performed by these operations to check if a value exists before updating or deleting it.
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For SQL Server, we do not find explicit documentation of security issues related to the placement

of the RLS filter in the query execution order. When running query tests, however, we find that

comparison operators can and do run before the RLS policy filter.

2.2.2 Query Execution Performance Implications. Evaluating the RLS policy filter before any user-

supplied predicate can degrade query execution speed, because RLS filters typically have to be

evaluated for every row in the table without benefitting from the system’s indexes to optimize

the query’s performance. The reason is that having the RLS policy rely on indexed columns of the

protected table restricts the expressiveness of the policy, allowing it to rely only on data stored

in the protected table. Moreover, such a restriction may still create sub-optimal query execution

plans [4]. For example, in the representative RLS use case described in § 2.3, executing the RLS

filter first creates a large set of rows that now needs to be matched against the user’s query. On the

other hand, if the RLS policy does not rely on indexed fields, evaluating it requires a sequential

scan of the entire table.

PostgreSQL addresses this problem with the use of leakproof operations (§ 2.2.1) which, for many

user queries, enable the query optimizer to construct an execution plan under which the RLS filter

executes on a small subset of the protected table’s rows instead of on all of them. Specifically, the

query optimizer usually chooses to run leakproof filters against an index before running the RLS

policy filter. This process discards rows the user’s query is not interested in, leaving the RLS filter

to run only on rows that could potentially be returned by the user query.

In SQL Server, we do not find explicit discussion of how query execution order is affected by the

existence of an RLS policy. Our examination of SQL Server’s generated query plans, however, shows

that it does not force the RLS policy filter to execute before other filters, similarly to PostgreSQL.

2.3 Running Example: Hospital Patient Data
We consider an example RLS use case, which we use as a running example throughout the paper.

This use case is taken from user community of OpenEMR [3], a popular open-source electronic

health records and medical practice management system. OpenEMR offers support for medical

billing, clinical decision rules, etc. It is available for both on-premise and cloud-based deployments.

The OpenEMR community has raised the access control problem when an OpenEMR system is

shared by multiple clinics belonging to the same healthcare organization [6]. OpenEMR supports

restricting viewing of the patient record table only to certain users (e.g., doctors), but it does not

support per-patient access controls. OpenEMR thus allows a doctor to view any patient record in

its database, which enables doctors to view records of patients at clinics other than their own.

Before the introduction of RLS to the backend RDBMS, the suggested way to solve the above

challenge was by creating a separate database per site—with the related increase in computational

requirements and management overhead. In contrast, RLS enables sharing a single patients table

between multiple sites, with the RLS policy ensuring isolation of patient data between sites. Figure 1

demonstrates how a PostgreSQL backend can implement this approach. Lines 1–14 define the policy

filter with the site_policy function. This policy excludes rows of patients that do not belong to

the querying doctor’s site; the site information is obtained from an auxiliary doctors table, not
from the protected table. Lines 16–21 enable RLS protection of the patients table with this policy.

Subsequently, any read query on the patients is rewritten to include the policy. For instance:

SELECT * FROM patients WHERE
Name='Lucía Lopez';

is rewritten by the query optimizer to:

SELECT * FROM patients WHERE
site_policy(site_id,current_user) and Name='Lucía Lopez';
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1 CREATE FUNCTION

2 s i t e _ p o l i c y ( r ow_ s i t e i n t 8 , c u r r _ u s e r t e x t )

3 RETURNS boo l

4 AS $$

5 BEGIN
6 r e t u r n (

7 ( s e l e c t s i t e _ i d

8 from do c t o r s

9 where user_name = cu r r _ u s e r )

10 = r ow_ s i t e

11 ) ;

12 END ;

13 $$

14 LANGUAGE p l p g s q l ;

15

16 ALTER TABLE p a t i e n t s

17 ENABLE ROW LEVEL SECURITY ;

18

19 CREATE POLICY do c t o r _ r e ad

20 ON p a t i e n t s FOR SELECT
21 USING ( s i t e _ p o l i c y ( s i t e _ i d , current_user ) ) ;

Fig. 1. OpenEMR multi-site scenario: PostgreSQL environment setup.

Notice that the execution order of site_policy and Name equality filter is determined by the

query optimizer, because the equality filter is leakproof.

3 THREAT MODEL AND SECURITY GOAL
We consider an RDBMS offering services to multiple tenants. For example, a cloud-based RDBMS

serving multiple customers (with customers directly querying the RDBMS) or a web application’s

database backend (with the application querying the RDBMS to respond to user actions).

The RDBMS stores data of different tenants in the same table(s), and the security goal is to isolate

data between the different tenants using RLS. That is, each tenant should logically observe only a

subset of the table dictated by the RLS policy and should not be able to learn anything about other

rows of the table.

The threat under consideration stems from untrusted users. Attacks by the operating system (OS)

or hardware are out of scope. The OS and hardware are assumed either to be trusted or protected

using orthogonal mechanisms (e.g., structured data encryption [16, 19, 28]). Our threat model

thus covers many typical RDBMS contexts, from in-house, on-premise systems to contemporary

commercial cloud services [9, 37].

Attacker. The attacker is an authorized non-privileged user/tenant with read access to an RLS

protected table. The attacker’s goal is to learn information about rows that the RLS policy does

not authorize it to view. For example, if we have a table of vaccinated people and the RLS policy

allows users to view only rows that belong to their region, an attack would be for the attacker to

determine if an ID or phone number of people outside of their region exists in the table.

Attacker power. We assume that the attacker can interact with the RDBMS only by querying it.

In particular, the attacker cannot observe the RDBMS’s storage access pattern or learn information

via microarchitectural side-channels (e.g., via cache attacks [20]).

We further assume that the system is correct. That is, the attacker cannot compromise the

RDBMS or the operating system hosting it and then run arbitrary code to download the entire

protected table. Finally, we assume that the attacker cannot eavesdrop on queries performed by

other users and/or on their responses.
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4 RLS TIME SIDE-CHANNEL
We show that RLS policy enforcement creates timing differences in query execution, which can

be exploited by an attacker as a side-channel through which they can learn certain information

about rows they are restricted from viewing by RLS. We first describe the attack’s goals, i.e., the

kind of information it obtains (§ 4.1). We then describe the side-channel attack and the conditions

sufficient for exploiting it (§ 4.2), and demonstrate exploitation of managed PostgreSQL and SQL

Server database instances on AWS (§ 4.3).

4.1 Attack Goals
The goal of the attack is to learn information about the cardinality of protected table rows that

match an attacker-supplied filter. (We use the term filter to refer to a boolean function that receives

a table and returns a table composed of the matching rows on which the function evaluates to true.)

We define several notions of data privacy that our attack can violate, depending on the attack

conditions:

(1) Existence privacy: An attacker should not be able to know if a value 𝑣 exists in the table.

Existence privacy is important, for example, to avoid leaking personal information, such as if

a certain name or identifying number is present in a table of patients.

(2) Cardinality privacy: An attacker should not be able to tell how many times a value 𝑣 appears

in the table.

The above privacy properties are listed in increasing “magnitude” of privacy. For instance,

breaking cardinality privacy implies we can also break existence privacy, because we can check if

𝑣 exists in the table by checking if 𝑣 appears more times than a value 𝑥 known not to appear in

the table (e.g., an illegal value). As we shall see, it becomes more difficult to breach these privacy

properties as their privacy “magnitude” increases.

It may seem that breaching one of these privacy notions does not provide an attacker with

significant information. However, the possibility of compounding an attack makes even these

seemingly weak privacy notions important. For example, suppose we are able to violate existence

privacy and determine that a patients table has a patient with ID 𝑥 . We can then refine the attack

filter and search for the existence of a patient with ID 𝑥 and age 𝑦, for various 𝑦, and thereby

eventually learn the patient’s age. We can continue repeating this type of process and incrementally

expose more information from RLS protected rows. In other words, compounding the attack enables

translating a “weak” existence privacy breach into a much more significant privacy breach.

4.2 Attack Description
We analyze query execution time under RLS and show how, under certain conditions, differences

in the execution time of specific queries—carefully chosen by the attacker—can reveal information

about rows that the attacker is unauthorized to view by RLS.

Attack overview. Let𝑇 be the table protected by an RLS policy filter 𝑃 . The attack invokes a query

filter 𝑄 , to learn information about the cardinality of 𝑄 (𝑇 ). In a nutshell, the attack exploits query

plans whose execution evaluates the filter 𝑄 and passes its output to the RLS policy filter 𝑃 , which

means that the cardinality of the row set passed to 𝑃 is potentially secret. We find that applying the

RLS filter imposes measurable overhead—sometimes even measurable per-row overhead—which

enables the attacker to infer information about the (secret) number of rows on which the RLS filter

was applied from the query’s execution time, even through the filter’s output is itself non-secret.

We now walk through the attack, explaining the required conditions to mount it as we go.
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Requirement: Query plan evaluates 𝑄 before RLS filter 𝑃 . The attack requires the system’s

query plan to evaluate the attacker’s filter 𝑄 before it evaluates the RLS policy filter 𝑃 . We find

that in practice, if 𝑄 is defined on indexed columns, then the query optimizer will evaluate 𝑄 first,

provided that𝑄 is composed of “leakproof” operators. The reason is that from the query optimizer’s

perspective, evaluating 𝑃 first would require a sequential table scan, whereas evaluating 𝑄 first

does not and therefore produces a more efficient execution plan. We remark that even if the RLS

policy 𝑃 is also over indexed columns, an RLS policy typically also relies on data from the table 𝑇 ,

which leads 𝑄 to run before 𝑃 (see § 2.2.2). Indeed, forcing evaluation of the RLS filter to occur first

would cause unacceptable performance overheads (see § 5.3.1).

Breaking existence privacy. We use 𝑡𝑖𝑚𝑒 (𝐹 (𝑇 )) to denote the execution time of filter 𝐹 on a

table 𝑇 . We assume that running any filter on an empty table takes zero time. The time it takes to

perform the attacker’s query 𝑄 is:

𝑟𝑢𝑛_𝑡𝑖𝑚𝑒 (𝑇,𝑄, 𝑃) = 𝑡𝑖𝑚𝑒 (𝑄 (𝑇 )) + 𝑡𝑖𝑚𝑒 (𝑃 (𝑄 (𝑇 )))

Eq. 1: Query run-time calculation with RLS

Consider now two attacker queries,𝑄𝑘 and𝑄𝑢 , which filter for the keys 𝑘 and 𝑢 whose existence

in the protected table 𝑇 the attacker wishes to compare. To break existence privacy, 𝑘 can be an

invalid value whose cardinality is known to be zero. The difference in the execution time of𝑄𝑘 and

𝑄𝑢 is:

𝑑𝑒𝑙𝑡𝑎 = 𝑟𝑢𝑛_𝑡𝑖𝑚𝑒 (𝑇,𝑄𝑢, 𝑃) − 𝑟𝑢𝑛_𝑡𝑖𝑚𝑒 (𝑇,𝑄𝑘 , 𝑃)
= 𝑡𝑖𝑚𝑒 (𝑄𝑢 (𝑇 )) + 𝑡𝑖𝑚𝑒 (𝑃 (𝑄𝑢 (𝑇 )))
− (𝑡𝑖𝑚𝑒 (𝑄𝑘 (𝑇 )) + 𝑡𝑖𝑚𝑒 (𝑃 (𝑄𝑘 (𝑇 ))))

We define:

𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎 = (𝑡𝑖𝑚𝑒 (𝑄𝑢 (𝑇 )) − 𝑡𝑖𝑚𝑒 (𝑄𝑘 (𝑇 )))
𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎 = (𝑡𝑖𝑚𝑒 (𝑃 (𝑄𝑢 (𝑇 ))) − 𝑡𝑖𝑚𝑒 (𝑃 (𝑄𝑘 (𝑇 ))))
𝑑𝑒𝑙𝑡𝑎 = 𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎 + 𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎

Eq. 2: Query run-time delta calculation

We show that the following conditions are sufficient for 𝑑𝑒𝑙𝑡𝑎 to encode sufficient information

for comparing the cardinality of 𝑢 and 𝑘 in the table 𝑇 :

(1) Negligible 𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎. Formally: for any 𝑘,𝑢 in 𝑇 , 𝑎𝑏𝑠 (𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎)) < 𝜖 . As discussed

below, query delta in practice is < 50 microseconds.

(2) Evaluation time of the RLS filter 𝑃 is linear in the number of input rows.

(3) The per-row time of evaluating 𝑃 is non-negligible (measurable). Formally: 𝑡𝑖𝑚𝑒 (𝑃 (𝑇𝑟 )) ≈ 𝛿 ,
for any single-row table 𝑇𝑟 .

If these conditions hold, we obtain the following, which enable using 𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎 to breach

existence privacy:

• if 𝑎𝑏𝑠 (𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎) < 𝛿 , then the number of instances of 𝑘 in 𝑇 is equal to that of 𝑢.

• if 𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎 > 𝛿 , then number of instances of 𝑢 in 𝑇 is larger than of 𝑘 .

• if 𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎 < −𝛿 , then number of instances of 𝑢 in 𝑇 is lower than of 𝑘 .
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Fig. 2. KDE plot of PostgreSQL random SELECT query latency.

Because we know 𝑘 does not exist in the table, the above enables determining if 𝑢 exists in the

table.

Next, we explain why these sufficient conditions for the attack hold.

Negligible 𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎: There are several scenarios in which this condition holds. One example

is when 𝑄 queries an indexed column(s) (as we assume) and the index lookups are satisfied from

DRAM, which the attacker can arrange with high probability by running 𝑄 two times, so that the

first execution brings in the index from disk if it is not already in memory.

When index operations are satisfied from DRAM, they are fast and have similar time (on the

order of hundreds of CPU cycles) whether the queried key exists in the index or not. To demonstrate

this effect, Figure 2 shows the latency distribution of PostgreSQL SELECT queries of random keys

on an indexed column of a 2 million row table over an AWS data center network (the hardware

setup is described in § 4.3). The figure shows that 80% of the queries take 310–360 microseconds,

indicating that with high probability, the 𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎 will be < 50 microseconds.

Even when the columns𝑄 queries are not indexed, 𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎 can be negligible if𝑄 is satisfied

with a sequential scan and the queried table is small. In this case, 𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎 is negligible because

the scan time is negligible. In our experiments, 𝑞𝑢𝑒𝑟𝑦_𝑑𝑒𝑙𝑡𝑎 was negligible for sequential scans of

< 1000 rows. Due to the limited applicability of this setting, the rest of our experiments and attack

demonstrations consider the indexed column(s) setting. However, our proposed mitigation (§ 5)

applies to small tables as well.

Measurable 𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎: Evaluation time of the RLS filter is indeed linear in the number of

input rows, since filters are evaluated via a sequential scan of the input. Our main concern is

therefore whether the time of evaluating the filter on a row is measurable. According to prior

work [38], time differences as low as 150 nanoseconds and 10–50 microseconds are measurable

over local and wide area networks, respectively. Such policy execution times arise if the RLS filter

contains a non-trivial computation (e.g., recursion [36]) or if it is a SELECT operation on a dedicated

policy table (because even the act of accessing the querying user’s context to match against policy

table rows incurs measurable latency). Dedicated policy tables are common, because they simplify

management and reduce storage costs by creating an indirection level between the protected

table and security-related information about users (e.g., each user’s site id or access permissions).

Without a dedicated table, all such information has to be stored in each row of the protected table.

Indeed, using dedicated RLS tables is a recommended practice [27].
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Fig. 3. Comparison of PostgreSQL SELECT query latency distribution with different policies over 5000 queries.

Figure 3 demonstrates the magnitude of RLS policy execution time in practice. It shows the

latency distribution of SELECT queries on an indexed column of a 2 million row table under various

RLS configurations, using PostgreSQL on the AWS setup described in § 4.3. We compare a baseline

with no security policy (none) to two ways of deploying RLS: with the security information stored

in the rows of the protected table (inline) or stored in a dedicated table (table). The inline policy
in this comparison evaluates the 𝐶𝑈𝑅𝑅𝐸𝑁𝑇_𝑈𝑆𝐸𝑅 of the session against the user name stored

in the protected table column, and the table policy evaluates if the 𝐶𝑈𝑅𝑅𝐸𝑁𝑇_𝑈𝑆𝐸𝑅 is found in

the policy table and has read permission. In both cases, the user name column is indexed. Figure 3

shows that both inline and table have latency distributions that statistically differ from none. With

inline, we find an observable average latency difference of ≈ 16 microseconds from none. With the

common table configuration, the difference is an even more significant ≈ 130 microseconds.

Breaking cardinality privacy. Depending on the run time of the RLS policy and the cardinality

of the set of rows that pass the attacker’s filter, the query’s execution time can be used to obtain a

tight estimate on the cardinality. Simply, if the attacker knows that the execution time is about

𝑛 · 𝛿 , where 𝑛 is the (unknown) cardinality, they can divide by 𝛿 to obtain 𝑛.

4.3 Attack Proof-of-Concept
This section shows a proof-of-concept (PoC) demonstration of the RLS side-channel againstmanaged

PostgreSQL and SQL Server database instances in AWS. Our PoC models a realistic cloud setting, in

which (1) the DBMS is fully managed by the cloud provider and only accessible via the network, even

for its administrators; and (2) the DBMS virtual machine is hosted with other tenants on a shared

physical host, in the production environment of a popular public cloud provider, and it experiences

varying load conditions and competes for hardware resources with co-tenants. Moreover, AWS

fully-managed DBMS provide an optimized deployment of the DBMS, which shows that the attack’s

success is not due to a DBMS misconfiguration.

Environment setup. For running the DBMS, we use AWS RDS [8] which provides fully-managed

relational database services. We provision PostgreSQL and SQL Server on db.m6i.large instances,
which have 2 vCPUs and 8GB of DRAM. For the clients (attacker’s machines), we use t2.micro
instances with 1 vCPU and 1GB of DRAM.

Client setup. To run our experiments, we use Python scripts on client virtual machines. We use

the psycopg2 and pyodbc libraries to interact with PostgreSQL and SQL Server, respectively. Time
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𝑃𝐾 𝑁𝑎𝑚𝑒 𝐼𝐷_𝑁𝑢𝑚𝑏𝑒𝑟 𝐴𝑔𝑒 𝑆𝑖𝑡𝑒_𝐼𝐷

1 Anthony Moore 9788453650 24 0

2 Sofia Jones 8456601663 57 3

3 Zoey Martinez 2697388300 61 2

Table 1. Patients table example data.

𝑃𝐾 𝑈𝑠𝑒𝑟𝑁𝑎𝑚𝑒 𝑁𝑎𝑚𝑒 𝐼𝐷_𝑁𝑢𝑚𝑏𝑒𝑟 𝑆𝑖𝑡𝑒_𝐼𝐷

1 lily978845 Lily Brown 3716565274 1

2 lily519804 Lily Jones 2697388300 2

3 joseph451687 Joseph Taylor 9719231653 3

Table 2. Doctors table example data.

is measured with the perf_counter_ns method, which uses the most accurate available system

clock.

Database setup. We use a hospital patient data schema, taken from the OpenEMR commu-

nity (§ 2.3). We set up a patients table and a doctors table. Table 1 and Table 2 show examples of

these tables’ data. We define an RLS policy limiting a doctor to only view patient data of patients

from their site, as described in Figure 1.

We populate each table with 2 million random patient records and 10,000 random doctor records,

split over five sites. We define the 𝑖𝑑_𝑛𝑢𝑚𝑏𝑒𝑟 column to have a unique index.

We purposefully target a simple table and RLS policy, because this simple scenario has the most

efficient queries and hard-to-observe timing variance. Showing that the attack succeeds in this

challenging scenario indicates that it will succeed against more complex tables/queries. § 4.3.3

provide evidence for this argument by evaluating the attack against a complex RLS policy.

4.3.1 PostgreSQL. We target PostgreSQL 13.7. We first target breaching existence privacy. We

craft a query in the form of:

SELECT * FROM patients WHERE id_number=X;

The DBMS applies the RLS policy, transforming the query into:

SELECT * FROM patients WHERE id_number=X
AND site_policy(site_id,current_user);

We verify that the query planner runs the filter 𝑖𝑑_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑋 before the policy filter, due to

the 𝑖𝑑_𝑛𝑢𝑚𝑏𝑒𝑟 column being indexed. To this end, we use the “explain analyze” command of

PostgreSQL, which displays the query plan.

To perform the attack, we execute a benchmark that queries the patient’s table 𝑖𝑑_𝑛𝑢𝑚𝑏𝑒𝑟

column for several types of values, which we denote as follows:

• Non-existent: Values that do not exist in the patients table.

• Authorized: Values in the patients table that the querying user is allowed to read.

• Unauthorized: Values in the patients table that the RLS policy restricts the querying user

from reading.

Figure 4 shows the latency distribution of the different query types. Each query returns at

most one row; time differences between non-existent and authorized queries are due RLS policy

evaluation time. There is a clear separation of about 0.5 milliseconds between values that do not
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(a) Distribution (KDE plot).

Query Type Avg (`s) Std. Dev

Non-Existent 377.25 34.31

Authorized 880.87 108.6

Unauthorized 889.7 101.55

(b) Average and standard deviation.

Fig. 4. PostgreSQL query latency of existence privacy breaching query, by queried value type.

Algorithm 1 Procedure for checking if target_key exists in the database (nkey is non-existent
and akey exists the database).

1: procedure CheckIfKeyExist(𝑛𝑘𝑒𝑦, 𝑎𝑘𝑒𝑦, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑘𝑒𝑦, 𝑟𝑜𝑢𝑛𝑑𝑠)
2: 𝑟𝑡_𝑛𝑜𝑡_𝑒𝑥𝑖𝑠𝑡𝑠 = 𝑅𝑢𝑛𝑄𝑢𝑒𝑟𝑦𝑁𝐴𝑛𝑑𝐺𝑒𝑡𝑀𝑖𝑛𝐸𝑙𝑎𝑝𝑠𝑒𝑑 (𝑛𝑘𝑒𝑦, 10)
3: 𝑟𝑡_𝑒𝑥𝑖𝑠𝑡𝑠 = 𝑅𝑢𝑛𝑄𝑢𝑒𝑟𝑦𝑁𝐴𝑛𝑑𝐺𝑒𝑡𝑀𝑖𝑛𝐸𝑙𝑎𝑝𝑠𝑒𝑑 (𝑎𝑘𝑒𝑦, 10)
4: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑟𝑡_𝑛𝑜𝑡_𝑒𝑥𝑖𝑠𝑡𝑠 + (𝑟𝑡_𝑒𝑥𝑖𝑠𝑡𝑠 − 𝑟𝑡_𝑛𝑜𝑡_𝑒𝑥𝑖𝑠𝑡𝑠)/2
5: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑠 = []
6: for 𝑖 := 𝑟𝑎𝑛𝑔𝑒 (𝑟𝑜𝑢𝑛𝑑𝑠) do
7: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑠 [𝑖 ] = 𝑅𝑢𝑛𝑄𝑢𝑒𝑟𝑦 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑘𝑒𝑦)
8: end for
9: 𝑔𝑢𝑒𝑠𝑠 =𝑚𝑖𝑛 (𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑠) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

10: return 𝑔𝑢𝑒𝑠𝑠

11: end procedure

exist and those that do exist—even if the user is not allowed to view them. This means that by

measuring the run time of the query, the attacker can determine if a patient ID is in the patients
table, even if the policy restricts the attacker from viewing that patient’s data.

End-to-end attack. We demonstrate that the query time separation shown in Figure 4 can be

exploited to determine if a target key exists in the database. Algorithm 1 shows our end-to-end

attack procedure. We assume the attacker has prior knowledge of two keys: nkey, which does not

exist in the database, and akey, which does. The attacker uses queries for these keys to calculate a

threshold distinguishing a query for a non-existent key from an existing key. Next, they query for

the target key and determine if it exists in the database by comparing the query’s run time with

the threshold. The attacker performs this experiment multiple times and makes a decision based

on the minimum run time of the query.

To evaluate the attack’s practical relevance, we emulate a production environment in the follow-

ing ways. First, we introduce external load on the DBMS: while our experiments are running, the

DBMS also serves fluctuating YCSB workloads running concurrently on other machines. Second,

we take into account effects of varying load on the DBMS machine: we perform the attack every

3 minutes over a 24-hour period of a business day. Finally, we take into account network delay

effects: we perform the attack from a virtual machine in the local and a remote “zone” as the DBMS.

(The distance between AWS zones is up to 100 kilometers.)

Figure 5 reports the attack’s success rate in determining the status of 100 random keys (some

of which exist in the database and some do not) for a DBMS in the AWS eu-west-1 region. The
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Fig. 5. End-to-end attack success and database load over a 24-hour period. Top: attacker machine is in the
same zone as the database. Bottom: attacker machine is in a remote zone.

overall success rate after 10 queries for each key is 99.77% and 99.63% for attacks originating from

the local and a remote zone as the DBMS, respectively. Moreover, the attack succeeds for varying

times of day and fluctuating DBMS loads.

Having demonstrated that query time separation translates into a full attack, our following attack

demonstrations show only query times (still against the AWS managed PostgreSQL service).

Attack compounding. We demonstrate compounding of the attack—that is, having found that

a specific patient whose data we are not authorized to view exists in the patients table, we will
learn information about their age. To this end, we craft a filter that depends on a patient’s ID and

some predicate over the age, such as whether age is greater than 𝑦:

SELECT * FROM patients WHERE
id_number=X AND function(age,y);

PostgreSQL’s query planner places the age filter before the RLS policy filter, allowing the attacker

to search for the age of a patient with a specific ID. Figure 6 compares the distribution of query

execution times for patients whose record satisfies the age predicate to patients which do not

satisfy it, for various types of predicates (equality, greater than, etc.). For every predicate, there is a

significant separation in execution time that depends on whether the patient’s record satisfies the

predicate, allowing the attacker to learn whether the patient’s age satisfies the predicate.

Cardinality privacy. Finally, we demonstrate a breach of cardinality privacy. We use a table in

which patient ages are first distributed between 1 to 100 such that 𝐴𝑔𝑒 = 1 appears 100 times,

𝐴𝑔𝑒 = 2 appears 200 times and so on, until 𝐴𝑔𝑒 = 100 which appears 10,000 times. The remaining

rows are then assigned random ages between 101–120. We craft the following query:

SELECT * FROM patients WHERE Age=Y;

We run this query 20 times for each age between 1 and 100. Figure 7 shows the average query

execution time as a function of the cardinality of the queried age in the table. The linearity of the

execution time shows that cardinality information can be easily derived.
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Fig. 6. PostgreSQL query latency distribution of predicates over a specific patient’s age. “Predicate result”
refers to whether the predicate returns true.
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Fig. 7. PostgreSQL query latency of the cardinality privacy breaching query, as a function of the cardinality
of Age value in the patients table.

4.3.2 SQL Server. We target Microsoft SQL Server 2019, Standard Edition. We perform the same

benchmarks as in PostgreSQL.

Existence privacy. Figure 8 shows the latency distribution of the existence privacy breaching

query. While the run time results are closer than with PostgresSQL, it is possible to distinguish

values that do not exist from those which exist but the querying user is unauthorized to view.

Figure 8b also shows IO statistics [23] which can be collected from SQL Server. (An attacker cannot

view these statistics, we show them only to explain the results.) We report the number of “logical

reads” performed by the query. These are 8 KB page reads from the SQL Server cache stored in

DRAM. We see that an Unauthorized query performs the same amount of IO as the Authorized

query, while a query for the non-existent value performs fewer logical reads on patients table
and no reads on the doctors table. This explains why queries for non-existent values are faster.

We believe the reason for the large difference in query run time between SQL-Server and

PostgreSQL is because SQL Server runs the RLS filter more efficiently. The RLS policy filter (Figure 1)
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(a) Distribution (KDE plot)

Query Type Avg. (`s) Std. Dev Logical Reads

Patients Doctors

Non-Existent 386.01 37.23 4 0

Authorized 412.80 42.74 6 4

Unauthorized 404.49 41.04 6 4

(b) Average, standard deviation, and IO metrics.

Fig. 8. SQL Server query latency of existence privacy breaching query, by queried value type.
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Fig. 9. SQL Server query latency distribution of cardinality privacy breaching query, as a function of the
cardinality of Age value in the patients table. The line shows the average time, encompassed by the standard
deviation.

has two parts: searching for the querying user in the doctors table and then comparing the user’s

𝑠𝑖𝑡𝑒_𝑖𝑑 to the row’s 𝑠𝑖𝑡𝑒_𝑖𝑑 . Since searching for the user does not depend on data from the 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

table, SQL Server does it in parallel to running the query, whereas PostgreSQL executes the RLS

policy filter as a black box only after the query filter finishes.

Cardinality privacy. In contrast to PostgreSQL, when SQL Server optimizes our cardinality

privacy breaching query, it decides to evaluate the RLS filter before the user-supplied filter. As

a result, the query always takes 2–4 milliseconds to execute, regardless of the cardinality of the

queried Age in the table (Figure 9), which blocks the attack.

4.3.3 Attacking Complex Policies. Here, we show that our attack becomes easier to mount as the

RLS policy becomes more complex and thus its execution time increases. To demonstrate this

effect, we define a policy that leverages Active Directory (AD) permission services. AD is a popular

directory-based service for identity/permission management in the Microsoft Windows ecosystem.

SQL Server offers methods to query AD services. These are often used to define an RLS policy

based on organization-level permissions defined in AD, rather than DBMS-specific permissions

and dedicated tables.
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(b) Average and standard deviation.

Fig. 10. SQL Server with AD-based policy: Existence privacy breaching query latency, by queried value type.

We evaluate our attack when the AWS SQL Server service is configured with such an AD-based

policy, in which the policy filter uses the SQL Server 𝐼𝑆_𝑀𝐸𝑀𝐵𝐸𝑅() [26] method to check if the

querying user belongs to the appropriate AD group. Figure 10 shows the running times of existence

privacy breaching query on AD policy. The separation between queries for values that do and

do not exist is significantly better than in prior experiments, as the policy filter is slower due to

making AD queries.

5 MITIGATION APPROACHES
This section discusses the challenges of blocking RLS side-channel information leakage and ap-

proaches for mitigating the side-channels.

5.1 Data-ObliviousQueries
The standard approach for eliminating side-channels is via data-oblivious (or constant-time) tech-

niques [7, 11, 14, 42, 43]. The basic idea is to perform a computation over secret information whose

execution time is independent of the input secret data. This approach comes with a performance

cost, because every computation runs in the same time as the worst-case computation. In this

section, we explore the viability of a data-oblivious solution to RLS side-channels. We first propose

a solution that provides privacy for unique keys, e.g., primary table keys. We also outline the

challenges of implementing data-oblivious solutions for non-unique keys (§ 5.2).

5.1.1 Unique key solution. Here, we consider a unique key scenario, e.g., as with a keys that serve

as a table’s primary keys. In this case, all our privacy notions “collapse” to existence privacy: any key

can either exist or not in the table, but cannot appear in more than one row if it exists. Maintaining

existence privacy in this case therefore reduces to the problem of “hiding” the difference between a

“miss” query targeting a non-existent key and a successful query targeting a key that exists in the

table.

Recall that an existence privacy breach assumes (1) a non-measurable query delta, i.e., that the

time difference between point queries for different queries is indistinguishable; and (2) a measurable

policy delta, i.e., that the attacker can compare query execution times and distinguish whether

the RLS filter was evaluated at least once in one query but not the other (§ 4.2). Assumption (1)

holds for unique keys, because (excluding RLS costs) both types of queries perform one index

search. It follows that making query execution data-oblivious requires addressing assumption (2),

as assumption (1) implies that point queries without RLS are data-oblivious.
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To maintain existence privacy, we need to “hide” the time difference between a query for a

non-existent key and a query that returns a row. This time difference is due solely to the evaluation

of the RLS policy on each row returned by the user query, as evidenced in Algorithm 2. The listing

shows pseudo code of PostgreSQL’s implementation of an indexed point query, which iterates over

the set of returned rows and evaluates the RLS policy filter on each row.

Algorithm 2 Original behavior for index scan with RLS

1: procedure ExecuteQuery(𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠)

2: 𝑖𝑡𝑒𝑚, 𝑖𝑠𝐹𝑜𝑢𝑛𝑑 = 𝑠𝑒𝑎𝑟𝑐ℎ𝐼𝑛𝑑𝑒𝑥 (𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠)*
3: if 𝑖𝑠𝐹𝑜𝑢𝑛𝑑 ≠ 𝑡𝑟𝑢𝑒 then
4: return 𝑛𝑢𝑙𝑙

5: end if
6: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑅𝐿𝑆𝑃𝑜𝑙𝑖𝑐𝑦 (𝑖𝑡𝑒𝑚)
7: return 𝑟𝑒𝑠𝑢𝑙𝑡

8: end procedure

*
The 𝑠𝑒𝑎𝑟𝑐ℎ𝐼𝑛𝑑𝑒𝑥 function returns the last item that was traversed in the index scan even if no match value was found,

and a Boolean value to signal if a match was found.

Algorithm 3 Existence Privacy for index scan with RLS

1: procedure SafeExecuteQuery(𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠)

2: 𝑖𝑡𝑒𝑚, 𝑖𝑠𝐹𝑜𝑢𝑛𝑑 = 𝑠𝑒𝑎𝑟𝑐ℎ𝐼𝑛𝑑𝑒𝑥 (𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠)
3: 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑄𝑢𝑒𝑟𝑦 = !𝑖𝑠𝐹𝑜𝑢𝑛𝑑

4: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑅𝐿𝑆𝑃𝑜𝑙𝑖𝑐𝑦 (𝑖𝑡𝑒𝑚)
5: if 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑄𝑢𝑒𝑟𝑦 = 𝑡𝑟𝑢𝑒 then
6: return 𝑛𝑢𝑙𝑙

7: else
8: return 𝑟𝑒𝑠𝑢𝑙𝑡

9: end if
10: end procedure

Our proposed solution is to make any point query on an RLS-protected table execute exactly the

same code path, regardless of whether the set of rows is empty or not—that is, we make 𝑝𝑜𝑙𝑖𝑐𝑦_𝑑𝑒𝑙𝑡𝑎

(§ 4.2) equal to zero. Algorithm 3 shows the pseudo code of our implementation in PostgreSQL.

We add a flag that marks the query as invalid if no match was found in the index scan. However,

we rely on the semantics of the index, which returns the row whose key is the predecessor of the

searched key. This allows us to continue and evaluate the RLS policy filter on some row in the

table—the row containing said predecessor. Finally, we drop the result if the query was marked

invalid. Overall, a query executes exactly the same code path whether or not the searched key is

found, and thus executes in a similar time.

Implementation. We implement our solution in PostgresSQL. Our implementation modifies the

B
+
-tree index implementation, which is the default index in PostgreSQL and fits most settings [31],

and the query execution logic. We modify the index to return a value even for “miss” searches,

while indicating to the query logic that this query should later be dropped. We modify the query

logic to evaluate the RLS policy in these cases and subsequently drop the query.

Security evaluation. To evaluate the resistance of our implementation to existence privacy

leakage, we re-run our proof-of-concept RLS side-channel demonstration (§ 4.3.1). Figure 11 shows

the results. With our solution implemented in PostgreSQL, the distribution of query run times of

the different queries becomes essentially identical, thereby defeating the attack.
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Fig. 11. Query latency distribution (KDE plot) of non-existent, authorized, and unauthorized queries.

One potential issue with these results is that this is a relatively lightweight workload. To alleviate

this concern, we develop a benchmark for RLS side-channel protection (§ 6) and our evaluation

finds similar results even with this heavier workload (§ 7).

Performance implications. Intuitively, our solution only adversely affects “miss” queries, which

are slowed down by the amount of time the RLS policy filter takes to run. There are therefore two

workload factors that determine the performance impact of our solution: the cost of the RLS filter

and the fraction of queries that target non-existent keys (“miss”). In particular, our solution imposes
negligible overhead on any workload without “miss” queries”. § 7 shows a detailed breakdown of how

RLS filter time and miss query ratio impact performance with our solution.

5.2 Non-Unique Keys Data-Obliviousness Challenges
The main challenge in extending the data-oblivious solution approach to non-unique keys is

that we risk significantly degrading performance, because we cannot bound the policy time delta

between the query types. With non-unique keys, the “secret” becomes the cardinality of some

key in the table, so a data-oblivious solution needs to make the query time over a value with high

cardinality indistinguishable from that over a query with low cardinality—which means potentially

significantly slowing down queries over low-cardinality keys, because we cannot magically decrease

the execution time of queries of high-cardinality keys.

The above issue seems fundamental. If it is possible to bound the number of duplicate keys,

we can implement data-oblivious queries in a manner similar to the unique key solution, whose

latency will increase with the duplicate key bound. When no such bound can be guaranteed, we

believe that in domains with high privacy requirements, RLS should be restricted to unique keys,
where privacy can be efficiently achieved, as described in the previous section.

5.3 Discussion: Alternative Approaches
5.3.1 Applying Policy First. A straightforward approach for blocking RLS information leakage is

by always applying the policy filter first, so that the user-supplied query filter never executes on

rows the user is unauthorized to view. Unfortunately, such a solution would have unacceptable

performance overheads, as detailed next.

Dictating that the policy filter executes first (or, equivalently, declaring all query operators not

“leakproof”) limits the query optimizer’s options for constructing the most efficient query plan.

Typically, an RLS policy cannot efficiently extract the rows that pass the filter for the querying user
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(e.g., via an index). As a result, the policy filter must be applied via a sequential scan. But this can

dramatically increase query times. For instance, on a table with 20M rows, a sequential scan that

executes a 200 microsecond policy filter on each row will require more than an hour to complete.

In fact, PostgreSQL introduces the limited set of “leakproof” operators to mitigate the performance

problems caused by applying policy filters first [4].

Another option is defining the policy on an indexed column(s) of the protected table, but this

means that all data required to verify the policy have to be in the protected table, which does not

allow indirect access to security-related information. This approach imposes significant storage

costs and management burden, because each row must contain access permission cell(s) and every

table record must be updated whenever some access permission changes.

5.3.2 Volume Hiding. Techniques for secure cloud storage may seem applicable to our problem,

as their goal is to prevent information leakage. We argue, however, that these techniques are not

appropriate to block RLS information leakage due to scope and performance reasons.

In secure cloud storage, the goal is to prevent the system hosting the RDBMS from learning

information about the data. The attacker is thus more powerful than our attacker—a regular user

interacting with RDBMS using queries—and the protection techniques are accordingly heavyweight,

e.g., requiring encryption of the data and data oblivious storage access patterns. While a full survey

of secure storage techniques is outside the scope of this paper, we exemplify the issues by going

through the exercise of evaluating the particular technique of volume hiding [16, 19, 28] as a solution
to our problem.

Volume-hiding techniques protect against leakage of the number of values associated with a key

(its volume) from structured encryption (STE) databases. Volume hiding thus requires an encrypted

database, which is already overkill for many RLS applications. Our target workloads are dynamic

(with table updates), but volume-hiding techniques must rebuild data structures after dynamic

updates. Last but not least, volume hiding focuses on leakage from the storage representation (as

the attacker can observe the storage content) and not on leakage from query execution time. In

fact, designs are explicitly allowed to leak the so-called “query equality pattern,” i.e., whether two

queries are to the same key or not—which violates our existence privacy notion (§ 4.1).

5.3.3 Other Approaches.

Timing obfuscation. In general, timing side-channels can be blocked by adding fixed or dynamic

delays to the timed operation [18, 33, 35]. This technique is expensive and does not completely

eliminate the timing channel. In addition, timing obfuscation in our context requires constantly

evaluating query run times—as load changes—to determine what a “typical” query time looks like,

in order to artificially increase the execution time of all queries to look like a “typical” query.

Materialized views. A per-user materialized view reflecting the user’s access permissions

achieves RLS’s security goal, but it has to be recalculated on table changes. In contrast, RLS

efficiently supports dynamic updates.

6 RLS BENCHMARK: MULTI-TENANT YCSB
This section introduces multi-tenant YCSB, an adaption of the popular YCSB [10] to the context of

evaluating the security and performance of RLS side-channel mitigations.

Motivation. There are several reasons why RLS side-channel mitigation requires a new benchmark

for evaluation, and cannot be done using existing benchmarks such as TPC-C, TPC-E [5], or standard

YCSB:
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• Multi-tenancy support. Existing schemas and workloads target a single user (tenant). But without

multi-tenancy, there is no use case for RLS. We therefore need schema and data that admit

multiple tenants and have meaningful security restrictions on the data viewable by each tenant,

as well as workloads that simulate queries but different tenants. In particular, we need to able to

define an RLS policy in the benchmark.

• Unauthorized queries. In addition to supporting multi-tenancy, workloads in an RLS benchmark

need to perform unauthorized queries, which are disallowed by the RLS policy.

• Miss queries. Query workloads in existing benchmarks, such as YCSB and TPC-C, do not contain

“miss” queries, which fail to find any data in the queried tables. As discussed in § 5, however,

miss queries are likely to suffer the most negative performance impact from an RLS side-channel

mitigation. A fair evaluation therefore requires a benchmark that contains miss queries.

6.1 Benchmark Description
The scenario our benchmark simulates is that of a table shared between tenants, each of which can

have multiple users. To prevent users from viewing data of other tenants, the table is protected by

an RLS policy that limits users of a tenant to viewing only records that belong to the tenant.

Our benchmark is an adaption of YCSB. We choose to adapt YCSB for our purposes because it is

both widely accepted and used, while having a simple schema that is straightforward to adapt. In

addition, looking forward to other uses of our benchmark, a YCSB-based workload is more suitable

for additional non-relational uses of RLS that exist in practice—for example, in NoSQL databases

like Google BigQuery and in Open Policy Agent [2] (a service providing object-level security). YCSB

defines a single table, called the 𝑢𝑠𝑒𝑟𝑡𝑎𝑏𝑙𝑒 . YCSB workloads perform different ratios of SELECT,

INSERT, and UPDATE operations. The SELECT operations are performed against a column named

𝑌𝐶𝑆𝐵_𝐾𝐸𝑌 , which is indexed by default and is the table’s primary key. To create our benchmark,

we modify YCSB’s table structure as well as the workload phases that populate and execute the

operation workload.

Figure 12 describes the changes to YCSB’s table structure. First, we extend the usertable schema

with a tenant id (string) column. We then add an RLS policy table, called 𝑎𝑐𝑙𝑠 , which is a mapping

between a database user [29] to its tenant id. Finally, we create an RLS policy that limits a database

user to viewing only rows in the usertable that match its tenant id.

We next adapt the benchmark itself. YCSB has a load phase, which populates the usertable,

and a run phase, which executes a specified operation workload against the usertable. To support

multi-tenancy, we add a load-tenant phase, which populates the RLS policy table with users and

tenant ids, creates the users in the database, and adjust their permissions to be able to read from

the usertable restricted by the RLS policy. We modify the load phase to populate each row with

a tenant id that exists in the RLS policy table. The number of tenants and the number of users

per tenant are benchmark parameters. Tenants ids are generated randomly, and subsequently, we

generate 𝑋 users per tenant, as specified in the benchmark’s configuration.

Finally, we add a new workload that contains miss queries and unauthorized queries. We also

need to modify the YCSB client code, which assumes a single users, to support database connections

by multiple users.

7 MITIGATION EVALUATION
We use multi-tenant YCSB to evaluate two aspects of our RLS side-channel mitigation. First, we

verify the mitigation’s security (i.e., that no information is leaked) not only “in vacuum” but

under load, in the presence of normal traffic by concurrent clients (§ 7.2). Second, we evaluate the

performance impact of the mitigation, by investigating how policy run time, table size, and ratio of

miss queries impact workload throughput (§ 7.3).
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1 CREATE TABLE u s e r t a b l e (

2 YCSB_KEY VARCHAR( 2 5 5 ) PRIMARY KEY ,
3 FIELD0 TEXT , FIELD1 TEXT ,

4 FIELD2 TEXT , FIELD3 TEXT ,

5 FIELD4 TEXT , FIELD5 TEXT ,

6 FIELD6 TEXT , FIELD7 TEXT ,

7 FIELD8 TEXT , FIELD9 TEXT ,

8 t e n a n t _ i d VARCHAR( 3 6 )

9 ) ;

10

11 / ∗
12 ∗ t e n a n t _ i d − 36 c h a r s l o ng t o accommodate a UUID
13 ∗ user_name − 50 c h a r s l o ng t o accommodate
14 ∗ t h e maximum l e n g t h o f a u s e r name in Po s t g r e SQL .
15 ∗ /
16 CREATE TABLE a c l s (

17 pkey s e r i a l PRIMARY KEY ,
18 user_name VARCHAR( 5 0 ) ,

19 t e n a n t _ i d VARCHAR( 3 6 ) ,

20 CONSTRAINT user_name_unique UNIQUE ( user_name )

21 ) ;

22

23 CREATE FUNCTION t e n a n t _ r e a d _ p o l i c y ( varchar ( 3 6 ) t enan t _ i d , t e x t c u r r _ u s e r )

24 RETURNS boo l

25 AS $$

26 BEGIN
27 RETURN ( ( SELECT t e n a n t _ i d FROM a c l s WHERE user_name = cu r r _ u s e r ) = t e n a n t _ i d ) ;

28 END ;

29 $$

30 LANGUAGE p l p g s q l ;

31

32 CREATE POLICY t enan t _ r e a d on u s e r t a b l e

33 FOR SELECT
34 USING ( t e n a n t _ r e a d _ p o l i c y ( t enan t _ i d , current_user ) ) ;
35

36 ALTER TABLE u s e r t a b l e ENABLE ROW LEVEL SECURITY ;

Fig. 12. Multi-tenant YCSB setup.

7.1 Experimental Setup
We run a multi-YCSB workload that performs 5 million SELECT queries. Of these queries, 1% are

unauthorized queries and the rest are authorized queries, a user-configurable fraction of which

are miss queries. We run 63 different configurations of the benchmark, which explore the space of

table sizes, RLS policy overhead, and ratio of miss queries in the workload, as described below. We

compare PostgreSQL 13.2 with our RLS side-channel mitigation to the baseline PostgreSQL 13. (We

cannot implement our mitigation in SQL Server because its source code is not publicly available.)

Configurations. We evaluate 63 configurations, covering the space of the following parameters:

• Table size: 200 K, 2M, and 20M rows.

• RLS policy overhead: We use the policy table size (number of rows) as a proxy for policy

overhead. Because the table is not indexed, the policy filter’s evaluation time is linear in the

policy table’s size. We use policy table sizes of 50, 1000, and 10 K rows.

• Miss query ratio: 1%, 5%, 10%, 20%, 30%, 40%, and 50%.

Hardware. We use a server with a 32-core AMD EPYC 7502 processor. The server is equipped

with 256GB of DDR4 DRAM and a 280GB SSD. The server runs Ubuntu 18.04.
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Fig. 13. Query latency distribution (KDE plot) for miss and unauthorized queries on baseline PostgreSQL
13.2 and PostgreSQL with our RLS side-channel mitigation. This comparison uses a table with 20M rows, an
RLS policy table with 10 K rows, and a fraction of 1% of miss queries and unauthorized queries (each).

7.2 Security Under Load
Here, we evaluate the security of our mitigation with respect to existence privacy. To this end,

we compare average query latency (in microseconds) of unauthorized queries, miss queries, and

authorized successful queries. In every configuration, we observe essentially indistinguishable

latencies between the unauthorized queries and the authorized miss queries, indicating that an

attacker cannot tell whether an unauthorized query succeeds or misses. Figure 13 shows an example

of the results from a specific configuration. With baseline PostgreSQL, there is a statistically

significant difference between the latency distributions of “miss” queries and unauthorized queries

(to keys that exist, but the user is not allowed to view). In contrast, with our mitigation implemented,

the latency distribution of both query types is identical. The results in the other configurations are

the same.

Overall, we find that our mitigation provides existence privacy even under the system load

simulated by multi-tenant YCSB. The latency difference between miss queries and unauthorized

queries is less than 100 nanoseconds. We do see authorized queries taking longer than miss queries

and unauthorized queries, but this is caused by the time it takes an authorized query to read the

query’s results (i.e., a set of rows), because only authorized successful queries produce non-empty

results.

7.3 Overheads of Existence Privacy
Here, we quantify the performance impact of our mitigation, and analyze its causes. To this end,

Figure 14 shows the overhead (relative throughput degradation) impose by enabling our mitigation

in each tested configuration. In the figure, the X axis varies the fraction of miss queries, and for

each fraction, we show different lines for each pair of table size and RLS table size.

We see that the factors dictating the overhead are the RLS policy table size and the fraction of

miss queries, but table size does not affect the relative overhead. The overhead depends on the ratio

of miss queries, because only miss queries are slowed down by our mitigation. Specifically, when

miss queries are rare (e.g., below 10%) we observe little overhead (less than 10% in the worst case).

For each fraction of miss queries, the magnitude of the overhead observed depends only on the

RLS policy table size. This is because the policy table size determines the policy filter’s run time,

which is an extra cost imposed on the query’s processing of each row in the table.

We conclude that production workloads with low miss query ratios experience little overhead,

regardless of the RLS filter’s execution time. But if the RLS policy execution time is not negligible,

then workloads with a large fraction of miss queries may observe significant slowdowns.
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Fig. 14. Throughput overhead of existence privacy on different configurations. Lines labeled 𝑋/𝑌 refer to a
configuration with a table size and RLS policy size of 𝑋 and 𝑌 rows, respectively.

8 RELATEDWORK

Data store side-channels. Side-channel attacks and mitigations have mostly been explored in

cryptographic software (e.g., [20]) in the context of microarchitectural leakage, e.g., over a last-level
cache shared between victim and attacker program co-located on the same machine [41]. There

is less research on side-channel attacks against data stores. Futoransky et al. [15] use a timing

side-channel attack on insertions into a MySQL database to extract private keys. The attack succeeds

when a B
+
-tree index is used and the attacker is able to insert records with chosen data that is

used as the search key of one of the table’s indexes. They observe that insertions take longer when

a B
+
-tree node splits and use a divide-and-conquer approach to learn the private keys. Wang et

al. [39] show a practical side-channel attack on a multi-user search system, such as Elasticsearch.

The attack exploits TF-IDF scores (a popular statistical score that is meant to reflect how important

a word is to a document in a corpus and is used to rank search results) to leak information about

another user’s documents.

Work on oblivious algorithms presents query optimizers aimed at preserving data privacy and

mitigating side-channels. Most of these works [14, 43] target side-channels caused by memory

and network access patterns while ignoring timing side-channels. Xu et al. [40] combine oblivious

algorithms with differential security to provide security against a variety of side-channels, including

timing attacks, and allow the user to decide the trade-off between privacy and performance. Their

solution is designed to replace existing query planners, not to enhance them, and has limited

functionality compared to the full SQL specification.

RLS side-channels. Developers of RLS describe and mitigate non-timing side-channels in RLS [25,

30]. They describe how carefully crafted queries can leak information by throwing exceptions such

as divide-by-zero or by performing insert queries that violate a table constraint such as inserting

duplicate keys to a column with a unique constraint. These attacks can be mitigated by hardening

the database engine’s error handling [17] to silence exceptions and limiting user write permissions.
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9 DISCUSSION AND FUTUREWORK
We explore time side-channels introduced by RLS and their mitigation. We show that RLS time side-

channels are exploitable in practice, and can be used to violate existence and cardinality privacy.

We propose an oblivious query mechanism to block these side-channels on unique keys with

minimal overhead, and identify protection of non-unique keys as an open problem. Accordingly,

security conscious systems may wish to limit RLS usage to unique keys. We further introduce a

new multi-tenant benchmark based on YCSB, which can be used to evaluate security solutions for

multi-tenant settings.

This work considers only time side-channel created by SELECT SQL queries. In future work, it is

important to investigate whether other SQL operations, such as UPDATE, INSERT and DELETE, can

create side-channels via RLS. These operations have more complex interactions with the system, as

their ability to modify tables requires additional security measures, such as block predicates [24, 30].

More generally, RLS is but one example of object-level security mechanisms, which are gaining

traction in various data stores. There are already examples outside of relational databases, such as

in MongoDB [1] and generic application layer solutions [2], which provide object-level security

that is similar to RLS. It is likely that our RLS attacks and defenses can be generalized to these other

object-level security implementations, due to the similar way they are implemented. Side-channels

in RLS thus may be only the tip of the iceberg of information leakage created by object-level security

mechanisms.
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