
Declassiflow: A Static Analysis for Modeling Non-Speculative
Knowledge to Relax Speculative Execution Security Measures

Rutvik Choudhary
rutvikc2@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, Illinois, USA

Alan Wang
alanlw2@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, Illinois, USA

Zirui Neil Zhao
ziruiz6@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, Illinois, USA

Adam Morrison
mad@cs.tau.ac.il

Tel Aviv University
Tel Aviv, Israel

Christopher W. Fletcher
cwfletch@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, Illinois, USA

ABSTRACT

Speculative execution attacks undermine the security of constant-
time programming, the standard technique used to prevent mi-
croarchitectural side channels in security-sensitive software such
as cryptographic code. Constant-time code must therefore also
deploy a defense against speculative execution attacks to prevent
leakage of secret data stored in memory or the processor registers.
Unfortunately, contemporary defenses, such as speculative load
hardening (SLH), can only satisfy this strong security guarantee at
a very high performance cost.

This paper proposes Declassiflow, a static program analy-
sis and protection framework to efficiently protect constant-time
code from speculative leakage. Declassiflow models “attacker
knowledge”—data which is inherently transmitted (or, implicitly

declassified) by the code’s non-speculative execution—and stati-
cally removes protection on such data from points in the program
where it is already guaranteed to leak non-speculatively. Overall,
Declassiflow ensures that data which never leaks during the non-
speculative execution does not leak during speculative execution,
but with lower overhead than conservative protections like SLH.
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1 INTRODUCTION

Security-sensitive programs, such as cryptographic software, per-
form computations over secret data (e.g., cipher keys and plaintext
or personal information). Secure software must prevent its secrets
from being “leaked” over microarchitectural side channels, which
occur when secret data is passed as the operand to a transmitter

instruction. A transmitter is an instruction whose execution creates
operand-dependent hardware resource patterns that can potentially
be observed (“received”) by the attacker, allowing the attacker to
learn information about the transmitter’s operand. Classic examples
of transmitters are load and branch instructions, whose execution
makes operand-dependent changes to the cache state [31, 44] and
instruction sequence. However, numerous other “variable time”
instructions are also considered transmitters [4, 19, 24].

Traditionally, the standard technique for preventing secret leak-
age overmicroarchitectural side channels is to use constant-time pro-

gramming (also called data-oblivious programming). Constant-time
code performs its computation without passing secret-dependent
data as arguments to transmitter instructions [4, 7, 8, 28, 35, 37].

Unfortunately, the discovery of speculative execution (or Spec-
tre) attacks [6, 10, 29, 33, 43] undermines the constant-time ap-
proach [10, 14, 38, 45]. The problem is that constant-time guaran-
tees are based on correct execution semantics and may not hold
in an illegal mis-speculated execution created by a speculative ex-
ecution attack. For example, misprediction of a loop branch [45],
function return [14], indirect call [10], and so on can cause the
processor to jump to a transmitter with the transmitter’s operand
holding secret data, even though the transmitter’s operand would
never contain secret data in a correct execution (see Figure 1).

Consequently, constant-time code must additionally deploy a
defense against speculative execution attacks. Importantly, this
defense must prevent speculative leakage not only of speculatively-
accessed data (read from memory under mis-speculation) [47] but
also of non-speculatively-accessed data that already exists in pro-
cessor registers when mis-speculation begins (as in Figure 1). Con-
temporary defenses can only satisfy this strong security guarantee
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for (int i = 0; i < NUM_ROUNDS; i++) {
S = AES_Round(S, round_key[i]);

}
Tr(S);

Figure 1: Example of constant-time code breaking due to speculative exe-

cution [45]. Misprediction of the loop branch (i < NUM_ROUNDS) can cause an

intermediate value of the AES state S to be passed to a transmitter, Tr(·).

by blocking speculation of all transmitters, which incurs a high
performance cost [36, 48]. We therefore ask: how can constant-time

code be efficiently protected from speculative execution attacks?

We answer this question with Declassiflow, a static program
analysis and protection framework that can relax speculative exe-
cution defenses. Our approach enforces the security property pro-
posed by Speculative Privacy Tracking (SPT) [18]: data that never
leaks during non-speculative execution does not leak during specu-
lative execution. This property implies that data which gets implic-

itly declassified, due to being passed as the operand of a transmitter
in the program’s non-speculative execution, does not need to be
protected during the program’s speculative execution. This enables
the safe removal of protection mechanisms and commensurately
lower performance overhead.

Leveraging the SPT security property to reap performance ben-
efits is non-trivial, however. SPT is only able to achieve gains by
introducing hardware mechanisms for dynamically tracking non-
speculative leakage and disabling protection at run-time. But SPT
hardware is not available in current processors and its future adop-
tion status is not clear. In this paper, we leverage the SPT security
property purely in software. The resulting approach can be deployed
to improve the performance of constant-time code today. Declas-
siflow can also identify protection relaxations that SPT hardware
misses, because Declassiflow is a static program analysis that rea-
sons about all possible program executions, whereas SPT hardware
operates only based on the program’s current execution.

In a nutshell, Declassiflow performs program analysis to de-
termine the “attacker’s knowledge” at every edge in the program’s
non-speculative control-flow graph, where “attacker knowledge”
refers to the data guaranteed to be implicitly declassified (declared
non-secret) by the non-speculative execution if said control transfer
occurs at run-time. Declassiflow can thus identify data that is
guaranteed to leak if execution reaches a program point (although
it may not leak at that point, but only later in the execution).

We use Declassiflow’s analysis to relax speculative execution
protections, such as SLH, for several constant-time programs. By
reasoning about attacker knowledge, Declassiflow is able to de-
duce that many transmitters (e.g., loads) leak information about the
“same thing” (e.g., the base address of an array) and that this infor-
mation is guaranteed to be known in the program’s non-speculative
execution. This enables Declassiflow to reduce overhead signifi-
cantly; in some cases, replacing all protection instrumentation with
a single mechanism (e.g., a barrier) that guarantees the program is
entered non-speculatively.

To summarize, we make the following contributions.

(1) We propose an abstraction, non-speculative knowledge, for
deducing a program region where a variable will “inevitably”
be leaked in the program’s non-speculative execution.

(2) We propose a novel program analysis that can calculate non-
speculative attacker knowledge at each program edge, and
strategies for placing protection primitives based on said
non-speculative attacker knowledge.

(3) We evaluate the impact of our analysis on three constant-
time benchmarks and demonstrate that our analysis leads to
more efficiently protected programs.

Our analysis is open source, and can be found at https://github.
com/FPSG-UIUC/declassiflow.

2 BACKGROUND

2.1 Programs, Executions, and Traces

2.1.1 The Building Blocks of a Program. We consider programs
written in the LLVM assembly language [2], which uses static single
assignment (SSA) (Section 2.2).

A program is a list of instructions that perform computations on
variables. V denotes the set of all variables in the program, and 2V
denotes the powerset of V.

Instructions in a program are partitioned into smaller lists, basic
blocks (or blocks for short), defined in the usual way. They are
typically denoted as 𝐵, often with a subscript. We use B to denote
the set of all blocks in the program.

A control-flow edge (or edge for short) is an ordered pair (𝐵𝑖 , 𝐵 𝑗 )
for some 𝐵𝑖 , 𝐵 𝑗 ∈ B. A control-flow edge exists between 𝐵𝑖 and 𝐵 𝑗
if it is theoretically possible to execute 𝐵 𝑗 immediately after 𝐵𝑖 has
been executed. Edges are denoted as 𝑒 , often with a subscript. We
use E to denote the set of all edges in the program. For any block
𝐵, we denote the set of its input edges and output edges as 𝐸in (𝐵)
and 𝐸out (𝐵) respectively.

A control-flow graph is a directed graph where the nodes are
given by B and the edges are given by E. We define a node Entry ∈
B which is the singular point of entry for the program as well as a
node Exit ∈ B which is the singular exit point of the program. 1
By definition, 𝐸in (Entry) = ∅ and 𝐸out (Exit) = ∅.

For any two blocks 𝐵𝑖 , 𝐵 𝑗 ∈ B, 𝐵𝑖 dominates 𝐵 𝑗 , denoted
𝐵𝑖 dom𝐵 𝑗 , if every path from Entry to 𝐵 𝑗 goes through 𝐵𝑖 . 𝐵 𝑗
post-dominates 𝐵𝑖 , denoted 𝐵 𝑗 pdom𝐵𝑖 , if every path from 𝐵𝑖 to
Exit goes through 𝐵 𝑗 . 𝐵𝑖 is a predecessor of 𝐵 𝑗 if (𝐵𝑖 , 𝐵 𝑗 ) ∈ E.

We say that an edge 𝑒 = (𝐵𝑖 , 𝐵 𝑗 ) dominates a block 𝐵′ if
𝐵 𝑗 dom𝐵′. Similarly, 𝐵′ dominates edge 𝑒 if 𝐵′ dom𝐵𝑖 . A variable
𝑥 dominates edge 𝑒 if the block in which 𝑥 is defined, denoted as
𝐵𝑥 , dominates 𝐵𝑖 . Similarly, 𝑒 dominates 𝑥 if 𝐵 𝑗 dom𝐵𝑥 .

A region, typically denoted 𝑅, is a set of blocks such that: 1

there is one block in 𝑅, known as the header, that dominates all
others; 2 for any two blocks 𝐵𝑖 ∈ B and 𝐵 𝑗 ∈ 𝑅, if there is a path
from 𝐵𝑖 to 𝐵 𝑗 that doesn’t contain the header, then 𝐵𝑖 is in 𝑅 [3].

Edge (𝐵𝑖 , 𝐵 𝑗 ) is a back edge if 𝐵 𝑗 dom𝐵𝑖 . By convention, every
block dominates itself, and so self edges (edges where 𝐵𝑖 = 𝐵 𝑗 ) are
considered back edges. If there is a back edge in the control-flow
graph, then there is a cycle. Cycles in the control-flow graph are
typically created by using loop constructs (e.g. for and while).

2.1.2 Executions and Traces. A non-speculative execution of a pro-
gram 𝑃 on some input is the sequence of instructions 𝑃 executes

1Not all paths through the control-flow graph will reach Exit, e.g. in the case of
non-terminating loops.
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according to the semantics of the LLVM language [2]. We say that
the 𝑘-th instruction in an execution occurs at time 𝑘 . An execution
traverses edge 𝑒 = (𝐵𝑖 , 𝐵 𝑗 ) at time 𝑘 if the 𝑘-th and (𝑘 + 1)-th in-
structions are the last instruction in 𝐵𝑖 and the first instruction in
𝐵 𝑗 , respectively.

A trace, typically denoted as 𝑡 , is a sequence of edges. A trace 𝑡
is realizable if, for some execution of the program, 𝑡 is the sequence
of edges traversed by the execution. Realizable traces thus model
the control flow of executions. We refer to them interchangeably
for brevity, understanding that every realizable trace is associated
with an execution. The set of all realizable traces of the program is
denoted T. An edge 𝑒 is realizable if 𝑒 ∈ 𝑡 for some 𝑡 ∈ T.

We use P to denote all possible paths through the control-flow
graph, including those that do not correspond to a realizable trace.
By definition, T ⊆ P.

We now extend our execution semantics to capture speculative
executions. We consider control-flow speculation of branches whose
speculative target is consistent with the control-flow graph. That
is, for 𝐵𝑖 ≠ 𝐵 𝑗 , a speculative execution executes instruction 𝐼 ∈ 𝐵𝑖
followed by instruction 𝐼 ′ ∈ 𝐵 𝑗 only if 𝐼 is the last instruction
in 𝐵𝑖 , 𝐼 ′ is the first instruction in 𝐵 𝑗 , and 𝑒 = (𝐵𝑖 , 𝐵 𝑗 ) ∈ E. The
semantics of the LLVM assembly language [2] can be extended
to model this form of speculation by adding microarchitectural
events 2 for mispredicted control-flow instructions and eventual
rollback of a mis-speculated sequence of instructions; this would be
similar to various semantics developed in prior work [25–27, 40].

The implications of the above speculative semantics on our anal-
ysis are discussed in Section 3.

2.2 Single Static-Assignment Form

Our analysis works with code written in single static-assignment
(SSA) form. This is a popular and useful abstraction that makes pro-
gram data dependencies clear and variable identities unambiguous.
Code is in SSA form when any usage of a variable is reached by
exactly one definition of that variable [20].

In code with control flow, a variable’s definition may depend
on earlier control-flow decisions. In order to make such code SSA-
compliant, control flow-dependent definitions at join points are
assigned to by ϕ-functions [20] which return an input based on the
control-flow decision. We define the semantics of the ϕ-function
as follows: suppose in some block 𝐵 we have an instruction 𝐼𝜙 that
is a ϕ-function, 𝑦 = 𝜙 (𝑥1, . . . , 𝑥𝑁 ). By definition, there are 𝑁 edges
into 𝐵, denoted 𝑒1, . . . , 𝑒𝑁 . The ϕ-function is defined such that at
any point in any execution, if 𝑒𝑖 is the last edge to reach 𝐼𝜙 , then
𝑦 = 𝑥𝑖 . An important consequence of the semantics of a ϕ-function
is that every 𝑥𝑖 must be defined prior to 𝐵. This is simply because it
must be a usable name by the time the ϕ-function is encountered.

As an example, the following non-SSA code on the left is trans-
formed to produce SSA code on the right.

2A “microarchitectural event” can be thought of as an instruction that produces
(possibly operand-dependent) microarchitectural changes but no architectural changes.

x = 0;
if (...) {

x = x + 1
}
print(x)

x1 = 0;
if (...) {

x2 = x1 + 1
}
x3 = ϕ(x1,x2)
print(x3)

3 SETTING AND SECURITY GOAL

The goal of Declassiflow is to efficiently prevent speculative leak-
age of sensitive data while maintaining a useful security guarantee.

First and foremost, we define the points of potential information
“leakage.” A transmitter is any instruction whose execution exhibits
operand-dependent hardware resource usage. Classic examples
of transmitters are loads and branches [30]. Depending on the
microarchitecture, there may be others [4, 19, 41, 45, 48]. We say
that the operands (data) passed to a transmitter are leaked. Note
that a transmitter may leak its operands fully or partially.

A non-speculative transmitter is one that appears in the program’s
non-speculative execution. A speculative transmitter appears in the
program’s speculative execution. That is, it appears as an operand-
dependent microarchitectural event in the program’s speculative
semantics (Section 2.1.2), which may or may not correspond to an
instruction that architecturally retires.

We assume the standard attacker used in the constant-time pro-
gramming setting [18, 27, 40, 46, 47]. Here, the attacker knows the
victim program. The attacker further sees a projection, or view, of
the victim’s non-speculative and speculative executions: namely,
1 the sequence of values taken by the program counter (PC), and
2 the sequence of values passed to transmitters.
With the above in mind, there are two main protection guar-

antees a speculative execution defense can have [47]. The first
prevents speculatively-accessed data from being passed to specula-
tive transmitters. Enforcing this policy satisfies “weak speculative
non-interference” [27], and is sufficient to eliminate universal read
gadgets and defend programs in sandbox settings [34]. As a result,
there has been significant interest in both hardware [22, 46, 47] and
software [23, 40] defenses that provide said guarantee.

Unfortunately, such defenses are not comprehensive as there are
still important applications—namely constant-time cryptography—
that non-speculatively read and compute on sensitive data but can
still leak said data speculatively [18, 27, 32, 42, 47]. To protect these
programs, one requires a defense with a broader protection guaran-
tee: i.e., one that prevents both speculatively and non-speculatively

accessed data from being passed to speculative transmitters. De-
fense mechanisms that meet this guarantee provide complete pro-
tection from speculative execution attacks but typically come at
high performance overhead, i.e., they are tantamount to delaying
every transmitter’s execution until they become non-speculative
or are squashed [36, 42, 48].

The aforementioned protections are (almost always) overly con-
servative because they implicitly treat all data as “secret” and de-
serving of protection. Yet, not all data is semantically secret. Soft-
ware annotations could directly convey what is and is not secret,
but there are major disadvantages to programmer intervention. For
example, programmer intervention/expert labeling cannot be ap-
plied to legacy code already deployed. So, to determine what data
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is secret without requiring expert labeling/intervention, we adopt
a definition of “secret” proposed by SPT [18],

Definition 1. Data 𝑥 is secret if there is no data flow from it to

an operand of a non-speculative transmitter, where data flow refers

to flow through LLVM SSA variables and LLVM data memory.

This definition is motivated by the constant-time programming
model in which sensitive data is never passed to non-speculative
transmitters. The contrapositive of this is that if any data is passed
to a non-speculative transmitter, it is not sensitive, i.e. not “secret”.

Definition 1 can be interpreted as enabling efficient implemen-
tations that satisfy generalized constant-time (GCT) [27]. Denote
the non-speculative and speculative program semantics as 𝑆nspec
and 𝑆spec, respectively. For brevity, we also assume these semantics
encode the attacker’s view, e.g., the set of transmitters. Given, a
program 𝑃 and a policy Π which defines what program variables
are “high” (secret), 𝑃 satisfies GCT w.r.t. 𝑆nspec, 𝑆spec and Π if the
following requirements hold.

(1) Executions of 𝑃 on 𝑆nspec satisfy non-interference w.r.t. Π.
That is, attacker observations of 𝑃 ’s execution, given 𝑆nspec,
are independent of the values in Π.

(2) Executions of 𝑃 on 𝑆nspec that satisfy non-interference w.r.t.
Π must also satisfy non-interference on 𝑆spec w.r.t. Π.

Requirement 2 is referred to as speculative non-interference or SNI
for short [26, 27].

Given this context, we can view Declassiflow as a function
𝑃 ′ = 𝐷 (𝑃 ; 𝑆nspec, 𝑆spec) that takes a program 𝑃 as input, produces
a program 𝑃 ′ as output, and is parameterized by 𝑆nspec and 𝑆spec.
Suppose 𝑃 satisfies Requirement 1; it need not satisfy Requirement 2.
For a specified 𝑆nspec and 𝑆spec, 𝐷 outputs a 𝑃 ′ that is functionally
equivalent to 𝑃 and now (additionally) satisfies Requirement 2, i.e.,
now satisfies SNI and therefore GCT.

Importantly, 𝐷 did not require Π as an input, but rather infers
a policy ΠDecl which is sound w.r.t. Π. That is, Π ⊆ ΠDecl. This
is possible because 𝐷 has access to 𝑃 , which already enforces Π.
At the same time, ΠDecl will provide a basis for implementing ef-
ficient protection. That is, if ΠAll denotes the policy (described
above) that treats all data as secret, we have that ΠDecl ⊆ ΠAll in
theory and ΠDecl ⊂ ΠAll in practice. This will allow us to more
efficiently protect programs without additional programmer inter-
vention or labeling, beyond the program being written to enforce
non-speculative/vanilla constant-time execution.

3.1 Semantics and Transmitters

𝐷 is parameterized by 𝑆nspec and 𝑆spec, which encode the execution
semantics and transmitters.

Semantics. For security, our analysis assumes the semantics set
forth in Section 2.1.2, in particular that the speculative semantics is
restricted to control-flow speculation that remains on the control-
flow graph. This is sufficient to protect non-speculatively accessed
data in the presence of direct branches (similar to those found in
Spectre Variant 1). To block leakage due to other forms of spec-
ulation (e.g., indirect branches whose targets are predicted, as in
Spectre variant 2), our analysis can adopt complementary defenses
such as “retpoline”. 3

3See https://support.google.com/faqs/answer/7625886

Transmitters. Our analysis is flexible with respect to which in-
structions are considered transmitters. For the rest of the paper, we
assume loads are transmitters that can execute speculatively. We
assume that branches and stores are also transmitters, but only if
they appear in the non-speculative execution. That is, we assume
that branches and stores do not change microarchitectural state in
an operand-dependent way until they become non-speculative. We
note, this still allows for branch prediction; it just stipulates that
said predicted branches only resolve (and redirect execution) when
they become non-speculative. To reiterate: these choices were not
fundamental, and the analysis can be modified to account for other
transmitters and their speculative vs. non-speculative behavior.

4 ACHIEVING EFFICIENT PROTECTION

We now describe an analysis, dubbed Declassiflow, that enables
low-overhead protection for “secrets” as given by Definition 1.

To understand our scheme’s security and performance, we start
by considering a secure but high-overhead software-based protec-
tion. We will use the abstraction proposed by Blade [40], which
introduces a primitive called protect(v). protect wraps a vari-
able v and delays its usage until it becomes non-speculative (or
stable [40]). Blade points out that, while current hardware does
not support protect, protect can be emulated today by introduc-
ing control-flow-dependent data dependencies [23], speculation
barriers, or a combination of the two. Regardless of how it is im-
plemented, executing protect incurs overhead by delaying an
instruction’s (and its dependents’) execution. This is especially pro-
nounced when said instruction is on the critical path for instruction
retirement (as is typical with loads).

As discussed in Section 3, we wish to protect non-speculatively
accessed data. Thus, a secure baseline defense must protect the
operands of all transmitters that can execute speculatively. We
express this by wrapping said transmitters’ operands with protect
statements, placed immediately before each transmitter and in the
same block. 4 This approach is tantamount to that of several recent
defense proposals [36, 42, 48].

An example of our baseline is shown in Figure 2a, which depicts
a program that contains a transmitter inside a loop as well as at the
exit point. The transmitters are denoted Tr(·). While this approach
is secure, it is also expensive; the protect(x) statements can be
encountered an unbounded number of times (depending on the
semantics of the loop). Given this strict policy, which effectively
prevents transmitters from executing speculatively, nothing more
can be done to improve performance in this example.

However, if we instead consider Definition 1 and its implications,
we can see that this program contains unnecessary protection.
From the discussion surrounding that definition, we saw that data
which does not meet the definition for “secret” does not need to be
protected from speculative leakage. This is the manner in which we
can reduce protection overhead. To aid in this process, we define a
more useful concept that is core to our work,

Definition 2. A variable 𝑥 is considered known when it is guar-

anteed to be passed to a non-speculative transmitter (i.e., its value

4We note that this protection scope is broader than Blade’s (which only protects
speculatively-accessed data), hence we don’t compare to Blade further.
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will inherently be revealed) or when its value can be inferred from

other known variables.

We say that a variable can be “inferred” from other known vari-
ables if its value can be computed via a polynomial-time algorithm 5

from the values of said other variables.We consider the set of known
variables over time to be the attacker’s non-speculative knowledge
(or just “knowledge” for short). One key addition made by Defini-
tion 2 is that a variable can be considered known not only when
it is observed to be non-secret, but even when it is guaranteed
to eventually become non-secret. That is, for the purposes of our
analysis, inevitable non-secrecy is as good as knowledge.

Our goal is to use Definition 2 to derive a minimal set of locations
at which to place protect statements. For this, we need to define
one more concept: the non-speculative knowledge frontier (knowl-
edge frontier for short) for each program variable. Intuitively, the
knowledge frontier for a variable 𝑥 represents the earliest points in
the program such that, if the program’s non-speculative execution
“crosses” the knowledge frontier, 𝑥 will be known.We define it more
precisely as,

Definition 3. For any variable 𝑥 , let 𝐾B (𝑥) denote the set of
blocks in which 𝑥 is known. The knowledge frontier of 𝑥 , denoted

F (𝑥), is the smallest subset of 𝐾B (𝑥) such that for any 𝐵 in 𝐾B (𝑥),
there is no path from Entry to 𝐵 that does not contain some 𝐵′ from
F (𝑥).

Note that by this definition, the knowledge frontier for a variable
in a given program is unique. We can reframe what is required of a
protection mechanism to enforce SNI (with respect to the policy
implied by Definition 1) in terms of the knowledge frontier,

Property 1. (Frontier Protection Property for 𝑥) A placement of

protect(x) statements enforces SNI with respect to 𝑥 if and only

if no speculative execution can transmit a function of 𝑥 before the

non-speculative execution crosses the knowledge frontier for 𝑥 .

One straightforward strategy to satisfy Property 1 is to add
protect statements only “along the knowledge frontier” for each
given variable, as opposed to at the site of each transmitter.

Example. Look again at the program in Figure 2. As mentioned,
a naive protection scheme places protect(x) statements in the
same blocks as all transmitters. However, if the execution enters
𝐵1 non-speculatively, it will necessarily (non-speculatively) enter
either 𝐵2 or 𝐵3 next. Thus, the knowledge frontier for x is 𝐵1. With
this, we can re-instrument the code with a protect(x) inserted in
𝐵1 only. Crucially, we have removed the protect(x) from the loop,
which means that protection overhead will likely be amortized.

This is more aggressive than what is possible with the hardware-
based defense SPT, onwhich Definition 1 is based. Since SPT doesn’t
know the program’s structure, it doesn’t know if there is a path from
𝐵1 where x is not leaked non-speculatively, and hence it falls back to
a baseline protection that is tantamount to Figure 2a. As mentioned,
an interesting aspect of Definition 2 is that it allows for variables
to be known “ahead of time” (i.e. before they are actually passed
to a transmitter). This is a key difference between our approach
and SPT’s; knowledge that is inevitable in the future is knowledge
5This is to admit computational assumptions. For example, knowing a plaintext and
its corresponding AES ciphertext should not give one the ability to “infer” the key!
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Tr(x)
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protect(x)

𝐵2
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Tr(x)

(a) Code protected via prior work
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optimal
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𝑒3

(b) Code protected via our work

Figure 2: Making the protected code (left) more efficient (right).

that can be exploited “now.” SPT on the other hand must wait to
observe transmitters retire before it treats its operands as known.

5 MODELING ATTACKER KNOWLEDGE

Wewill now define non-speculative attacker knowledge, which will
be used to compute the non-speculative knowledge frontier.

5.1 Non-Speculative Knowledge

We model the attacker’s knowledge at the granularity of variables,
and we treat knowledge in a binary fashion; the value of a variable
is either “fully” known to an attacker or no function of the variable
is known. Thus, an attacker’s knowledge is a subset of V, and the
full space of the knowledge of an attacker is 2V.

Per Definition 2, in any trace, a variable is considered known at
the point when (and any time after) it is passed to a non-speculative
transmitter (i.e., when its value is revealed), or at the point (and any
time after) its value can be inferred from other known variables.
Rather than keeping track of knowledge “temporally” by tracking it
over time (per trace), we can instead capture knowledge “spatially”
by mapping it onto the control-flow graph. We introduce the map
𝐾E : E→ 2V which represents the distribution of knowledge over
edges. We precisely define 𝐾E as follows,

Definition 4. Take any edge 𝑒 ∈ E. We have 𝑥 ∈ 𝐾E (𝑒) if and
only if for all traces 𝑡 ∈ T such that 𝑒 ∈ 𝑡 , 𝑥 is already known or is

guaranteed to become known every time the execution corresponding

to 𝑡 traverses 𝑒 . If 𝑥 ∈ 𝐾E (𝑒), we say “𝑥 is known on edge 𝑒”.

There are two important clarifications we wish to make with
respect to the above definition. First and foremost, 𝑥 ∈ 𝐾E (𝑒) does
not necessitate that 𝑒 is dominated by the definition of 𝑥 since
the value of 𝑥 may be inferable from other known variables, as
discussed above. Second, the manner in which we define knowledge
and the way we intend to use it leave open the possibility for
vacuous knowledge. A variable is vacuously known if it is deduced
to be known on a path on which it will never be defined. Crucially,
since such a variable is not defined on this path, it cannot be used.
Thus, for the purposes of optimizing a defense mechanism, this
knowledge is inactionable. We will see in the next section that
vacuous knowledge is an important concept, particularly when
analyzing ϕ-functions.
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5.2 Instructions as Equations

We now define a set of relations that describe knowledge 𝐾E with
respect to a concrete program.

5.2.1 Non-ϕ instructions. We first discuss how knowledge is prop-
agated through non-ϕ instructions. An instruction 𝐼 is said to be
deterministic if it can be represented as an equation of the form
𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑁 ). 6 Control-flow instructions, by convention, don’t
have an output. Loads and stores are not considered deterministic
since our current analysis does not model the contents of memory.
We define out(𝐼) = 𝑦 and in(𝐼) = {𝑥1, . . . , 𝑥𝑁 }.

Deterministic instructions are of interest since knowing all but
one of their operands/results enables deduction of the remaining
one. We say an instruction 𝐼 is forward solvable if, for all concrete
assignments to 𝑥𝑖 ∈ in(𝐼), we have a unique solution for 𝑦. We say
𝐼 is backward solvable if for any 𝑥𝑖 ∈ in(𝐼), for all concrete assign-
ments to out(𝐼) and all 𝑥𝑖≠𝑗 ∈ in(𝐼), we have a unique solution for
𝑥𝑖 . All deterministic instructions (e.g., add, sub, mul) are forward
solvable; not all are backwards solvable. 7 Exploiting the solvabil-
ity of instructions is how we achieve propagation of knowledge
through computations as motivated in Section 4.

An important consequence of working with programs expressed
in SSA form is that the equations that define variables are unique.
Crucially (and perhaps counter-intuitively) this implies the equa-
tions associated with instructions are exploitable anywhere in the
control-flow graph, even if the associated instruction is not encoun-
tered in a given trace or is unreachable in general. When analyzing
a non SSA-form program, there may be multiple definitions for
any given variable, and thus you need to consider only the defini-
tions that apply to the locale you are in. Attempting to analyze a
non-SSA program while keeping track of which definitions apply
where implicitly converts the program to SSA form. We will see
the benefits of the global view of equations in the examples from
Section 5.3.

5.2.2 ϕ-functions. We now discuss ϕ-functions. Before we begin,
recall that the PC is public to the attacker due to assumptions made
by the constant-time programming model (Section 3). Since the
PC is public, it can be considered known at all points in time in the

non-speculative execution.
Because the PC is known, we can treat ϕ-functions as being

forward solvable. If at any point all of a ϕ-function’s inputs are
known, then regardless of which one gets assigned to the output,
the output must be known as well. Consider a ϕ-function 𝐼𝜙 of the
form 𝑦 = 𝜙 (𝑥1, . . . , 𝑥𝑁 ) in a block 𝐵 with input edges 𝑒𝑖 and output
edges 𝑒𝑜 . The semantics of 𝐼𝜙 are such that 𝑦 = 𝑥𝑖 if 𝑒𝑖 is taken to
reach 𝐵. Now, suppose that 𝑥1, . . . , 𝑥𝑁 , are known on some edge 𝑒 .
If 𝑒 is in a trace containing 𝐼𝜙 , we know 𝑦 because we know which
𝑥𝑖 is assigned to 𝑦 (because the PC is known) and we know each 𝑥𝑖 .
Note that if 𝐼𝜙 is not in a trace containing 𝑒 , then knowledge of 𝑦 is
vacuous; it cannot be used in a meaningful way.

There is an additional, more subtle version of forward solvability
when considering ϕ-functions. Consider again 𝐼𝜙 as defined before.
If each input 𝑥𝑖 to the ϕ-function is known on its respective edge
6This can be generalized to instructions with multiple outputs by writing down a
separate equation for each output.
7For example, 𝑦 = 𝑥1 × 𝑥2 is deterministic and forward solvable, but not backwards
solvable; if one operand is 0, the output is 0 regardless of the other operand’s value.

𝑒𝑖 , 𝑦 is known on all 𝑒𝑜 . This is again due to the assumption that
the PC is known; the input edge used to arrive at 𝐵 is known and
thus we will know which 𝑥𝑖 is assigned to 𝑦.

Note that ϕ-functions are not backward solvable; knowing the
output and all but one of the inputs doesn’t necessarily reveal the
last input. That said, there is a causal relationship we can exploit in
the backwards direction. Using the definition/semantics of 𝐼𝜙 from
before, suppose that 𝑦 is known on all output edges 𝑒𝑜 . Then every
𝑥𝑖 is known on its respective edge 𝑒𝑖 . The justification is as follows:
suppose 𝑒𝑖 is traversed. Then 𝑦 = 𝑥𝑖 and we know for which 𝑥𝑖 this
holds. Now, we must leave 𝐵 through some 𝑒𝑜 , and 𝑦 is known on
every 𝑒𝑜 . Thus, in this scenario, 𝑥𝑖 is known.

5.2.3 Knowledge propagation theorems. We summarize the previ-
ous discussion with a series of theorems that describe relationships
on knowledge. The proofs of these theorems can be found in the
full version of the paper [17]. We start with theorems that describe
the knowledge available to every edge in isolation,

Theorem 1. Consider an instruction 𝐼 of the form Tr(x) in some

block 𝐵 with output edges 𝑒𝑜 . For all 𝑒𝑜 , 𝑥 ∈ 𝐾E (𝑒𝑜 ).
Theorem 2. Take any edge 𝑒 ∈ E. Consider a forward solvable

instruction 𝐼 from anywhere in the control-flow graph, and suppose

it is of the form 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑁 ). If 𝑥𝑖 ∈ 𝐾E (𝑒) for all 𝑥𝑖 , then
𝑦 ∈ 𝐾E (𝑒).

Theorem 3. Take any edge 𝑒 ∈ E. Consider a backward solvable
instruction 𝐼 from anywhere in the control-flow graph, and suppose it

is of the form 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑁 ). For any 𝑗 ∈ {1, . . . , 𝑁 }, suppose we
have all 𝑥𝑖≠𝑗 ∈ 𝐾E (𝑒) as well as 𝑦 ∈ 𝐾E (𝑒). Then 𝑥 𝑗 ∈ 𝐾E (𝑒).

The following theorems describe the relationship of knowledge
between edges in the general case,

Theorem 4. Consider a block 𝐵. If for some variable 𝑣 we have

𝑣 ∈ ⋂
𝐾E (𝑒𝑖 ) for all realizable 𝑒𝑖 in 𝐸in (𝐵), then we have 𝑣 ∈ 𝐾E (𝑒𝑜 )

for every 𝑒𝑜 ∈ 𝐸out (𝐵).
Theorem 5. Consider a block 𝐵. If for some variable 𝑣 we have

𝑣 ∈ ⋂
𝐾E (𝑒𝑜 ) for all realizable 𝑒𝑜 in 𝐸out (𝐵), and if 𝑣 is not defined

in 𝐵, then we have 𝑣 ∈ 𝐾E (𝑒𝑖 ) for every 𝑒𝑖 ∈ 𝐸in (𝐵).
An important thing to notice about Theorem 5 is that wemandate

𝑣 is not defined in 𝐵. This is because if 𝑣 is not defined in 𝐵, then
nothing in 𝐵 can change 𝑣 ’s status in terms of knowledge; this is
not true if 𝑣 is defined in 𝐵. That said, the theorem does not prevent
variables from being known prior to their definition; they just need
to be inferable (via the other theorems).

The following theorems describe the relationship of knowledge
between edges in the special case that they are connected via a
ϕ-function.

Theorem 6. Let 𝐼𝜙 denote a ϕ-function of the form 𝑦 = 𝜙 (𝑥1,
. . . , 𝑥𝑁 ) in block 𝐵 with 𝑁 input edges 𝑒1, . . . , 𝑒𝑁 . The semantics of

𝐼𝜙 are such that 𝑦 = 𝑥𝑖 if 𝑒𝑖 ∈ 𝐸in (𝐵) is traversed to reach 𝐵. If for

all realizable 𝑒𝑖 we have 𝑥𝑖 ∈ 𝐾E (𝑒𝑖 ), then for every output edge 𝑒′,
𝑦 ∈ 𝐾E (𝑒′ ).

Theorem 7. Let 𝐼𝜙 denote a ϕ-function of the form 𝑦 = 𝜙 (𝑥1, . . . ,
𝑥𝑁 ) in a block 𝐵 with input edges 𝑒1, . . . , 𝑒𝑁 . The semantics of 𝐼𝜙 are

the same as in Theorem 6. If for all realizable output edges 𝑒′ we have
𝑦 ∈ 𝐾E (𝑒′ ), then for every 𝑒𝑖 we have 𝑥𝑖 ∈ 𝐾E (𝑒𝑖 ).
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Tr(x₁)
b₂ = b₁ + 1

Tr(b₃)
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(a) Example 1

x₁ = ...
a₁ = ...

Tr(x₁)
a₂ = ...

Tr(a₃)

x₂ = 3x₁
a₃ = ϕ(a₁,a₂)

𝐵1

𝐵2

𝐵3

𝑒4

𝑒3

𝑒2

Entry

Exit

𝑒1

𝑒5

(b) Example 2

Figure 3: Examples used to illustrate knowledge over edges (𝐾E).

Note that for Theorems 1–3, the realizability of an edge is not
important to our model of knowledge. This is because the claims are
about the local knowledge associated with each edge individually,
and unrealizable edges only contain vacuous knowledge. On the
other hand, Theorems 4–7 make use of the realizability of edges
since we are considering the relationships between edges.

5.3 Examples Computing Knowledge/Frontiers

Figure 3 shows an example of how to compute knowledge (and
then the knowledge frontier) with the relations from Section 5.2.

First consider Figure 3a. There are two paths through the control-
flow graph; we’ll assume they both correspond to realizable traces.
Starting off, we have Tr(b3) in 𝐵3 which leads to knowing 𝑏3
on edge 𝑒5 (Theorem 1) and subsequently 𝑏1 on 𝑒2 and 𝑏2 on 𝑒4
(Theorem 7). The equation 𝑏2 = 𝑏1 + 1 and Theorem 2 enable us to
deduce 𝑏2 everywhere 𝑏1 is known (and vice versa by Theorem 3)—
similarly for 𝑥1, 𝑥2 and 𝑥2 = 3𝑥1. Since both 𝑏1 and 𝑏2 are known
on 𝑒2, 𝑒3, and 𝑒4, by Theorem 2, 𝑏3 is also known on 𝑒2, 𝑒3, and 𝑒4.

By continuing to apply the theorems, we get 𝐾E (𝑒1) = ∅,
𝐾E (𝑒2) = {𝑏1, 𝑏2, 𝑏3}, 𝐾E (𝑒3) = 𝐾E (𝑒4) = {𝑏1, 𝑏2, 𝑏3, 𝑥1, 𝑥2}, and
𝐾E (𝑒5) = {𝑏1, 𝑏2, 𝑏3}.

This provides a basis for the frontier of 𝑥1 and 𝑥2 to be {𝐵2}.
More importantly, it means the frontier for 𝑏1, 𝑏2, 𝑏3 is {𝐵1}. A
program that non-speculatively enters 𝐵1 will inherently transmit
all three. (We detail more precisely how to compute the frontier
given 𝐾E in Section 6.3.) This will enable more efficient protection:
to enforce Property 1, it is sufficient to add protect statements for
𝑏1, 𝑏2, 𝑏3 solely in 𝐵1.

Next consider Figure 3b, which is almost the same as Figure 3a
except for two changes: first, every 𝑏𝑖 is replaced with 𝑎𝑖 for clarity;
second (and most importantly), the equations for 𝑎2 and 𝑏2 differ.
We use a2 = . . . to represent a non-deterministic instruction. Since
we no longer have an equation relating 𝑎2 to 𝑎1 (as we did with
𝑏2 = 𝑏1 + 1 from before), the knowledge settles to 𝐾E (𝑒1) = ∅,
𝐾E (𝑒2) = {𝑎1}, 𝐾E (𝑒3) = 𝐾E (𝑒4) = {𝑥1, 𝑥2, 𝑎2}, and 𝐾E (𝑒5) = {𝑎3}.
From this we can deduce that the frontier for 𝑎1 is ∅; the frontier
for 𝑥1, 𝑥2 and 𝑎2 is {𝐵2}; the frontier for 𝑎3 is {𝐵3}. This matches
our security goal: it is unsafe to hoist protect statements above

if (q) {
Tr(x)

}
if (!q) {

Tr(x)
}

Tr(x) Tr(x)𝑒1

𝑒2

𝑒3 𝑒6

𝑒4

Entry

𝑒8

Exit

𝑒5 𝑒7

𝐵2 𝐵4

𝐵1 𝐵3 𝐵5

Figure 4: A program and its control-flow graph. The branches are anti-

correlated, thus the trace {𝑒1, 𝑒3, 𝑒6, 𝑒8 } is not realizable.

any variable’s definition because knowing 𝑎1 is not the same as
knowing 𝑎2 and hoisting a protect would enable an attacker to
selectively learn both through Tr(a3).

5.4 Approximating Non-Speculative Knowledge

Precisely computing 𝐾E using the theorems from the previous
section is generally intractable since it relies on knowing whether
any given edge is realizable. We can instead attempt to compute an
approximation of 𝐾E, denoted as 𝐾E. We consider our approxima-
tion sound if it does not over-estimate an attacker’s true knowledge;
we consider it imprecise if it under-estimates it. To compute 𝐾E, we
make the assumption that any path through the control-flow graph
corresponds to a realizable trace. More specifically, for any edge
𝑒 = (𝐵𝑖 , 𝐵 𝑗 ), we assume that any edge 𝑒′ ∈ 𝐸in (𝐵𝑖 ) may have been
traversed prior to it, and any edge 𝑒′′ ∈ 𝐸out (𝐵 𝑗 ) may be traversed
after it. Looking back at Definition 4, by increasing the number of
traces we consider 𝑒 to have been part of, we are (potentially) reduc-
ing the size of 𝐾E (𝑒); i.e. 𝐾E (𝑒) ⊆ 𝐾E (𝑒). Thus, this approximation
method (potentially) loses precision, but it maintains soundness.

Example. Look at Figure 4. The only possible traces are 𝑡1 =

{𝑒1, 𝑒2, 𝑒4, 𝑒6, 𝑒8} and 𝑡2 = {𝑒1, 𝑒3, 𝑒5, 𝑒7, 𝑒8}. (We’ve colored edges
𝑒3 and 𝑒6 to correspond with the figure.) The paths {𝑒1, 𝑒3, 𝑒6, 𝑒8}
and {𝑒1, 𝑒2, 𝑒4, 𝑒5, 𝑒7, 𝑒8} do not correspond to realizable traces since
they imply q is both true and false. Ideally then, we must have that
𝑥 is known on 𝑒3, i.e. 𝐾E (𝑒3 ) = {𝑥}, since at this point the execu-
tion must take 𝑒5 and encounter Tr(x). Making the simplifying
assumption (above) to compute 𝐾E (𝑒), however, we cannot assume
whether we will take 𝑒2 vs. 𝑒3; nor can we assume that we will take
𝑒5 vs. 𝑒6 (for whichever of 𝑒2 or 𝑒3 we took). In other words, the
analysis cannot conclude whether we will encounter Tr(x) and
thus deduces that 𝑥 is not known on 𝑒3; i.e. 𝐾E (𝑒3) = ∅. See that
𝐾E (𝑒3) ⊂ 𝐾E (𝑒3 ); we’ve lost precision in order to gain tractability,
but we have not sacrificed soundness.

6 DECLASSIFLOW APPROACHES

In this section, we describe the approach used by Declassiflow to
compute and utilize non-speculative attacker knowledge.

At a high level, our analysis first computes 𝐾E (𝑒) for efficiency
reasons (Section 6.1), but invokes more sophisticated analyses to
compute𝐾E (𝑒) on specific edgeswhen doing so is deemed profitable
(Section 6.2). Later subsections then detail how to use the edge-
based knowledge to compute the knowledge frontier (Section 6.3)
and instrument protection (Section 6.4). Section 7 goes over lower-
level details of all of the above.
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6.1 Computing Knowledge via a Data-Flow

Analysis

Our ideas from Section 5 map naturally to a data-flow analysis [3].
Data-flow analyses work by assigning data-flow values to every

point in the control-flow graph. They iteratively apply local rules
known as the data-flow equations to build up and combine these
data-flow values. When this process has converged (i.e. the size of
the data-flow values stagnates), what remains is a data-flow solution.

A data-flow analysis makes the assumption that any path
through the control-flow graph is a potential path the execution
may take; it approximates Twith P. Since the definition of 𝐾E relies
on the same assumption, we can formulate a data-flow analysis such
that the solution is exactly 𝐾E. The specific data-flow equations we
use are discussed in Section 7.1. By construction, the result of our
ideas applied to Figure 4 (as discussed in Section 5.4) is precisely
what our data-flow analysis would yield.

6.2 Improving Precision via Symbolic Execution

There are of course drawbacks to approximating 𝐾E as done by
the data-flow analysis (see Section 5.4). Namely, under-estimating
an attacker’s knowledge causes us to over-estimate the amount
of protection needed. To avoid this, we need a way to analyze
programs in a way that can deduce whether a trace is unrealizable.

To that end, we also selectively employ symbolic execution [5].
In a nutshell, symbolic execution involves executing a programwith
“symbolic” values; variables are mapped to symbolic expressions
rather than concrete values (at least, in the cases when the concrete
value cannot be deduced unambiguously). Expressions associated
with all variables are derived by the instructions encountered dur-
ing the symbolic execution. Upon reaching a branch, a symbolic
execution engine will traverse both paths separately. Every path
through will have associated with it “path constraints”, which are a
set of symbolic expressions implied by the set of taken branches.

Our framework uses symbolic execution to answer the following
question,

Question 1. Given some region 𝑅 of the control-flow graph and

given some variable 𝑥 , does there exist a path through 𝑅 (that corre-

sponds to a realizable trace) upon which 𝑥 is not transmitted?

Recall that a data-flow analysis conservatively answers this ques-
tion by assuming that if a path exists, it is part of a realizable trace.
By considering the semantics of the instructions and the branch
conditions, symbolic execution can try and answer the question
less conservatively; though we stress that it does so in a sound
manner since it needs to prove that the path cannot be taken.

We can look back at Figure 4 to see how symbolic execution can
succeed where the data-flow analysis fails. The candidate region we
consider is the entirety of the program. Recall that the problematic
path was 𝑝′ = {𝑒1, 𝑒3, 𝑒6, 𝑒8}, which again does not correspond to
a realizable trace. When the tool considers the path 𝑝′, the path
constraints will contain both 𝑞 = false and 𝑞 ≠ false. These contra-
dictory statements mean that no non-speculative execution could
ever traverse such a path. Thus, symbolic execution will conclude
that Tr(x) is unavoidable (i.e. that the answer to Question 1 is “no”
for this region and variable 𝑥 ) meaning 𝑥 is guaranteed knowledge

at (among other places) the program’s entry point. Thus, we have
achieved a more precise result than the data-flow analysis.

The details of how and when we utilize symbolic execution to
answer Question 1 are given in Section 7.2.

Note that the symbolic execution cannot be used on its own; the
results of the data-flow analysis are a prerequisite. For symbolic
execution to work, we will need to instrument the code to indi-
cate what variables are known at various points, and the data-flow
analysis is precisely what provides this information. While it is cer-
tainly possible to formulate the entire analysis in terms of symbolic
execution, this would certainly not scale to larger programs as well
as a data-flow analysis would.

6.3 Computing the Knowledge Frontier

As discussed in Section 4, Property 1 is the key to finding a minimal
yet sufficient set of protect statements needed to secure a program.
To that end, we need to compute the knowledge frontier given the
results of the data-flow analysis and/or symbolic execution.

The first step to computing the knowledge frontier is to map
knowledge from edges to basic blocks; we want the map 𝐾B :
B → 2V. For any block 𝐵, we define 𝐾B (𝐵) =

⋂
𝐾E (𝑒′) for all

𝑒′ ∈ 𝐸out (𝐵). Recall that 𝐾E is the result of the data-flow analysis.
The results from the symbolic execution constitute additions to
𝐾B. Question 1 is associated with some candidate variable 𝑥 and
some candidate region 𝑅 of the control-flow graph. If, when given
these, the symbolic execution tool answers “no” to Question 1, then
𝑥 ∈ 𝐾B (𝐵) for all 𝐵 ∈ 𝑅.

With 𝐾B in hand, we can compute the frontiers for all variables.
For any variable 𝑥 , we first over-estimate F (𝑥) by adding all 𝐵 ∈ B
such that 𝑥 ∈ 𝐾B (𝐵). Then, for any 𝐵 ∈ F (𝑥), if 𝑥 is known in all
of 𝐵’s predecessor blocks, we remove 𝐵 from F (𝑥). This is done
using another data-flow analysis. After this, F (𝑥) represents the
precise knowledge frontier for 𝑥 .

Consider an arbitrary program function f. For any variable 𝑥 , if
its frontier F (𝑥) is the entry block of f, we say 𝑥 is fully declassified.
If all variables transmitted by f are fully declassified, then f itself
is fully declassified.

6.4 Adding Protection

Once we have the knowledge frontier F , we can place protection
using a simple strategy: for every variable 𝑥 that is transmitted, we
place protect(x) statements all along its frontier F (𝑥). We refer
to this approach as “enforcing the knowledge frontier”. This is a
straightforward method to satisfy Property 1. In terms of hoisting
protect statements as high as possible, it is also optimal.

For simplicity, we perform our analysis at the granularity of func-
tions. To that end, we now discuss two strategies—callee enforcement

and caller enforcement—that an analysis can use to instrument pro-
tection when considering calls between functions. We use both of
these in our final implementation.

Callee enforcement. Callee enforcement is a straightforward but
potentially high overhead strategy. Suppose we have a program
function f, which calls g. With callee enforcement, f and g are
analyzed and instrumented with protections in isolation. That is, g
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(the callee) is protected regardless of knowledge in the caller con-
text f. This approach allows us to ignore the interactions between
functions and have every function focus on enforcing its own fron-
tier in isolation. While simple, this strategy may overprotect the
callee. For example, all variables in g that require protection may
be known before g is called.

Caller enforcement. To reduce overhead stemming from callee
protection, we now consider an alternative approach called caller
enforcement. The high-level idea is that, if certain conditions about
the callee are met, the caller can abstractly view the callee as any
other transmitter. We call these pseudo transmitters: program-level
functions that leak (a subset of) their arguments but no inter-
nal data. More precisely, consider a function 𝑓 (𝑥1, . . . , 𝑥𝑁 ) that
non-speculatively leaks some non-empty subset of its arguments
𝑥 ′1, . . . , 𝑥

′
𝑀

(with𝑀 ≤ 𝑁 ) (possibly) along with some other variables
𝑣1, . . . , 𝑣𝐾 .

The function 𝑓 is a pseudo transmitter if and only if: 1 𝑥 ′1, . . . , 𝑥
′
𝑀

and 𝑣1, . . . , 𝑣𝐾 are all fully declassified in 𝑓 ; 2 knowledge of
𝑥 ′1, . . . , 𝑥

′
𝑀

is sufficient to infer every 𝑣 𝑗 ; 3 all other functions
called by 𝑓 are themselves pseudo transmitters. The key insight
is that the information leaked by a pseudo transmitter can be un-
derstood strictly in terms of its arguments, which means we can
reason about its protection in its calling contexts. 8 Rather than
protecting every function call, we can enforce the frontier of the
arguments that are (non-speculatively) leaked by each function call.
If calls to the same function have arguments that are connected via
data flow, we can exploit this to protect their common frontier.

To see the benefits of caller enforcement, consider the following
example. Suppose some program function f makes two calls to
another function g(x) that is a pseudo transmitter which leaks its
argument x and no internal variables. Suppose the first call to g is
g1(x) and the second call is g2(x′)where x′ = x+1 (the subscripts
are used to distinguish the calls). Suppose further that g1 dominates
g2. Both calls leak their arguments, so naively, the frontier for x
is the calling context of g1 while the frontier of x′ is the calling
context of g2. However, since x and x′ are equivalent in terms of
knowledge (due to the backward solvability of x′ = x + 1), and
since g1 dominates g2, we can promote the frontier of x′ to that
of x. Enforcing the frontier of x is sufficient to protect the call to
g2(x

′). Thus one protect can cover two function calls. This is
strictly better than callee enforcement which would have protected
g1 and g2 separately. Note that being a pseudo transmitter is both
sufficient and necessary for a function to be caller enforced.

7 IMPLEMENTATION DETAILS

We now give details for how the ideas from Sections 5 and 6 are
implemented.

Declassiflow’s main components follow the sketch given in
Section 6, and we adopt the following strategy for combining the
data-flow analysis, symbolic execution and protection steps to-
gether. First, we apply a data-flow analysis (Section 7.1). Second, if
the data-flow analysis results are suboptimal (i.e. we have functions
that are not fully declassified), we analyze those functions using

8We do not have this luxury with functions that are not pseudo transmitters even
if they are fully declassified. Their internal leakages mandate that every call to the
function creates its own personal frontier.
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Figure 5: On the left is a loop which creates an inductive relationship between

x1 and x2. Partially expanding it as shown on the right allows our data-flow

analysis to capture this relationship.

the symbolic execution tool Klee (Section 7.2). After running one
or both analyses, we place protections (Section 7.3). We apply all 3
passes in that order to every function.

Our framework contains both intra- and inter-procedural as-
pects. By design, Klee is both intra- and inter-procedural. 9 Thus,
our symbolic execution pass adopts both these traits. The data-
flow analysis and protection pass are primarily intra-procedural
but are performed on functions in a specific order so as to pass
non-speculative knowledge computed in a callee up the call graph.
Specifically, we apply the analysis in the order of callees then callers,
i.e., work up the call graph starting at the leaves. 10

7.1 The Data-Flow Pass

As mentioned in Section 6.1, we can formulate a data-flow analy-
sis that computes 𝐾E. We use control-flow edges as the program
points of interest, and the data-flow value for a given edge 𝑒 is
precisely 𝐾E (𝑒). The data-flow rules are based on the theorems
from Section 5.2.

Running the data-flow analysis is done in two steps. First, we per-
form an LLVM control-flow-graph-level transformation to ensure
that loops are correctly modeled. Second, we initialize data-flow
values along all program edges and iteratively apply the data-flow
rules until 𝐾E (𝑒) is constructed.

Loop transformation. In the presence of loops, the data-flow rules
can fail to capture inductive relationships (e.g., loop-carry depen-
dencies). For example, in Figure 5a, they would be unable to deduce
that knowledge of x1 in 𝐵1 implies knowledge of x2 in 𝐵3. To
remedy this, prior to the data-flow analysis, we perform partial

loop expansion. This procedure takes a control-flow graph with a
loop and transforms it to be acyclic. We accomplish this by du-
plicating the loop body and removing the back edge. Unlike full
loop unrolling, we only keep two cases: the initial case and the
inductive case. We note that although this procedure destroys the
“correctness” of the program in terms of the values computed, it
9That is, Klee will symbolically execute the top level function we provide it as well as
any callees, and so on recursively.
10This approach assumes that the call-graph is acyclic, i.e. there is no recursion. In cases
where this does not hold, we can extend our method to repeatedly analyze functions
and stop when no new information is derived. However, since we do not encounter
recursion in our benchmarks, we omit implementation and further discussion.
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preserves the relationships (between variables) that are relevant to
modeling knowledge. This technique is crucial for analyzing the
benchmarks in Section 8. We present more details about the partial
loop expansion procedure in the full version [17].

Data-flow initialization and evaluation. Once the program
control-flow graph is transformed to account for loops, we pro-
ceed to run the data-flow analysis.

We start by initializing data-flow values. We look at all the trans-
mitters in the program. For all 𝐵 ∈ B, and for every 𝑒′ ∈ 𝐸out (𝐵),
we initialize𝐾E (𝑒′) to be the set of all variables in 𝐵 that are directly
passed to a transmitter. This is a direct application of Theorem 1.We
also utilize some inter-procedural initialization, but with a unidrec-
tional flow of information. 11 Suppose we are analyzing a program
function f that makes a call to some other function g(x) in block 𝐵.
If previous analysis of g had concluded that the frontier of x within
g was the entry block of g, then in our analysis of f we may add
𝑥 to 𝐾E (𝑒) for all 𝑒 ∈ 𝐸out (𝐵). This step relies on g having been
analyzed prior to f, which is why we must perform our analysis in
the order of callees then callers as mentioned before.

We then apply Theorems 2-7 iteratively until we have achieved
convergence; that is, until the size of 𝐾E has reached a fixed point.
Recall that the range of of our data-flow values is 2V, which is a
powerset lattice of finite height. Our data-flow rules never decrease
the size of the data-flow value, i.e. the values can never move down
the lattice. Thus, there is a limit to how much the data-flow values
can grow before stagnating. This guarantees that our analysis will
converge in finite time.

7.2 The Symbolic Execution Pass

We apply the symbolic execution pass on functions that are not
fully declassified; our goal is to deduce additional attacker knowl-
edge as detailed in Section 6.2. To that end, we invoke Klee [13] to
answer Question 1 with respect to a region 𝑅 and variable 𝑥 . We are
interested in analyzing regions that encompass all transmitters. Let
Tx(B) be the set of all blocks which contain at least one transmitter.
Any region 𝑅 such that Tx(B) ⊆ 𝑅 is a candidate region for the
symbolic execution pass. We can find these automatically by look-
ing at all 𝐵 ∈ B and keeping the ones that collectively dominate
every transmitter. Then, the regions defined by each of these is a
candidate region. Furthermore, any variable which is known in a
block that contains a transmitter (even if that variable is itself not
transmitted in that block) is a candidate variable. 12 That is, the set
of all candidate variables is

⋃
𝐾B (𝐵′ ) for all 𝐵′ ∈ Tx(B).

We need to runKlee separately for every pair of candidate region
and candidate variable. Thus, without loss of generality, we assume
for the remainder of this discussion that 𝑅 is the candidate region
and 𝑥 is the candidate variable. By definition, there is a unique block
in 𝑅, which we’ll denote as 𝐵𝑅 , that dominates all other blocks 𝑅.

11In theory, there is benefit to augmenting the analysis to have callers send and

receive information to/from callees. However, it complicates the analysis, and these
opportunities don’t arise in our benchmarks. Thus, we leave this for future work.
12If the data-flow analysis has deduced a candidate variable to be known throughout
the candidate region, we don’t need to run Klee. Note that we do not implement this
optimization in our evaluation.

Suppose we are analyzing a program function f. For ease of
instrumenting the analysis (below), we assume it has a single ter-
minating block. If it does not, we modify the function such that
it does by creating a new terminating block and redirecting all
previous ones to it. To run Klee, we write a wrapper which serves
as main() and calls f with symbolic arguments. Klee provides an
interface for specifying constraints on the values arguments can
take. Setting these constraints correctly is important. For example,
if b in f(int* a, int b) denotes the length of an array pointed
to by a, one should constrain b to be non-negative. Automating
deriving argument semantics for this step would be useful, but we
consider it out of scope for this paper.

“Asking” Klee if the answer to Question 1 is “yes” or “no” is done
by using an assert(. . . ) statement. The assertion is that the answer
to Question 1 is “no”: the paths upon which 𝑥 is not transmitted
(if any) are not realizable. To accomplish this, we instrument the
program with flags. Let L denote the flag variable. For simplicity,
assume L is not SSA, i.e., can be assigned more than once. We add
the initialization L = 0 in the entry block of the function f. We
add the assignment L = -1 in 𝐵𝑅 . In every 𝐵′ ∈ Tx(B), we add the
assignment L = 1. In the unique terminating block of the function,
we add assert(L ≠ -1). If Kleemanages to find a counterexample
to this assumption, then there is some path through 𝑅 such that 𝑥
is not transmitted. Thus, the answer to Question 1 is “yes”. On the
other hand, if Klee deduces that the assertion is provably true, then
every realizable trace either circumvents the region 𝑅, or enters it
and necessarily transmits 𝑥 , rendering it known. Thus, 𝑥 is known
throughout 𝑅. 13

7.3 The Protection Pass

We enforce Property 1 with speculation barriers, which we de-
note as SPEC_BARR. These barriers delay the execution of younger
instructions until they are non-speculative. SPEC_BARR conceptu-
ally implements protect(*); it indiscriminately applies protection
for every variable. That means if the knowledge frontiers for two
variables 𝑥 and 𝑦 both include some block 𝐵, only one SPEC_BARR
needs to be added to 𝐵 to enforce the frontier for both 𝑥 and 𝑦.
Since SPEC_BARR itself is relatively heavyweight, our main tactic
to get speedup will be to determine that frontiers (and therefore
SPEC_BARR placement) fall outside of critical loops. In that case, for
sufficiently long loops, the cost of the SPEC_BARR will be amortized.

We now describe the procedure for placing SPEC_BARR for a
program function f. We first clone f to produce f′. The latter is
what we refer to as the protected version of f. Without loss of
generality, suppose that f (and thus f′) only makes calls to one
other function g(x) which leaks its argument. Assume a protected
version of g exists, denoted g′(x).

We now describe the procedure to protect the internals of f′.
We compute the joint frontier of locally transmitted variables, i.e.
𝐹local =

⋃F (𝑣) for all v in f.
We next need to get the joint frontier of all variables that are not

necessarily locally transmitted, but are transmitted by calls to other

13One might worry that this method does not check whether the former is always
true, i.e. whether 𝑅 is even ever entered. We do not need to do so since if 𝑅 is never
entered, knowledge of 𝑥 in 𝑅 is vacuous and thus inactionable.
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Figure 6: The results of running AES encryption with three different key sizes on inputs of various lengths. We show the raw difference between the runtime (in

cycles) of the functions compiled with SLH and the runtime of the baseline (insecure) code. We show the same difference for the Declassiflow protected versions

of the functions, i.e., after our analysis is applied. The overhead reduction from the SLH-enabled code to our protected code grows with the size of the input.

functions; we denote these as 𝐹func. In this example, this would be
from calls to g. We can replace calls to g(x) with calls to g′(x).

The manner in which we enforce protection of g′ depends on
whether it is a pseudo transmitter or not. Suppose it is a pseudo
transmitter and thus can be caller enforced. For purposes of disam-
biguation, let xi denote the argument to the 𝑖-th call site of g′(x).
We need to enforce the union of the frontiers for the leaked xi. We
compute 𝐹func =

⋃F (𝑥𝑖 ). 14 If g′ is not a pseudo transmitter, it
will be callee enforced, and so it will be internally protected, and
we would have 𝐹func = ∅.

We now place SPEC_BARR’s in f′. If f′ itself is not a pseudo trans-
mitter, then it must be callee enforced. In this case, a SPEC_BARR is
placed in every block in 𝐹local ∪ 𝐹func. However, if f′ is a pseudo
transmitter, and thus can be caller enforced, then a SPEC_BARR
needs to placed in all those same blocks except the entry block of
the function. 15 Note, if f′ is a pseudo transmitter, then 𝐹local∪𝐹func
is precisely the entry block of f′. As a result, no SPEC_BARR’s will
be placed in f′. This leads to a useful optimization: if we have a
chain of nested calls of pseudo transmitters, we need only a single
SPEC_BARR at the top level to protect the full call chain.

This unidirectional inter-procedural strategy is a fairly greedy
method for minimizing the total number of SPEC_BARR’s in the
program. Taking a global view of the relationship between func-
tions will undoubtedly lead to better barrier placement strategies.
However, estimating the cost of barriers will most likely rely on
heuristics, and so we leave such a problem to future work.

8 EVALUATION

We implement our analysis as an LLVM pass that interoperates with
KLEE. We will now evaluate the analysis’ effectiveness in terms of
how it can efficiently protect constant-time workloads.

Workloads. We evaluate 3 constant-time workloads: 1 The AES
block-cipher encryption from the ctaes repository under the Bit-
coin Code organization found on Github [11]. 2 The Djbsort
constant-time 16 integer sorting algorithm [9, 21]. 3 The ChaCha20
stream cipher encryption from the BearSSL library [1]. For each,
we applied Declassiflow as described in Sections 6 and 7.

14We can generalize our discussion to multiple functions being called with multiple
arguments by expanding this term. If there are other functions called by f′ that require
caller enforcement, we can add the union the frontiers of their leaked arguments to
this term. If any of the pseudo transmitters called leak multiple arguments, again, the
union of the frontiers of those leaked arguments is added to this term.
15This is because the entry of f′ will be protected at the call site. Note that if f′ is a
top-level function and has no callers, we must place the SPEC_BARR in the entry block.
16It is constant-time with respect to the values within the array, not the array size.
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Figure 7: The results of running Djbsort on inputs of various lengths. The

y-axis follows the same convention as in Figure 6.

Baselines. We compare against each benchmark unmodified and
also to each benchmark compiled with Speculative Load Hardening
(SLH) [23]. SLH is a Spectre mitigation deployed by LLVM that
works by accumulating branch predicate state and using that state
to prevent certain instructions from executing speculatively and/or
to prevent certain data from being forwarded speculatively. The
academic community has shown how SLH, when configured to
delay the speculative execution of all transmitters, is sufficient to
protect non-speculatively accessed data [36, 48]. We compare to a
weaker variant, called “address SLH” or aSLH. aSLH was designed
to protect speculatively-accessed data. It does this by delaying the
execution of speculative loads, that have addresses only known at
runtime, until they are non-speculative. That is, it considers loads
to be instructions that access (return) sensitive data. Since loads are
also transmitters, aSLH can be viewed as implementing a subset
of the mechanisms required to protect non-speculatively accessed
data. Thus, the security provided by Declassiflow is stronger than
aSLH and aSLH’s overhead will underestimate the true overhead
of SLH in our setting.

All workloads compiled using Declassiflow maintain the
branch predicate state (but do not use it to delay instructions/data-
flows) needed to support SLH. We do this to provide a conservative
overhead estimate: SLH requires this information be maintained
across function calls, thus the benchmarks we protect with Declas-
siflow can interoperate with SLH implemented in a calling context,
if needed.

Environment setup. We run our experiments on an x86-64 Intel
Xeon Gold 6148 machine with Ubuntu 20.04, kernel version 5.4.0-
146-generic. We compiled our benchmarks with -O3 and ensured
that all versions of the binary differ only in their protection mecha-
nisms. The AES source files were compiled with LLVM version 16
while the Djbsort and ChaCha20 source files were compiled with
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Figure 8: The results of running ChaCha20 on inputs of various lengths. The

y-axis follows the same convention as in Figure 6.

LLVM version 11. 17 We run Klee in a Docker container based on
their official image. 18

Analysis procedure. To produce protected code, we run the 3
phases of our analysis: 1 The data-flow analysis is run to determine
𝐾E. 2 Klee is used to compute additions to 𝐾E. 3 The protection
pass is run, which adds barriers. If Klee is not needed to improve
the precision of the result of phase 1 , phase 2 may be skipped. For
the benchmarks which do go through phase 2 , we provide a static
buffer of fixed size that contains symbolic values. We also provide
a symbolic value that represents the buffer’s dynamic length. We
constrain this symbolic value to be as low as 0 and as high as the
length of the static buffer. This static buffer coupled with the length
represent the user input to the functions.

Benchmarking methodology. For constant-time AES encryp-
tion, 19 we benchmark the top-level functions AES128_encrypt,
AES192_encrypt, and AES256_encrypt, which use key sizes of 128,
192, and 256 bits respectively. We benchmark each of these with
inputs of various sizes. The Djbsort and ChaCha20 benchmarks
only have one function each that performs the core workload. Thus,
we benchmark those two functions, again with inputs of various
sizes. Before every call to the function under test, we perform a
small series of floating point computations which get their input
from disparate locations in memory. The function under test is then
only executed if the result is non-zero. This is meant to introduce a
branch that is always taken and will be easily predicted as such. The
induced speculation is meant to test the effects of the SPEC_BARR’s
we place. We use rdtscp to measure timing. To amortize timer
function overhead, we time the function calls in groups of 8 and
then normalize the result. This batch-of-8 timing represents one
“trial”. For every data point, we run 800 trials and discard the first
100 to remove warmup effects of the cache and TLB. We then report
the median of the 700 remaining trials.

8.1 Main Result

The full experimental results are presented in Figures 6, 7, and 8. We
show the raw difference between the SLH and the Declassiflow
versions of the functions with respect to the baseline. The geometric
means of the relative overheads of SLH for the encryption functions
are 16%, 16%, and 17% for each key size respectively. Meanwhile,
the geometric means of the relative overheads of the Declassiflow

17These benchmarks needed to be run with KLEE, the Docker image for which uses
LLVM version 11.
18https://hub.docker.com/r/klee/klee/
19We do not benchmark decryption since the structure (and thus the performance) is
nearly identical to encryption.

versions of the functions are 12%, 12%, and 11% respectively. For the
Djbsort benchmark, the geometric mean of the relative overhead
of SLH is 24%, while the geometric mean of the relative overhead
of the Declassiflow version is 3%. For the ChaCha20 benchmark,
the geometric mean of the relative overhead of SLH is 7%, while
the geometric mean of the relative overhead of the Declassiflow
version is 1%.

All three benchmarks make heavy use of loops. Thus, the over-
head of SLH increases with the size of the input because the SLH
instrumentation is repeatedly encountered. Our analysis tries to
prove that the knowledge frontier is outside of the inner loops
(ideally, outside of all loops), hence decreasing the frequency that
protection mechanisms are encountered. With AES, our analysis
discovers that the frontier is outside of just the innermost loops.
Thus, while the overhead of the Declassiflow versions grow with
input size, they grow slower than that of the SLH-protected version.
With Djbsort and ChaCha20, our analysis discovers the frontier
is completely outside the main loop. Thus, the overhead of the
Declassiflow versions are low and constant. In the Declassiflow
version of each of the three benchmarks, only a single SPEC_BARR
is statically inserted; though for AES the barrier is placed inside a
loop, so it is encountered multiple times dynamically.

Analysis runtime. We now provide details on our analysis’ run-
time. Before we start, note that our analysis is not part of the typical
code-compile-debug workflow programmers use during develop-
ment. Instead, we expect it to be run a few times (e.g., once) as a
post-processing step to add security on top of otherwise production-
ready code. Thus, these overheads may amortize in practice.

The runtimes of all phases except 2 are given in Table 1. The
runtime of phase 2 (running Klee) is over two orders of magni-
tude higher than the runtimes of the other phases, making it the
bottleneck. Table 1 also shows how the execution time of Klee
scales with respect to the complexity of the program. In this experi-
ment, we vary the length of the static buffer mentioned previously,
and along with it the constraints on the symbolic length. This es-
sentially changes the upper bound on the size of the arrays that
Klee needs to reason about.

To understand better why Klee runtime scales with buffer size,
we now report how buffer size impacts Klee’s execution time. Re-
call from Sections 6.2 and 7.2 that we need to invoke Klee for every
candidate region 𝑅 and candidate variable 𝑥 for which we want
to answer Question 1. For Djbsort, there are 72 possible candidate
variables and 4 candidate regions; thus, we need 72 × 4 = 288 in-
vocations of Klee. For ChaCha20, there are 91 candidate variables
and 3 candidate regions; thus we need 91 × 3 = 273 invocations
of Klee. For both benchmarks, we found that the number of in-
vocations does not vary with static buffer size. Each invocation
evaluates Klee expressions, which generate what Klee calls “query
constructs.” 20 For a given static buffer size, the number of query
constructs generated is the same across all invocations. That said,
the number of query constructs per invocation increases with the
static buffer size. This is predictive of overhead; Figure 9 shows
how the time taken for an individual invocation scales closely with
the number of query constructs generated.

20A query construct is a node in the tree created by a Klee expression. See https:
//www.mail-archive.com/klee-dev@imperial.ac.uk/msg02341.html.
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DFA Symbolic Execution Protection

𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

AES 1s – – – – < 1s
Djbsort 35s 37m 48m 92m 266m < 1s
ChaCha20 3s 35m 38m 44m 57m < 1s

Table 1: The runtime of the data-flow analysis (DFA) phase; the protection

phase; the symbolic execution phase (end-to-end runtime for various sizes for

the symbolic input buffer). Since AES doesn’t use Klee, the data is omitted.

Note the difference in units in theKlee column versus the DFA and relaxation

column. The numbers are the average of 5 runs rounded to the nearest unit.
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Figure 9: The time taken per invocation vs. the number of query constructs per

invocation. Note, for any particular symbolic buffer size, every invocation of

Klee will have the same number of query constructs. We plot the median of

the time measurements of those invocations. The size of the symbolic buffer

associated with any particular datapoint (chosen to match Table 1) is indicated

next to it. Note that in Table 1, we are reporting the end-to-end runtime (sum

of) for all invocations.

encrypt(y1) {

x = ...

f(x,y1)

for (...) {

y2 = ϕ(y1,y3)

g(x,y2)

y3 = y2 + 1

}

h(x,y3)

}

(a) Original

y₂ = ϕ(y₁,y₃)

y₃ = y₂ + 1

x = ...

𝑒1

𝑒3

𝑒2
𝑒4

g(x,y₂)

f(x,y₁)

h(x,y₃)

𝐵1

𝐵2

𝐵3

(b) CFG

encrypt(y1) {

SPEC_BARR

x = ...

f′(x,y1)
for (...) {

y2 = ϕ(y1,y3)

g′(x,y2)
y3 = y2 + 1

}

h′(x,y3)
}

(c) Declassiflow

Figure 10: Application of our analysis to AES_encrypt. Functions f, g, and h
are pseudo transmitters that leak both their arguments. f′ , g′ and h′ are their
Declassiflow protected counterparts. NOTE: The figure depicts a highly
simplified version of the function that still captures the salient details for our

analysis. See the full version [17] for the details on the size of the benchmark.

We spend the remainder of Section 8 looking at some of the
interesting aspects of each benchmark and explaining how the
analysis responds to those aspects.

8.2 AES Encryption

The functions AES128_encrypt, AES192_encrypt, and
AES256_encrypt are each given a plaintext input which can be
composed of any number of data blocks. 21 Each function will
call AES_encrypt internally for every provided block to encrypt
it. AES_encrypt itself will run a specified number of rounds of en-
cryption on the provided block. The various steps of a round of
AES encryption are encapsulated in their own functions, which are
called by AES_encrypt.

21Note that in this case, “blocks” refers to 16-byte chunks of data, not basic blocks.

The analysis’ treatment of the function AES_encrypt is an inter-
esting case study since it can be fully protected without the need
for symbolic execution. Furthermore, it highlights the importance
of our inter-procedural rules. An analogous and highly simplified

form of the function (that still captures the salient details for our
analysis) and its control-flow graph are depicted in Figures 10a and
10b, respectively. (See the full version [17] for the details on the
size of the benchmark.) In the figure, f, g, and h represent encap-
sulations of various operations performed by AES encryption (e.g.
mixing columns or adding in the round key). We point out that the
variables x and y1 do not correspond to secret data in the original
code; their contents are the addresses of buffers.

Prior to analyzing AES_encrypt, f, g, and h will have already
been analyzed and deduced to be pseudo transmitters that leak both
of their arguments. From this, the data-flow analysis will be able to
conclude that the frontier for every variable is 𝐵1. The partial loop
expansion mentioned in Section 7.1 is crucial to this deduction. Now
AES_encrypt will be protected. There are no local transmitters to
protect. The calls to f, g, and h can be replaced with their protected
counterparts, f′, g′, and h′. Being pseudo transmitters, they need to
be caller enforced, and so a SPEC_BARR is placed in 𝐵1, the frontier
of their collective arguments. The Declassiflow protected version
of the code is shown in Figure 10c. Since x is leaked internally and
cannot be deduced from the argument y1, AES_encrypt is not a
pseudo transmitter and thus cannot be caller enforced.

The crucial difference between the SLH and Declassiflow-
protected versions of AES_encrypt is that under SLH, the pro-
tection of all the variables is present inside the loop. Since every
loop iteration contains a branch that can be speculated, the harden-
ing performed by SLH causes repeated delays. Thus, in the graph
we see that the overhead of SLH increases as the size of the input in-
creases. On the other hand, our protected version of AES_encrypt
has a single SPEC_BARR, and within the loop body, we call g′ and
h′ which do not have hardened loads. Thus, we pay the SPEC_BARR
penalty once, but SLH pays a penalty for every load over and over
again. This is why our protected function performs much better
than its SLH counterpart.

We note that the higher-level functions which we benchmark
call the protected version of AES_encrypt (Figure 10c) in a loop.
Since AES_encrypt is callee enforced, the number of times the
SPEC_BARR is encountered is linear with respect to the size of the
input. That is why we see the overhead of the protected function
increase with the size of the input as opposed to remaining fixed.

8.3 Djbsort

This benchmark is an interesting case study due to its heavy use
of nested loops. The function takes two parameters, an array of
integers x and the length of the array N. All transmitters in Djbsort
arise from accessing x at various offsets. The core concept of the
function is depicted in a highly simplified form (that still captures
the salient details for our analysis) in Figure 11. (See the full ver-
sion [17] for the details on the size of the benchmark.) Djbsort
cannot be declassified using our data-flow analysis alone. The issue
is by the semantics of while (and similarly for) loops, when the
program is compiled, the control-flow graph will typically include
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if (N < 2) {

return;

}

i = 0

while (i < N) {

. . . = x[i]

i = i + 1

}

Tr(x + i₁)
i₁ = ϕ(0,i₂)

i₂ = i₁ + 1

𝑒2

𝑒1

𝑒5

𝑒6

𝑒4

𝑒3

𝐵1

𝐵2

𝐵3

𝐵4

Figure 11: The core of the Djbsort benchmark from the perspective of our

analysis. NOTE: The figure depicts a highly simplified version of the function

that still captures the salient details for our analysis. See the full version [17]

for the details on the size of the benchmark.

an edge that bypasses the loop body (𝑒3 from the figure). 22 Ide-
ally, the frontier of x is 𝐵2 since 1 Tr(x+i) in 𝐵2 is guaranteed
to be encountered once the first branch is crossed, and 2 i will
be known at every point due to being an inductive variable with
a known starting value. However, because the data-flow analysis
assumes 𝑒3 is traversable, the frontier can be lifted no higher than
𝐵3. This problem is addressed by symbolic execution as described
in Section 6.2. It can deduce that there is no possible execution of
Djbsort in which the array x is not accessed at least once. After the
symbolic execution pass, our analysis will correctly report that the
frontier of x should be 𝐵2.

The conditional if (N < 2) at the top of the function is crucial for
the symbolic execution tool to make the aforementioned deduction.
Once the symbolic execution engine proceeds past this branch, it is
armed with the path constraint 𝑁 ≥ 2. This constraint is necessary
to deduce that the loop condition is always satisfied initially, and
therefore that x is guaranteed to be leaked.

We note that although symbolic execution is needed to effectively
relax Djbsort, it is not be able to do it on its own. Crucially, it is not
x that is transmitted, but x + i. The data-flow analysis is needed to
deduce that i is always known, and it will do so via partial loop
expansion. Only then can the instrumentation for the symbolic
execution pass treat Tr(x + i) as though it leaks x. 23

Since x is only guaranteed to be known after it’s non-
speculatively confirmed that 𝑁 ≥ 2, a SPEC_BARR must be placed
after the if (N < 2). After this point in the program, SLH can be
disabled for the whole function.

8.4 ChaCha20

The ChaCha20 benchmark is similar to the Djbsort benchmark in
that it involves a series of nested loops and that all transmitters are
due to accesses of various arrays. One can intuit from the source
code that if the length of the provided input is non-zero, then all
arrays’ addresses are guaranteed to be known. Klee must be used
to prove this in an attempt to safely remove protections for the
entirety of the function. One key difference between ChaCha20
and Djbsort is that in the high-level source code, there is no if

22The compiler can indeed remove this edge if it can be deduced that the loop body
will execute at least once. However, it is unlikely to happen if we have nested loops
with complicated conditions, which is what we see in Djbsort.
23Tr(x + i) causes x + i to be known. Since i is known, we can exploit backward
solvability to deduce that x is known.

statement that short-circuits the function if a zero-length input is
provided. However, compilers will often add such checks in the
form of a loop “preheader”, and indeed this is what LLVM does
for ChaCha20. Thus, from the point of view of our analysis (which
is applied to the LLVM IR generated after compilation), the two
benchmarks are quite similar in form. We thus omit any discussion
of the analysis itself. A single SPEC_BARR is placed after the check
for non-zero length but outside any loops, and SLH is disabled for
the entire function.

9 RELATEDWORK

Prior work Blade [40] and several recent SLH variants [36, 38, 48]
share Declassiflow’s goal of reducing overhead of speculative
execution defenses for constant-time code. Blade protects only
speculatively-accessed data: it statically constructs a data-flow
graph frommis-speculated loads (which can return secrets) to trans-
mitters and infers a minimal placement of protections that cuts off
such data-flow. SSLH [36] and USLH [48] strengthen SLH to protect
non-speculatively accessed data. As discussed in Section 8, these
schemes will incur a higher performance penalty than Declassi-
flow while providing comparable security.

selSLH builds on programming language support for public/se-
cret type information [15], which it uses to selectively apply SLH
only on loads into public variables. This approach relies on typed
variables, with the type system enforcing that a transmitter’s
operand is always typed public. However, this property isn’t pre-
served on compilation: a machine register rX can hold public
and secret values in different program contexts. Therefore, mis-
speculation from a context in which rX holds a secret to a context
in which rX is public and is an operand to a transmitter can result
in rX leaking [14, Section 4.2.2]. Overall, selSLH, like Blade, doesn’t
protect secret non-speculative register data. In contrast, Declassi-
flow protects both speculatively-accessed data (read from memory
under speculation) and secret non-speculative register data, and
makes no assumptions on the programming language used.

In Shivakumar et al. [39], the authors propose language primi-
tives for writing cryptographic code that is protected from Spectre
v1. These primitives can be used to implement traditional SLH along
with selSLH, and a type system checks that the program meets a
provided security definition. Inserting these primitives in code is
not automatic and requires developer effort. In theory, their work
is compatible with ours as we could use our analysis to relax code
protected via their primitives. It could be that more fine-grained
(and thus more beneficial) relaxations would be possible.

Finally, several works [14, 16, 25, 26] develop static analyses to
detect violations of a formal notion of security against speculative
leakage, which is based on the idea that a program’s speculative
execution should not leak more than its non-speculative execution.
Declassiflow also leverages this type of security property, but its
goal is to safely relax conservative protections while maintaining
security.

10 CONCLUSION

This paper presented Declassiflow: a static analysis that reduces
the amount of protection needed to “take speculative execution
off the table” for constant-time programs. The key observation is
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that as the program’s non-speculative execution makes forward
progress, various instructions that reveal their operands over side
channels will inevitably execute. Such inevitably-revealed operands
need not be protected in the program’s speculative execution. This
allows one to safely hoist, consolidate or even remove protection
primitives, improving performance.

Longer term, an interesting question will be whether hardware-
based schemes such as SPT and software-based schemes such as
Declassiflow can be combined to further reduce overhead. These
two approaches are complementary, in the sense that a hardware-
based scheme can take advantage of fine-grain dynamic information
(e.g., the current path taken by the program) while a software-based
scheme can take advantage of global knowledge of the control data-
flow graph. There are also opportunities to improve Declassiflow
as a stand-alone analysis. For example, to automatically deduce
protection placement, understand which program paths are real-
izable, and improve the fidelity in which the analysis understands
knowledge (e.g., using ideas from QIF [12]).
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