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Abstract
DMA operations can access memory buffers only if they are
“mapped” in the IOMMU, so operating systems protect them-
selves against malicious/errant network DMAs by mapping
and unmapping each packet immediately before/after it is
DMAed. This approach was recently found to be riskier and
less performant than keeping packets non-DMAable and
instead copying their content to/from permanently-mapped
buffers. Still, the extra copy hampers performance of multi-
gigabit networking.

We observe that achieving protection at the DMA (un)map
boundary is needlessly constraining, as devices must be pre-
vented from changing the data only after the kernel reads
it. So there is no real need to switch ownership of buffers
between kernel and device at the DMA (un)mapping layer,
as opposed to the approach taken by all existing IOMMU
protection schemes. We thus eliminate the extra copy by
(1) implementing a new allocator called DMA-Aware Malloc
for Networking (DAMN), which (de)allocates packet buffers
from a memory pool permanently mapped in the IOMMU;
(2) modifying the network stack to use this allocator; and
(3) copying packet data only when the kernel needs it, which
usually morphs the aforementioned extra copy into the ker-
nel’s standard copy operation performed at the user-kernel
boundary. DAMN thus provides full IOMMU protection with
performance comparable to that of an unprotected system.

CCSConcepts • Security andprivacy→Operating sys-
tems security; • Software and its engineering→Mem-
ory management;
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1 Introduction
Bandwidth demands of servers in modern data centers scale
with the number of cores per server, requiring support for
ever-growing networking speeds both at the endpoints and
at the data center fabric. Google’s Jupiter fabric [36], for
example, assumed 40Gb/s endpoints, and 100Gb/s network
cards (NICs) have since been made available. Data center
servers must also offer strong security guarantees to their
clients, one aspect of which includes protection from compro-
mised or malicious devices, a threat that is explicitly consid-
ered in Google’s security design [18, Secure Data Storage].
Presently, however, an operating system (OS) cannot de-

fend against malicious NICs without paying a significant
performance penalty. This limitation results from the use of
I/O memory management units (IOMMUs) [2, 4, 19, 23] to
restrict device direct memory access (DMA), as unrestricted
DMAs allow malicious devices to steal secret data or com-
promise the OS [5, 7, 11, 14, 16, 37–39]. The IOMMU views
DMA addresses as I/O virtual addresses (IOVAs) [25], and
it blocks DMAs whose target IOVA does not have a valid
mapping to a physical address.

OSes deploy their IOMMU-based DMA attack protection
model in the existing DMA APIs [3, 9, 20, 28]. The DMA
API seems a perfect fit for such a protection model, as it
requires drivers to dma_map and dma_unmap memory buffers
before/after they are DMAed (e.g., to resolve coherency is-
sues and support bounce buffering [10]), and so OSes natu-
rally adopted a protection model in which a device may DMA
to/from a buffer if and only if the buffer is DMA mapped.
The straightforward implementation of this protection

model—where the OS creates IOMMU mappings in dma_map
and destroys them in dma_unmap—proved crippling to multi-
gigabit NICs, because the overhead of destroying IOMMU
mappings on each DMA becomes prohibitive for millions of
DMAs per second [27, 34]. Consequently, several protection
schemes with improved performance have been proposed,
by practitioners [24, 41] and researchers [27, 29, 34] alike,
with some [27, 34] adopted by Linux.

Still, all existing work compromises on either performance
or security, as it adheres to the DMA API-based protection
model. On one hand, it seems impossible to enforce a protec-
tion boundary that makes buffers inaccessible to the device
on dma_unmap without imposing overhead on each DMA.
On the other hand, relaxing the protection boundary [34]
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opens a vulnerability window in which the device can ac-
cess unmapped buffers. The device can then mount “time of
check to time of use” (TOCTTOU) attacks such as modifying
a packet after it passes firewall checks, or access sensitive
data if the unmapped buffer is reused by the OS.
Shadow buffers [29] attempt to alleviate the map-unmap

overhead by copying packets to non-DMAable buffers in-
stead of (un)mapping them in the IOMMU, but this approach
does not scale with growing networking speeds, cannibaliz-
ing the system’s CPU and memory bandwidth (§ 4).

We show that the above security/performance dichotomy
can be made false by changing the DMA attack protection
model. We propose a conceptually different model, whose
DMA protection boundary lies at the user/kernel boundary,
where packet data is already copied and thus made inacces-
sible to devices without imposing extra overhead relative
to unprotected networking. Our model uses the IOMMU to
prevent arbitrary DMAs—particularly to data copied to/from
user-level applications—and not to restrict DMAs only to
buffers mapped by the DMA API. In fact, we explicitly allow
devices to access packet buffers as they are processed by the
OS; we protect OS processing by dynamically copying only
the data accessed by the OS—typically, just the headers—
when it is first accessed.

We implement our new DMA attack protection model
with DAMN, a DMA-Aware Malloc for Networking. DAMN
shifts IOMMU management from the DMA API to a higher
OS level—the memory allocator. It satisfies packet buffer
allocations from a set of buffers permanently mapped in the
IOMMU, obviating the need to set up and destroy IOMMU
mappings on each DMA. Shadow buffers [29] also restrict
the NIC to such permanently-mapped buffers, but since they
implement the DMA API-based protection model, the OS
cannot directly work with the permanently-mapped buffers.
Instead, data must be copied to/from these buffers on each
DMA. DAMN’s new protection model eliminates this extra
copy, and thus DAMN is essentially overhead-free, while still
providing DMA attack protection, due to the following.

DAMN-allocated buffers cannot be reused to contain sensi-
tive data, because DAMN is distinct from the kernel malloc.
Every page that DAMN maps is exclusively used to sat-
isfy packet buffer allocations, so such pages always con-
tain data that the OS allowed the device to access at some
point, and nothing else. Separation from the kernel allocator
also guarantees that DMA buffers never get co-located on
the same page with unrelated kernel data, and so DAMN
provides byte-granularity IOMMU protection instead of the
page-granularity protection of most prior schemes.
DAMN efficiently defends against TOCTTOU attacks by

dynamically copying OS-accessed bytes, removing them
from the device’s reach. To intercept allOS accesses to packet
buffers, DAMN interposes on the special accessor methods
that OS packet accesses must already go through.We observe
that only packet headers are typically security sensitive and

thus accessed by theOS, whereas packet data remains opaque
to the OS until it gets copied at the kernel/user boundary
and removed from the device’s reach. (Any malicious DMA
performed before this copy is indistinguishable from a valid
DMA performed while the packet was mapped.) Therefore,
in the common case, only header data will require copying;
this copy is virtually free due to the small size of headers.

Effectiveness of DAMN DAMN is the first system that pro-
vides full DMA attack protection with comparable network
performance to an unprotected system at 100Gb/s speeds.
With a 100Gb/s NIC, Linux/DAMN achieves 90% of the TCP
throughput of an unprotected multi-core system, and only
3% less than the default, partially-secured protection model.
Relative to shadow buffers—the only IOMMU protection sys-
tem with equivalent security guarantees—DAMN provides
7% more throughput using half the CPU cycles; when using
only a single core, DAMN’s throughput is 2.7× higher.

Non-networking devices DAMNco-exists with prior DMA
API-based IOMMU protection schemes (§ 5.3), so all de-
vices remain IOMMU-protected. Most non-networking de-
vice classes have lowDMA rates, i.e., they perform fewDMAs
per second. These devices thus suffer negligible overhead
even from protection schemes that (un)map DMA buffers
from the IOMMU on each DMA. NVMe storage media sup-
ports high DMA rates, but the DAMN approach is incom-
patible with storage devices, as we discuss in detail in § 2.2.
Fortunately, however, the DMA rate of NVMe storage media
is not as high as that of a multi-gigabit NIC, and we find that
shadow buffers can protect NVMe storage media without
noticeable overhead (§ 6.5). Overall, DAMN’s compatibility
with prior protection schemes allows the OS to fully protect
itself from DMA attacks by any of the attached devices.

Contributions To summarize, we make three contribu-
tions: (1) a conceptually different DMA attack protection
model, which relaxes the protection boundary enforced by
the DMA API; (2) design and implementation of DAMN,
which realizes our new model and offers nearly overhead-
free protection; and (3) experimental evaluation of DAMN
with 100Gb/s networking workloads.

2 Scope: attack model, goals & limitations
2.1 Attack Model
The attacker controls some DMA-capable hardware devices
but cannot access OS constructs, e.g., to reconfigure the
IOMMU. Our focus is protection from unauthorized DMAs
to target buffers not mapped with the DMA API; attacks
carried out with authorized DMAs, such as tampering with
contents of packets, are out of scope. In the case of malicious
NICs, such out-of-scope attacks are essentially man-in-the-
middle attacks that could also be performed elsewhere on
the network. We therefore assume that the system uses other



means to protect against such attacks (e.g., encryption and
authentication).

The attacker’s target is the OS. Peer-to-peer attacks by one
device against another [42] are also out of scope; they can
be prevented using PCIe Access Control Services (ACS) [42].

Assumptions The OS, device drivers, and the IOMMU are
trusted. We assume that the IOMMU is secure, that DMAs
cannot be “spoofed” to appear to come from another device,
and that the IOMMUblocks all DMAs during OS boot [21, 22],
before its page tables are configured.

2.2 Goals and limitations
Goal DAMN addresses the main networking use case of
commodity OSes: serving as an endpoint for applications
that use a POSIX-like kernel interface, which creates a copy
of I/O buffers on the kernel-user boundary.

Zero-copy The DAMN approach does not apply to end-to-
end zero-copy paths, such as sendfile() or zero-copy IP
forwarding. In these cases, the OS falls back to DMA API-
based protection.

Kernel bypasses Similarly, we target applications that rely
on the OS for managing the networking data plane. Appli-
cations that implement their own data plane, bypassing the
OS and interacting directly with the device (e.g., with newer
OS designs like Arrakis [35], or with mainstream kernel-
bypasses mechanisms such RDMA and DPDK [15]) are out
of scope. Applications that bypass the kernel’s data plane
management inherently cannot rely on the kernel for DMA
attack protection and must implement their own protection
model. It seems, however, that the techniques used in DAMN
can be ported to such applications.

Storage media The DAMN approach is incompatible with
storage media. Unlike received packets, data received from
storage media is cached in the OS page cache. It is impossible
to protect a DMA buffer stored in the page cache from TOCT-
TOU attacks without copying it all. Some applications bypass
the page cache by directly accessing the storage media (via
the O_DIRECT flag to open()). In such cases, the OS uses the
user’s buffers as DMA buffers. This approach is essentially a
kernel bypass and thus DAMN cannot be used in this case,
for the reasons discussed above.

3 Background
IOMMUs IOMMUs virtualize the address space of devices,
from using physical addresses (PAs) to using I/O virtual ad-
dresses (IOVAs). The OS maintains per-device page tables
that define IOVA-to-PA mappings at page granularity. Map-
pings also specify the allowed access types—read, write, or
both. The IOMMU routes a DMA to the PA that corresponds
to the IOVA or blocks the DMA if no valid mapping exists.

IOMMUs cache IOVA-to-PA mappings in an IOTLB. To de-
stroy a mapping, the OS must remove it from the page tables
and invalidate the IOTLB entries associated with the map-
ping. The OS controls the IOTLB via an invalidation queue,
a cyclic buffer from which the IOMMU reads commands.1

DMA API Device drivers must use the DMA API to man-
age DMA buffers. Drivers dma_map a buffer before initiat-
ing a DMA to that buffer, thereby passing ownership of
the buffer to the device. Drivers dma_unmap the buffer upon
DMA completion, thereby regaining ownership of the buffer.
The dma_map call returns a DMA address (let us denote it
as α ). The driver must configure the device to DMA to α ;
dma_unmap later takes α as its parameter. There are analo-
gousmethods to (un)map non-contiguous scatter/gather lists.

4 Motivation: IOMMU protection tradeoffs
Here, we make the case for abandoning the low-level DMA
API as the OS layer implementing IOMMU protection of
high-speed networking cards. The generality of the DMA
API dictates that (1) it provides an overly strict security
guarantee, namely that a buffer must be inaccessible to the
device once unmapped; and (2) it protects arbitrary buffers,
which may reside on the same page as unrelated sensitive
data. Both properties inherently create a tension between
security and performance, because achieving them requires
performing work on each DMA.

We demonstrate this tension by analyzing existing IOMMU
protection schemes. We perform all experiments on a ma-
chine with two 14-cores Intel Xeon E5-2660 v4 CPUs (28
cores overall), equippedwith a dual-portMellanox ConnectX-
4 100Gb/s NIC. Each port is connected back-to-back to a ded-
icated traffic generation machine equipped with the same
NIC. (§ 6 describes our setup in detail.)
Table 1 summarizes the tradeoffs associated with differ-

ent protection schemes (further discussed below). The only
scheme with negligible overhead is Linux’s default scheme,
deferred protection, which trades off security for perfor-
mance by delaying (batching) IOMMU unmappings, creat-
ing a vulnerability window in which a device can access
dma_unmap()ed buffers.

The remaining schemes trade off significant performance
(e.g., network throughput, CPU utilization, ormemory traffic)
to provide protection. Despite making these tradeoffs, only
one protection scheme, DMA shadow buffers [29], offers sub-
page protection of DMA buffers, which prevents sensitive
data co-located on the buffer’s page from being accessible to
the device. Sub-page protection in the DMA API, however,
comes at the price of additional per-DMA overhead, as it
requires copying the entire DMA buffer.

1This discussion describes Intel’s x86 IOMMU architecture [23], but other
architectures have similar designs [2, 4, 19].



iommu secure perform
protection subpage window multi-Gbps zero-copy

partial
deferred Linux≥4.7 (ATC’15 [34]) ✗ ✗ ✓ ✓

strict Linux≥4.7 (ATC’15 [34]) ✗ ✓ ✗ ✓

full
shadow buffers (ASPLOS’16 [29]) ✓ ✓ ✓ ✗

DAMN ✓ ✓ ✓ ✓

Table 1. IOMMU protection-performance tradeoffs. (Deferred is the
default on Linux.)

4.1 Linux IOMMU protection
Linux offers two IOMMU protection models with different
tradeoffs, strict protection and deferred protection, which
is the default.2 In both models, dma_map allocates an IOVA
range for the target buffer, maps the two in the IOMMU
page tables, and returns the IOVA to the driver. Likewise, in
both models, dma_unmap removes these mappings from the
IOMMU page tables. Because IOMMU protection works at
the granularity of pages, both models provide only partial
protection, as they allow devices to access sensitive data that
might be co-located on pages IOMMU-mapped for a device;
this can happen because the mapped buffers are allocated
with the standard kernel malloc, which can satisfy unrelated
allocations from the same page.
Linux’s protection models differ in how they invalidate

the IOTLB. Strict protection synchronously invalidates the
IOTLB on dma_unmap, guaranteeing that the device can no
longer DMA to the buffer. Deferred protection batches in-
validation operations, invalidating the IOTLB after suffi-
ciently many requests accumulate or every 10milliseconds,
whichever comes first. In the window between a dma_unmap
and the IOTLB invalidation, the device can thus still access
unmapped buffers. Such access enables, e.g., “time of check to
time of use” (TOCTTOU) attacks for DMA-writable buffers,
such as modifying a packet after it passes firewall checks.
DMA-readable buffers access allows devices to steal data
placed in unmapped buffers after the OS reuses them.
Deferred protections makes the above security compro-

mises to improve performance. We illustrate these tradeoffs
by comparing the performance of the IOMMU protection
models using netperf [33], a standard TCP/IP benchmark-
ing tool. We maximize network load by running several
netperfs, some transmitting and some receiving traffic. We
report the sum of receive and transmit throughputs. The
maximum throughput achievable is 200Gb/s, as the NICs
are full-duplex.
Figure 1 shows the aggregate throughput and CPU uti-

lization (one core at 100% would be reported as 100% / 28

2We use Linux as a representative study vehicle; other OSes have similar
IOMMU protection designs [34].
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Figure 1. Protection-performance tradeoffs. Bars show aggregated
TCP throughput and CPU consumption of multiple netperf instances.

cores = 3.57% utilization). Deferred protection achieves 90%
of the throughput obtained without IOMMU protection, with
similar CPU utilization. Strict protection, on the other hand,
achieves only 58% of the unprotected throughput due to the
cost of (1) the contended lock protecting the invalidation
queue and (2) waiting for the invalidation to complete.

4.2 Shadow buffers
DMA shadow buffers provide full IOMMU protection at byte-
granularity. But they trade off extra CPU and memory band-
width to obtain it. With shadow buffers, the OS restricts
device access to a set of permanently-mapped pages, and the
DMA API copies DMAed data to/from these shadow pages.
The DMA API thus never needs to invalidate the IOTLB.
However, the overhead of IOTLB invalidation is replaced by
the overhead of copying.

Shadow buffers have been shown to sustain 40Gb/s rates,
but with a ≈ 2× increase of CPU consumption [29]. The
overhead of copying, however, is proportional to the I/O
throughput.With faster NICs, the extra CPU cycles andmem-
ory bandwidth demands of shadow buffer grow. Therefore,
unless the system is over-provisioned in terms of CPU and
memory bandwidth, shadow buffers eventually fail to drive
the NIC at maximum rate. Figure 1 shows this limitation.
Shadow buffers achieve 80% of the unprotected system’s
throughput, while consuming twice the CPU time (80%).
Here, shadow buffers actually exhaust memory bandwidth;
see § 6 for details.
The overhead of shadow buffers additionally leaves less

CPU and memory bandwidth available to the rest of the
system, potentially leading to severe degradation in the exe-
cution efficiency of programs co-running on the same ma-
chine. Figure 2 depicts an example of this problem. The figure
shows the results of running netperf concurrently with a
Graph500 BFS loop on different cores. (We describe the exper-
iment in detail in § 6.4.) The no graph bar shows the netperf
throughput obtained without the Graph500 co-runner on
Linux when IOMMU protection is disabled. Similarly, the no
net bar shows the speed of the Graph500 programwithout the



 0

 40

 80

 120

 160

iommu off

deferred linux

strict linux

shadow buffs

damn
no graph

a. throughput [Gb/s]

 0

 20

 40

 60

 80

iommu off

deferred linux

strict linux

shadow buffs

damn
no net

b. iteration time [sec]

no protection partial protection full protection

Figure 2. Netperf throughput (a) and Graph500 BFS iteration time
(b), when each benchmark runs alone (rightmost bar) or concurrently
(the rest of the bars). Shadow buffers cannibalize CPU and memory
bandwidth.

netperf tests running. Shadow buffers’ resource cannibaliza-
tion causes a 1.44× increase in Graph500 iteration execution
time, and it halves the netperf throughput compared to most
other protection schemes.

5 DMA-Aware Malloc for Networking
This section describes the design and implementation of
DAMN, our DMA-Aware Malloc for the Networking subsys-
tem. We describe DAMN in the context of Linux, but the
same design applies to other monolithic OSes, which have
similar network I/O subsystem designs.
DAMN eliminates the overhead of IOMMU mappings

maintenancewith a similar technique to shadowDMAbuffers.
Namely, it restricts device access to a set of permanently-
mapped pages. But whereas shadow buffers require copying
of data to/from these pages, DAMN offers a conceptually
different model that allows the network stack to store data
directly in these pages.
To the networking stack and drivers, DAMN appears as

a memory allocation API, which additionally allows spec-
ifying the device permitted to access the allocated buffer
and the type of access allowed. DAMN leaves protection of
buffers not allocated through it to the DMA API, and is thus
compatible with any DMA API-based protection scheme.
Deploying DAMN can therefore be done gradually, focusing
on performance-critical flows first. Moreover, non-network
devices maintain their DMA API-based IOMMU protection.

5.1 Interface
DAMN’s memory allocation interface adheres to the ker-
nel memory allocation API. The kernel provides two al-
location functions relevant for networking: kmalloc and
alloc_pages. The kmalloc function returns the virtual ad-
dress of a newly allocated, physically contiguous, 8-bytes
aligned object that is smaller than a page size. Larger alloca-
tions are usually done with alloc_pages, which allocates

a sequence of 2k physically contiguous pages (k ≥ 0 is sup-
plied by the caller) and returns a pointer to the page structure
of the first page in the sequence. A page structure holds the
OS metadata for a physical page, and each page is associated
with its own structure. The structures are housed in an ar-
ray, allowing constant-time conversions between physical
addresses and their page structures.
The DAMN interface is specified in Table 2. It consists

of the functions damn_alloc and damn_alloc_pages (and
their damn_free and damn_free_pages counterparts). They
are analogous to the kernel allocation API, but DAMN adds to
them two arguments: a device pointer that specifies which
device is given permission to DMA to/from the buffer being
allocated, and a rights bitmask that specifies the permitted
access rights for that device (read, write, or both). If the
device pointer is NULL, DAMN falls back to the standard
kernel API. (We explain in § 5.7 how this can occur.)
Callers of damn_free and damn_free_pages do not al-

ways know the device and access rights associated with
the buffer they are freeing, in contrast to allocating callers.
Therefore, the DAMN API does not specify passing it, and
DAMN must internally look up this information (§ 5.5).

5.2 TOCTTOU protection
Having network receive buffers that are permanentlywritable
to the device raises concern that the device might exploit this
access to launch TOCTTOU attacks. We observe, however,
that most received bytes flow opaquely through the network
stack until being copied to a user-level buffer and out of the
device’s reach. We thus need to protect packet headers, and
handle corner cases in which the OS does access packet data
(e.g., a firewall rule that inspects HTTP headers). Any writes
the device makes to the other bytes have the same effect as
valid writes performed while the packet was dma_map()ed.

When a driver processes a received packet, it allocates a
socket buffer, or skbuff in Linux terminology.3 OS code must
use a special API to access skbuff data, because this data
might be held with a non-contiguous set of buffers (e.g., for
avoiding copying of scatter/gather lists).We interpose on this
API, andwhenever the OS first accesses a byte range, we copy
it into a new buffer—inaccessible to the device—and adjust
the skbuff accordingly. We expect, as explained above, to
copy only header bytes in the common case, which incurs
negligible overhead. In fact, several Linux drivers already
copy packet headers when constructing receive skbuffs.

5.3 DMA API compatibility
Drivers currently translate buffer addresses to IOVAs using
the DMA API, with dma_map returning a buffer’s IOVA. To
facilitate easy adoption of DAMN in commodity OSes, we
do not wish to modify the DMA API, nor require driver
changes for DAMN-allocated buffers. Such buffers thus go

3Other OSes have similar structures, e.g., BSD mbufs [31].



operation description

damn_alloc (dev , riдhts , s) Allocates an s-byte buffer that is DMA-accessible to dev as specified in riдhts (read/write).
Returns the virtual address of the buffer.

damn_alloc_pages (dev , riдhts , k) Allocates a sequence of 2k physically contiguous pages that are DMA-accessible to dev as
specified in riдhts (read/write). Returns the struct page of the first page in the sequence.

damn_free (addr ) Deallocate the DMA buffer whose virtual address is addr .

damn_free_pages (paдe , k) Deallocate the 2k contiguous physical pages that start at paдe .

Table 2. DAMN’s memory allocation API (§ 5.1).

through the standard flows in the networking stack, and
the OS will eventually attempt to dma_map/dma_unmap them.
We interpose on dma_map/dma_unmap calls and check if they
target a DAMN-allocated buffer (§ 5.5 details how this is
done); if not, we fall back onto the standard DMA API (and
the IOMMU protection scheme it implements).
For DAMN buffers, we perform the following actions. In

dma_map, DAMN-allocated buffers have long-lived IOMMU
mappings, and so there is no need to create a new IOMMU
mapping for them. Instead, we look up the buffer’s IOVA
(§ 5.5 explains how this is done) and return it. In dma_unmap,
we determine whether the argument IOVA is associated with
a DAMN-allocated buffer by examining the MSB of the IOVA
(see § 5.4). If so, there is no need to tear down any IOMMU
mappings and we immediately return from the dma_unmap
call; the buffer itself will be freed later by the networking
subsystem. Otherwise, the legacy dma_unmap code precedes
as usual.

5.4 Allocator
DAMN’s allocation interface is backed by a set of memory
allocators, one for each device and DMA access rights (read-
only or read/write) combination, called DMA caches. A DMA
cache is named thus because it is essentially a caching layer
on top of the kernel page allocator. Each page that a DMA
cache allocates is mapped in the IOMMU to a specific de-
vice and access rights, and it is used to satisfy networking
allocation requests for that type of DMA buffer. The DMA
cache design is based on magazines [8], a general method
for highly scalable OS resource allocation. Magazines add a
per-core scheme for caching objects allocated by an arbitrary
resource allocator—the kernel’s page allocator, in our case.
The DMA cache subsystem supports allocations of up to

64 KiB. This maximal value is determined by the implemen-
tation of the network stack and the network device driver.
This parameter can be tuned as required for other OS and
device driver combinations.
Next, we describe the logical organization of the DMA

cache, the process of satisfying an allocation request, and
the implementation of the per-core physical page caches.

DMA cache organization For every device and access
rights combination (read/write), the DMA cache is organized

as follows. The cache has a two-level hierarchy. The bottom
level maintains a cache of chunks, which are sets of C physi-
cally contiguous pages, where C is big enough to satisfy the
maximal supported buffer size. (Our Linux implementation
thus uses C = 16, for 64 KiB.) The chunks are mapped in the
IOMMU with the appropriate access rights for the device
The top level consists of a per-core allocator that maintains
a chunk, acquired from the bottom level, and carves it up in
order to satisfy DAMN allocation requests.

Top-level allocation I/O allocation patterns typically con-
sist of a producer/consumer flow, in which one core allocates
a DMA buffer and hands it to the device, and the buffer is
later deallocated by whichever core handles the interrupt
raised by the device to notify that the DMA has completed.
We thus specialize our allocation scheme to this use case; in
particular, unlike standard malloc implementations, we do
not optimize for rapid successions of allocating and deallo-
cating the same buffer.

Our allocation scheme uses a simple “bump pointer” alloca-
tor, which satisfies allocation requests from the underlying
chunk by “bumping” a pointer, until reaching the end of
the chunk; at this point, a new underlying chunk must be
obtained from the bottom level of the DMA cache. Each allo-
cation increments a reference count on the chunk, and each
deallocation decrements the reference count, returning the
chunk to the bottom level of the DMA cache if its reference
count reaches zero. The reference count is manipulated with
atomic instructions, using the existing OS page reference-
count interface, which stores the count in the page structure
of the first page in the chunk.

Our Linux implementation of DAMNuses theOS-provided
page frag API which essentially implements the scheme de-
scribed above; on other OSes, this scheme can be imple-
mented from scratch (it requires less than 100 LOC).
The DMA cache contains two of these bump pointer al-

locators for each core, one for non-page-aligned allocations
requests (damn_alloc), and one for page-aligned allocation
requests (damn_alloc_pages). Finally, for each device and
access rights, we maintain a DMA cache for each NUMA
domain. This design leverages the NUMA-awareness capa-
bilities of the OS page allocator, allowing DMA caches to



be populated with pages allocated from the calling core’s
NUMA domain’s memory.

Top-level deallocation The common case of damn_free
and damn_free_pages is to decrease the reference count of
the appropriate chunk, as described above, and return. If,
however, the reference count reaches zero, the chunk must
be placed into a magazine; this requires looking up the appro-
priate DMA cache (i.e., the device, access rights, and NUMA
domain combination). Looking up this information requires
additional data structures, which are discussed in § 5.5.

Bottom-level chunk cache The bottom level of the DMA
cache, which caches physical page chunks, is implemented
usingmagazines [8], proposed as a generic method for highly
scalable OS resource allocation. Magazines add a per-core
scheme for caching objects allocated by an arbitrary resource
allocator. In our case, the objects managed by the magazines
are the physical page chunks and the underlying resources
allocator is the kernel’s page allocator. Next, we provide
background on magazines, and then describe the extensions
we performed to obtain high performance on modern NUMA
architectures available today.
A magazine is an M-element per-core cache of objects,

maintained as a LIFO stack. Being per-core, magazine ma-
nipulation requires no synchronization and is extremely fast.
Conceptually, a core attempts to allocate and deallocate from
its magazine first. If it fails—namely, it tries to allocate from
an empty magazine or to deallocate into a full one—then it
must access a global shared depot of magazines, protected by
a global lock, to exchange a full magazine with an empty one
(or an empty magazine with a full one). The depot falls back
onto the underlying resource allocator if it cannot return a
full magazine; it fills a new magazine with freshly allocated
objects and returns it. The actual magazine replenishment
policy is more sophisticated, and guarantees that a core can
satisfy at least M allocations and at least M deallocations
without accessing the depot.

Physical DMA cache organization For performance rea-
sons, we maintain two copies of the above described struc-
tures (i.e., the two bump allocators and per-core magazines).
The two copies are needed to avoid the cost of disabling
interrupts. Because networking allocations can come from
regular context or interrupt context, it is possible for a DMA
cache operation (called from a regular context) to be inter-
rupted, only to have the interrupt handler also invoke a DMA
cache operation. The standard solution to handle this race
would be to disable interrupts when a DMA cache operation
is invoked. We find, however, that interrupt disabling has
measurable negative impact on I/O throughput. Therefore,
our solution is to maintain the logical DMA cache hierarchy
as two physical copies, one for standard context and one for
interrupt context. Having two per-context DMA caches does
not double the amount of memory consumed compared to

having a single cache, as the buffers allocated in each context
are typically disjoint: receive allocations occur in interrupt
context and transmit allocations occur in standard context.

Initialization A DMA cache is initially empty. Each time
the depot allocates a chunk, it zeroes the allocated chunk
and maps it in the IOMMU. We partition the 48-bit IOVA
address space, using the MSB of the IOVAs, to distinguish
between IOVAs used by DAMN-allocated buffers and IOVAs
used by the standard DMA API, as explained in § 5.5.

Responding to OS memory pressure Many OS subsys-
tems maintain caches of objects, and modern OSes therefore
provide a standard interface for the OS to request a cache
to release memory back to the system if memory pressure
occurs (e.g., the Linux shrinker interface [12]). While our
research prototype does not implement this functionality,
it is straightforward to support it: when memory pressure
occurs, DAMN simply has to release chunks that reside in
magazines or in the depot back to the OS. Such chunks can
safely be released, since they do not contain allocated or
DMA-mapped buffers.

5.5 Mapping from addresses to DAMNmetadata
Let B be an I/O buffer with virtual address Bva and IOVA
Biova . With the help of its metadata, DAMN needs to be able
to perform the following operations: (i) in dma_unmap, given
Biova , it needs to be able to determine to do nothing if B was
allocated by DAMN, or to fall back on the standard DMA
API otherwise; (ii) in dma_map, given Bva , it likewise needs
to either decide to fall back, or (if DAMN allocated B) to find
Biova and return it to the caller; and (iii) in damn_free or
damn_free_pages, given Bva , it needs to be able to find B’s
allocator and decrease the corresponding reference count.
A natural solution for the tasks that get Bva as input, (ii)

and (iii), would be to store this information in the page struc-
ture of the pages allocated by DAMN. But enlarging the page
structure is considered a major OS change, which might have
unintended performance regressions. So we avoid modify-
ing the page structure by leveraging the compound pages [13]
functionality of theOS. A compound page is anOS-recognized
grouping of at least two contiguous physical pages. The page
structure of the first page in the sequence (the head page)
represents the rest of the pages, making several fields in the
page structures of the remaining tail pages unused, which
provides us with room to store DAMN’s data, notably, Biova .

A remaining question is how to identify a page as a DAMN
page whose page structure holds a valid Biova . All tail pages
point to the compound’s head page, which has predeter-
mined semantics that we are not allowed to change. The
same applies to the second page. We therefore add a flag F
to the third page structure, indicating that this is a DAMN
compound. Thus, given Bva , DAMN checks its page to see
if its a compound whose third page has F set, in which case
the corresponding Biova is valid.



Figure 3. DAMN’s IOVA encoding (bit 47 is always 1).

To accomplish task (iii), when Biova is generated, DAMN
encodes in its top bits: B’s allocating core, the access rights,
and the device, as depicted in Figure 3. This encoding thus
allows DAMN to identify Biova ’s allocator and deallocate B.

5.6 Security
We argue the security of DAMN by considering two cases:
transmitted (TX) and received (RX) data.

TX Transmitted data is mapped with read access rights.
The only concern, therefore, is whether the device can read
sensitive information. DAMN zeroes memory it obtains from
the OS page allocator. We also assume that once allocated, a
packet buffer is used to hold only packet data. It follows that
any page managed by DAMN will contain zeroes or data
that the OS has allowed the device to read at some point, and
thus cannot contain sensitive information.

RX Receive security follows from the property that any
packet bytes accessed by the OS are copied. The OS thus
observes a consistent view of a packet that the device cannot
change under its feet. Bytes that are not copied in this way are
copied to the user’s buffer, where they cannot be modified by
the device. It follows that any byte read from a packet could
have well been written while the buffer was dma_map()ed.

5.7 Deploying DAMN in Linux
Our DAMN implementation consists of≈500 LOC:≈250 LOC
for the DMA cache implementation and ≈250 LOC for the
magazines implementation.

We are able to deploy DAMN in the Linux TCP stack with-
out making intrusive changes to the entire stack. Rather,
we extend the internal __alloc_skb function, which allo-
cates skbuff structures, by adding a device argument. The
__alloc_skb function already receives a flags argument
that specifies, among other things, whether the skbuff will
be used for received or transmitted data. We rely on this flag
to define the access rights (read for TX, write for RX).
The __alloc_skb function has three classes of callers.

First, it is invoked by the skbuff code itself, when skbuff
structures are copied or cloned. In such case, the device ar-
gument can be extracted from the source skbuff. Second,
it is invoked by device-API code for allocating of packet
buffers. There, too, a device pointer is readily available. Fi-
nally, __alloc_skb is invoked indirectly by the networking
stack through an alloc_skbmethod. We modify alloc_skb
to pass a NULL device to __alloc_skb, and create a new
method, dma_alloc_skb, for use by DAMN-aware flows.

Having done this, deploying DAMN in the TCP code only
requires modifying it to invoke dma_alloc_skb and passing
a device pointer, which is available in the TCP socket. To
complete the deployment, we additionally modify the NIC
driver to use DAMN for its allocations (2 LOC change). The
entire effort took a graduate student who was not familiar
with the networking code 4 days to complete, and added
≈300 LOC to the kernel: 150 LOC in the skbuff code and
150 in protocol and socket code.

6 Evaluation
Our evaluation seeks to analyze the following issues:

§ 6.1 Can strict, byte-granularity protection be achieved
without hampering performance? To answer this ques-
tion, we quantify the performance/security tradeoffs in
DAMN and prior DMA attack protection schemes. We
extend the scope of the evaluation to more challenging
workloads than those evaluated in prior work [29, 34],
including >100Gb/s streaming data.

§ 6.2 What are the overheads imposed by DAMN’s
TOCTTOU protection, which copies packet bytes that
are accessed by the OS?

§ 6.3 What is thememory overhead imposed byDAMN?
§ 6.4 What is the effect that the different protection

schemes have on the performance interaction between
the networking subsystem and unrelated programs
running on the same machine?

§ 6.5 Is the relegation of IOMMU protection of non-
networking device classes to prior schemes justified,
or do we lose performance as a result of this choice?

Evaluated systems We implement DAMN in Linux 4.7.
We compare DAMN (damn) to Linux 4.7 without IOMMU
protection (iommu-off ), and to Linux 4.7 in deferred and strict
IOMMU protection modes. (Linux 4.7 contains the IOMMU
protection scalability improvements of Peleg et al. [34].) We
further compare to Linux 4.7 with shadow DMA buffers [29]
(shadow buffs), the only other DMA attack protection scheme
that offers strict, byte-granularity, protection.

Experimental setup We run the evaluated kernel on a
28-core Dell PowerEdge R730 machine equipped with a dual-
port Mellanox ConnectX-4 100Gb/s Ethernet NIC. The ma-
chine is a dual-socket server with 2GHz Intel Xeon E5-2660
v4 (Broadwell) CPUs, each of which has 14 cores. The ma-
chine has 128GiB of memory, with four 16GiB 2400MHz
DDR4 DIMMs per socket. For traffic generation, we use two
16-core Dell PowerEdge R430 machines, also equipped with
ConnectX-4 100Gb/s NICs. Each such client is connected
back-to-back to one of the ports on the evaluated server NIC.
However, the PCIe 3.0 bus on the server limits the server’s
receive/transmit bandwidths to 128Gb/s [30, Section 7.4] (In
practice, we do not manage to obtain more than 106Gb/s.)
The clients are dual-socket machines with 2.4GHz Intel Xeon
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Figure 4. Single-core TCP throughput and CPU utilization of netperf TCP-STREAM (100% CPU is one core).

E5-2630 v3 (Haswell) 8-core CPUs and 32GiB of memory.
We disable hyperthreading on all machines, and configure all
machines for maximum performance, with Intel Turbo Boost
(dynamic clock rate control) disabled. The traffic generators
run with the IOMMU disabled.

6.1 Performance vs. security tradeoffs
Methodology We follow the methodology we used in our
previous IOMMU study [29]. To even the load between cores,
we configure the NIC drivers to use one receive ring per core
with even distribution of interrupts between cores. We run
the benchmarks for 60 seconds on an otherwise idle system
and report averages of 10 runs.

Benchmarks We use netperf [33], a standard networking
benchmarking tool, to evaluate TCP/IP throughput. We eval-
uate both receive (RX) and transmit (TX) throughput, by
having the evaluation machine play the role of the netperf
receiver/transmitter. Finally, we study an application work-
load using the memcached [17] key-value store. To avoid
lock contention in the multi-threaded version of memcached,
we run a separate memcached instance on each core. We
provide further details on each experiment as we present it.

Single-core TCP throughput Wemeasure the throughput
obtained by netperf’s TCP-STREAM, such that all activity
in the system (including interrupt processing) is restricted
to run on a single core. In this test, the measured application
repeatedly transmits or receives a 16KiB buffer to/from a
TCP socket without waiting for a response, and it reports
the average throughput at the end of the execution. We
concurrently run four netperf instances on a single core,
using both NIC ports, to bring the tested core’s utilization to
100%. The loader machine at the other end is not similarly
constrained and is free to use as many cores as it pleases.

When transmitting, by default, Linux uses the NIC’s TCP
Segmentation Offload (TSO) hardware, allowing the network
stack to aggregate buffers that the user sends into segments
as big as 64 KiB, before handing them to the NIC. The NIC

then breaks these segments into MTU-sized Ethernet frames
for transmission on the wire. We configure our machines to
also use the NIC’s Large Receive Offload (LRO) hardware, so
the NIC at the receiving machine symmetrically aggregates
the frames into larger TCP segments of up to 64 KiB, before
handing them to the receiving kernel. We set the MTU size
to be 9000 bytes (“jumbo frames”), and we turn Ethernet flow
control on to make it lossless.4
Figure 4a shows the RX throughput and CPU utilization,

in which the evaluation system acts as the receiver. All pro-
tection modes are bottlenecked by the CPU as intended. The
throughput obtained by iommu-off , deferred and damn is
65–67Gb/s, whereas strict obtains only 50Gb/s, because it
spends many CPU cycles invalidating the IOTLB, which is
a costly hardware operation.5 Shadow buffs obtain the low-
est throughput, 26Gb/s (damn’s throughput is 2.7× higher),
because the CPU overhead of this mode eats into the cycles
required to drive the NIC. It appears that in our workload,
shadow buffs hit their scalability limit—compared to the other
modes, they do much worse than at 40Gb/s rates [29].

Figure 4b shows the throughput and CPU utilization in the
TX test, in which the evaluation system acts as the sender.
The throughput of iommu-off and damn increases by about
10% to 73–74Gb/s, whereas the throughput of deferred and
strict slightly decreases. The throughput of the shadow buffs
mode improves by 1.7×, but it is still the worse-performing
setup.We verified that the throughput difference between RX
and TX for this mode occurs because RX has a much bigger
memory footprint, since it must post many more buffers for

4This hardware configuration, coupled with running multiple netperf in-
stances that utilize multiple NIC ports, makes our setup much more per-
formant than in previous work [26, 27, 29], leading to higher single-core
throughput than is usually reported.
5In comparison, a single RX netperf instance using only one port and
running with the default Linux configuration (1500 bytes MTU and LRO
off) will approach 20Gb/s if the IOMMU is turned off. This throughput will
further drop to around 5Gb/s if the IOMMU is turned on and deferred is
used (or half that much if strict is used) because the core will have to handle
many more incoming packets that are much smaller.
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Figure 5. Multi-core TCP throughput and CPU utilization of netperf TCP-STREAM (100% CPU is 28 cores).

DMA in expectation of incoming traffic. When artificially
enlarging TX’s memory footprint to be as big as that of RX,
the performance of the two becomes identical.

Multi-core TCP throughput Here, we perform netperf
RX/TX tests, only this time with 28 netperf client/server
instances (one per core) on the server machine. We report the
aggregate throughput and CPU utilization over all cores (i.e.,
one core at 100% CPU would be reported as 100%/28 = 3.57%
CPU utilization).
Figure 5a shows the results of the RX test. Here, the NIC

becomes the bottleneck, and all variants but strict achieve
at least 100Gb/s. Damn, iommu-off and deferred have com-
parable CPU utilization. The only variant failing to sustain
100Gb/s is strict, whose throughput throttles at 80 Gb/s and
its CPU use spikes to 64%. In multi-core workloads, strict suf-
fers not only due to the high cost of IOTLB invalidations, but
also from the bottleneck created by the IOTLB invalidation
lock [29, 34]. Deferred alleviates these bottlenecks, but trades
off security to do so. Shadow buffs use 37% overall CPU time,
1.5× more than damn, deferred, and iommu-off . The results
of the TX test (Figure 5b) show similar trends.

Beyond 100Gb/s Here, we stress the system—and the pro-
tection schemes—further, by running RX and TX netperf
TCP-STREAM tests simultaneously, for a peak theoretical
bidirectional bandwidth of 200Gb/s. (This corresponds to
the experiment discussed in § 4.1.) Figure 6 shows the re-
sults. IOMMU-off obtains 196Gb/s, deferred 176Gb/s, and
damn 171Gb/s (3%worse than deferred). The strict protection
model obtains 113Gb/s, which is 44% worse than damn.
Bidirectional traffic has a detrimental effect on TCP, as

ACK segments compete with data segments for resources.
Therefore, compared to previous experiments, we need more
flows, and so more cycles, to drive 100Gb/s in each direction.
For example, RX/iommu-off requires 100% CPU usage of
a single core to sustain 67Gb/s (Figure 4a), whereas the
corresponding bidirectional experiment requires 41% of a

28-core machine to sustain 196,Gb/s (Figure 1), namely, the
equivalent of 11.5 cores.

Shadow buffs, which implement the only protection scheme
with comparable security to damn, lag behind with 160Gb/s,
namely, 0.8× that of iommu-off . As shown in Figure 1, shadow
buffs consume only 80% of the CPU resources, which is about
twice that of iommu-off , damn, and deferred, but still not
100%. The reason that shadow buffs do not maximize through-
put is that the OS throttles its network I/O rate because the
NIC does not empty its rings sufficiently fast. Throttling
occurs because of memory bandwidth exhaustion, as shown
in Figure 6 (measured using Intel’s performance counter
monitor tool [40]). With shadow buffs, the system’s memory
bandwidth use is ≈80GB/s, which is the advertised limit of
the processor’s memory controller, through which the NIC
accesses memory. The resulting memory bottleneck prevents
the NIC from operating its rings at a fast enough rate.

In contrast to the previous TCP throughput experiments,
here damn fails to achieve the same throughput as iommu-
off . We evaluate variants of damn in which we modify parts
of the design, in an attempt to tease apart the sources of
the throughput difference. Table 3 shows the results. We
first evaluate a variant that increases the effectiveness of the
IOTLB. In this variant, we map IOVAs using “huge” IOVA
pages, which enables a single IOTLB entry to cache a 2MiB
IOVA range. However, damn’s policy of encoding metadata
in the high bits of the IOVA (§ 5.5) causes IOVAs of buffers
allocated from different DMA caches to fall into different
huge pages. As a result, DAMN uses more huge IOVA pages
than are necessary for mapping the allocated DMA buffers,
which makes the IOTLB less effective. Therefore, in this vari-
ant we allocate IOVAs densely, using the minimum number
of huge pages (which means that we do not encode metadata
in the IOVAs and thus cannot free them, and so this variant
is useful for analysis only).

Making the IOTLBmore effective increases damn’s through-
put by 13Gb/s (6.5% of iommu-off ). Next, we test damn with
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configuration Gb/s
damn 170 (86.3%)
damn + huge iova pages + dense iova range 183 (92.9%)
damn without iommu 192 (97.5%)
iommu-off 197 (100%)

Table 3. Factors affecting the throughput difference between damn
and iommu-off in the multi-core bidirectional netperf TCP-STREAM
test (Figure 6). The values in the parentheses show the throughput
relative to the iommu-off configuration.

the IOMMU disabled, which eliminates all IOMMUhardware-
related overheads and boosts throughput by an additional
9Gb/s (4.5% of iommu-off ). This leaves a 5Gb/s (2.5%) gap
relative to iommu-off that we are unable to explain. We spec-
ulate that the source of the remaining throughput difference
is implementation artifacts that could be addressed by pro-
filing and further optimizing damn.

memcached The memcached benchmark consists of sev-
eral memslap [1] instances generating load on 28memcached
instances that run on the evaluation machine. We use a work-
load with 50%/50% GET/SET operations of 512 KiB keys and
values. We use non-default key/value sizes to obtain signif-
icant network traffic that stresses the protection schemes.
Figure 7 shows the aggregated throughput (memcached op-
erations) obtained. Damn, shadow buffs and deferred obtain
comparable throughput to iommu-off , but shadow buffs use
about 1.6× the CPU as compared to damn and iommu-off .
Due to the IOTLB invalidation rate caused by TX traffic, strict
obtains half the throughput of the other protection schemes,
with strict requiring 70% CPU time to drive only 8816 TPS.

6.2 Impact of DAMN TOCTTOU protection
DAMN defends against device TOCTTOU attacks on RX
packets, whose buffers are writable by the device, by dynam-
ically copying packet bytes that the OS accesses to remove
them from the device’s reach. In the standard networking
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workloads evaluated thus far, DAMN only copies packet
header bytes. Here, we use a custom benchmark to evaluate
the performance impact of TOCTTOU-defense copying.
We use the Linux netfilter [32] framework to register

a callback function with the network stack that gets passed
each incoming TCP segment destined to the host. Our call-
back accesses a configurable fraction of the packet’s data
bytes; it is invoked after segment reassembly, and so can
access up to 64 KiB of data. We model efficient segment pro-
cessing by simply XORing the accessed bytes with a constant
value. Data-accessing workloads that are more computation-
ally heavy, such as encrypting tunnels, incur overheads high
enough to make the resulting throughput an order of mag-
nitude lower than line rate, so all protection schemes have
negligible overhead and thus become indistinguishable.
Figure 8 compares the CPU consumption of iommu-off ,

shadow buffs, and damn when running concurrent netperf
RX TCP-STREAM throughput tests on all 14 cores of a CPU
populating one socket of the test machine. (We show only
CPU use because all variants achieve the same throughput.)
The lightweight XOR processing does not add measurable
overhead to iommu-off and shadow buffs, as indicated by
their CPU consumption, which remains fixed.
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As expected, Damn initially resembles iommu-off , and
then gradually, as more data is being accessed (and thus
copied), damn’s CPU use grows until it approaches shadow
buffs. It remains below 16% (1.2× of iommu-off and 0.6× of
shadow buffs) up to 1KiB of copying, approaching 18% at
16 KiB (1.5× of iommu-off and 0.75× of shadow buffs). Even
when copying all the segment, damn’s CPU consumption is
10% lower than that of shadow buffs, which copy to arbitrary
kmalloc()ed kernel buffers that are colder in the cache.

Given that typical packet inspection workloads (e.g., fire-
walls or virtual switches) are unlikely to access more than
1 KiB of data, it seems damn’s TOCTTOU protection imposes
only modest overheads compared to an unprotected system.

6.3 Memory consumption
With DAMN, the network stack uses an allocator that perma-
nently binds buffers to the I/O subsystem, to be exclusively
used for networking until global memory pressure prompts
the OS to invoke the shrinker and reclaim unused memory
(§ 5.4). It is therefore important for DAMN to reuse its I/O
buffers effectively and allocate more of them only when
the aggregated size of networked data exceeds the memory
capacity currently owned by DAMN.
Conversely, as illustrated in Figure 9, stock Linux need

not—and in fact does not—systematically reuse I/O buffers
for the purpose of DMA. Rather, it removes their mappings
from the associated I/O page tables at dma_unmap, thus mak-
ing them safe to use for other purposes. In the figure, we
show the number of pages ever mapped for DMA vs. the
number of pages currently mapped for DMA. The measure-
ments are taken over a period of 30 minutes while running
four netperf instances alongside an iterative kernel compile
job, which stresses the kernel allocator. Memory used for
DMA buffers remains constant, requiring less than 50MiB
throughput, whereas the cumulative number of pages that
ever held network DMA buffers monotonically increases.
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Figure 10. Kernel memory usage during multi-core netperf TCP-
STREAM tests.

The memory capacity required to house all networking
data is dictated by the running applications. Roughly speak-
ing, it is the sum of all the receive buffers populating RX
rings ready to store incoming data, plus all socket buffers
ready to absorb application write operations. As long as a
socket buffer is not exhausted, the application that writes
into it will continue to execute. But if the buffer becomes full,
the OS will suspend the writing application until enough
bytes are sent and sufficient room becomes available.
To evaluate the effectiveness of DAMN in terms of mem-

ory consumption, we run multiple netperf TCP STREAM
instances on multiple cores for a period of 25 seconds. Dur-
ing the run, after each second, we record the overall system
memory usage (using Linux’s /proc/meminfo), and, at the
end of the run, we compute the average consumption us-
ing the 25 measurements. Figure 10 compares the average
memory usage of iommu-off and damn, using a set of experi-
ments that are configured to run with an increasing number
of concurrent netperf instances. We report results for RX-
only, TX-only, and bidirectional streams (i.e., with half of
the netperfs receiving and the other half transmitting). Be-
cause damn’s DMA cache recycles allocated memory, damn
essentially consumes only the memory required to hold the
workload’s networking data. Consequently, damn’s memory
usage is comparable to that of iommu-off . The difference is
at most 270MiB, and, except for the TX workload, neither
system is consistently better.

Memory usage with damn and iommu-off differs once the
experiments complete (not shown). With iommu-off , system
memory usage drops back to near its starting level before the
experiments, with a ≈300MiB increase. With damn, memory
usage remains at its level during the experiment, as the net-
working buffers remain in the DMA cache, mapped in the
IOMMU. Memory will be unmapped and released back to
the system only when the kernel invokes DAMN’s shrinker,
if memory pressure occurs.



6.4 Interaction with other applications
We evaluate how the network stack affects an unrelated,
non-networking program running on the same machine, and
vice versa. The results are discussed in § 4.2 and depicted in
Figure 2. Here, we detail the setup used for the experiment,
and highlight damn’s performance.
We run the bidirectional netperf TCP-STREAM test on 4

cores, 2 per CPU. The remaining cores run 3 instances of
the Graph500 BFS loop, each using 8 cores (again divided
equally between the two CPUs), on a graph problem with
220 vertices and average vertex degree of 256. We measure
the throughput obtained by the TCP-STREAM test and the
average execution time of the BFS algorithm, measured in
seconds/iteration.
The main takeaway from Figure 2 is damn’s advantage

over shadow buffs. As it avoids the extra copy induced by
shadow buffs, it curbs the completion of netperf andGraph500
over memory bandwidth, allowing one to perform as if the
other is not present. In contrast, shadow buffs generate mem-
ory pressure that adversely affects both, reducing netperf’s
throughput and increasing Graph500’s runtime.

6.5 Protection against NVMe DMA attacks
The DAMN approach is incompatible with storage devices
(§ 2.2). However, DAMN is compatible with prior DMA at-
tack protection schemes, which can therefore be used for
storage devices, complementing DAMN. To determine the
effectiveness of this approach, we evaluate the prior schemes
on a storage device with high DMA rates. We use an Intel DC
P3700 400GiB NVMe SSD installed in a Dell R430 server. The
server is equipped with two Intel Xeon E5-2650 v4 (Broad-
well) 12-core CPUs and 64GiB RAM. To maximize the DMA
rate, we use the fio [6] benchmark (version 2.2.10). We run
12 fio threads that each perform asynchronous direct se-
quential reads from the device. Using direct I/O bypasses the
page cache, so that the benchmark interacts directly with
the device. Each test runs for 60 seconds on an otherwise
idle system, and we report an average of three runs.
Figure 11 depicts the CPU utilization and throughput in

terms of I/O operations per second (IOPS), as we vary the
block size used for reads. With a 512-byte block size, we
reach the maximal possible IOPS rate of the disk (≈900K
IOPS). In all tests the NVMe disk is the bottleneck. Tests with
larger block sizes are limited by the maximal disk throughput
(≈3.2 GiB/sec). Thus, no protection scheme throttles the de-
vice speed, even when hitting the maximal IOPS limit. More-
over, all protection schemes but strict execute the benchmark
with roughly the same CPU utilization. In the 512-byte block
test, strict consumes 2× the CPU as the other schemes, but
its CPU consumption is comparable for larger block sizes.
Importantly, shadow buffs’ performance is essentially iden-
tical to iommu-off , both in IOPS and CPU utilization. This
supports our premise that shadow buffs can be used for DMA
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Figure 11. Multi-core fio/NVMe I/O rate and CPU usage.

attack protection from high-speed storage media, but that
networking requires a specialized solution.

Interestingly, with 512-byte blocks, strict achieves 6% higher
IOPS than the other schemes. As strict I/O submission is
slower, there are more opportunities for the device’s comple-
tion queue to fill up and then be processed at the end of I/O
submissions. The faster I/O submissions in the other protec-
tion schemes leave less time for completions to accumulate,
leading to more completion interrupts being generated.

7 Conclusion
Defending against NIC DMA attacks at the DMAAPI level re-
quires systems to compromise on either performance or secu-
rity. We instead propose to provide protection by: (1) modify-
ing the network stack to use a new allocator, denoted DAMN,
which manages buffers that are permanently mapped in
the IOMMU (until memory pressure occurs); (2) copying
DMAed data from these buffers into memory inaccessible
to the NIC when the data is first accessed; and (3) avoiding
the overhead of this extra copy by leveraging the fact that
standard network stacks copy data at the user-kernel bound-
ary in any case. DAMN thus provides full, byte-granularity
IOMMU protection with performance rivaling that of an un-
protected system. Compared to DMA shadow buffers (the
only IOMMU protection scheme with equivalent security
guarantees), DAMN provides 7% higher throughput using
half the CPU.When constrained to use a single core, DAMN’s
throughput becomes 2.7× higher than that of shadow buffers.
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