
Finding a Hamilton cycle fast on average using rotations and

extensions

Yahav Alon ∗ Michael Krivelevich †

October 23, 2019

Abstract

We present an algorithm CRE, which either finds a Hamilton cycle in a graph G or determines

that there is no such cycle in the graph. The algorithm’s expected running time over input

distribution G ∼ G(n, p) is (1 + o(1))n/p, the optimal possible expected time, for p = p(n) ≥
70n−

1
2 . This improves upon previous results on this problem due to Gurevich and Shelah, and

to Thomason.

1 Introduction

Hamilton cycles are a central topic in modern graph theory, a fact that extends to the field of

random graphs as well, with numerous and diverse results regarding the appearance of Hamilton

cycles in random graphs obtained over many years.

Consider the random graph model G(n, p), in which every one of the edges of Kn is added to G with

probability p independently of the other edges. A classical result by Komlós and Szemerédi [12], and

independently by Bollobás [3], states that a random graph G ∼ G(n, p), with np−lnn−ln lnn→∞,

is with high probability Hamiltonian. It should also be noted that if np− lnn− ln lnn→ −∞ then

with high probability δ(G) ≤ 1, and thus G is not Hamiltonian.

In fact, a stronger result was proved by Bollobás in [3] and by Ajtai, Komlós and Szemerédi in

[1]. It states that the hitting time of graph Hamiltonicity is with high probability equal to the

hitting time of the property δ(G) ≥ 2. In other words: if one adds edges to an empty graph on n

vertices in a random order, then with high probability the exact edge whose addition to the graph

has increased its minimal degree to 2, has also made the graph Hamiltonian.

∗‡School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv, 6997801, Israel. Email: yahavalo@mail.tau.ac.il.
†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv, 6997801, Israel. Email: krivelev@tauex.tau.ac.il. Partially supported by USA-Israel BSF grant 2014361,

and by ISF grant 1261/17.

1

In light of this, one can ask whether there exists a computationally efficient way to find a Hamilton

cycle in a graph G, or to determine that it contains none, provided that G is sampled from the

probability space G(n, p) with np− lnn− ln lnn→∞.

The answer to this question differs greatly depending on how one defines the term “computationally

efficient”.

For example, if our interest lies in finding an algorithm with a fast worst case time complexity, that

is, its running time on any input is bounded by some “small” function of the number of vertices

n, we might get disappointed. This is due to the fact that the graph Hamiltonicity problem is a

well known NP-complete problem (see e.g. [8]), and as such no polynomial time algorithm solving

it is known. In fact, the best known worst case complexity algorithm is achieved by dynamic

programming algorithms (see Bellman [2] and Held, Karp [10]), with asymptotic time O
(
2n · n2

)
.

That said, different models of complexity may yield very different results. Consider for example a

model in which an algorithm is allowed to return the result “failure”, admitting that it has failed

to find a Hamilton cycle in the input graph (without providing a proof that there is none), under

the condition that if p ≥ f(n) and G ∼ G(n, p) then the probability that the algorithm fails on

input G is of order o(1).

In this model, much faster algorithms are available. A notable example is given in a 1987 paper by

Bollobás, Fenner and Frieze [4], who present an algorithm HAM1 with time complexity O
(
n4+ε

)
with ε > 0 arbitrarily small, that either finds a Hamilton cycle or returns “failure”. They further

show that if the input graph G is distributed G ∼ G(n, p), for any p = p(n), then

lim
n→∞

Pr[HAM1 finds a Hamilton cycle in G] = lim
n→∞

Pr[G is Hamiltonian].

Combined with the above stated fact that if np− lnn− ln lnn→∞ then G is with high probability

Hamiltonian, this means that for p ≥ lnn+ln lnn+ω(1)
n the probability that HAM1 returns “failure”

is indeed o(1).

Another example of a fast algorithm that is not likely to return “failure” is given in [5], where

the authors choose to measure the complexity by the number of positive edge query results the

algorithm requires. They show an algorithm that requires (1 + o(1))n successful queries, and fails

with probability o(1) on graphs distributed according to G(n, p), with p ≥ lnn+ln lnn+ω(1)
n .

An intuitive measure of complexity which seems interesting to consider is the expected run-

ning time. Denote by TA(G) the running time of some algorithm A on an input graph G. Say

G ∼ G(n, p), how small can E [TA(G)] be?

If we assume that there is no polynomial time algorithm that finds a Hamilton cycle in a graph,

then finding an algorithm with polynomial expected running time is in some sense a more difficult

problem than that of finding a polynomial time algorithm that fails with probability o(1): if the ex-

pected time is polynomial, it means that those cases on which the running time is super-polynomial

take up at most n−ω(1) of the probability space. So such an algorithm can be used to construct a

2

polynomial time algorithm that returns “failure” with probability n−ω(1).

Bollobás, Fenner and Frieze [4] used their algorithm HAM1 to construct a slightly modified al-

gorithm HAM, which applies an exponential running time algorithm on inputs on which HAM1

returned “failure”, and prove that the expected running time of HAM on G ∼ G
(
n, 12

)
is polyno-

mial in n.

Gurevich and Shelah [9] improved upon this result, by presenting an algorithm HPA, which finds a

Hamiltonian s−t path in a graph G, with a linear expected running time, where this time the input

is assumed to be distributed according to distribution G(n, p), with p ∈ [0, 1] being a constant (not

necessarily 1
2). This can easily be altered into an algorithm that finds a Hamilton cycle rather than

a Hamilton s − t path. They did this by presenting three consecutive algorithms HPA1, HPA2,

HPA3, such that failure of one algorithm to find a Hamilton s− t path results in the next one being

called, and such that HPA1 takes linear time and

Pr[HPAi fails on G] · E
[
THPA(i+1)(G)

]
= O(n).

They further show that their result is optimal for this range of p, by proving a stronger claim: If

A is an algorithm for finding a Hamilton cycle and p ≥ 3 lnn
n , G ∼ G(n, p), then E [TA(G)] ≥ n/p.

This result can be obtained by observing that in order to find a Hamilton cycle in a graph G, the

algorithm must sample at least n existing edges of G, which means that the expected number of

queried pairs of vertices in A must be at least the expected number of queries required for finding

n edges, which is exactly n/p.

Further improvement was later given by Thomason [14], who presented an algorithm A, similarly

constructed of three consecutive algorithms A1,A2,A3. The expected running time of A is asymp-

totically optimal up to multiplication by a constant (that is E [TA(G)] = O(n/p)), for a wider class

of random graphs: whenever p ≥ 12n−
1
3 .

For further reading on the algorithmic aspects of random graphs, including Hamiltonicity, we refer

to [7].

In this paper we present a new algorithm CRE (Cycle rotation extension) for finding a Hamilton

cycle, and prove that if p ≥ 70n−
1
2 and G ∼ G(n, p) then E [TCRE(G)] = (1 + o(1))n/p. This

constitutes a substantial progress in a long-standing open problem on Hamiltonicity of random

graphs (see e.g., Problem 16 in [6]).

Formally, we prove the following main result:

Theorem 1. Let p ≥ 70n−
1
2 and let G ∼ G(n, p). There is an algorithm for finding a Hamilton

cycle in a graph, with expected running time (1 + o(1))n/p on G.

As the algorithm’s name suggests, we will try and employ techniques inspired by Pósa’s rotation-

extension, which were introduced by Pósa in 1976 [13] in his research of Hamiltonicity in random

graphs. Informally put, rotation-extension is a technique which under certain conditions allows one

to gradually extend paths or cycles in a graph, by finding (through a process usually referred to as

3

a rotation) a large number of pairs of vertices, such that the existence of an edge between any of

these pairs enables one to get a longer path or cycle (an extension) using this edge.

Similarly to the previous results, we will define CRE by aligning three algorithms, each calling the

next one in case of failure. In essence, the three algorithms will be:

• CRE1 – A simple greedy algorithm, tasked with optimizing the expected time complexity.

• CRE2 – The main algorithm, tasked with finding a Hamilton cycle in polynomial time in all

but an exponentially small fraction of the probability space.

• CRE3 – An exponential running time algorithm tasked with finding a Hamilton cycle in the

graph when the previous two algorithms failed. This algorithm is identical to HPA3.

In Section 2 we present some preliminaries. In Section 3 we present the CRE algorithm, and prove

its correctness. In Section 4 we prove that the expected running time of CRE is (1 + o(1))n/p. In

Section 5 we add some concluding remarks.

2 Preliminaries

In this section we provide several definitions and results to be used in the following sections.

Throughout the paper, it is assumed that all logarithmic functions are in the natural base, unless

explicitly stated otherwise.

We suppress the rounding notation occasionally to simplify the presentation.

The following standard graph theoretic notations will be used:

• NG(U) : the external neighbourhood of a vertex subset U in the graph G, i.e.

NG(U) = {v ∈ V (G) \ U : v has a neighbour in U}.

• eG(U): the number of edges spanned by a vertex subset U in a graph G. This will sometimes

be abbreviated as e(U), when the identity of G is clear from the context.

• eG(U,W): the number of edges of G between the two disjoint vertex sets U,W . This will

sometimes be abbreviated as e(U,W) when G is clear from the context.

Furthermore, given a cycle or a path S in a graph, with some orientation, we denote:

• S−1: the cycle composed of the vertices and edges of S, but with the opposite orientation.

• sS(v): the successor of a vertex v ∈ S on S, according to the given orientation. When the

identity of the cycle is clear, we will write s(v).

• sS(U): the set of successors {sS(u) : u ∈ U}. When the identity of the cycle is clear, we will

write s(U).

4

• pS(v): the predecessor of a vertex v ∈ S on S, according to the given orientation. When the

identity of the cycle is clear, we will write p(v).

• pS(U): the set of predecessors {pS(u) : u ∈ U}. When the identity of the cycle is clear, we

will write p(U).

• S(v → u): the path
(
v, sS(v), s2S(v), ..., pS(u), u

)
⊆ S.

Gearing towards our concrete setting of a graph G distributed according to G(n, p) with p ≥ 70n−
1
2 ,

given a graph G, we will define the set of vertices with small degree (with regards to the expected

degree) in G:

Definition 1. Let G be a graph on n vertices. The set SMALL(G) is defined as

SMALL(G) := {v ∈ V (G) | d(v) < 40
√
n}.

We shall also make use of the following definition:

Definition 2. Let Γ = (X ∪ Y,E) be a bipartite graph. An edge subset M ⊆ E(Γ) is called a

≤ 2-matching from X to Y if each vertex of X is incident to at most 2 edges in M , and each vertex

of Y is incident to at most one edge in M . A maximum ≤ 2-matching in Γ is a ≤ 2-matching with

the maximum possible number of edges.

We note that given a bipartite graph Γ = (X ∪ Y,E), a maximum ≤ 2-matching from X to Y can

be found in time (|X|+ |Y |)O(1) by using the MaxFlow algorithm.

For some of our probabilistic bounds, we will use the following standard result throughout the

paper:

Lemma 2.1. (Chernoff bound for binomial tails, see e.g. [11]) Let X ∼ Bin(n, p). Then for every

δ > 0, Pr[X < np− δ] ≤ exp
(
− δ2

2np

)
.

3 The CRE algorithm

We now present the three components of the CRE algorithm, and prove that they are sound. Recall

that each component can either fail or return a result, which is either a Hamilton cycle in the input

graph or a declaration that there is none. The CRE algorithm itself will be:

CRE(G):

If CRE1(G) did not fail, return the result of CRE1(G). Otherwise:

If CRE2(G) did not fail, return the result of CRE2(G). Otherwise:

Return the result of CRE3(G).

5

3.1 CRE1

We present the algorithm CRE1. This algorithm will be a greedy algorithm, tasked with optimizing

the expected running time. As such, we aim for it to have the following properties, whenever

p ≥ 70n−
1
2 :

• E [TCRE1(G)] = (1 + o(1))n/p;

• Pr[CRE1 returns “failure”] · E [TCRE2(G)] = o(n/p).

In the algorithm description we will assume that V (G) = [n].

The CRE1 algorithm description:

Step 1. Attempt to construct a path P1 in G ([n/2]) by greedily querying for a neighbour of the

current last vertex in the path from outside the path, until the path’s end vertex does not

have any neighbours among the remaining vertices. If n
2 − |P1| >

√
n log n, return “Failure”.

Denote this path by P1 = (v1, ..., vn/2−n1
), with n1 = |[n/2] \ P1|.

Attempt to construct a path P2 in G ([n/2 + 1, n]) in the same manner, and return “Failure”

if n
2 − |P2| >

√
n log n. Denote P2 = (u1, ..., un/2−n2

).

Step 2. Find indices i, j, k, l with minimal i+j+k+l, such that (vi, un/2−n2−j), (vn/2−n1−k, ul) ∈ E(G).

If i+ j + k + l >
√
n log n, return “Failure”. Otherwise, denote by S0 the cycle:

S0 := P1(vi → vn/2−n1−k) ∪ {(vn/2−n1−k, ul)} ∪ P2(ul → un/2−n2−j) ∪ {(vi, un/2−n2−j)}.

Step 3. Initialize i = 0, and repeat the following loop until no vertices are left outside the cycle Si.

Choose some vertex v /∈ Si. For ease of description we will assume that v ∈ [n/2]. In the

complementing case, the description is completely symmetrical, replacing P2 with P1, n2 with

n1 and so on.

Create a set X = {x1, ..., x 3√n} of neighbours of v on (P2 ∩ Si) \ {un/2−n2−j} that have not

been used in this step, with z := x 3√n being the maximal one with respect to P2. Return

“failure” if no such 3
√
n vertices exist. Otherwise, create a set Y = {y1, ..., y 3√n} of neighbours

of sSi(z) on (P1∩Si)\{vi}. Return “failure” if no such 3
√
n vertices exist. Finally, find a pair

x ∈ X \ {z}, y ∈ Y such that (sSi(x), pSi(y)) ∈ E(G). If no such pair exists, return “failure”.

Otherwise, set

Si+1 := {(v, x)} ∪ S−1i (x→ y) ∪ {(y, s(z))} ∪ Si(s(z)→ p(y)) ∪ {(p(y), s(x))}
∪Si(s(x)→ z) ∪ {(z, v)};

i := i+ 1.

6

3.2 CRE2

We present a description of CRE2, followed by a proof that the algorithm is sound, that is, if CRE2

does not fail on a graph G then it returns a Hamilton cycle that is a subgraph of G if and only if

G is Hamiltonian.

The CRE2 algorithm description:

Step 1. Determine SMALL(G) (see Def. 1) by going over all vertices and checking their degrees in

G. If the resulting set is larger than 2
√
n, return “Failure”.

Step 2. Find a maximum ≤ 2-matching M in G from SMALL(G) to V (G) \ SMALL(G). Denote by

U the subset of vertices in V (G)\SMALL(G) that have degree 1 in M . If |U | ≤ |SMALL(G)|,
add arbitrary vertices to U until it is of size |SMALL(G)|+ 1.

Step 3. Using the dynamic programming algorithm (HPA3, see description in Section 3.3), find a

Hamilton cycle in the graph with vertex set U∪SMALL(G) and edge set EG (U ∪ SMALL(G))∪
(U × U). If no such cycle exists, determine that G is not Hamiltonian. Otherwise, denote

this cycle by C.

Let NE = (U × U) ∩ C \ E(G), let |NE | = r, and denote the members of NE by {e1, ..., er}.

Step 4. For each 1 ≤ j ≤ r find a path Pj of length at most 4 connecting the two vertices of ej ,

with all of its internal vertices in G \

(
j−1⋃
k=1

Pk ∪ SMALL(G) ∪ U

)
, using BFS. If for some j

no such path exists, return “Failure”. Otherwise, set i = 0 and denote the resulting cycle by

S0 =

(
C ∪

r⋃
j=1

Pj

)
\NE .

Step 5. Attempt to add at least one vertex of V (G) \ V (Si) to Si by doing the following:

Using BFS, determine all connected components of G \ Si, and denote by Vi a largest con-

nected component. If |Si| ≥ 0.99n and |Vi| ≤ 15
√
n, go to Step 6. Otherwise, choose an

arbitrary orientation to Si and let Ui := s(NG(Vi) ∩ Si). If Ui is an independent set, return

“Failure”. Otherwise, let (u,w) be an edge in Ui, let u′ = p(u), w′ = p(w) and let P be a

path, with all its internal vertices in Vi, connecting u′ to w′ (this path was uncovered in the

BFS stage). Without loss of generality, u precedes w on Si. Set Si+1 to be:

Si+1 = Si(w → u′) ∪ P ∪ S−1i (w′ → u) ∪ {(u,w)}.

Set i = i+ 1, and return to Step 5.

Step 6. While there is some vertex v ∈ V (G) \ V (Si), attempt to add it to Si by exhaustively

searching for two vertices u,w ∈ NG(v) ∩ Si, a set E1 ⊆ E(Si) of size at most 4, and a set

7

E2 ⊆ EG(V (Si)) \E(Si) of size |E1| − 1, such that Si+1 := (Si \E1) ∪E2 ∪ {(u, v), (v, w)} is

a cycle of size |Si|+ 1. If no such u,w,E1, E2 exist, return “failure”.

Lemma 3.1. If G is a graph such that CRE2 does not result in failure when applied to G, then

CRE2 returns a Hamilton cycle if and only if G is Hamiltonian. Furthermore, if CRE2 returns a

Hamilton cycle then it is a subgraph of G.

Proof. In each step E(Si) ⊆ E(G) and Si (Si+1. So it is clear that if the algorithm returns a

Hamilton cycle then it is indeed a Hamilton cycle contained in G.

The complementing case is CRE2 declaring that G is not Hamiltonian. This can only occur

in Step 3, if the algorithm failed to find a Hamilton cycle in the graph consisting of vertices

SMALL(G) ∪ U and edges EG(SMALL(G) ∪ U) ∪ (U × U), which we will denote by H. Since

the dynamic programming algorithm was used to find such a cycle, failure to find one means that

it does not exist in H, so it remains to be shown that if G is Hamiltonian then H must also be

Hamiltonian. We provide a proof of this due to Thomason [14].

Let G∗ denote the graph obtained by adding to G all the non-edges with both vertices in G \
SMALL(G). Assume that G is Hamiltonian. Then G∗ must also be Hamiltonian.

For some Hamilton cycle C, define its kernel set to be the edge subset C \EG∗(V (G)\SMALL(G)).

The kernel set of a Hamilton cycle consists of a set of disjoint paths in G\EG(V (G)\SMALL(G)),

containing between them all of SMALL(G), whose endvertices lie in V (G) \ SMALL(G).

Let C be a Hamilton cycle in G∗ such that the number of edges from M contained in its kernel

set is maximised. Denote SMALL(G) = W0 ·∪ W1 ·∪ W2, where Wi is the subset of SMALL(G)

joined by i edges of the kernel set to V (G) \ SMALL(G). Let K ⊆ V (G) \ SMALL(G) be the set

of vertices joined by the kernel set to SMALL(G). Then any vertex in Wi matches to at most 2− i
vertices in U \K, for otherwise if x ∈Wi and (x, y) ∈M , where y /∈ K, we can remove a kernel set

edge from x, replace it with (x, y), and create a new kernel set (of another Hamilton cycle C ′) with

more edges from M in it. Now, for each vertex in K, choose an edge of the kernel set incident to

it arbitrarily. Then a vertex of Wi is incident with at most i of these edges. So these edges, along

with the edge set M ∩ (SMALL(G) × (U \ K)), together form a ≤ 2-matching of order |U ∪ K|.
Since the largest ≤ 2-matching has order exactly |U |, we see that K ⊆ U . It now follows from the

definition of a kernel set that we can construct a Hamilton cycle in H, as claimed.

3.3 CRE3

The final part of CRE is CRE3, an algorithm with the following desired properties:

• The time complexity of CRE3 is 22n · nO(1);

• The space complexity of CRE3 is linear in n;

8

• The result of CRE3 is either a Hamilton cycle contained in the input graph, or a declaration

that the graph is not Hamiltonian if the input graph contains none.

Luckily, such an algorithm already exists — the algorithm HPA3 presented by Gurevich and Shelah

in [9]. For completeness we give a brief description of the algorithm. For proof of the properties,

see the original paper. We note that, as mentioned in Section 1, an algorithm with time complexity

O
(
2n · n2

)
is known. The downside of this algorithm is that it also has exponential space com-

plexity. This is not a very big issue for us, since our interests in this paper lie exclusively in time

complexity, but since we can get a similar algorithm, but with linear space, with its time complexity

still sufficiently small for our purposes, this is the one we chose.

The algorithm HPA3, given a graph G and two vertices s, t ∈ V (G), finds a Hamilton path in G

from s to t. First we note that converting this algorithm into an algorithm for finding a Hamilton

cycle is very simple: choose an arbitrary vertex in G, say s, and iterate HPA3(G \ (s, t), s, t) over

all t ∈ NG(s). If for some t a Hamilton s− t path P is found then P ∪ (s, t) is a Hamilton cycle in

G. If all iterations fail, then surely G cannot be Hamiltonian.

HPA3 is defined recursively, as follows:

HPA3(G, s, t) :

If V (G) = {s, t}, return (s, t) if it is an edge, and “No such path” if it is not an edge. Otherwise:

For all c ∈ V (G) \ {s, t} and for all A ⊆ V (G) \ {s, t, c} of size bn−32 c:
If HPA3(A, s, c) and HPA3(G\A, c, t) are successful, return HPA3(A, s, c)∪HPA3(G\A, c, t);
otherwise, continue.

If loop failed, return “No such path”.

4 Expected time complexity of CRE

In this section we aim to prove that the algorithm described in Section 3 meets the time complexity

goals we had set, that is: if p ≥ 70n−
1
2 , then the expected running time over G(n, p) is (1+o(1))n/p.

Since

E [TCRE(G)] ≤ E [TCRE1(G)] + Pr[CRE1 fails] · E [TCRE2(G) |CRE1 fails]

+Pr[CRE2 fails] · E [TCRE3(G)] ,

it is sufficient to prove that the following hold:

• E [TCRE1(G)] = (1 + o(1))n/p;

• Pr[CRE1 fails] · E [TCRE2(G) |CRE1 fails] = o(n/p);

• The probability that CRE2 returns “failure” is 2−2n · n−ω(1);

• The running time of CRE3 is 22n · nO(1).

9

A proof of the last point is provided in [9]. We now provide proofs for the other three points.

4.1 Expected running time of CRE1

Lemma 4.1. If p ≥ 70n−
1
2 , G ∼ G(n, p), then E [TCRE1(G)] = (1 + o(1))n/p.

Proof. The expected running time of CRE1 is the sum of the expected running times of its three

steps.

• In Step one CRE1 samples edges, until it reaches at most n− 2 successes, which means that

the expected time of this step is at most (n− 2)/p;

• In Step 2 CRE1 samples edges until it finds two existing edges. So the expected running time

of this step is 2/p;

• In Step 3 CRE1 repeats a loop at most
√
n log n times. In each time, it samples edges

until it finds 2 3
√
n + 1 existing ones. So the expected running time of this step is at most

√
n log n · (2 3

√
n+ 1) /p = o(n/p).

Overall, we get the desired sum of (1 + o(1))n/p.

4.2 Probability of failure of CRE1

Lemma 4.2. Let p ≥ 70n−
1
2 and let G ∼ G(n, p). Then the probability that CRE1(G) returns the

result “failure” is o(n−60).

Proof. We note that since no edge is sampled twice during the run of CRE1, all the possible events

that lead to failure are independent. We bound from above the probability of each of these events

occurring.

1. CRE1 fails if at some point in Step 1 the last vertex in P1 has no neighbours in the set

[n/2] \ P1, and if at that point this set is larger than
√
n log n. The probability of this

occurring is at most the probability that among n
2 independent random variables distributed

Bin (
√
n log n, p) at least one is equal to zero. We bound this probability by applying the

union bound:
Pr[n1 ≥

√
n log n] ≤ 0.5n · (1− p)

√
n logn

≤ 0.5n exp(−70 log n)

= o(n−60).

2.

Pr[n2 ≥
√
n log n] = Pr[n1 ≥

√
n log n] = o(n−60).

10

3. Step 2 results in failure if the minimal indices i, j, k, l for which
(
vi, un/2−n2−j

)
,
(
vn/2−n1−k, ul

)
are in E(G) satisfy i+ j + k + l >

√
n log n, and in particular i+ j > 0.5

√
n log n or k + l >

0.5
√
n log n. There are

(
0.5
√
n logn
2

)
≥ 0.1n log2 n pairs i, j (or k, l) with i + j ≤ 0.5

√
n log n,

for which an edge query resulted in failure. Applying the union bound we get

Pr[i+ j + k + l >
√
n log n] ≤ 2Pr[i+ j > 0.5

√
n log n]

≤ (1− p)0.1n log2 n = n−ω(1).

4. If Step 3 resulted in failure, say in the m’th iteration, then there was some vertex v outside

of Sm such that one of the following happened:

(a) v did not have 3
√
n neighbours in (wlog) (P2∩Sm)\{un/2−n2−j} that have not been used

in iterations 0 to i− 1;

(b) sSm(z) did not have 3
√
n neighbours in (P1 ∩ Sm) \ {vi};

(c) s(X) and p(Y) did not have any edge between them.

Since up to the m’th iteration, at most
√
n log n · 3

√
n = o(n) vertices of Sm have been used,

the probability of (a) and (b) is at most the probability that Bin(n/6, p) < 3
√
n. So:

Pr[Step 3 failed] ≤ n ·
(

2 · Pr [Bin(n/6, p) < 3
√
n] + (1− p) 3√n(3√n−1)

)
≤ n · (exp (−Ω(

√
n)) + exp (−Ω(6

√
n))) = n−ω(1).

So all of the events that lead to failure have probability o(n−60), and therefore the probability of

failure is also o(n−60), as we have set out to prove.

4.3 Expected running time of CRE2

Lemma 4.3. Let p = p(n) ≥ 70n−
1
2 . Then Pr[CRE1 fails] · E [TCRE2(G) |CRE1 fails] = O(1),

where the input to both algorithms is distributed according to G ∼ G(n, p).

Proof. Denote Pr[CRE1 fails] := p1. Except for Step 3, all steps of CRE2 have time complexity at

most O(n5), regardless of the input graph. As for Step 3, since |U ∪ SMALL(G)| ≤ 3|SMALL(G)|,
the expected runtime of this step (assuming we reach it) is

E [TStep 3(G) |CRE1 fails] =
∑2
√
n

k=1 k
O(1)26k · Pr [|SMALL(G)| = k |CRE1 fails]

≤ p1
−1 ·

∑2
√
n

k=1 k
O(1)26k · Pr [|SMALL(G)| = k] .

We bound each term from above, using the Chernoff bound (Lemma 2.1)

kO(1)26k · Pr [|SMALL(G)| = k] ≤ kO(1)26k ·
(
n
k

)
· Pr

[
Bin(k(n− k), p) ≤ 3

4knp
]

≤ exp (O(log k) + 6k + k log n− Ω(knp)) = o
(
n−1

)
,

11

hence the value of the entire sum above is at most o(1).

So overall

Pr[CRE1 fails] · E [TCRE2(G) |CRE1 fails] = p1 ·O
(
n5 + p1

−1) = O(1).

4.4 Probability of failure of CRE2

Let G ∼ G(n, p), where p = p(n) ≥ 70n−
1
2 .

We will call an event A rare if Pr[A] = 2−2n ·n−ω(1). Our goal is to prove that CRE2(G) resulting

in failure is a rare event. We aim to do this by presenting a graph property (P) such that:

• G /∈ (P) is rare;

• If G ∈ (P) then CRE2 deterministically either finds a Hamilton cycle or determines that the

graph is not Hamiltonian.

Define the graph property (P) as follows:

∀U,W ⊆ V (G) disjoint subsets : e(U,W) > |U | · |W | · p

(
1−

√
n1.5

10|U | · |W |

)
.

(In particular, if |U | · |W | ≥ n1.5

10 then e(U,W) ≥ 1.)

Lemma 4.4. If p = p(n) ≥ 70n−
1
2 and G ∼ G(n, p), then G /∈ (P) is rare.

Proof. We bound from above the probability that G /∈ (P).

Let U,W ⊆ V (G) be two disjoint sets, and assume that |U | · |W | ≥ n1.5

10 . By the Chernoff bound

(Lemma 2.1), the probability of e(U,W) ≤ |U | · |W | · p
(

1−
√

n1.5

10|U |·|W |

)
is at most

Pr

[
Bin (|U | · |W |, p) ≤ |U | · |W | · p

(
1−

√
n1.5

10|U | · |W |

)]
≤ exp

(
− 1

20
· n1.5p

)
≤ e−3.5n.

Finally, by the union bound we get that the probability that exist such U,W is at most 3n ·e−3.5n =

2−2n · n−ω(1), as desired.

In order to prove that CRE2 does not result in “failure” on an input graph G satisfying (P) for

p = p(n) ≥ 70n−
1
2 , we will show that none of the four stages that may result in “failure” does so

on such an input.

In the following lemmas it is assumed, without stating explicitly, that p(n) ≥ 70n−
1
2 .

12

Lemma 4.5. Let G be a graph on n vertices satisfying (P). Then Step 1 does not return “Failure”

on input G.

Proof. CRE2 fails this step if and only if |SMALL(G)| ≥ 2
√
n. Let A ⊆ SMALL(G) be some subset

of size 2
√
n. So A and V (G) \A are two disjoint subsets with |A| · |V (G) \A| ≥ 1.9n1.5, but

e (A, V (G) \A) ≤ 40
√
n|A| ≤

(
1− 1√

19

)
· |A| · |V (G) \A| · p,

a contradiction to G satisfying (P).

Lemma 4.6. Let G be a graph on n vertices satisfying (P). Then Step 4 does not return “Failure”

on input G.

Proof. Say we failed to find a path of length at most 4 between the vertices of some non-edge ei :=

(u1, u2) ∈ U × U in the graph Hi := G \

(
i−1⋃
j=1

Pj ∪ SMALL(G) ∪ U

)
. Since u1, u2 /∈ SMALL(G),

it holds that

|NHi(u1)|, |NHi(u2)| ≥ 40
√
n− 6 · |SMALL(G)| ≥ 25

√
n.

Let D2(G, v) denote the set of vertices in a graph G of distance at most 2 from a vertex v. Because

there is no path of length at most 4, the sets D2(Hi, u1), D2(Hi, u2) do not intersect each other,

which means that one of them, WLOG D2(Hi, u1), is of size at most 1
2n. But then we have

|NHi(u1)| · |Hi \ (D2(Hi, u1) ∪ {u1}) | ≥ 25
√
n ·
(
n− 12

√
n− 1

2
n− 1

)
≥ 10n1.5,

e (NHi(u1), Hi \ (NHi(u1) ∪D2(Hi, u1) ∪ {u1})) = 0,

which means G /∈ (P), a contradiction.

Lemma 4.7. Let G be a graph on n vertices satisfying (P). Then Step 5 does not return “Failure”

on input G.

Proof. Say we failed at some time i, that is: the constructed vertex set Ui is an independent set.

Recall that Ui is the set of successors along Si of vertices in NG(Vi) ∩ Si, where Vi is a maximum

sized connected component of G \ Si. Let Wi = NG(Vi) ∩ Si. Consider the following cases:

1. |Ui| ≥ n
3
4 . Let A1, A2 ⊆ Ui be two disjoint subsets of size 1

2n
3
4 . So |A1| · |A2| = 1

4n
1.5, but

e(A1, A2) = 0, a contradiction.

2. |Vi| > n− 30
√
n. Observe two facts:

• By Def. 1, since |V (G) \ Vi| < 30
√
n < 40

√
n, we get that ∀v ∈ Si \ SMALL(G) :

NG(v) ∩ Vi 6= ∅;

13

• Since |SMALL(G)| < 1
2 |S0| ≤

1
2 |Si|, there are two vertices w1, w2 ∈ Si \SMALL(G) such

that w1 = sSi(w2).

So w1, w2 belong to Wi, and their successors are connected by an edge, which means that the

algorithm could not have failed.

3. 15
√
n ≤ |Vi| ≤ n−30

√
n. Observe that if the algorithm failed then |Wi| = |Ui| ≤ min{12 |Si|, n

3/4},
and therefore we have

• |Vi|+ |V (G) \ (Vi ∪Wi)| ≥ n− n
3
4 ;

• |Vi| ≥ 15
√
n;

• |V (G) \ (Vi ∪Wi)| = |V (G) \ Vi| − |Wi| ≥ |V (G) \ Vi| − 1
2 |Si| ≥

1
2 |V (G) \ Vi| ≥ 15

√
n.

So Vi and V (G)\(Vi∪Wi) are two sets, with |Vi| · |V (G)\(Vi∪Wi)| ≥ 10n1.5, but e(Vi, V (G)\
(Vi ∪Wi)) = 0, a contradiction to our assumption that G ∈ (P).

4. |Vi| ≤ 15
√
n, |Si| < 0.99n. Then all connected components of G\Si are of size at most 15

√
n,

and the sum of their sizes is at least 0.01n. So the vertices of V (G) \ Si can be partitioned

into two sets A1, A2 such that each one of them is a union of connected components, and

|A1|, |A2| ≥ n
3
4 . But then |A1| · |A2| ≥ n1.5 and e(A1, A2) = 0, a contradiction.

The complementing case to those already covered is when |Vi| ≤ 15
√
n, |Si| ≥ 0.99n, which can

only occur in Stage 6.

Lemma 4.8. Let G be a graph on n vertices satisfying (P). Then Step 6 does not return “Failure”

on input G.

Proof. We show that under the assumption that G ∈ (P), the cycle Si contains two vertices u,w and

two edge subsets E1, E2 as described in Step 6. Since the algorithm searches for such u,w,E1, E2

exhaustively, and only returns “Failure” upon failing the search, this means that if G ∈ (P) the

algorithm does not fail.

Recall that in this stage we can assume that |Si| ≥ 0.99n and that all connected components of

G \ Si are of size at most 15
√
n. It follows that for every v ∈ V (G) \ Si we have |NG(v) ∩ Si| ≥

dG(v) − |Vi| ≥ 20
√
n. Observe that if |NG(v) ∩ Si| > 1

2n then v has two neighbours adjacent on

Si, say u,w, so setting E1 = (u,w), E2 = ∅ results in a cycle as desired, so we can assume that

|NG(v) ∩ Si| ≤ 1
2n.

Let Ui := p(NG(v) ∩ Si). Since |Ui|, |Si \ Ui| ≥ 20
√
n and |Ui| + |Si \ Ui| ≥ 0.99n, we get that

|Ui| · |Si \ Ui| ≥ 10n1.5, and therefore e(Ui, Si \ Ui) ≥ 0.9p|Ui| · |Si \ Ui| ≥ 0.4|Ui|np. It follows that

there is some u ∈ NG(v) ∩ Si such that dSi(p(u)) ≥ 0.4np ≥ 20
√
n. Denote t0 := p(u), and let Q

be the path {v} ∪ Si(u→ t0).

Define the following three special vertices on Q:

14

• cv : a vertex on Q such that |NQ(v→cv)(v)| = b12 |NQ(v)|c;

• ct0 : a vertex on Q such that |NQ(ct0→t0)(t0)| = b
1
2 |NQ(t0)|c;

• c : a vertex on Q such that |Q(v → c)| = b12 |Q|c.

We will assume that cv and c precede ct0 on Q, and remark that the proof is quite similar for the

complementing cases, in which ct0 precedes one or both of cv, c, with some minor changes required

to some of the definitions down the line.

Denote: Q1 := Q(v → cv), Q2 := Q(ct0 → t0), Q3 := Q(v → c).

We now aim to show that E1, E2, w as required exist in the graph, with respect to the already

chosen u, by using rotations and extensions.

Let Wi be the set NQ1(v) and Ti the set sQ(NQ2(t0)). By our choices of v, t0, cv, ct0 we know that

|Wi|, |Ti| ≥ 10
√
n. Now, construct the set Oi as follows:

For each vertex x ∈ Wi and for each y ∈ NQ3(pQ(x)) \ {x} add sQ(y) to Oi if y ∈ Q(v → x) and

add pQ(y) to Oi if y ∈ Q(x→ c).

Claim 4.1. The size |Oi| is at least 0.2n.

Proof. By our construction, |Oi| ≥ |NQ3(pQ(Wi))|− |Wi|. If |Oi| < 0.2n then |Q3 \NQ3(pQ(Wi))| ≥
0.25n − |Wi|, and pQ(Wi), Q3 \NQ3(pQ(Wi)) are two sets that have no edges between them, but

the product of their sizes is at least 2n1.5, a contradiction.

Claim 4.2. There is an edge between Oi and Ti.

Proof. The two sets are disjoint, and |Oi| · |Ti| ≥ 2n1.5.

Let s ∈ Oi, t ∈ Ti be such that (s, t) ∈ E(G), and let w ∈ Wi be a vertex that caused s to be

added to Oi. Finally, define:

• E1 := {(u, t0), (pQ(w), w), (s, sQ(s)), (pQ(t), t)};

• E2 := {(pQ(w), sQ(s)), (pQ(t)), t0), (s, t)}.

Then E1, E2, u, w are as required by the algorithm (see Fig. 1 for illustration).

5 Concluding remarks

To summarise, we have presented an algorithm CRE which is comprised of three aligned algorithms,

in the spirit of previous results, and utilises rotations and extensions in order to find a Hamilton

cycle in a graph, and proved that its expected running time on a random graph G ∼ G(n, p) is

optimal, for p ≥ 70n−
1
2 .

15

v

u

pQ(w)

w

cv

s

sQ(s)

c

ct0

pQ(t)

t

pSi(u)=t0

Figure 1: Extention of cycle Si (oriented clockwise) to cycle Si+1 that includes v, by removing the

edges of E1 (dotted) and adding the edges of E2 (dashed) and (v, u), (v, w).

We note that even if we make changes to some parameters in our algorithm, p = Ω
(
n−

1
2

)
seems to be the lowest range of probability for which our expected running time bound works, at

least with our current argument. The reason for this is the existence of some bottlenecks along the

proof, where smaller orders of magnitude of the edge probability no longer work. Such a bottleneck

can be observed, for example, in Step 4 of CRE2, where the algorithm tries to connect some set

of paths into a cycle that contains them, by finding paths between pairs of endpoints of paths one

by one. In our proof we use the fact that the total length of the paths is highly likely to be much

smaller than the minimum degree of the vertices at the endpoints of the paths (that is to say that

the complement event is rare, i.e., has probability 22n · n−ω(1)). This is due to the fact that, on

the one hand, all of the paths’ endpoints have degrees at least comparable to the expected average

degree of the graph, since by our construction none of the endpoints are members of SMALL(G)

– the set of vertices with very small degrees. On the other hand, the total number of vertices

in the union of all the paths is not likely to be very big, since this vertex set contains at most

6 · |SMALL(G)| vertices, a size likely to be much smaller than the average degree of the graph for

our parameters, as we observed that SMALL(G) is highly likely to be of size much smaller than

np. If p = o
(
n−

1
2

)
, however, then the event “|SMALL(G)| > np” has probability 2−o(n), and in

particular it is no longer rare. In other words, the probability that one of the paths’ endpoints has

all its neighbours residing in the union of SMALL(G) and previously constructed paths is 2−o(n),

and the expected runtime of CRE might no longer even be polynomial.

16

And so, we leave it as an open question whether a polynomial expected running time Hamiltonicity

algorithm exists for edge probability p = o
(
n−

1
2

)
.

Acknowledgements. The authors would like to express their thanks to the referees of the paper,

and to Samotij Wojtek, for their valuable input towards improving the presentation of our result.

References

[1] M. Ajtai, J. Komlós and E. Szemerédi, First occurrence of Hamilton cycles in random graphs,

Cycles in graphs ’82, North Holland Mathematical Studies 115, North Holland, Amsterdam

(1985), 173–178.

[2] R. Bellman, Dynamic programming treatment of the travelling salesman problem, Journal of

the ACM 9 (1962), 61–63.

[3] B. Bollobás, The evolution of sparse graphs, Graph Theory and Combinatorics, Academic

Press, London (1984), 35–57.

[4] B. Bollobás, T. Fenner and A. Frieze, An algorithm for finding Hamilton paths and cycles in

random graphs, Combinatorica 7 (1987), 327–341.

[5] A. Ferber, M. Krivelevich, B. Sudakov and P. Vieira, Finding Hamilton cycles in random

graphs with few queries, Random Structures & Algorithms 49 (2016), 635–668.

[6] A. Frieze, Hamilton cycles in random graphs: a bibliography, arXiv preprint arXiv:1901.07139

(2019).

[7] A. Frieze and C. McDiarmid, Algorithmic theory of random graphs, Random Structures &

Algorithms 10 (1997), 5–42.

[8] M. Garey, D. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems, The-

oretical Computer Science 1.3 (1976), 237–267.

[9] Y. Gurevich and S. Shelah, Expected computation time for Hamiltonian path problem, SIAM

Journal on Computing 16 (1987),486–502.

[10] M. Held and R. Karp. A dynamic programming approach to sequencing problems, Journal of

the Society for Industrial and Applied Mathematics 10 (1962), 196–210.

[11] W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the

American Statistical Association 58 (1963), 13–30.

17

[12] J. Komlós and E. Szemerédi, Limit distributions for the existence of Hamilton circuits in a

random graph, Discrete Mathematics 43 (1983), 55–63.

[13] L. Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics 14 (1976), 359–364.

[14] A. Thomason, A simple linear expected time algorithm for finding a Hamilton path, Discrete

Mathematics 75 (1989), 373–379.

18

