Relative Entropy

Handout Mode

Iftach Haitner

Tel Aviv University.

December 1, 2015
Part I

Statistical Distance
Statistical distance

Let \(p = (p_1, \ldots, p_m) \) and \(q = (q_1, \ldots, q_m) \) be distributions over \([m]\)

Their **statistical distance** (also known as, variation distance) is defined by

\[
SD(p, q) := \frac{1}{2} \sum_{i \in [m]} |p_i - q_i|
\]

This is simply the \(L_1 \) norm between the distribution vectors

We will soon see another “distance” measures for distributions next lecture

For \(Z \sim p \) and \(Y \sim q \), let \(SD(X, Y) = SD(p, q) \)

Claim (HW): \(SD(p, q) = \max_{S \subseteq [m]} (\sum_{i \in S} p_i - \sum_{i \in S} q_i) \)

Hence, \(SD(p, q) = \max_{D} (\Pr_{X \sim p} [D(X) = 1] - \Pr_{X \sim q} [D(X) = 1]) \)

Interpretation
Distance from the uniform distribution

- Let X be rv over $[m]$
- $H(X) \leq \log m$
- $H(X) = \log m \iff X$ is uniform over $[m]$

Theorem 1 (this lecture)

Let X rv over $[m]$. Assume $H(X) \geq \log m - \varepsilon$, then

$$SD(X, \sim [m]) \leq \sqrt{\varepsilon \cdot \frac{\ln 2}{2}} = O(\sqrt{\varepsilon})$$
Part II

Relative entropy Distance
Section 1

Definition and Basic Facts
Definition

For \(p = (p_1, \ldots, p_m) \) and \(q = (q_1, \ldots, q_m) \), let

\[
D(p||q) = \sum_{i=1}^{m} p_i \log \frac{p_i}{q_i}
\]

\(0 \log \frac{0}{0} = 0, \ p \log \frac{p}{0} = \infty \)

The relative entropy of pair of rv’s, is the relative entropy of their distributions.

Names: Entropy of \(p \) relative to \(q \), relative entropy, information divergence, Kullback-Leibler (KL) divergence/distance

Many different interpretations

Main interpretation: the information we \textit{gained} about \(X \), if we originally thought \(X \sim q \) and now we learned \(X \sim p \)
Numerical Example

\[D(p\|q) = \sum_{i=1}^{m} p_i \log \frac{p_i}{q_i} \]

- \(p = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 0), q = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}) \)

- \[D(p\|q) = \frac{1}{4} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}{4} + \frac{1}{4} \log \frac{1}{8} + 0 \log 0 = \frac{1}{4} \cdot (-1) + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 1 = \frac{1}{2} \]

- \[D(q\|p) = \frac{1}{2} \log \frac{1}{4} + \frac{1}{4} \log \frac{1}{2} + \frac{1}{8} \log \frac{1}{4} + \frac{1}{8} \log \frac{1}{0} = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot (-1) + \frac{1}{8} \cdot (-1) + \infty = \infty \]
Supporting the interpretation

- X rv over $[m]$
- $H(X)$ — measure for amount of information we do not have about X
- $\log m - H(X)$ — measure for information we do have about X
 (just by knowing its distribution)
- Example $X = (X_1, X_2) \sim (\frac{1}{2}, 0, 0, \frac{1}{2})$ over \{00, 01, 10, 11\}
- $H(X) = 1$, $\log m - H(X) = 2 - 1 = 1$
- Indeed, we know $X_1 \oplus X_2$
- $H(\sim [m]) - H(p_1, \ldots, p_m) = \log m - H(p_1, \ldots, p_m)$
 $= \log m + \sum_i p_i \log p_i = \sum_i p_i (\log p_i - \log \frac{1}{m})$
 $= \sum_i p_i \log \frac{p_i}{\frac{1}{m}} = D(p \| \sim [m])$
- $D(X \| \sim [m])$ — measures the information we gained about X, if we originally thought it is $\sim [m]$ and now we learned it is $\sim p$
Supporting the interpretation, cont.

- (generally) $D(p\|q) \neq H(q) - H(p)$
- $H(q) - H(p)$ is not a good measure for information change
- Example: $q = (0.01, 0.99)$ and $p = (0.99, 0.01)$
- We were almost sure that $X = 1$ but learned that X is almost surely 0
- But $H(q) - H(p) = 0$
- Also, $H(q) - H(p)$ might be negative

- We understand $D(p\|q)$ as the information we gained about X, if we originally thought it is $\sim q$ and now we learned it is $\sim p$
Changing distribution

- What does it mean: originally thought $X \sim q$ and now we learned $X \sim p$?
- How can a distribution change?
- Typically, this happens by learning additional information
- $q_i = \Pr[X = i]$ and $p_i = \Pr[X = i | E]$
- Example $X \sim (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0)$; someone saw X and tells us that $X \leq 2$
- The distribution changes to $X \sim (\frac{2}{3}, \frac{1}{3}, 0, 0)$

- Another example

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
</tbody>
</table>

- $Y \sim (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0)$, but
- $Y \sim (\frac{1}{2}, \frac{1}{2}, 0, 0)$ conditioned on $X = 0$
- $Y \sim (\frac{1}{2}, 0, \frac{1}{2}, 0)$ conditioned on $X = 1$
- Generally, a distribution can change if we condition on event E
Additional properties

- $0 \log \frac{0}{0} = 0$, $p \log \frac{p}{0} = \infty$ for $p > 0$
- $\exists i$ s.t. $p_i > 0$ and $q_i = 0$, then $D(p\|q) = \infty$
- If originally $\Pr[X = i] = 0$, then it cannot be more than 0 after we learned something.
- Hence, it make sense to think of it as infinite amount of information learnt
- Alternatively, we can define $D(p\|q)$ only for distribution with $q_i = 0 \implies p_i = 0$
 (recall that $\Pr[X = i] = 0 \implies \Pr[X = i|E] = 0$, for any event E
- If p_i is large and q_i is small, then $D(p\|q)$ is large
- $D(p\|q) \geq 0$, with equality iff $p = q$ (hw)
Example

- \(q = (q_1, \ldots, q_m) \) with \(\sum_{i=1}^{n} q_i = 2^{-k} \) (i.e., \(n < m \))

- \(p_i = \begin{cases} q_i/2^{-k}, & 1 \leq i \leq n \\ 0, & \text{otherwise.} \end{cases} \)

- \(p = (p_1, \ldots, p_m) \) — the distribution of \(q \) conditioned on the event \(i \in [n] \)

- \(D(p||q) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i} = \sum_{i=1}^{n} p_i \log 2^k = \sum_{i=1}^{n} p_i k = k \)

- We gained \(k \) bits of information

- Example: \(\sum_{i=1}^{n} q_i = \frac{1}{2} \), and we were told that \(i \leq n \) or \(i > n \), we got one bit of information
Section 2

Axiomatic Derivation
Axiomatic derivation

Let \tilde{D} is a continuous and symmetric (wrt each distribution) function such that

1. $\tilde{D}(p\parallel \sim [m]) = \log m - H(p)$

2. $\tilde{D}((p_1, \ldots, p_m)\parallel(q_1, \ldots, q_m)) =\tilde{D}((p_1, \ldots, p_{m-1}, \alpha p_m, (1 - \alpha)p_m)\parallel(q_1, \ldots, q_{m-1}, \alpha q_m, (1 - \alpha)q_m))$, for any $\alpha \in [0, 1]$

then $\tilde{D} = D$.

Interpretation

Proof: Let p and q be distributions over $[m]$, and assume $q_i \in \mathbb{Q} \setminus \{0\}$.

- $\tilde{D}(p\parallel q) = \tilde{D}((\alpha_1, p_1, \ldots, \alpha_{m-1}, k p_m, \ldots, \alpha_m, k p_m)\parallel(\alpha_1, q_1, \ldots, \alpha_{m-1}, q_{m-1}, k q_m, \ldots, \alpha_m, k q_m))$, for $\sum_j \alpha_{i,j} = 1$ and $\alpha_{i,j} \geq 0$

- Taking α’s s.t. $\alpha_{i,1} = \alpha_{i,2} \ldots, \alpha_{i,k_i} = \alpha_i$ and $\alpha_i q_i = \frac{1}{M}$, it follows that

$$\tilde{D}(p\parallel q) = \log M - H((\alpha_1, p_1, \ldots, \alpha_{m-1}, p_m, \ldots, \alpha_m, p_m))$$

$$= \sum_i p_i \log M + \sum_i p_i \log \alpha_i p_i = \sum_i p_i (\log M + \log \frac{p_i}{q_i M}) = \sum_i p_i \log \frac{p_i}{q_i}.$$

- Zeros and non-rational q_i’s are dealt by continuity
Section 3

Relation to Mutual Information
Mutual information as expected relative entropy

Claim 2

\[E_{Y \leftarrow Y} [D(X|Y=y||X)] = I(X; Y). \]

Proof:

- Let \(X \sim (q_1, \ldots, q_m) \) over \([m]\), and \(Y \) be rv over \(\{0, 1\} \)
- \((X|Y=j) \sim p_j = (p_{j,1}, \ldots, p_{j,m}), \quad p_{j,i} = \Pr[X = i | Y = j] \)

\[
\mathbb{E}_Y [D(p_Y || q)] = \Pr[Y = 0] \cdot D(p_{0,1}, \ldots, p_{0,m} || q_1, \ldots, q_m) \\
+ \Pr[Y = 1] \cdot D(p_{1,1}, \ldots, p_{1,m} || q_1, \ldots, q_m) \\
= \Pr[Y = 0] \cdot \sum_i p_{0,i} \log \frac{p_{0,i}}{q_i} + \Pr[Y = 1] \cdot \sum_i p_{1,i} \log \frac{p_{1,i}}{q_i} \\
= \Pr[Y = 0] \cdot \sum_i p_{0,i} \log p_{0,i} + \Pr[Y = 1] \cdot \sum_i p_{1,i} \log p_{1,i} \\
- \Pr[Y = 0] \cdot \sum_i p_{0,i} \log q_i - \Pr[Y = 1] \cdot \sum_i p_{1,i} \log q_i \\
= -H(X|Y) - \sum (\Pr[Y = 0] \cdot p_{0,i} + \Pr[Y = 1] \cdot p_{1,i}) \log q_i \\
= -H(X|Y) + H(X) = I(X; Y). \boxdot
Claim 3

Let \((X, Y) \sim p\), then \(I(X; Y) = D(p || p_X p_Y)\).

Proof:

\[
D(p || p_X p_Y) = \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p_X(x)p_Y(y)}
\]

\[
= \sum_{x,y} p(x, y) \log \frac{p_{X|Y}(x|y)}{p_X(x)}
\]

\[
= - \sum_{x,y} p(x, y) \log p_X(x) + \sum_{x,y} p(x, y) \log p_{X|Y}(x|y)
\]

\[
= H(X) + \sum_Y p_Y(y) \sum_x p_{X|Y}(x|y) \log p_{X|Y}(x|y)
\]

\[
= H(X) - H(X|Y) = I(X; Y). \square
\]

We will later relate the above two claims.
Section 4

Relation to Data Compression
Wrong code

Theorem 4

Let p and q be distributions over $[m]$, and let C be code with $\ell(i) = |C(i)| = \left\lceil \log \frac{1}{q_i} \right\rceil$. Then

$$H(p) + D(p\|q) \leq E_{i \leftarrow p}[\ell(i)] \leq H(p) + D(p\|q) + 1$$

- Recall that $H(q) \leq E_{i \leftarrow q}[\ell(i)] \leq H(q) + 1$.
- Proof of upperbound (upperbound is proved similarly)

$$E_{i \leftarrow p}[\ell(i)] = \sum_i p_i \left\lceil \log \frac{1}{q_i} \right\rceil < \sum_i p_i (\log \frac{1}{q_i} + 1)$$

$$= 1 + \sum_i p_i (\log \frac{p_i}{q_i} \frac{1}{p_i}) = 1 + \sum_i p_i (\log \frac{p_i}{q_i}) + \sum_i p_i (\log \frac{1}{p_i})$$

$$= 1 + D(p\|q) + H(p)$$

- Can there be a (close) to optimal code for q that is better for p? HW
Section 5

Conditional Relative Entropy
Conditional relative entropy

For dist. \(p \) over \(\mathcal{X} \times \mathcal{Y} \), let \(p_X \) and \(p_{Y|X} \) be its marginal and conditional dist.

Definition 5

For two distributions \(p \) and \(q \) over \(\mathcal{X} \times \mathcal{Y} \):

\[
D(p_{Y|X} \parallel q_{Y|X}) := \sum_{x \in \mathcal{X}} p_X(x) \cdot \sum_{y \in \mathcal{Y}} p_{Y|X}(y|x) \log \frac{p_{Y|X}(y|x)}{q_{Y|X}(y|x)}
\]

- \(D(p_{Y|X} \parallel q_{Y|X}) = E(x,y) \sim p(x,y) \left[\log \frac{p_{Y|X}(Y|X)}{q_{Y|X}(Y|X)} \right] \)
- Let \((X_p, Y_p) \sim p\) and \((X_q, Y_q) \sim q\), then
 \[
 D(p_{Y|X} \parallel q_{Y|X}) = \mathbb{E}_{x \leftarrow X_p} \left[D(Y_q | X_p=x \parallel Y_q | X_q=x) \right]
 \]
- Numerical example:

\[
\begin{array}{c|cc}
\mathcal{X} \times \mathcal{Y} & 0 & 1 \\
\hline
0 & 1/8 & 1/8 \\
1 & 1/4 & 1/2 \\
\end{array}
\quad\quad
\begin{array}{c|cc}
\mathcal{X} \times \mathcal{Y} & 0 & 1 \\
\hline
0 & 1/8 & 1/4 \\
1 & 1/2 & 1/8 \\
\end{array}
\]

\[
D(p_{Y|X} \parallel q_{Y|X}) = \frac{1}{4} \cdot D((\frac{1}{2}, \frac{1}{2}) \parallel (\frac{1}{3}, \frac{2}{3})) + \frac{3}{4} \cdot D((\frac{1}{3}, \frac{2}{3}) \parallel (\frac{4}{5}, \frac{1}{5})) = \ldots
\]
Chain rule

Claim 6

For any two distributions p and q over $\mathcal{X} \times \mathcal{Y}$, it holds that

$$D(p \parallel q) = D(p_X \parallel q_X) + D(p_{Y|X} \parallel q_{Y|X})$$

Proof:

$$D(p \parallel q) = \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{q(x,y)}$$

$$= \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} p(x,y) \log \frac{p_X(x)p_{Y|X}(y|x)}{q_X(x)q_{Y|X}(y|x)}$$

$$= \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} p(x,y) \log \frac{p_X(x)}{q_X(x)} + \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} p(x,y) \log \frac{p_{Y|X}(y|x)}{q_{Y|X}(y|x)}$$

$$= D(p_X \parallel q_X) + D(p_{Y|X} \parallel q_{Y|X}) \square$$

Hence, for $(X, Y) \sim p$:

$$I(X, Y) = D(p \parallel p_X p_Y) = D(p_X \parallel p_X) + \mathbb{E}_{x \leftarrow X} \left[D(p_{Y|X=x} \parallel p_Y) \right]$$

$$= \mathbb{E}_{x \leftarrow X} \left[D(p_{Y|X=x}, p_Y) \right] \ldots$$
Section 6

Data-processing inequality
Data-processing inequality

Claim 7

For any rv’s X and Y and function f, it holds that $D(f(X)\|f(Y)) \leq D(X\|Y)$.

- Analogues to $H(X) \geq H(f(X))$
- Proof:
 - $D(X, f(X)\|Y, f(Y)) = D(X\|Y)$
 - $D(X, f(X)\|Y, f(Y)) = D(f(X)\|f(Y)) + \mathbb{E}_{z \leftarrow f(X)} \left[D(X_{f(x)=z}\|Y_{f(x)=z}) \right] \geq D(f(X)\|f(Y))$
 - Hence, $D(f(X)\|f(Y)) \leq D(X\|Y)$.
Section 7

Relation to Statistical Distance
Relation to statistical distance

- $D(p\|q)$ is used many times to measure the distance from p to q
- It is not a distance in the mathematical sense: $D(p\|q) \neq D(q\|p)$ and no triangle inequality
- However,

Theorem 8

$$\text{SD}(p, q) \leq \sqrt{\frac{\ln 2}{2}} \cdot D(p\|q)$$

- Corollary: For rv X over $[m]$ with $H(X) \geq \log m - \varepsilon$, it holds that
 $$\text{SD}(X, \sim [m]) \leq \sqrt{\frac{\ln 2}{2} \cdot (\log m - H(X))} = \sqrt{\frac{\ln 2}{2} \cdot \varepsilon}$$
- Other direction is incorrect: $\text{SD}(p, q)$ might be small but $D(p\|q) = \infty$
- Does $\text{SD}(p, \sim [m])$ being small imply $D(p\|\sim [m]) = \log m - H(p)$ is small?

HW
Proving Thm 8, boolean case

- Let $p = (\alpha, 1 - \alpha)$ and $q = (\beta, 1 - \beta)$ and assume $\alpha \geq \beta$
- $\text{SD}(p, q) = \alpha - \beta$
- We will show that
 \[
 D(p\|q) = \alpha \log \frac{\alpha}{\beta} + (1 - \alpha) \log \frac{1 - \alpha}{1 - \beta} \geq \frac{4}{2\ln 2} (\alpha - \beta)^2 = \frac{2}{\ln 2} \text{SD}(p, q)^2
 \]
- Let $g(x, y) = x \log \frac{x}{y} + (1 - x) \log \frac{1 - x}{1 - y} - \frac{4}{2\ln 2} (x - y)^2$
- $\frac{\partial g(x, y)}{\partial y} = -\frac{x}{y \ln 2} + \frac{1 - x}{(1 - y) \ln 2} - \frac{4}{2\ln 2} 2(y - x)$
 \[
 = -\frac{y - x}{y(1 - y) \ln 2} - \frac{4}{\ln 2} (y - x)
 \]
- Since $y(1 - y) \leq \frac{1}{4}$, $\frac{\partial g(x, y)}{\partial y} \leq 0$ for $y < x$.
- Since $g(x, x) = 0$, $g(x, y) \geq 0$ for $y < x$. □
Proving Thm 8, general case

- Let \(\mathcal{U} = \text{Supp}(p) \cup \text{Supp}(q) \)
- Let \(S = \{u \in \mathcal{U} : p(u) > q(u)\} \)
- \(\text{SD}(p, q) = \Pr_p[S] - \Pr_q[S] \) (by homework)
- Let \(P \sim p \), and let the indicator \(\hat{P} \) be 1 iff \(P \in S \).
- Let \(Q \sim q \), and let the indicator \(\hat{Q} \) be 1 iff \(Q \in S \).
- \(\text{SD}(\hat{P}, \hat{Q}) = \Pr[P \in S] - \Pr[Q \in S] = \text{SD}(p, q) \)

\[
D(p\|q) \geq D(\hat{P}\|\hat{Q}) \quad \text{(data-processing inequality)}
\]
\[
\geq \frac{2}{\ln 2} \cdot \text{SD}(\hat{P}, \hat{Q})^2 \quad \text{(the Boolean case)}
\]
\[
= \frac{2}{\ln 2} \cdot \text{SD}(p, q)^2. \quad \square
\]
Section 8

Conditioned Distributions
Main theorem

Theorem 9

Let X_1, \ldots, X_k be iid over \mathcal{U}, and let $Y = (Y_1, \ldots, Y_k)$ be rv over \mathcal{U}^k. Then

$$\sum_{j=1}^k D(Y_j \| X_j) \leq D(Y \| (X_1, \ldots, X_k)).$$

For rv Z, let $Z(z) = \Pr[Z = z]$.

We prove for $k = 2$, general case follows similar lines. Let $X = (X_1, X_2)$

$$D(Y \| X) = \sum_{y \in \mathcal{U}^2} Y(y) \log \frac{Y(y)}{X(y)} = \sum_{y = (y_1, y_2)} Y(y) \log \frac{Y_1(y_1) Y_2(y_2)}{X_1(y_1) X_2(y_2) Y_1(y_1) Y_2(y_2)}$$

$$= \sum_{y = (y_1, y_2)} Y(y) \log \frac{Y_1(y_1)}{X_1(y_1)} + \sum_{y = (y_1, y_2)} Y(y) \log \frac{Y_2(y_2)}{X_2(y_1)}$$

$$+ \sum_{y = (y_1, y_2)} Y(y) \log \frac{Y(y)}{Y_1(y_1) Y_2(y_2)}$$

$$= D(Y_1 \| X_1) + D(Y_2 \| X_2) + I(Y_1; Y_2) \geq D(Y_1 \| X_1) + D(Y_2 \| X_2)$$
Conditioning distributions, relative entropy case

Theorem 10

Let X_1, \ldots, X_k be iid over \mathcal{X}, let $X = (X_1, \ldots, X_k)$ and let W be an event (i.e., Boolean rv). Then

$$\sum_{j=1}^k D((X_j|W)\|X_j) \leq D((X|W)\|X) \leq \log \frac{1}{\Pr[W]}.$$
Conditioning distributions, statistical distance case

Theorem 11

Let X_1, \ldots, X_k be iid over \mathcal{X} and let W be an event. Then

$$
\sum_{j=1}^{k} \text{SD}(\langle X_j | W \rangle, X_j)^2 \leq \log \frac{1}{\Pr[W]}.
$$

Proof: follows by Thm 8, and Thm 9. □

Using $(\sum_{j=1}^{k} a_i)^2 \leq k \cdot \sum_{j=1}^{k} a_i^2$, it follows that

Corollary 12

$$
\sum_{j=1}^{k} \text{SD}(\langle X_j | W \rangle, X_j) \leq \sqrt{k \log \left(\frac{1}{\Pr[W]} \right)}, \text{ and}
$$

$$
E_{j \leftarrow k} \text{SD}(\langle X_j | W \rangle, X_j) \leq \sqrt{\frac{1}{k} \log \left(\frac{1}{\Pr[W]} \right)}.
$$

Extraction
Numerical example

- Let \(X = (X_1, \ldots, X_k) \leftarrow \{0, 1\}^{40} \) and let \(f: \{0, 1\}^{40} \mapsto 0 \) be such that \(\Pr[f(X) = 0] = 2^{-10} \).

- \(E_{j \leftarrow [40]} \text{SD}((X_j | f(X) = 0), \sim \{0, 1\}) \leq \sqrt{\frac{1}{40} \cdot 10} = \frac{1}{2} \)

- Typical bits are not too biased, even when conditioning on a very unlikely event.
Extension

Theorem 13

Let $X = (X_1, \ldots, X_k)$, T and V be random variables over \mathcal{X}^k, T and V respectively. Let W be an event and assume that the X_i’s are iid conditioned on T. Then

$$\sum_{j=1}^k D((TVX_j)|_W \parallel (TV)|_W X_j'(T)) \leq \log \frac{1}{\Pr[W]} + \log |\text{Supp}(V|_W)|,$$

where $X_j'(t)$ is distributed according to $X_j|_{T=t}$.

Interpretation.
Proving Thm 13

Let $X = (X_1, \ldots, X_k)$, T and V be rv’s over \mathcal{X}^k, \mathcal{T} and \mathcal{V} respectively, such that X_i’s are iid conditioned on T. Let W be an event and let $X_j'(t)$ be distributed according to the distribution of $X_j|T=t$.

\[
\sum_{j=1}^{k} D((TVX_j)|_W\left\| (TV)|_W X_j'(T))
\]

\[
= \mathbb{E}_{(t,v)\leftarrow(TV)|_W} \left[\sum_{j=1}^{k} D(X_j|_W, V=v, T=t\left\| (X_j|_T=t)) \right]
\]

\[
= \mathbb{E}_{(t,v)\leftarrow(TV)|_W} \left[\sum_{j=1}^{k} D((X_j|_W, V=v)|_T=t\left\| (X_j|_T=t) \right) \right]
\]

\[
\leq \mathbb{E}_{(t,v)\leftarrow(TV)|_W} \left[\log \frac{1}{\Pr[W \land V=v| T=t]} \right]
\]

\[
\leq \log \mathbb{E}_{(t,v)\leftarrow(TV)|_W} \frac{1}{\Pr[W \land V=v| T=t]}
\]

\[
= \log \sum_{(t,v)\in \text{Supp}((TV)|_W)} \frac{\Pr[T=t]}{\Pr[W]} \leq \log \frac{||\text{Supp}(V|_W)||}{\Pr[W]}.
\]