Hardcore Predicates

Handout Mode

Iftach Haitner

Tel Aviv University.

December 22, 2015
Part I

Motivation and Definition
Hardcore predicates

- Let $f: \{0, 1\}^n \mapsto \{0, 1\}^n$ be a “hard to invert” function, how unpredictable is x given $f(x)$
- Parts of x might be (totally) predictable
- It turns out that there is an hardcore part in x.
Hardcore predicates, cont.

Definition 1 (hardcore predicates)

A predicate \(b: \{0, 1\}^n \rightarrow \{0, 1\} \) is \((s, \varepsilon)\)-hardcore predicate of \(f: \{0, 1\}^n \rightarrow \{0, 1\}^n \), if \(\Pr_{x \leftarrow \{0, 1\}^n} [P(f(x)) = b(x)] \leq \frac{1}{2} + \varepsilon \), for any \(s \)-size \(P \).

Why size?

We will typically consider poly-time computable \(f \) and \(b \).

Does every function has such a predicate?

Does every hard to invert function has such a predicate?

Is there a generic hardcore predicate for all hard to invert functions?

Let \(f \) be a function and let \(b \) be a predicate, then \(b \) is typically not a hard-core predicate of \(g(x) = (f(x), b(x)) \).
Part II

The Information Theoretic Settings
Some definitions

Let $f: D \mapsto R$.

- $\text{Im}(f) = \{ f(x) : x \in D \}$.
- $f^{-1}(y) = \{ x \in D : f(x) = y \}$
- f is d regular, if $|f^{-1}(y)| = d$ for every $y \in \text{Im}(f)$.
- min entropy of $X \sim p$ is
 \[H_\infty(X) = \min_{x \in X} \{- \log p(x)\} = - \log \max_{x \in X} \{p(x)\}. \]
- Examples:
 - Z is uniform over 2^k-size set.
 - $Z = X_{|f(X)=y}$, for 2^k-regular f, $y \in \text{Im}(f)$ and $X \leftarrow D$.
 - In both examples $H_\infty(Z) = k$
2-universal families

Definition 2 (2-universal families)

A function family $G = \{g : \mathcal{D} \mapsto \mathcal{R}\}$ is 2-universal, if $\forall x \neq x' \in \mathcal{D}$ it holds that $\Pr_{g \leftarrow G}[g(x) = g(x')] = \frac{1}{|\mathcal{R}|}$.

Example: $\mathcal{D} = \{0, 1\}^n$, $\mathcal{R} = \{0, 1\}^m$ and $G = \{A \in \{0, 1\}^{m \times n}\}$ with $A(x) = A \times x \mod 2$.

Lemma 3 (leftover hash lemma)

Let X be a rv over $\{0, 1\}^n$ with $H_2(X) \geq k$ let $G = \{g: \{0, 1\}^n \mapsto \{0, 1\}^m\}$ be 2-universal and let $G \leftarrow G$. Then $\text{SD}((G, G(X)), (G, \sim \{0, 1\}^m)) \leq \frac{1}{2} \cdot 2^{(m-k)/2}$.
Hardcore predicate for regular functions

Lemma 4

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be 2^k-regular function, let $G = \{g : \{0, 1\}^n \rightarrow \{0, 1\}\}$ be 2-universal and let $v : \{0, 1\}^n \times G \rightarrow \{0, 1\}^n \times G$ be defined by $v(x, g) = (f(x), g)$.

Then $b(x, g) = g(x)$ is $(\infty, 2^{-(k-1)/2})$ hardcore-predicated of v.

- b is an hardcore predicate of v (not of f)
Proving Lemma 4

Claim 5

\[\text{SD} \left((f(X), G(X)), (f(X), G(U)) \right) \leq 2^{-\left(k - 1 \right)/2}, \]

for \(G \leftarrow G, \ X \leftarrow \{0, 1\}^n \) and \(U \leftarrow \{0, 1\} \).

We conclude the proof showing that indistinguishability implies unpredictability.

Lemma 6 (predicting to distinguishing)

Let \((Y, Z)\) be rv over \(\{0, 1\}^* \times \{0, 1\}\) and let \(P\) be an algorithm with \[\Pr\left[P(Y) = Z \right] \geq \frac{1}{2} + \varepsilon. \]

Then \(\exists\) algorithm \(D\), with essentially the same complexity as \(P\), with \[\Pr\left[D(Y, Z) = 1 \right] - \Pr\left[D(Y, U) = 1 \right] \geq \varepsilon. \]

Proof: \(D(y, z)\) outputs 1 if \(P(y) = z\) and 0 otherwise. \(\square\)

Corollary 7

If \(\text{SD}((Y, Z), (Y, U)) < \varepsilon \), then \(\Pr\left[P(Y) = Z \right] < \frac{1}{2} + \varepsilon \) for any predictor \(P \).
Proving Claim 5

For \(y \in \text{Im}(f) \), let \(X_y \) be uniformly distributed over \(f^{-1}(y) \).

Compute

\[
\text{SD}((f(X), G, G(X)), (f(X), G, U)) = \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X)|_{f(X)=y}), (y, G, U)) \quad \text{(board)}
\]

\[
= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X_y)), (y, G, U))
\]

\[
\leq \max_{y \in \text{Im}(f)} \text{SD}((y, G, G(X_y)), (y, G, U))
\]

\[
= \max_{y \in \text{Im}(f)} \text{SD}((G, G(X_y)), (G, U))
\]

Since \(H_\infty(X_y) = k \) for every \(y \in \text{Im}(f) \), the leftover hash lemma yields that

\[
\text{SD}((G, G(X_y)), (G, U)) \leq \frac{1}{2} \cdot 2^{(1 - H_\infty(X_y))} = 2^{(-k-1)/2}. \square
\]
Part III

The Computational Settings
Hard functions

An injective function has hardcore bit, only if it is “hard to invert”.

Definition 8 (hard function)

\[f: \{0, 1\}^n \rightarrow \{0, 1\}^n \text{ is (}s, \varepsilon\text{)}-\text{hard, if} \]
\[\text{Pr}_{x \leftarrow \{0, 1\}^n} \left[\text{Inv}(f(x)) \in f^{-1}(f(x)) \right] \leq \varepsilon \text{ for any } s\text{-size Inv}. \]

- Size? Length preserving?
- \(f \) is hard \(\implies \) predicting \(x \) from \(f(x) \) is hard.
- But does any hard function has an hardcore predicate?
- \(f \) is injective and not hard \(\implies \) \(f \) has no hardcore predicate.
The Goldreich-Levin predicate

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

For $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, define $g : \{0, 1\}^n \times \{0, 1\}^n \mapsto \{0, 1\}^n \times \{0, 1\}^n$ by $g(x, r) = (f(x), r)$. Assume f is (s, ε)-hard, then $b(x, r) := \langle x, r \rangle_2$ is an $(\frac{\varepsilon}{n^2} \cdot s, \sqrt[n]{3n\varepsilon})$-hardcore predicate of g.

- Parameters are not tight, and we ignore small terms.
- If f is $(n^{\omega(1)}, 1/n^{\omega(1)})$-hard, then b is an $(n^{\omega(1)}, 1/n^{\omega(1)})$-hardcore predicate of g.

Proof by reduction: a too small P for predicting $b(x, r)$ “too well” from $(f(x), r)$, implies a too small inverter for f:

- Assume $\exists s'$-size P with $\Pr[P(g(X, R)) = b(X, R)] \geq \frac{1}{2} + \delta$, where hereafter R and X are iid uniformly distributed over $\{0, 1\}^n$
- We prove $\exists (\frac{n^2}{\delta^2} \cdot s')$-size Inv with $\Pr[Inv(f(X)) = X] \in \Omega(\delta^3 / n)$.
Focusing on a good set

Claim 10

There exists set $S \subseteq \{0, 1\}^n$ with

1. $\frac{|S|}{2^n} \geq \frac{\delta}{2}$, and

2. $\Pr[P(f(x), R) = b(x, R)] \geq \frac{1}{2} + \frac{\delta}{2}$, $\forall x \in S$.

Proof: Let $S := \{x \in \{0, 1\}^n : \Pr[P(f(x), R) = b(x, R)] \geq \frac{1}{2} + \frac{\delta}{2}\}$.

$$\Pr[P(g(X, R)) = b(X, R)] \leq \Pr[X \notin S] \cdot \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in S]$$

$$\leq \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in S].$$

We conclude the theorem’s proof showing that there exists a $\frac{n^2}{\delta^2}$-size Inv with

$$\Pr[\text{Inv}(f(x)) = x] \in \Omega(\frac{\delta^2}{n})$$

for every $x \in S$. In the following we fix $x \in S$.

The perfect case

\[\Pr [P(f(x), R) = b(x, R)] = 1 \]

In particular, \(P(f(x), e^i) = b(x, e^i) \) for every \(i \in [n] \), for \(e^i = (0, \ldots, 0, 1, 0, \ldots, 0) \).

Hence, \(x_i = \langle x, e^i \rangle_2 = b(x, e^i) = P(f(x), e^i) \)

Algorithm 11 (Inverter Inv on input \(y \in \text{Im}(f) \))

Return \((P(y, e^1), \ldots, P(y, e^n)) \).

\(\text{Inv}(f(x)) = x. \)
Easy case

$$\Pr [P(f(x), R) = b(x, R)] \geq 1 - \frac{1}{4n}$$

Fact 12

1. $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.
2. $\forall r \in \{0, 1\}^n$, the rv $(R \oplus r)$ is uniformly distributed over $\{0, 1\}^n$.

Hence, $\forall i \in [n]$:

1. $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$
2. $\Pr [P(f(x), R) = b(x, R) \land P(f(x), R \oplus e^i) = b(x, R \oplus e^i)] \geq 1 - 2 \cdot \frac{1}{4n}$

Algorithm 13 (Inverter Inv on input y)

Return $(P(y, R) \oplus P(y, R \oplus e^1)), \ldots, P(y, R) \oplus P(y, R \oplus e^n))$.

$$\Pr [\text{Inv}(f(x)) = x] \geq 1 - 2n \cdot \frac{1}{4n} = \frac{1}{2}$$
Proving Fact 12

1. For \(w, y \in \{0, 1\}^n \):

\[
b(x, y) \oplus b(x, w) = \left(\bigoplus_{i=1}^{n} x_i \cdot y_i \right) \oplus \left(\bigoplus_{i=1}^{n} x_i \cdot w_i \right)
\]

\[
= \bigoplus_{i=1}^{n} x_i \cdot (y_i \oplus w_i)
\]

\[
= b(x, y \oplus w)
\]

2. For \(r, y \in \{0, 1\}^n \):

\[
\Pr [R \oplus r = y] = \Pr [R = y \oplus r] = 2^{-n}
\]
Intermediate case

\[\Pr [P(f(x), R) = b(x, R)] \geq \frac{3}{4} + \frac{\delta}{2} \]

For any \(i \in [n] \)

\[\Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \]
\[\geq \Pr[P(f(x), R) = b(x, R) \land P(f(x), R \oplus e^i) = b(x, R \oplus e^i)] \]
\[\geq 1 - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) = \frac{1}{2} + \delta \]

Algorithm 14 (Inv\((y)\))

For every \(i \in [n] \):

1. Sample \(r^1, \ldots, r^v \in \{0, 1\}^n \) uniformly at random

2. Let \(m_i = \text{maj}_{j\in[v]}\{(P(y, r^j) \oplus P(y, r^j \oplus e^i))\} \)

Output \((m_1, \ldots, m_n)\)
Inv’s success probability

The following claim holds for “large enough” v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \geq 1 - \frac{1}{2n}$.

Hence, $\Pr[\text{Inv}(f(x)) = x] \geq \frac{1}{2}$. Proof: (of claim):

- For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- We need to lowerbound $\Pr[\sum_{j=1}^{v} W^j > \frac{v}{2}]$.
- W^j are iids and $E[W^j] \geq \frac{1}{2} + \delta$, for every $j \in [v]$.

Lemma 16 (Hoeffding’s inequality)

Let X^1, \ldots, X^v be iids over $[0, 1]$ with expectation μ. Then,

$$\Pr\left[\left| \frac{\sum_{j=1}^{v} X^j}{v} - \mu \right| \geq \alpha \right] \leq 2 \cdot \exp(-2\alpha^2 v) \text{ for every } \alpha > 0.$$

- Hence, the proof follows for $v = \lceil \log(n) \cdot \frac{1}{2\delta^2} \rceil + 1$.
The actual (hard) case

\[\Pr[P(f(x), R) = b(x, R)] \geq \frac{1}{2} + \frac{\delta}{2} \]

- What goes wrong?
- \[\Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \geq \delta \]
- Hence, using a random guess does better than using \(P \) :-<
- Idea: guess the values of \(\{b(x, r^1), \ldots, b(x, r^v)\} \)
 (instead of calling \(\{P(f(x), r^1), \ldots, P(f(x), r^v)\} \))
- **Problem**: tiny success probability
- **Solution**: choose the samples in a correlated manner
For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^\ell - 1$.

In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset.

Algorithm 17 (Inverter Inv on $y = f(x) \in \{0, 1\}^n$)

1. Sample uniformly (and independently) $t^1, \ldots, t^\ell \in \{0, 1\}^n$
2. Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
3. For all $\mathcal{L} \subseteq [\ell]$: set $r^\mathcal{L} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^\mathcal{L}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
4. For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subseteq [\ell]}\{P(f(x), r^\mathcal{L} \oplus e^i) \oplus b(x, r^\mathcal{L})\}$
5. Output (m_1, \ldots, m_n)

Fix $i \in [n]$, and let $W^\mathcal{L}$ be 1 iff $P(f(x), r^\mathcal{L} \oplus e^i) \oplus b(x, r^\mathcal{L}) = x_i$.

We need to lowerbound $\Pr\left[\sum_{\mathcal{L} \subseteq [\ell]} W^\mathcal{L} > \frac{v}{2}\right]$.

Problem: the $W^\mathcal{L}$’s are dependent!
Analyzing Inv’s success probability

1. Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
2. For $\mathcal{L} \subseteq [\ell]$, let $R^\mathcal{L} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

1. $\forall \mathcal{L} \subseteq [\ell]$, $R^\mathcal{L}$ is uniformly distributed over $\{0, 1\}^n$.
2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that
 $\Pr[R^\mathcal{L} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^\mathcal{L} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear. For (2), assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

\[
\Pr[R^\mathcal{L} = w \land R^{\mathcal{L}'} = w'] = \\
\sum_{(t^2, \ldots, t^\ell) \in \{0,1\}^{(\ell-1)n}} \Pr[(T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)] \cdot \Pr[R^\mathcal{L} = w \land R^{\mathcal{L}'} = w' \mid (T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)]
\]

\[
= \sum_{(t^2, \ldots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)] \cdot \Pr[R^{\mathcal{L}'} = w' \mid (T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)]
\]

\[
= \sum_{(t^2, \ldots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)] \cdot 2^{-n}
\]

\[
= 2^{-n} \cdot 2^{-n} = \Pr[R^\mathcal{L} = w] \cdot \Pr[R^{\mathcal{L}'} = w'].\square
\]
Definition 19 (pairwise independent random variables)

A sequence of rv’s X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$.

By Claim 18, r^L and $r^{L'}$ (chosen by Inv) are pairwise independent for every $L \neq L' \subseteq [\ell]$.

Hence, also W^L and $W^{L'}$ are.

(Recall, W^L is 1 iff $P(f(x), r^L \oplus e^i) \oplus b(x, r^L) = x_i$)

Lemma 20 (Chebyshev’s inequality)

Let X^1, \ldots, X^v be pairwise-independent random variables with expectation μ and variance σ^2. Then, for every $\alpha > 0$: $\Pr \left[\left| \frac{\sum_{j=1}^v X^j}{v} - \mu \right| \geq \alpha \right] \leq \frac{\sigma^2}{\alpha^2 v}$.

Iftach Haitner (TAU) Application of Information Theory, Lecture 10 December 22, 2015 23 / 26
Inv’s success provability, cont.

- Assuming that Inv always guesses \(\{b(x, t^i)\} \) correctly, then \(\forall \mathcal{L} \subseteq [\ell] \):
 - \(\mathbb{E}[W^\mathcal{L}] \geq \frac{1}{2} + \frac{\delta}{2} \)
 - \(V(W^\mathcal{L}) := \mathbb{E}[(W^\mathcal{L})^2] - \mathbb{E}[W^\mathcal{L}]^2 \leq 1 \)

- Taking \(v = 2n/\delta^2 \) (hence \(\ell = \lceil \log \frac{2n}{\delta^2} \rceil \)), by Chebyshev’s inequality for \(i \in [n] \) it holds that
 \[
 \Pr[m_i = x_i] = \Pr \left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^\mathcal{L}}{v} > \frac{1}{2} \right] \geq 1 - \frac{1}{2n}.
 \]

- By a union bound, Inv outputs \(x \) with probability \(\frac{1}{2} \).

- Taking the guessing probability into account, yields that Inv outputs \(x \) with probability at least \(2^{-\ell}/2 \in \Theta(\delta^2/n) \).

- Recalling that we guaranteed to work well on \(\frac{\delta}{2} \) of the \(x \)’s. We conclude that \(\Pr[\text{Inv}(f(x)) = x] \in \Theta(\delta^3/n) \).
Reflections

- **Hardcore functions:**
 Similar ideas allows to output $\log n$ “pseudorandom bits"

- **Alternative proof for the leftover hash lemma:**
 Let X be a rv with over $\{0, 1\}^n$ with $H_\infty(X) \geq k$, and assume $SD((R, \langle R, X \rangle_2), (R, U)) > \alpha = 2^{-c \cdot k}$ for some universal $c > 0$.

 $\implies \exists$ (a possibly inefficient) D that distinguishes $(R, \langle R, X \rangle_2)$ from (R, U) with advantage α

 $\implies \exists P$ that predicts $\langle R, X \rangle_2$ given R with prob $\frac{1}{2} + \alpha$ (?)

 \implies (by GL) $\exists Inv$ that guesses X from nothing, with prob $\alpha^{O(1)} > 2^{-k}$
Reflections cont.

- List decoding:
 - Encoder \(f : \{0, 1\}^n \mapsto \{0, 1\}^m \) and decoder \(g \), such that for any \(x \in \{0, 1\}^n \) and \(c \) of hamming distance at most \((1/2 - \delta) \) from \(f(x) \):
 - \(g \) examines \(\text{poly}(1/\delta) \) symbols of \(c \) and outputs a \(\text{poly}(1/\delta) \)-size list that whp contains \(x \)
 - The code we used here is known as the Hadamard code

- LPN - learning parity with noise:
 - Given polynomially many samples of the form \((R_i, \langle x, R_i \rangle_2 + \theta)\), for \(R_i \leftarrow \{0, 1\}^n \) and boolean \(\theta_i \sim (1/2 - \delta, 1/2 - \delta) \), find \(x \).
 - The difference comparing to Goldreich-Levin — no control over the \(R \)'s.