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@ Multiparty Computation — computing a functionality f
@ Secure Multiparty Computation: compute f in a “secure
manner"

Examples: coin-tossing, broadcast, electronic voting, electronic
auctions
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@ Privacy

@ Correctness

@ Independence of inputs

@ Guaranteed output delivery

@ Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol I for computing a two-party functionality
f:{0,1}" x{0,1}* x {0,1}* x {0, 1}*
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Let A = (A4, A,) be a pair of algorithms, and xy, x» € {0,1}*.
Define REAL4(x, y) as the joint outputs of (A;(x1), Aa(x2))

@ An honest party follows the prescribed protocol and
outputs of the protocol

@ A semi-honest party follows the protocol, but might output
additional information
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Securely computing a functionality

A = (A¢,Ap) is an admissible algorithm pair for 7 [resp., for f],
at least one party is honest

Definition 1 (secure computation)

a protocol 7 securely computes f (in the malicious model), if v
real model, admissible PPT A = (A;, Az), exists an ideal-model
admissible pair PPT B = (B4, By), s.t.

{REALK(X‘I B X2)}X1 X %C {IDEAL’:E(X‘| ) X2)}X1 X2

where the enumeration is over all x1, xo € {0, 1}* with
IX1] = [x2].

@ Auxiliary inputs
@ We focus on semi-honest adversaries
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Oblivious Transfer

A protocol for securely realizing the functionality
f: ({0,1}* x {0,1}*) x {0,1} — {0,1}*x L, where
fi((x0,X1),1) = x; and () =L.

@ “Complete" for multiparty computation

@ We focus on bit strings
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Oblivious Transfer from Trapdoor Permutations

@ We define a protocol = = (S, R) where R’s input is
i € {0,1}, and S inputs is 0, 01 € {0, 1}. Both parties gets
a common input 1.

@ Can be easily modified to the standard definition of
two-party computation

@ Let (G, f,Inv) be a family of trapdoor permutations and let
b be an hardcore predicate for f.
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Protocol 2 ((S, R))

Common input: 1"
S’s input: 0,01 € {0,1}
R’s input: i € {0,1}
@ S chooses (e, d) + G(1"), and sends e to R
© R chooses xg, Xy < {0,117, sets y; = fo(X;) and
Yi_i = X1_j, and sends yp, y; to S
© S sets ¢; = b(Invy(y;)) @ oy, for j € {0, 1}, and sends
(co,c1) 0 R
Q R outputs ¢; @ b(x;).
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Protocol 2 ((S, R))

Common input: 1"
S’s input: 0,01 € {0,1}
R’s input: i € {0,1}
@ S chooses (e, d) + G(1"), and sends e to R
© R chooses xg, Xy < {0,117, sets y; = fo(X;) and
Yi_i = X1_j, and sends yp, y; to S
© S sets ¢; = b(Invy(y;)) @ oy, for j € {0, 1}, and sends
(co,c1) 0 R
Q R outputs ¢; @ b(x;).

Claim 3

Protocol ?? securely realizes f (in the semi -honest model.
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Proving Claim ??

We need to prove that V real model, semi-honest, admissible

PPT A = (A, A;), exists an ideal-model, admissible pair
PPT B = (B1,By) s.t.

{REAL4(1", (00, 01), i} ~¢ {IDEALfB(1”, (00,01),i}, (1)

where n € N and g, 04,/ € {0,1}
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