Foundation of Cryptography
(0368-4162-01), Lecture 9

Secure Multiparty Computation

Iftach Haitner, Tel Aviv University

January 24 — 31, 2012



Section 1

The Model




Multiparty Computation

@ Multiparty Computation — computing a functionality f



Multiparty Computation

@ Multiparty Computation — computing a functionality f

@ Secure Multiparty Computation: compute f in a “secure
manner"



Multiparty Computation

@ Multiparty Computation — computing a functionality f
@ Secure Multiparty Computation: compute f in a “secure
manner"

Examples: coin-tossing, broadcast, electronic voting, electronic
auctions



Security

@ Privacy



Security

@ Privacy
@ Correctness



Security

@ Privacy
@ Correctness
@ Independence of inputs



Security

@ Privacy

@ Correctness

@ Independence of inputs

@ Guaranteed output delivery



Security

@ Privacy

@ Correctness

@ Independence of inputs

@ Guaranteed output delivery

@ Fairness : corrupted parties should get their output iff the
honest parties do



Security

@ Privacy

@ Correctness

@ Independence of inputs

@ Guaranteed output delivery

@ Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?



Security

@ Privacy

@ Correctness

@ Independence of inputs

@ Guaranteed output delivery

@ Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol I for computing a two-party functionality
f:{0,1}" x{0,1}* x {0,1}* x {0, 1}*



Real Model Execution

Let A = (A4, A,) be a pair of algorithms, and xy, x» € {0,1}*.
Define REAL4(x, y) as the joint outputs of (A;(x1), Aa(x2))



Real Model Execution

Let A = (A4, A,) be a pair of algorithms, and xy, x» € {0,1}*.
Define REAL4(x, y) as the joint outputs of (A;(x1), Aa(x2))

@ An honest party follows the prescribed protocol and
outputs of the protocol



Real Model Execution

Let A = (A4, A,) be a pair of algorithms, and xy, x» € {0,1}*.
Define REAL4(x, y) as the joint outputs of (A;(x1), Aa(x2))

@ An honest party follows the prescribed protocol and
outputs of the protocol

@ A semi-honest party follows the protocol, but might output
additional information



Ideal Model Execution




Ideal Model Execution

Let B = (B4, B,) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs X, x; € {0,1}*,
denoted IDEAL, 5(x, y), is the joint output of the parties in the
end of the following experiment:



Ideal Model Execution

Let B = (B; , B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs xq, x> € {0, 1}*,
denoted IDEAL, 5(x, y), is the joint output of the parties in the
end of the following experiment:

@ The input of B, is x; (i € {0,1})

© Each party send the value y; to the trusted party (possibly

1)
© Trusted party send fi(yo, y1) to B; (sends L, if L& {yo,¥1})
© Each party outputs some value



Ideal Model Execution

Let B = (B; , B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs xq, x> € {0, 1}*,
denoted IDEAL, 5(x, y), is the joint output of the parties in the
end of the following experiment:

@ The input of B, is x; (i € {0,1})

© Each party send the value y; to the trusted party (possibly

1)
© Trusted party send fi(yo, y1) to B; (sends L, if L& {yo,¥1})
© Each party outputs some value

@ An honest party, sends its input to the trusted party and
outputs the trusted party message



Ideal Model Execution

Let B = (B; , B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs xq, x> € {0, 1}*,
denoted IDEAL, 5(x, y), is the joint output of the parties in the
end of the following experiment:

@ The input of B, is x; (i € {0,1})

© Each party send the value y; to the trusted party (possibly

1)
© Trusted party send fi(yo, y1) to B; (sends L, if L& {yo,¥1})
© Each party outputs some value

@ An honest party, sends its input to the trusted party and
outputs the trusted party message

@ A semi-honest party, might output additional information



Ideal Model Execution

Let B = (B; , B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs xq, x> € {0, 1}*,
denoted IDEAL, 5(x, y), is the joint output of the parties in the
end of the following experiment:

@ The input of B, is x; (i € {0,1})

© Each party send the value y; to the trusted party (possibly

1)
© Trusted party send fi(yo, y1) to B; (sends L, if L& {yo,¥1})
© Each party outputs some value

@ An honest party, sends its input to the trusted party and
outputs the trusted party message

@ A semi-honest party, might output additional information



Securely computing a functionality

A = (A¢,Ap) is an admissible algorithm pair for 7 [resp., for f],
at least one party is honest



Securely computing a functionality

A = (A¢,Ap) is an admissible algorithm pair for 7 [resp., for f],
at least one party is honest

Definition 1 (secure computation)

a protocol 7 securely computes f (in the malicious model), if v
real model, admissible PPT A = (A;, Az), exists an ideal-model
admissible pair PPT B = (B4, By), s.t.

{REALK(X‘I B X2)}X1 X %C {IDEAL’:E(X‘| ) X2)}X1 X2

where the enumeration is over all x1, xo € {0, 1}* with
IX1] = [x2].




Securely computing a functionality

A = (A¢,Ap) is an admissible algorithm pair for 7 [resp., for f],
at least one party is honest

Definition 1 (secure computation)

a protocol 7 securely computes f (in the malicious model), if v
real model, admissible PPT A = (A;, Az), exists an ideal-model
admissible pair PPT B = (B4, By), s.t.

{REALK(X‘I B X2)}X1 X %C {IDEAL’:E(X‘| ) X2)}X1 X2

where the enumeration is over all x1, xo € {0, 1}* with
IX1] = [x2].

@ Auxiliary inputs



Securely computing a functionality

A = (A¢,Ap) is an admissible algorithm pair for 7 [resp., for f],
at least one party is honest

Definition 1 (secure computation)

a protocol 7 securely computes f (in the malicious model), if v
real model, admissible PPT A = (A;, Az), exists an ideal-model
admissible pair PPT B = (B4, By), s.t.

{REALK(X‘I B X2)}X1 X %C {IDEAL’:E(X‘| ) X2)}X1 X2

where the enumeration is over all x1, xo € {0, 1}* with
IX1] = [x2].

@ Auxiliary inputs
@ We focus on semi-honest adversaries



Section 2

Oblivious Transfer




Oblivious Transfer




Oblivious Transfer

Oblivious Transfer

A protocol for securely realizing the functionality
f:({0,1}* x {0,1}*) x {0,1} — {0,1}*x L, where
fi((x0,X1),1) = x; and () =L.

@ “Complete" for multiparty computation



Oblivious Transfer

Oblivious Transfer

A protocol for securely realizing the functionality
f: ({0,1}* x {0,1}*) x {0,1} — {0,1}*x L, where
fi((x0,X1),1) = x; and () =L.

@ “Complete" for multiparty computation

@ We focus on bit strings



Oblivious Transfer

Oblivious Transfer from Trapdoor Permutations

@ We define a protocol = = (S, R) where R’s input is
i € {0,1}, and S inputs is 0, 01 € {0, 1}. Both parties gets
a common input 1.



Oblivious Transfer

Oblivious Transfer from Trapdoor Permutations

@ We define a protocol = = (S, R) where R’s input is
i € {0,1}, and S inputs is 0, 01 € {0, 1}. Both parties gets
a common input 1.

@ Can be easily modified to the standard definition of
two-party computation



Oblivious Transfer

Oblivious Transfer from Trapdoor Permutations

@ We define a protocol = = (S, R) where R’s input is
i € {0,1}, and S inputs is 0, 01 € {0, 1}. Both parties gets
a common input 1.

@ Can be easily modified to the standard definition of
two-party computation

@ Let (G, f,Inv) be a family of trapdoor permutations and let
b be an hardcore predicate for f.



Oblivious Transfer

Protocol 2 ((S, R))

Common input: 1"
S’s input: 0,01 € {0,1}
R’s input: i € {0,1}
@ S chooses (e, d) + G(1"), and sends e to R
© R chooses xg, Xy < {0,117, sets y; = fo(X;) and
Yi_i = X1_j, and sends yp, y; to S
© S sets ¢; = b(Invy(y;)) @ oy, for j € {0, 1}, and sends
(co,c1) 0 R
Q R outputs ¢; @ b(x;).




Oblivious Transfer

Protocol 2 ((S, R))

Common input: 1"
S’s input: 0,01 € {0,1}
R’s input: i € {0,1}
@ S chooses (e, d) + G(1"), and sends e to R
© R chooses xg, Xy < {0,117, sets y; = fo(X;) and
Yi_i = X1_j, and sends yp, y; to S
© S sets ¢; = b(Invy(y;)) @ oy, for j € {0, 1}, and sends
(co,c1) 0 R
Q R outputs ¢; @ b(x;).

Claim 3

Protocol ?? securely realizes f (in the semi -honest model.




Oblivious Transfer

Proving Claim ??

We need to prove that V real model, semi-honest, admissible

PPT A = (A, A;), exists an ideal-model, admissible pair
PPT B = (B1,By) s.t.

{REAL4(1", (00, 01), i} ~¢ {IDEALfB(1”, (00,01),i}, (1)

where n € N and g, 04,/ € {0,1}



Oblivious Transfer

Semi-honest S

For A = (S',R) where S' is a semi-honest implementation of S,
let B = (S, Rz) be the following ideal-model protocol:



Oblivious Transfer

Semi-honest S

For A = (S',R) where S’ is a semi-honest implementation of S,
let B = (S, Rz) be the following ideal-model protocol:

Rz acts honesitly (i.e., sends its input to the oracle and outputs
the returned message)



Oblivious Transfer

Semi-honest S

For A = (S',R) where S’ is a semi-honest implementation of S,
let B = (S, Rz) be the following ideal-model protocol:

Rz acts honesitly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S))

input: 17, og, 04
@ Send (0, 01) to the trusted party
© Emulate S’'(1", 09, 01), acting as R(1",0)
© Output the same output that S’ does




Oblivious Transfer

Semi-honest S

For A = (S',R) where S’ is a semi-honest implementation of S,
let B = (S, Rz) be the following ideal-model protocol:

Rz acts honesitly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S))

input: 17, og, 04
@ Send (0, 01) to the trusted party
© Emulate S’'(1", 09, 01), acting as R(1",0)
© Output the same output that S’ does

22 holds with respect to A and B.




Oblivious Transfer

Semi-honest S

For A = (S',R) where S’ is a semi-honest implementation of S,
let B = (S, Rz) be the following ideal-model protocol:

Rz acts honesitly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S))

input: 17, og, 04
@ Send (0, 01) to the trusted party
© Emulate S’'(1", 09, 01), acting as R(1",0)
© Output the same output that S’ does

22 holds with respect to A and B.

Proof?




Oblivious Transfer

Semi-honest R

For A = (S,R’) where R’ is a semi-honest implementation of R,
let B = (Sz, R}) be the following ideal-model protocol:



Oblivious Transfer

Semi-honest R

For A = (S, R’) where R’ is a semi-honest implementation of R,
let B = (Sz, R}) be the following ideal-model protocol:

Sz acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)



Oblivious Transfer

Semi-honest R

For A = (S, R’) where R’ is a semi-honest implementation of R,
let B = (Sz, R}) be the following ideal-model protocol:

Sz acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R’)
input: 17, € {0,1}
@ Send i to the trusted party, and let o be its answer.

© Emulate R'(17, /), acting as S(1", 09, 01), where o; = o,
andoy1_;j=0
© Output the same output that R’ does




Oblivious Transfer

Semi-honest R

For A = (S, R’) where R’ is a semi-honest implementation of R,
let B = (Sz, R}) be the following ideal-model protocol:

Sz acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R’)
input: 17, € {0,1}
@ Send i to the trusted party, and let o be its answer.

© Emulate R'(17, /), acting as S(1", 09, 01), where o; = o,
andoy1_;j=0
© Output the same output that R’ does

22 holds with respect to A and B.




Oblivious Transfer

Semi-honest R

For A = (S, R’) where R’ is a semi-honest implementation of R,
let B = (Sz, R}) be the following ideal-model protocol:

Sz acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R’)
input: 17, € {0,1}
@ Send i to the trusted party, and let o be its answer.

© Emulate R'(17, /), acting as S(1", 09, 01), where o; = o,
andoy1_;j=0
© Output the same output that R’ does

22 holds with respect to A and B.

Proof?




Section 3

Yao Grabbled Circuit




