Foundation of Cryptography (0368-4162-01), Lecture 9

Secure Multiparty Computation

Iftach Haitner, Tel Aviv University

January 24 - 31, 2012

Section 1

The Model

Multiparty Computation

- Multiparty Computation - computing a functionality f

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"

Examples: coin-tossing, broadcast, electronic voting, electronic auctions

Security

- Privacy

Security

- Privacy
- Correctness

Security

- Privacy
- Correctness
- Independence of inputs

Security

- Privacy
- Correctness
- Independence of inputs
- Guaranteed output delivery

Security

- Privacy
- Correctness
- Independence of inputs
- Guaranteed output delivery
- Fairness : corrupted parties should get their output iff the honest parties do

Security

- Privacy
- Correctness
- Independence of inputs
- Guaranteed output delivery
- Fairness: corrupted parties should get their output iff the honest parties do

What is a secure protocol for a given task?

Security

- Privacy
- Correctness
- Independence of inputs
- Guaranteed output delivery
- Fairness: corrupted parties should get their output iff the honest parties do

What is a secure protocol for a given task?
We focus on protocol Π for computing a two-party functionality $f:\{0,1\}^{*} \times\{0,1\}^{*} \times\{0,1\}^{*} \times\{0,1\}^{*}$

Real Model Execution

Let $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ be a pair of algorithms, and $x_{1}, x_{2} \in\{0,1\}^{*}$. Define $\operatorname{REAL}_{\bar{A}}(x, y)$ as the joint outputs of $\left(\mathrm{A}_{1}\left(x_{1}\right), \mathrm{A}_{2}\left(x_{2}\right)\right)$

Real Model Execution

Let $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ be a pair of algorithms, and $x_{1}, x_{2} \in\{0,1\}^{*}$. Define $\operatorname{REAL}_{\bar{A}}(x, y)$ as the joint outputs of $\left(\mathrm{A}_{1}\left(x_{1}\right), \mathrm{A}_{2}\left(x_{2}\right)\right)$

- An honest party follows the prescribed protocol and outputs of the protocol

Real Model Execution

Let $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ be a pair of algorithms, and $x_{1}, x_{2} \in\{0,1\}^{*}$. Define $\operatorname{REAL}_{\bar{A}}(x, y)$ as the joint outputs of $\left(\mathrm{A}_{1}\left(x_{1}\right), \mathrm{A}_{2}\left(x_{2}\right)\right)$

- An honest party follows the prescribed protocol and outputs of the protocol
- A semi-honest party follows the protocol, but might output additional information

Ideal Model Execution

Ideal Model Execution

Let $\bar{B}=\left(B_{1}, B_{2}\right)$ be a pair of oracle-aided algorithms. An execution of \bar{B} in the ideal model on inputs $x_{1}, x_{2} \in\{0,1\}^{*}$, denoted $\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}(x, y)$, is the joint output of the parties in the end of the following experiment:

Ideal Model Execution

Let $\bar{B}=\left(B_{1}, B_{2}\right)$ be a pair of oracle-aided algorithms. An execution of \bar{B} in the ideal model on inputs $x_{1}, x_{2} \in\{0,1\}^{*}$, denoted $\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}(x, y)$, is the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $x_{i}(i \in\{0,1\})$
(2) Each party send the value y_{i} to the trusted party (possibly」)
(3) Trusted party send $f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} (sends \perp, if $\perp \in\left\{y_{0}, y_{1}\right\}$)
(4) Each party outputs some value

Ideal Model Execution

Let $\bar{B}=\left(B_{1}, B_{2}\right)$ be a pair of oracle-aided algorithms. An execution of \bar{B} in the ideal model on inputs $x_{1}, x_{2} \in\{0,1\}^{*}$, denoted $\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}(x, y)$, is the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $x_{i}(i \in\{0,1\})$
(2) Each party send the value y_{i} to the trusted party (possibly म)
(3) Trusted party send $f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} (sends \perp, if $\perp \in\left\{y_{0}, y_{1}\right\}$)
(4) Each party outputs some value

- An honest party, sends its input to the trusted party and outputs the trusted party message

Ideal Model Execution

Let $\bar{B}=\left(B_{1}, B_{2}\right)$ be a pair of oracle-aided algorithms. An execution of \bar{B} in the ideal model on inputs $x_{1}, x_{2} \in\{0,1\}^{*}$, denoted $\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}(x, y)$, is the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $x_{i}(i \in\{0,1\})$
(2) Each party send the value y_{i} to the trusted party (possibly म)
(3) Trusted party send $f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} (sends \perp, if $\perp \in\left\{y_{0}, y_{1}\right\}$)
(4) Each party outputs some value

- An honest party, sends its input to the trusted party and outputs the trusted party message
- A semi-honest party, might output additional information

Ideal Model Execution

Let $\bar{B}=\left(B_{1}, B_{2}\right)$ be a pair of oracle-aided algorithms. An execution of \bar{B} in the ideal model on inputs $x_{1}, x_{2} \in\{0,1\}^{*}$, denoted $\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}(x, y)$, is the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $x_{i}(i \in\{0,1\})$
(2) Each party send the value y_{i} to the trusted party (possibly म)
(3) Trusted party send $f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} (sends \perp, if $\perp \in\left\{y_{0}, y_{1}\right\}$)
(4) Each party outputs some value

- An honest party, sends its input to the trusted party and outputs the trusted party message
- A semi-honest party, might output additional information

Securely computing a functionality

$\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is an admissible algorithm pair for $\pi[$ resp., for $f]$, at least one party is honest

Securely computing a functionality

$\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is an admissible algorithm pair for $\pi[$ resp., for $f]$, at least one party is honest

Definition 1 (secure computation)

a protocol π securely computes f (in the malicious model), if \forall real model, admissible PPT $\bar{A}=\left(A_{1}, A_{2}\right)$, exists an ideal-model admissible pair PPT $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{1}, x_{2}\right)\right\}_{x_{1}, x_{2}} \approx_{c}\left\{\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}\left(x_{1}, x_{2}\right)\right\}_{x_{1}, x_{2}},
$$

where the enumeration is over all $x_{1}, x_{2} \in\{0,1\}^{*}$ with $\left|x_{1}\right|=\left|x_{2}\right|$.

Securely computing a functionality

$\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is an admissible algorithm pair for $\pi[$ resp., for $f]$, at least one party is honest

Definition 1 (secure computation)

a protocol π securely computes f (in the malicious model), if \forall real model, admissible PPT $\bar{A}=\left(A_{1}, A_{2}\right)$, exists an ideal-model admissible pair PPT $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{1}, x_{2}\right)\right\}_{x_{1}, x_{2}} \approx_{c}\left\{\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}\left(x_{1}, x_{2}\right)\right\}_{x_{1}, x_{2}},
$$

where the enumeration is over all $x_{1}, x_{2} \in\{0,1\}^{*}$ with $\left|x_{1}\right|=\left|x_{2}\right|$.

- Auxiliary inputs

Securely computing a functionality

$\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is an admissible algorithm pair for $\pi[$ resp., for $f]$, at least one party is honest

Definition 1 (secure computation)

a protocol π securely computes f (in the malicious model), if \forall real model, admissible PPT $\bar{A}=\left(A_{1}, A_{2}\right)$, exists an ideal-model admissible pair PPT $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{1}, x_{2}\right)\right\}_{x_{1}, x_{2}} \approx_{c}\left\{\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}\left(x_{1}, x_{2}\right)\right\}_{x_{1}, x_{2}},
$$

where the enumeration is over all $x_{1}, x_{2} \in\{0,1\}^{*}$ with $\left|x_{1}\right|=\left|x_{2}\right|$.

- Auxiliary inputs
- We focus on semi-honest adversaries

Section 2

Oblivious Transfer

Oblivious Transfer

Oblivious Transfer

A protocol for securely realizing the functionality $f:\left(\{0,1\}^{*} \times\{0,1\}^{*}\right) \times\{0,1\} \mapsto\{0,1\}^{*} \times \perp$, where $f_{1}\left(\left(x_{0}, x_{1}\right), i\right)=x_{i}$ and $f_{2}(\cdot)=\perp$.

- "Complete" for multiparty computation

Oblivious Transfer

A protocol for securely realizing the functionality $f:\left(\{0,1\}^{*} \times\{0,1\}^{*}\right) \times\{0,1\} \mapsto\{0,1\}^{*} \times \perp$, where $f_{1}\left(\left(x_{0}, x_{1}\right), i\right)=x_{i}$ and $f_{2}(\cdot)=\perp$.

- "Complete" for multiparty computation
- We focus on bit strings

Oblivious Transfer from Trapdoor Permutations

- We define a protocol $\pi=(\mathrm{S}, \mathrm{R})$ where R's input is $i \in\{0,1\}$, and S inputs is $\sigma_{0}, \sigma_{1} \in\{0,1\}$. Both parties gets a common input 1^{n}.

Oblivious Transfer from Trapdoor Permutations

- We define a protocol $\pi=(\mathrm{S}, \mathrm{R})$ where R's input is $i \in\{0,1\}$, and S inputs is $\sigma_{0}, \sigma_{1} \in\{0,1\}$. Both parties gets a common input 1 .
- Can be easily modified to the standard definition of two-party computation

Oblivious Transfer from Trapdoor Permutations

- We define a protocol $\pi=(S, R)$ where R's input is $i \in\{0,1\}$, and S inputs is $\sigma_{0}, \sigma_{1} \in\{0,1\}$. Both parties gets a common input 1^{n}.
- Can be easily modified to the standard definition of two-party computation
- Let (G, f, Inv) be a family of trapdoor permutations and let b be an hardcore predicate for f.

Protocol 2 ((S, R))

Common input: 1^{n}
S's input: $\sigma_{0}, \sigma_{1} \in\{0,1\}$
R's input: $i \in\{0,1\}$
(1) S chooses $(e, d) \leftarrow G\left(1^{n}\right)$, and sends e to R
(2) R chooses $x_{0}, x_{1} \leftarrow\{0,1\}^{n}$, sets $y_{i}=f_{e}\left(x_{i}\right)$ and $y_{1-i}=x_{1-i}$, and sends y_{0}, y_{1} to S
(3) S sets $c_{j}=b\left(\operatorname{lnv}_{d}\left(y_{i}\right)\right) \oplus \sigma_{j}$, for $j \in\{0,1\}$, and sends $\left(c_{0}, c_{1}\right)$ to R
(4) R outputs $c_{i} \oplus b\left(x_{i}\right)$.

Protocol 2 ((S, R))

Common input: 1^{n}
S's input: $\sigma_{0}, \sigma_{1} \in\{0,1\}$
R's input: $i \in\{0,1\}$
(1) S chooses $(e, d) \leftarrow G\left(1^{n}\right)$, and sends e to R
(2) R chooses $x_{0}, x_{1} \leftarrow\{0,1\}^{n}$, sets $y_{i}=f_{e}\left(x_{i}\right)$ and $y_{1-i}=x_{1-i}$, and sends y_{0}, y_{1} to S
(3) S sets $c_{j}=b\left(\operatorname{lnv}_{d}\left(y_{i}\right)\right) \oplus \sigma_{j}$, for $j \in\{0,1\}$, and sends $\left(c_{0}, c_{1}\right)$ to R
((R outputs $c_{i} \oplus b\left(x_{i}\right)$.

Claim 3

Protocol ?? securely realizes f (in the semi -honest model.

Proving Claim ??

We need to prove that \forall real model, semi-honest, admissible PPT $\bar{A}=\left(A_{1}, A_{2}\right)$, exists an ideal-model, admissible pair PPT $\bar{B}=\left(B_{1}, B_{2}\right)$ s.t.

$$
\begin{equation*}
\left\{\operatorname { R E A L } _ { \overline { A } } (1 ^ { n } , (\sigma _ { 0 } , \sigma _ { 1 }) , i \} \approx _ { c } \left\{\operatorname{IDEAL}_{f, \overline{\mathrm{~B}}}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right\}\right.\right. \tag{1}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $\sigma_{0}, \sigma_{1}, i \in\{0,1\}$

Semi-honest S

For $\bar{A}=\left(S^{\prime}, R\right)$ where S^{\prime} is a semi-honest implementation of S, let $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$ be the following ideal-model protocol:

Semi-honest S

For $\bar{A}=\left(S^{\prime}, R\right)$ where S^{\prime} is a semi-honest implementation of S, let $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$ be the following ideal-model protocol: $R_{\mathcal{I}}$ acts honestly (i.e., sends its input to the oracle and outputs the returned message)

Semi-honest S

For $\bar{A}=\left(S^{\prime}, R\right)$ where S^{\prime} is a semi-honest implementation of S, let $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$ be the following ideal-model protocol: $R_{\mathcal{I}}$ acts honestly (i.e., sends its input to the oracle and outputs the returned message)

Algorithm $4\left(S_{\mathcal{I}}^{\prime}\right)$

input: $1^{n}, \sigma_{0}, \sigma_{1}$
(1) Send $\left(\sigma_{0}, \sigma_{1}\right)$ to the trusted party
(2) Emulate $\mathrm{S}^{\prime}\left(1^{n}, \sigma_{0}, \sigma_{1}\right)$, acting as $\mathrm{R}\left(1^{n}, 0\right)$
(3) Output the same output that S^{\prime} does

Semi-honest S

For $\bar{A}=\left(S^{\prime}, R\right)$ where S^{\prime} is a semi-honest implementation of S, let $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$ be the following ideal-model protocol:
$R_{\mathcal{I}}$ acts honestly (i.e., sends its input to the oracle and outputs the returned message)

Algorithm $4\left(S_{\mathcal{I}}^{\prime}\right)$

input: $1^{n}, \sigma_{0}, \sigma_{1}$
(1) Send $\left(\sigma_{0}, \sigma_{1}\right)$ to the trusted party
(2) Emulate $\mathrm{S}^{\prime}\left(1^{n}, \sigma_{0}, \sigma_{1}\right)$, acting as $\mathrm{R}\left(1^{n}, 0\right)$
(3) Output the same output that S^{\prime} does

Claim 5

?? holds with respect to $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$.

Semi-honest S

For $\bar{A}=\left(S^{\prime}, R\right)$ where S^{\prime} is a semi-honest implementation of S, let $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$ be the following ideal-model protocol:
$R_{\mathcal{I}}$ acts honestly (i.e., sends its input to the oracle and outputs the returned message)

Algorithm $4\left(S_{\mathcal{I}}^{\prime}\right)$

input: $1^{n}, \sigma_{0}, \sigma_{1}$
(1) Send $\left(\sigma_{0}, \sigma_{1}\right)$ to the trusted party
(2) Emulate $\mathrm{S}^{\prime}\left(1^{n}, \sigma_{0}, \sigma_{1}\right)$, acting as $\mathrm{R}\left(1^{n}, 0\right)$
(3) Output the same output that S^{\prime} does

Claim 5

?? holds with respect to $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$.
Proof?

Semi-honest R

For $\overline{\mathrm{A}}=\left(\mathrm{S}, \mathrm{R}^{\prime}\right)$ where R^{\prime} is a semi-honest implementation of R, let $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$ be the following ideal-model protocol:

Semi-honest R

For $\overline{\mathrm{A}}=\left(\mathrm{S}, \mathrm{R}^{\prime}\right)$ where R^{\prime} is a semi-honest implementation of R, let $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$ be the following ideal-model protocol: $\mathrm{S}_{\mathcal{I}}$ acts honestly (i.e., sends its input to the trusted party and outputs the returned message)

Semi-honest R

For $\overline{\mathrm{A}}=\left(S, R^{\prime}\right)$ where R^{\prime} is a semi-honest implementation of R, let $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$ be the following ideal-model protocol: $\mathrm{S}_{\mathcal{I}}$ acts honestly (i.e., sends its input to the trusted party and outputs the returned message)

Algorithm $6\left(R_{I}^{\prime}\right)$

input: $1^{n}, i \in\{0,1\}$
(1) Send i to the trusted party, and let σ be its answer.
(2) Emulate $\mathrm{R}^{\prime}\left(1^{n}, i\right)$, acting as $\mathrm{S}\left(1^{n}, \sigma_{0}, \sigma_{1}\right)$, where $\sigma_{i}=\sigma$, and $\sigma_{1-i}=0$
(3) Output the same output that R^{\prime} does

Semi-honest R

For $\overline{\mathrm{A}}=\left(\mathrm{S}, \mathrm{R}^{\prime}\right)$ where R^{\prime} is a semi-honest implementation of R, let $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$ be the following ideal-model protocol: $\mathrm{S}_{\mathcal{I}}$ acts honestly (i.e., sends its input to the trusted party and outputs the returned message)

Algorithm $6\left(R_{I}^{\prime}\right)$

input: $1^{n}, i \in\{0,1\}$
(1) Send i to the trusted party, and let σ be its answer.
(2) Emulate $\mathrm{R}^{\prime}\left(1^{n}, i\right)$, acting as $\mathrm{S}\left(1^{n}, \sigma_{0}, \sigma_{1}\right)$, where $\sigma_{i}=\sigma$, and $\sigma_{1-i}=0$
(3) Output the same output that R^{\prime} does

Claim 7

?? holds with respect to $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$.

Semi-honest R

For $\overline{\mathrm{A}}=\left(\mathrm{S}, \mathrm{R}^{\prime}\right)$ where R^{\prime} is a semi-honest implementation of R, let $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$ be the following ideal-model protocol: $\mathrm{S}_{\mathcal{I}}$ acts honestly (i.e., sends its input to the trusted party and outputs the returned message)

Algorithm $6\left(R_{I}^{\prime}\right)$

input: $1^{n}, i \in\{0,1\}$
(1) Send i to the trusted party, and let σ be its answer.
(2) Emulate $\mathrm{R}^{\prime}\left(1^{n}, i\right)$, acting as $\mathrm{S}\left(1^{n}, \sigma_{0}, \sigma_{1}\right)$, where $\sigma_{i}=\sigma$, and $\sigma_{1-i}=0$
(3) Output the same output that R^{\prime} does

Claim 7

?? holds with respect to $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$.
Proof?

Section 3

Yao Grabbled Circuit

