
Foundation of Cryptography
(0368-4162-01), Lecture 9
Secure Multiparty Computation

Iftach Haitner, Tel Aviv University

January 24 – 31, 2012

Section 1

The Model

Multiparty Computation

Multiparty Computation – computing a functionality f

Secure Multiparty Computation: compute f in a “secure
manner"

Examples: coin-tossing, broadcast, electronic voting, electronic
auctions

Multiparty Computation

Multiparty Computation – computing a functionality f
Secure Multiparty Computation: compute f in a “secure
manner"

Examples: coin-tossing, broadcast, electronic voting, electronic
auctions

Multiparty Computation

Multiparty Computation – computing a functionality f
Secure Multiparty Computation: compute f in a “secure
manner"

Examples: coin-tossing, broadcast, electronic voting, electronic
auctions

Security

Privacy

Correctness
Independence of inputs
Guaranteed output delivery
Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol Π for computing a two-party functionality
f : {0,1}∗ × {0,1}∗ × {0,1}∗ × {0,1}∗

Security

Privacy
Correctness

Independence of inputs
Guaranteed output delivery
Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol Π for computing a two-party functionality
f : {0,1}∗ × {0,1}∗ × {0,1}∗ × {0,1}∗

Security

Privacy
Correctness
Independence of inputs

Guaranteed output delivery
Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol Π for computing a two-party functionality
f : {0,1}∗ × {0,1}∗ × {0,1}∗ × {0,1}∗

Security

Privacy
Correctness
Independence of inputs
Guaranteed output delivery

Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol Π for computing a two-party functionality
f : {0,1}∗ × {0,1}∗ × {0,1}∗ × {0,1}∗

Security

Privacy
Correctness
Independence of inputs
Guaranteed output delivery
Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol Π for computing a two-party functionality
f : {0,1}∗ × {0,1}∗ × {0,1}∗ × {0,1}∗

Security

Privacy
Correctness
Independence of inputs
Guaranteed output delivery
Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?

We focus on protocol Π for computing a two-party functionality
f : {0,1}∗ × {0,1}∗ × {0,1}∗ × {0,1}∗

Security

Privacy
Correctness
Independence of inputs
Guaranteed output delivery
Fairness : corrupted parties should get their output iff the
honest parties do

What is a secure protocol for a given task?
We focus on protocol Π for computing a two-party functionality
f : {0,1}∗ × {0,1}∗ × {0,1}∗ × {0,1}∗

Real Model Execution

Let A = (A1,A2) be a pair of algorithms, and x1, x2 ∈ {0,1}∗.
Define REALA(x , y) as the joint outputs of (A1(x1),A2(x2))

An honest party follows the prescribed protocol and
outputs of the protocol
A semi-honest party follows the protocol, but might output
additional information

Real Model Execution

Let A = (A1,A2) be a pair of algorithms, and x1, x2 ∈ {0,1}∗.
Define REALA(x , y) as the joint outputs of (A1(x1),A2(x2))

An honest party follows the prescribed protocol and
outputs of the protocol

A semi-honest party follows the protocol, but might output
additional information

Real Model Execution

Let A = (A1,A2) be a pair of algorithms, and x1, x2 ∈ {0,1}∗.
Define REALA(x , y) as the joint outputs of (A1(x1),A2(x2))

An honest party follows the prescribed protocol and
outputs of the protocol
A semi-honest party follows the protocol, but might output
additional information

Ideal Model Execution

Let B = (B1,B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs x1, x2 ∈ {0,1}∗,
denoted IDEALf ,B(x , y), is the joint output of the parties in the
end of the following experiment:

1 The input of Bi is xi (i ∈ {0,1})
2 Each party send the value yi to the trusted party (possibly
⊥)

3 Trusted party send fi(y0, y1) to Bi (sends ⊥, if ⊥∈ {y0, y1})
4 Each party outputs some value

An honest party, sends its input to the trusted party and
outputs the trusted party message
A semi-honest party, might output additional information

Ideal Model Execution

Let B = (B1,B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs x1, x2 ∈ {0,1}∗,
denoted IDEALf ,B(x , y), is the joint output of the parties in the
end of the following experiment:

1 The input of Bi is xi (i ∈ {0,1})
2 Each party send the value yi to the trusted party (possibly
⊥)

3 Trusted party send fi(y0, y1) to Bi (sends ⊥, if ⊥∈ {y0, y1})
4 Each party outputs some value

An honest party, sends its input to the trusted party and
outputs the trusted party message
A semi-honest party, might output additional information

Ideal Model Execution

Let B = (B1,B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs x1, x2 ∈ {0,1}∗,
denoted IDEALf ,B(x , y), is the joint output of the parties in the
end of the following experiment:

1 The input of Bi is xi (i ∈ {0,1})
2 Each party send the value yi to the trusted party (possibly
⊥)

3 Trusted party send fi(y0, y1) to Bi (sends ⊥, if ⊥∈ {y0, y1})
4 Each party outputs some value

An honest party, sends its input to the trusted party and
outputs the trusted party message
A semi-honest party, might output additional information

Ideal Model Execution

Let B = (B1,B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs x1, x2 ∈ {0,1}∗,
denoted IDEALf ,B(x , y), is the joint output of the parties in the
end of the following experiment:

1 The input of Bi is xi (i ∈ {0,1})
2 Each party send the value yi to the trusted party (possibly
⊥)

3 Trusted party send fi(y0, y1) to Bi (sends ⊥, if ⊥∈ {y0, y1})
4 Each party outputs some value

An honest party, sends its input to the trusted party and
outputs the trusted party message

A semi-honest party, might output additional information

Ideal Model Execution

Let B = (B1,B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs x1, x2 ∈ {0,1}∗,
denoted IDEALf ,B(x , y), is the joint output of the parties in the
end of the following experiment:

1 The input of Bi is xi (i ∈ {0,1})
2 Each party send the value yi to the trusted party (possibly
⊥)

3 Trusted party send fi(y0, y1) to Bi (sends ⊥, if ⊥∈ {y0, y1})
4 Each party outputs some value

An honest party, sends its input to the trusted party and
outputs the trusted party message
A semi-honest party, might output additional information

Ideal Model Execution

Let B = (B1,B2) be a pair of oracle-aided algorithms. An
execution of B in the ideal model on inputs x1, x2 ∈ {0,1}∗,
denoted IDEALf ,B(x , y), is the joint output of the parties in the
end of the following experiment:

1 The input of Bi is xi (i ∈ {0,1})
2 Each party send the value yi to the trusted party (possibly
⊥)

3 Trusted party send fi(y0, y1) to Bi (sends ⊥, if ⊥∈ {y0, y1})
4 Each party outputs some value

An honest party, sends its input to the trusted party and
outputs the trusted party message
A semi-honest party, might output additional information

Securely computing a functionality

A = (A1,A2) is an admissible algorithm pair for π [resp., for f],
at least one party is honest

Definition 1 (secure computation)
a protocol π securely computes f (in the malicious model), if ∀
real model, admissible PPT A = (A1,A2), exists an ideal-model
admissible pair PPT B = (B1,B2), s.t.

{REALA(x1, x2)}x1,x2 ≈c {IDEALf ,B(x1, x2)}x1,x2 ,

where the enumeration is over all x1, x2 ∈ {0,1}∗ with
|x1| = |x2|.

Auxiliary inputs
We focus on semi-honest adversaries

Securely computing a functionality

A = (A1,A2) is an admissible algorithm pair for π [resp., for f],
at least one party is honest

Definition 1 (secure computation)
a protocol π securely computes f (in the malicious model), if ∀
real model, admissible PPT A = (A1,A2), exists an ideal-model
admissible pair PPT B = (B1,B2), s.t.

{REALA(x1, x2)}x1,x2 ≈c {IDEALf ,B(x1, x2)}x1,x2 ,

where the enumeration is over all x1, x2 ∈ {0,1}∗ with
|x1| = |x2|.

Auxiliary inputs
We focus on semi-honest adversaries

Securely computing a functionality

A = (A1,A2) is an admissible algorithm pair for π [resp., for f],
at least one party is honest

Definition 1 (secure computation)
a protocol π securely computes f (in the malicious model), if ∀
real model, admissible PPT A = (A1,A2), exists an ideal-model
admissible pair PPT B = (B1,B2), s.t.

{REALA(x1, x2)}x1,x2 ≈c {IDEALf ,B(x1, x2)}x1,x2 ,

where the enumeration is over all x1, x2 ∈ {0,1}∗ with
|x1| = |x2|.

Auxiliary inputs

We focus on semi-honest adversaries

Securely computing a functionality

A = (A1,A2) is an admissible algorithm pair for π [resp., for f],
at least one party is honest

Definition 1 (secure computation)
a protocol π securely computes f (in the malicious model), if ∀
real model, admissible PPT A = (A1,A2), exists an ideal-model
admissible pair PPT B = (B1,B2), s.t.

{REALA(x1, x2)}x1,x2 ≈c {IDEALf ,B(x1, x2)}x1,x2 ,

where the enumeration is over all x1, x2 ∈ {0,1}∗ with
|x1| = |x2|.

Auxiliary inputs
We focus on semi-honest adversaries

Section 2

Oblivious Transfer

Oblivious Transfer

Oblivious Transfer

Oblivious Transfer

A protocol for securely realizing the functionality
f : ({0,1}∗ × {0,1}∗)× {0,1} 7→ {0,1}∗× ⊥, where
f1((x0, x1), i) = xi and f2(·) =⊥.

“Complete" for multiparty computation

We focus on bit strings

Oblivious Transfer

Oblivious Transfer

A protocol for securely realizing the functionality
f : ({0,1}∗ × {0,1}∗)× {0,1} 7→ {0,1}∗× ⊥, where
f1((x0, x1), i) = xi and f2(·) =⊥.

“Complete" for multiparty computation
We focus on bit strings

Oblivious Transfer

Oblivious Transfer from Trapdoor Permutations

We define a protocol π = (S,R) where R’s input is
i ∈ {0,1}, and S inputs is σ0, σ1 ∈ {0,1}. Both parties gets
a common input 1n.

Can be easily modified to the standard definition of
two-party computation
Let (G, f , Inv) be a family of trapdoor permutations and let
b be an hardcore predicate for f .

Oblivious Transfer

Oblivious Transfer from Trapdoor Permutations

We define a protocol π = (S,R) where R’s input is
i ∈ {0,1}, and S inputs is σ0, σ1 ∈ {0,1}. Both parties gets
a common input 1n.
Can be easily modified to the standard definition of
two-party computation

Let (G, f , Inv) be a family of trapdoor permutations and let
b be an hardcore predicate for f .

Oblivious Transfer

Oblivious Transfer from Trapdoor Permutations

We define a protocol π = (S,R) where R’s input is
i ∈ {0,1}, and S inputs is σ0, σ1 ∈ {0,1}. Both parties gets
a common input 1n.
Can be easily modified to the standard definition of
two-party computation
Let (G, f , Inv) be a family of trapdoor permutations and let
b be an hardcore predicate for f .

Oblivious Transfer

Protocol 2 ((S,R))

Common input: 1n

S’s input: σ0, σ1 ∈ {0,1}
R’s input: i ∈ {0,1}

1 S chooses (e,d)← G(1n), and sends e to R
2 R chooses x0, x1 ← {0,1}n, sets yi = fe(xi) and

y1−i = x1−i , and sends y0, y1 to S
3 S sets cj = b(Invd (yi))⊕ σj , for j ∈ {0,1}, and sends

(c0, c1) to R
4 R outputs ci ⊕ b(xi).

Claim 3

Protocol ?? securely realizes f (in the semi -honest model.

Oblivious Transfer

Protocol 2 ((S,R))

Common input: 1n

S’s input: σ0, σ1 ∈ {0,1}
R’s input: i ∈ {0,1}

1 S chooses (e,d)← G(1n), and sends e to R
2 R chooses x0, x1 ← {0,1}n, sets yi = fe(xi) and

y1−i = x1−i , and sends y0, y1 to S
3 S sets cj = b(Invd (yi))⊕ σj , for j ∈ {0,1}, and sends

(c0, c1) to R
4 R outputs ci ⊕ b(xi).

Claim 3

Protocol ?? securely realizes f (in the semi -honest model.

Oblivious Transfer

Proving Claim ??

We need to prove that ∀ real model, semi-honest, admissible
PPT A = (A1,A2), exists an ideal-model, admissible pair
PPT B = (B1,B2) s.t.

{REALA(1n, (σ0, σ1), i} ≈c {IDEALf ,B(1n, (σ0, σ1), i}, (1)

where n ∈ N and σ0, σ1, i ∈ {0,1}

Oblivious Transfer

Semi-honest S

For A = (S′,R) where S′ is a semi-honest implementation of S,
let B = (S′I ,RI) be the following ideal-model protocol:

RI acts honestly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S′I)

input: 1n, σ0, σ1

1 Send (σ0, σ1) to the trusted party
2 Emulate S′(1n, σ0, σ1), acting as R(1n,0)

3 Output the same output that S′ does

Claim 5

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest S

For A = (S′,R) where S′ is a semi-honest implementation of S,
let B = (S′I ,RI) be the following ideal-model protocol:
RI acts honestly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S′I)

input: 1n, σ0, σ1

1 Send (σ0, σ1) to the trusted party
2 Emulate S′(1n, σ0, σ1), acting as R(1n,0)

3 Output the same output that S′ does

Claim 5

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest S

For A = (S′,R) where S′ is a semi-honest implementation of S,
let B = (S′I ,RI) be the following ideal-model protocol:
RI acts honestly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S′I)

input: 1n, σ0, σ1

1 Send (σ0, σ1) to the trusted party
2 Emulate S′(1n, σ0, σ1), acting as R(1n,0)

3 Output the same output that S′ does

Claim 5

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest S

For A = (S′,R) where S′ is a semi-honest implementation of S,
let B = (S′I ,RI) be the following ideal-model protocol:
RI acts honestly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S′I)

input: 1n, σ0, σ1

1 Send (σ0, σ1) to the trusted party
2 Emulate S′(1n, σ0, σ1), acting as R(1n,0)

3 Output the same output that S′ does

Claim 5

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest S

For A = (S′,R) where S′ is a semi-honest implementation of S,
let B = (S′I ,RI) be the following ideal-model protocol:
RI acts honestly (i.e., sends its input to the oracle and outputs
the returned message)

Algorithm 4 (S′I)

input: 1n, σ0, σ1

1 Send (σ0, σ1) to the trusted party
2 Emulate S′(1n, σ0, σ1), acting as R(1n,0)

3 Output the same output that S′ does

Claim 5

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest R

For A = (S,R′) where R′ is a semi-honest implementation of R,
let B = (SI ,R′I) be the following ideal-model protocol:

SI acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R′I)

input: 1n,i ∈ {0,1}
1 Send i to the trusted party, and let σ be its answer.
2 Emulate R′(1n, i), acting as S(1n, σ0, σ1), where σi = σ,

and σ1−i = 0
3 Output the same output that R′ does

Claim 7

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest R

For A = (S,R′) where R′ is a semi-honest implementation of R,
let B = (SI ,R′I) be the following ideal-model protocol:
SI acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R′I)

input: 1n,i ∈ {0,1}
1 Send i to the trusted party, and let σ be its answer.
2 Emulate R′(1n, i), acting as S(1n, σ0, σ1), where σi = σ,

and σ1−i = 0
3 Output the same output that R′ does

Claim 7

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest R

For A = (S,R′) where R′ is a semi-honest implementation of R,
let B = (SI ,R′I) be the following ideal-model protocol:
SI acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R′I)

input: 1n,i ∈ {0,1}
1 Send i to the trusted party, and let σ be its answer.
2 Emulate R′(1n, i), acting as S(1n, σ0, σ1), where σi = σ,

and σ1−i = 0
3 Output the same output that R′ does

Claim 7

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest R

For A = (S,R′) where R′ is a semi-honest implementation of R,
let B = (SI ,R′I) be the following ideal-model protocol:
SI acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R′I)

input: 1n,i ∈ {0,1}
1 Send i to the trusted party, and let σ be its answer.
2 Emulate R′(1n, i), acting as S(1n, σ0, σ1), where σi = σ,

and σ1−i = 0
3 Output the same output that R′ does

Claim 7

?? holds with respect to A and B.

Proof?

Oblivious Transfer

Semi-honest R

For A = (S,R′) where R′ is a semi-honest implementation of R,
let B = (SI ,R′I) be the following ideal-model protocol:
SI acts honestly (i.e., sends its input to the trusted party and
outputs the returned message)

Algorithm 6 (R′I)

input: 1n,i ∈ {0,1}
1 Send i to the trusted party, and let σ be its answer.
2 Emulate R′(1n, i), acting as S(1n, σ0, σ1), where σi = σ,

and σ1−i = 0
3 Output the same output that R′ does

Claim 7

?? holds with respect to A and B.

Proof?

Section 3

Yao Grabbled Circuit

