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Distributions and Statistical Distance

Let P and Q be two distributions over a finite set U . Their
statistical distance (also known as, variation distance), denoted
by SD(P,Q), is defined as

SD(P,Q) :=
1
2

∑
x∈U
|P(x)−Q(x)| = max

S⊆U
(P(S)−Q(S))

We will only consider finite distributions.

Claim 1
For any pair of (finite) distribution P and Q, it holds that such

SD(P,Q) = max
D

(Prx←P [D(x) = 1]− Prx←Q[D(x) = 1]) ,

where D is any algorithm.



Distributions and Statistical Distance Computational Indistinguishability

Some useful facts

Let P,Q,R be finite distributions, then
Triangle inequality:

SD(P,R) ≤ SD(P,Q) + SD(Q,R)

Repeated sampling:

SD((P,P), (Q,Q)) ≤ 2 · SD(P,Q)

Random variables
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Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)
P = {Pn}n∈N is a distribution ensemble, if Pn is a (finite)
distribution for any n ∈ N.
P is efficiently samplable (or just efficient), if ∃ PPT Samp with
Sam(1n) ≡ Pn.

Definition 3 (statistical indistinguishability)
Two distribution ensembles P and Q are statistically
indistinguishable, if SD(Pn,Qn) = neg(n).

Alternatively, if
∣∣∣∆D

(P,Q)(n)
∣∣∣ = neg(n), for any algorithm D,

where

∆D
(P,Q)(n) := Prx←Pn [D(1n, x) = 1]− Prx←Qn [D(1n, x) = 1] (1)
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Section 2

Computational Indistinguishability
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Computational Indistinguishability

Definition 4 (computational indistinguishability)
Two distribution ensembles P and Q are computationally
indistinguishable, if

∣∣∣∆D
(P,Q)(n)

∣∣∣ = neg(n), for any PPT D.

Can it be different from the statistical case?
Non uniform variant
Sometime behaves different then expected!
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Repeated sampling

Question 5
Assume that P and Q are computationally indistinguishable, is
it always true that P2 = (P,P) and Q2 = (Q,Q) are?

Let D be an algorithm and let δ(n) =
∣∣∣∆D

(P2,Q2)
(n)
∣∣∣

δ(n) = |Prx←P2
n
[D(x) = 1]− Prx←Q2

n
[D(x) = 1]|

≤
∣∣∣Prx←P2

n
[D(x) = 1]− Prx←(Pn,Qn)[D(x) = 1]

∣∣∣
+
∣∣∣Prx←(Pn,Qn)[D(x) = 1]− Prx←Q2

n
[D(x) = 1]

∣∣∣
=

∣∣∣∆D
(P2,(P,Q)(n)

∣∣∣+
∣∣∣∆D

((P,Q),Q2)(n)
∣∣∣

So either |∆D
(P2,(P,Q)(n)| ≥ δ(n)/2, or |∆D

((P,Q),Q2)
(n)| ≥ δ(n)/2
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Assume D is a PPT and that
∣∣∣∆D

(P2,Q2)
(n)
∣∣∣ ≥ 1/p(n) for

some p ∈ poly and infinitely many n’s, and assume wlg.
that

∣∣∣∆D
P2,(P,Q)(n)

∣∣∣ ≥ 1/2p(n) for infinitely many n’s.

Can we use D to contradict the fact that P and Q are
computationally close?
Assuming that P and Q are efficiently samplable
Non-uniform settings
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Repeated sampling cont.

Given t = t(n) ∈ N and a distribution ensemble P = {Pn}n∈N,
let P t = {P t(n)

n }n∈N

Question 6
Let t = t(n) ≤ poly(n) be an eff. computable integer function.
Assume that P and Q are eff. samplable and computationally
indistinguishable, does it mean that P t and Qt are?

Proof:
Induction?
Hybrid
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Hybrid argument

Let D be an algorithm and let δ(n) =
∣∣∣∆D

(P t ,Qt )
(n)
∣∣∣.

Fix n ∈ N, and for i ∈ {0, . . . , t = t(n)}, let
H i = (p1, . . . ,pi ,qi+1, . . . ,qt ), where the p’s [resp., q’s] are
uniformly (and independently) chosen from Pn [resp., from
Qn].

Since δ(n) =
∣∣∣∆D

H t ,H0(t)
∣∣∣ =

∣∣∣∑i∈[t] ∆D
H i ,H i−1(t)

∣∣∣, there exists

i ∈ [t ] with
∣∣∣∆D

H i ,H i−1(t)
∣∣∣ ≥ δ(n)/t(n).

How do we use it?
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Using hybrid argument via estimation

Algorithm 7 (D′)
Input: 1n and x ∈ {0,1}∗

1 Find i ∈ [t ] with
∣∣∣∆D

H i ,H i−1(t)
∣∣∣ ≥ δ(n)/2t(n)

2 Let (p1, . . . ,pi ,qi+1, . . . ,qt )← H i

3 Return D(1t ,p1, . . . ,pi−1, x ,qi+1, . . . ,qt ), .

1 how do we find i?
2 Easy in the non-uniform case
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Using Hybrid argument via sampling

Algorithm 8 (D′)
Input: 1n and x ∈ {0,1}∗

1 Sample i ← [t = t(n)]

2 Let (p1, . . . ,pi ,qi+1, . . . ,qt )← H i

3 Return D(1t ,p1, . . . ,pi−1, x ,qi+1, . . . ,qt ).∣∣∣∆D′
(P,Q)(n)

∣∣∣ =
∣∣Prp←Pn [D′(p) = 1]− Prq←Qn [D′(q) = 1]

∣∣
=

∣∣∣∣∣∣1t
∑
i∈[t]

Prx←Hi [D(x) = 1]− 1
t

∑
i∈[t]

Prx←Hi−1 [D(x) = 1]

∣∣∣∣∣∣
=

∣∣∣∣1t (Prx←(Ht [D(x) = 1]− Prx←H0 [D(x) = 1]
)∣∣∣∣

= δ(n)/t(n)
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Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}`(n)}n∈N is
pseudorandom, if it is computationally indistinguishable from
{U`(n)}n∈N.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function g : {0,1}n 7→ {0,1}`(n) is a
pseudorandom generator, if

g is length extending (i.e., `(n) > n for any n)

g(Un) is pseudorandom

Do such generators exist?
Imply one-way functions (homework)
Do they have any use?
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Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Does the existence of a hardcore predicate for f , implies
that f is one way? If f is injective?
Fact: any PRG has HCP (homework).
Fact: any OWF has a hardcore predicate (next class)
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OWP to PRG

Claim 12
Let f : {0,1}n 7→ {0,1}n be a permutation and let
b : {0,1}n 7→ {0,1} be a hardcore predicate for f , then
g(x) = (f (x),b(x)) is a PRG.

Proof: Assume ∃ a PPT D, and infinite set I ⊆ N and p ∈ poly
with ∣∣∣∆D

g(Un),Un+1

∣∣∣ > ε(n) = 1/p(n)

for any n ∈ I. We use D for breaking the hardness of b.

We assume wlg. that
Pr[D(g(Un)) = 1]− Pr[D(Un+1) = 1] ≥ ε(n) for any n ∈ I
(can we do it?), and fix n ∈ I.



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

OWP to PRG cont.

Let δ(n) = Pr[D(Un+1) = 1] (note that
Pr[D(g(Un)) = 1] = δ + ε).
Compute

δ = Pr[D(f (Un),U1) = 1]

= Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

+ Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

=
1
2

(δ + ε) +
1
2
· Pr[D(f (Un),U1) = 1 | U1 = b(Un)].

Hence,

Pr[D(f (Un),b(Un)) = 1] = δ − ε (2)
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OWP to PRG cont.

Pr[D(f (Un),b(Un)) = 1] = δ + ε
Pr[D(f (Un),b(Un)) = 1] = δ − ε
Consider the following algorithm for predicting b:

Algorithm 13 (P)
Input: y ∈ {0,1}n

1 Flip a random coin c ← {0,1}.
2 If D(y , c) = 1 output c, otherwise, output c.

It follows that

Pr[P(f (Un)) = b(Un)]

= Pr[c = b(Un)] · Pr[D(f (Un), c) = 1 | c = b(Un)]

+Pr[c = b(Un)] · Pr[D(f (Un), c) = 0 | c = b(Un)]

=
1
2
· (δ + ε) +

1
2

(1− δ + ε) =
1
2

+ ε.
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OWP to PRG cont.

Remark 14
Prediction to distinguishing (homework)
PRG from any OWF: (1) Regular OWFs, first use pairwise
hashing to convert into “almost" permutation. (2) Any OWF,
harder
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PRG Length Extension

Construction 15 (iterated function)

Given g : {0,1}n 7→ {0,1}n+1 and i ∈ N, define
g i : {0,1}n 7→ {0,1}n+i as

g i(x) = g(x)1,g i−1(g(x)2,...,n+1),

where g0(x) = x .

Claim 16

Let g : {0,1}n 7→ {0,1}n+1 be a PRG, then
gt(n) : {0,1}n 7→ {0,1}n+t(n) is a PRG, for any t ∈ poly.

Proof: Assume ∃ a PPT D, an infinite set I ⊆ N and p ∈ poly
with ∣∣∣∆D

gt (Un),Un+t(n)

∣∣∣ > ε(n) = 1/p(n),

for any n ∈ I. We use D for breaking the hardness of g.
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PRG Length Extension cont.

Fix n ∈ N, for i ∈ {0, . . . , t = t(n)}, let H i = Ut−i ,g i(Un)
(i.e., the distribution of H i is

(
x ,g i(x ′)

)
x←{0,1}t−i ,x ′←{0,1}n )

Note that H0 ≡ Un+t and H t ≡ gt (Un).

Algorithm 17 (D′)

Input: 1n and y ∈ {0,1}n+1

1 Sample i ← [t ]
2 Return D(1n,Ut−i , y1,g i−1(y2,...,n+1)).

Claim 18

It holds that
∣∣∣∆D′

g(Un),Un+1

∣∣∣ > ε(n)/t(n)

Proof: ...
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