Foundation of Cryptography (0368-4162-01), Lecture 4 Pseudorandom Functions

Iftach Haitner, Tel Aviv University

November 29, 2011

Section 1

Function Families

function families

- **1** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}, \text{ where } \mathcal{F}_n = \{f : \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$
- ② We write $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$
- 3 If $m(n) = \ell(n) = n$, we omit it from the notation
- We identify function with their description
- **1** The rv F_n is uniformly distributed over \mathcal{F}_n

efficient function families

Definition 1 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if the following hold:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

random functions

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

- It takes $2^m \cdot \ell$ bits to describe an element inside $\Pi_{m,\ell}$.
- We sometimes think of $\pi \in \Pi_{m,\ell}$ as a random string of length $2^m \cdot \ell$.
- $\bullet \ \Pi_n = \Pi_{n,n}$

pseudorandom functions

Definition 3 (pseudorandom functions)

A function family ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^{\textit{m(n)}}\mapsto\{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n),$$

for any oracle-aided PPT D.

- Suffices to consider $\ell(n) = n$
- 2 Easy to construct (with no assumption) for $m(n) = \log n$ and $\ell \in \text{poly}$
- PRF easily imply a PRG
- Pseudorandom permutations (PRPs)

Section 2

PRF from OWF

PRP from PRF

the construction

the construction

Construction 4

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$

Let $\mathcal{F}_n = \{f_s \colon s \in \{0,1\}^n\}$ and $\mathcal{F} = \{\mathcal{F}_n\}$.

If g is an efficient function, then \mathcal{F} is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then \mathcal{F} is a PRF.

Corollary 6

OWFs imply PRFs.

Proof Idea

Proof Idea

• Easy to prove for input of length 2. Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Proof: $D' = (g(U_n^{(0)}), g(U_n^1)) \approx_c U_{4n}$ and $D \approx_c D'$.

- Hence we can handle input of length 2
- Extend to longer inputs?
- We show that an efficient sample from the *truth table* of $f \leftarrow \mathcal{F}_n$, is computationally indistinguishable from that of $\pi \leftarrow \Pi_{n,n}$.

The Actual Proof

Assume $\exists \ PPT \ D, \ p \in poly \ and \ infinite \ set \ \mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

PRP from PRF

for any $n \in \mathcal{I}$, and fix $n \in \mathbb{N}$ Let $t = t(n) \in \text{poly be a bound on the running time of D}(1^n)$. We use D to construct a PPT D' such that

$$\left|\Pr[\mathsf{D}'(U_{2n}^t)=1]-\Pr[\mathsf{D}'(g(U_n)^t)=1\right|>\frac{1}{np(n)},$$

where
$$U_{2n}^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t(n))}$$
 and $g(U_n)^t = g(U_n^{(1)}), \dots, g(U_n^{(t(n))})$.

Function Families

The Hybrid

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where $h_{\pi}(x) = f_{\pi(x_1 \ k)}(x_{k+1,...,n})$

- $f_V(\lambda) = y$
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_{n,n}$
- Can we emulate \mathcal{H}_k ? We emulate if from D's point of view.
- We present efficient "function family" $\mathcal{O}_k = \{\mathcal{O}_{\iota}^{s^1,...,s^t}\}$ s.t.
 - $D^{O_k^{U_{2n}^l}}(1^n) \equiv D^{H_k}(1^n)$
 - $D^{O_k^{g(U_n)^t}}(1^n) \equiv D^{H_{k-1}}(1^n)$

for any $k \in [n]$, where H_K is uniformly sampled from \mathcal{H}_k .

Completing the Proof

Let D'(y) return $D^{O_k}(1^n)$ for k uniformly chosen in [n]. Hence

PRP from PRF

$$\begin{aligned} & \left| \Pr[\mathsf{D}'(U_{2n}^t) = 1] \right| - \Pr[\mathsf{D}'(g(U_n)^t) = 1] \\ & = \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k^{U_{2n}^t}}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k^{g(U_n)^t}}(1^n) = 1] \right| \\ & = \left| \frac{1}{n} \left| \sum_{k=1}^n \Pr[\mathsf{D}^{H_k}(1^n) = 1] - \sum_{k=1}^n \Pr[\mathsf{D}^{H_{k-1}}(1^n) = 1] \right| \\ & = \left| \frac{1}{n} \left| \Pr[\mathsf{D}^{H_n}(1^n) = 1] - \Pr[\mathsf{D}^{H_0}(1^n) = 1] \right| = \frac{1}{np(n)} \end{aligned}$$

The family \mathcal{O}_k

$$\mathcal{O}_k := \{ \mathcal{O}_k^{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,...,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,...,k-1}^{\ell} = x_{1,...,k-1}^{i}$ was previously asked, set $z = s_{x_k}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_k}^{i}$.
- 2 Return $f_z(x_{k+1,...,n})$

 \mathcal{O}_k is stateful.

We need to prove that $D^{O_k^{U_{2n}^l}}(1^n) \equiv D^{H_k}(1^n)$ and $D^{O_k^{g(U_n)^t}}(1^n) \equiv D^{H_{k-1}}(1^n)$.

Actual Proof

$$\mathsf{D}^{O_k^{U_{2n}^t}}(\mathsf{1}^n) \equiv \mathsf{D}^{H_k}(\mathsf{1}^n)$$

Proposition 9

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new gueries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF? Let O_k be the variant that returns z (and not $f_z(x_{k+1,...,n})$ as in Algorithm 8) and let D_k be the algorithm that implements D using O_k (by computing $f_z(x_{k+1,\dots,n})$ by itself). By Proposition 9

$$\mathsf{D}^{O_k^{U_{2n}^t}}(1^n) \equiv \widetilde{\mathsf{D}}_k^{\widetilde{O}_{2n}^{U_{2n}^t}}(1^n) \equiv \widetilde{\mathsf{D}}_k^{\pi_{k,n}}(1^n) \equiv \mathsf{D}^{H_k}(1^n) \tag{2}$$

PRP from PRF

Actual Proof

$$\mathsf{D}^{O_k^{g(U_n)^t}}(1^n) \equiv \mathsf{D}^{H_{k-1}}(1^n)$$

It holds that

$$D^{O_k^{g(U_n)^t}}(1^n) \equiv D^{O_{k-1}^{U_{2n}}}(1^n)$$
 (3)

Hence, by Equation (2)

$$\mathsf{D}^{O_k^{g(U_n)^t}}(1^n) \equiv \mathsf{D}^{H_{k-1}}(1^n)$$

Section 3

PRP from PRF

Pseudorandom permutations

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations)

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{4}$$

for any oracle-aided PPT D

Equation (4) holds for any PRF

Construction

Function Families

Construction 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let

$$LR(\mathcal{F}) = \{LR(\mathcal{F}_n) : \{0,1\}^{2n} \mapsto \{0,1\}^{2n}\}, \text{ where }$$

$$LR(\mathcal{F}_n) = \{LR(f) : f \in \mathcal{F}_n\} \text{ and } LR(f)(\ell, r) = (r, f(r) \oplus \ell).$$

For $i \in \mathbb{N}$, let LRⁱ(\mathcal{F}) be the *i*'th iteration of LR(\mathcal{F}).

 $LR(\mathcal{F})$ is always a permutation family, and is efficient if \mathcal{F} is.

Theorem 12 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then LR³(\mathcal{F}) is a PRP

It suffices to prove the the following holds for any $n \in \mathbb{N}$ (why?)

Claim 13

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1] - \Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1] \leq \frac{4\cdot q^2}{2^n},$$
 for any q -query algorithm D.

Section 4

Applications

general paradigm

Design a scheme assuming that you have random functions, and the realize them using PRF.

Construction 14 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F} , define the encryption scheme (Gen, E, D)) se:

Key generation Gen(1ⁿ) returns $k \leftarrow \mathcal{F}_n$

Encryption $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

- Advantages over the PRG based scheme?
- Proof of security