Foundation of Cryptography (0368-4162-01), Lecture 1

 One Way Functions

 One Way Functions}

Iftach Haitner, Tel Aviv University

November 1-8, 2011

Section 1

Notation

Notation I

- For $t \in \mathbb{N}$, let $[t]:=\{1, \ldots, t\}$.
- Given a string $x \in\{0,1\}^{*}$ and $0 \leq i<j \leq|x|$, let $x_{i, \ldots, j}$ stands for the substring induced by taking the i, \ldots, j bit of x (i.e., $x[i] \ldots, x[j]$).
- Given a function f defined over a set \mathcal{U}, and a set $\mathcal{S} \subseteq \mathcal{U}$, let $f(\mathcal{S}):=\{f(x): x \in \mathcal{S}\}$, and for $y \in f(\mathcal{U})$ let $f^{-1}(y):=\{x \in \mathcal{U}: f(x)=y\}$.
- poly stands for the set of all polynomials.
- The worst-case running-time of a polynomial-time algorithm on input x, is bounded by $p(|x|)$ for some $p \in$ poly.
- A function is polynomial-time computable, if there exists a polynomial-time algorithm to compute it.

Notation II

- PPT stands for probabilistic polynomial-time algorithms.
- A function $\mu: \mathbb{N} \mapsto[0,1]$ is negligible, denoted $\mu(n)=\operatorname{neg}(n)$, if for any $p \in$ poly there exists $n^{\prime} \in \mathbb{N}$ with $\mu(n) \leq 1 / p(n)$ for any $n>n^{\prime}$.

Distribution and random variables I

- The support of a distribution P over a finite set \mathcal{U}, denoted Supp (P), is defined as $\{u \in \mathcal{U}: P(u)>0\}$.
- Given a distribution P and en event E with $\operatorname{Pr}_{P}[E]>0$, we let $(P \mid E)$ denote the conditional distribution P given E (i.e., $\left.(P \mid E)(x)=\frac{D(x) \wedge E}{\operatorname{Pr} P[E]}\right)$.
- For $t \in \mathbb{N}$, let let U_{t} denote a random variable uniformly distributed over $\{0,1\}^{t}$.
- Given a random variable X, we let $x \leftarrow X$ denote that x is distributed according to X (e.g., $\operatorname{Pr}_{x \leftarrow X}[x=7]$).
- Given a final set \mathcal{S}, we let $x \leftarrow \mathcal{S}$ denote that x is uniformly distributed in \mathcal{S}.

Distribution and random variables II

- We use the convention that when a random variable appears twice in the same expression, it refers to a single instance of this random variable. For instance, $\operatorname{Pr}[X=X]=1$ (regardless of the definition of X).
- Given distribution P over \mathcal{U} and $t \in \mathbb{N}$, we let P^{t} over \mathcal{U}^{t} be defined by $D^{t}\left(x_{1}, \ldots, x_{t}\right)=\prod_{i \in[t]} D\left(x_{i}\right)$.
- Similarly, given a random variable X, we let X^{t} denote the random variable induced by t independent samples from X.

Section 2

One Way Functions

One-Way Functions

Definition 1 (One-Way Functions (OWFs))

A polynomial-time computable function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is one-way, if for any PPT A

$$
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{A}\left(1^{n}, y\right) \in f^{-1}(y)\right]=\operatorname{neg}(n)
$$

U_{n} : a random variable uniformly distributed over $\{0,1\}^{n}$
polynomial-time computable: there exists a polynomial-time algorithm F, such that $F(x)=f(x)$ for every $x \in\{0,1\}^{*}$
PPT : probabilistic polynomial-time algorithm neg: a function $\mu: \mathbb{N} \mapsto[0,1]$ is a negligible function of n, denoted $\mu(n)=\operatorname{neg}(n)$, if for any $p \in$ poly there exists $n^{\prime} \in \mathbb{N}$ such that $g(n)<1 / p(n)$ for all $n>n^{\prime}$
We will typically omit 1^{n} from the parameter list of A
© Is this the right definition?

- Asymptotic
- Efficiently computable
- On the average
- Only against PPT's
© Is this the right definition?
- Asymptotic
- Efficiently computable
- On the average
- Only against PPT's
(2) (most) Crypto implies OWFs
(3) Do OWFs imply Crypto?
(1) Where do we find them
(1) Is this the right definition?
- Asymptotic
- Efficiently computable
- On the average
- Only against PPT's
(2) (most) Crypto implies OWFs
(3) Do OWFs imply Crypto?
(4) Where do we find them
(5) Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ is one-way, if for any polynomial-size family of circuits $\left\{C_{n}\right\}_{n \in \mathbb{N}}$

$$
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[C_{n}(y) \in f^{-1}(y)\right]=\operatorname{neg}(n)
$$

Length preserving functions

Definition 3 (length preserving functions)

A function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is length preserving, if $|f(x)|=|x|$ for any $x \in\{0,1\}^{*}$

Length preserving functions

Definition 3 (length preserving functions)

A function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is length preserving, if $|f(x)|=|x|$ for any $x \in\{0,1\}^{*}$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)

A function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is length preserving, if $|f(x)|=|x|$ for any $x \in\{0,1\}^{*}$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Proof idea: use the assumed OWF to create a length preserving one

Partial domain functions

Definition 5 (Partial domain functions)

For $m, \ell: \mathbb{N} \mapsto \mathbb{N}$, let $h:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}$ denote a function defined over input lengths in $\{m(n)\}_{n \in \mathbb{N}}$, and maps strings of length $m(n)$ to strings of length $\ell(n)$.

The definition of one-wayness naturally extends to such functions.

OWFs imply Length Preserving OWFs cont.

Let $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wig. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g:\{0,1\}^{p(n)} \mapsto\{0,1\}^{p(n)}$ as

$$
g(x)=f\left(x_{1, \ldots, n}\right), 0^{p(n)-\left|f\left(x_{1}, \ldots, n\right)\right|}
$$

Note that g is length preserving and efficient (why?).

OWFs imply Length Preserving OWFs cont.

Let $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wig. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g:\{0,1\}^{p(n)} \mapsto\{0,1\}^{p(n)}$ as

$$
g(x)=f\left(x_{1}, \ldots, n\right), 0^{p(n)-\left|f\left(x_{1, \ldots}, \ldots, n\right)\right|}
$$

Note that g is length preserving and efficient (why?).

Claim 7

g is one-way.

OWFs imply Length Preserving OWFs cont.

Let $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g:\{0,1\}^{p(n)} \mapsto\{0,1\}^{p(n)}$ as

$$
g(x)=f\left(x_{1}, \ldots, n\right), 0^{p(n)-\left|f\left(x_{1, \ldots}, \ldots, n\right)\right|}
$$

Note that g is length preserving and efficient (why?).

Claim 7

g is one-way.
How can we prove that g is one-way?

OWFs imply Length Preserving OWFs cont.

Let $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wig. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g:\{0,1\}^{p(n)} \mapsto\{0,1\}^{p(n)}$ as

$$
g(x)=f\left(x_{1, \ldots, n}\right), 0^{p(n)-\left|f\left(x_{1, \ldots, n}\right)\right|}
$$

Note that g is length preserving and efficient (why?).

Claim 7

g is one-way.
How can we prove that g is one-way?
Answer: using reduction

Proving that g is one-way

Proof:
Assume that g is not one-way. Namely, there exists PPT A a $q \in$ poly and an infinite $\mathcal{I} \subseteq\{p(n): n \in \mathbb{N}\}$, with

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow g\left(U_{n}\right)}\left[\mathrm{A}(y) \in g^{-1}(y)\right]>1 / q(n) \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$.

Proving that g is one-way

Proof:
Assume that g is not one-way. Namely, there exists PPT A a $q \in$ poly and an infinite $\mathcal{I} \subseteq\{p(n): n \in \mathbb{N}\}$, with

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow g\left(U_{n}\right)}\left[\mathrm{A}(y) \in g^{-1}(y)\right]>1 / q(n) \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$.
We would like to use A for inverting f.

Algorithm 8 (The inverter B)

Input: 1^{n} and $y \in\{0,1\}^{*}$.
(1) Let $x=\mathrm{A}\left(1^{p(n)}, y, 0^{p(n)-|y|}\right)$.
(2) Return $x_{1, \ldots, n}$.

Algorithm 8 (The inverter B)

Input: 1^{n} and $y \in\{0,1\}^{*}$.
(1) Let $x=\mathrm{A}\left(1^{p(n)}, y, 0^{p(n)-|y|}\right)$.
(2) Return $x_{1, \ldots, n}$.

Claim 9

Let $\mathcal{I}^{\prime}:=\{n \in \mathbb{N}: p(n) \in \mathcal{I}\}$. Then
(1) \mathcal{I}^{\prime} is infinite
(2) For any $n \in \mathcal{I}^{\prime}$, it holds that

$$
\operatorname{Pr}_{y \leftarrow g\left(U_{n}\right)}\left[\mathrm{B}(y) \in f^{-1}(y)\right]>1 / q(p(n)) .
$$

in contradiction to the assumed one-wayness of $f . \square$

Conclusion

Remark 10

- We directly related the hardness of f to that of g
- The reduction is not "security preserving"

From partial domain functions to all-length functions

Construction 11

Given a function $f:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}$, $f_{\text {all }}:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ as

$$
f_{\text {all }}(x)=f\left(x_{1, \ldots, k(n)}\right), 0^{n-k(n)}
$$

where $n=|x|$ and $k(n):=\max \left\{m\left(n^{\prime}\right) \leq n: n^{\prime} \in \mathbb{N}\right\}$.

From partial domain functions to all-length functions

Construction 11

Given a function $f:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}$, $f_{\text {all }}:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ as

$$
f_{\text {all }}(x)=f\left(x_{1, \ldots, k(n)}\right), 0^{n-k(n)}
$$

where $n=|x|$ and $k(n):=\max \left\{m\left(n^{\prime}\right) \leq n: n^{\prime} \in \mathbb{N}\right\}$.

Claim 12

Assume that f is a one-way function and that m is monotone, polynomial-time commutable an satisfies $\frac{m(n+1)}{m(n)} \leq p(n)$ for some $p \in$ poly, then $f_{\text {all }}$ is a one-way function. Further, if f is length preserving, then so is $f_{\text {all }}$.

Proof: ?

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is α-one-way, if

$$
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{A}\left(1^{n}, y\right) \in f^{-1}(y)\right] \leq \alpha(n)
$$

for any PPT A and large enough $n \in \mathbb{N}$.

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is α-one-way, if

$$
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{A}\left(1^{n}, y\right) \in f^{-1}(y)\right] \leq \alpha(n)
$$

for any PPT A and large enough $n \in \mathbb{N}$.
(1) (strong) OWF according to Definition 1, are neg (n)-one-way according to the above definition

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is α-one-way, if

$$
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{A}\left(1^{n}, y\right) \in f^{-1}(y)\right] \leq \alpha(n)
$$

for any PPT A and large enough $n \in \mathbb{N}$.
(1) (strong) OWF according to Definition 1, are neg (n)-one-way according to the above definition
(2) Examples

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^{*} \mapsto f:\{0,1\}^{*}$ is α-one-way, if

$$
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{A}\left(1^{n}, y\right) \in f^{-1}(y)\right] \leq \alpha(n)
$$

for any PPT A and large enough $n \in \mathbb{N}$.
(1) (strong) OWF according to Definition 1, are neg(n)-one-way according to the above definition
(2) Examples
(3) Can we "amplify" weak OWF to strong ones?

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{2}{3}$-one-way, but not (strong) one-way

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{2}{3}$-one-way, but not (strong) one-way

Proof: let f be a OWF. Define $g(x)=(1, f(x))$ if $x_{1}=1$, and 0 otherwise.

Weak to Strong OWFs

Theorem 15

Assume there exists $(1-\alpha)$-weak OWFs with $\alpha(n)>1 / p(n)$ for some $p \in$ poly, then there exists (strong) one-way functions.

Weak to Strong OWFs

Theorem 15

Assume there exists $(1-\alpha)$-weak OWFs with $\alpha(n)>1 / p(n)$ for some $p \in$ poly, then there exists (strong) one-way functions.

Proof: we assume wig that f is length preserving (can we do so?)

Construction 16 (g - the strong one-way function)

Let $t: \mathbb{N} \mapsto \mathbb{N}$ be a polynomial-time computable function satisfying $t(n) \in \omega(\log n / \alpha(n))$. Define $g:\left(\{0,1\}^{n}\right)^{t(n)} \mapsto\left(\{0,1\}^{n}\right)^{t(n)}$ as

$$
g\left(x_{1}, \ldots, x_{t}\right)=f\left(x_{1}\right), \ldots, f\left(x_{t}\right)
$$

Weak One Way Functions

Weak to Strong OWFs

Theorem 15

Assume there exists $(1-\alpha)$-weak OWFs with $\alpha(n)>1 / p(n)$ for some $p \in$ poly, then there exists (strong) one-way functions.

Proof: we assume wig that f is length preserving (can we do so?)

Construction 16 (g - the strong one-way function)

Let $t: \mathbb{N} \mapsto \mathbb{N}$ be a polynomial-time computable function satisfying $t(n) \in \omega(\log n / \alpha(n))$. Define $g:\left(\{0,1\}^{n}\right)^{t(n)} \mapsto\left(\{0,1\}^{n}\right)^{t(n)}$ as

$$
g\left(x_{1}, \ldots, x_{t}\right)=f\left(x_{1}\right), \ldots, f\left(x_{t}\right)
$$

Claim 17

g is one-way.

Proving that g is one-way - the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$
\operatorname{Pr}_{y \leftarrow g\left(U_{n}^{t(n)}\right)}\left[\mathrm{A}(y) \in g^{-1}(y)\right] \leq(1-\alpha(n))^{t(n)} \leq e^{-\omega(\log n)}=\operatorname{neg}(n)
$$

Proving that g is one-way - the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then
$\operatorname{Pr}_{y \leftarrow g\left(U_{n}^{t(n)}\right)}\left[\mathrm{A}(y) \in g^{-1}(y)\right] \leq(1-\alpha(n))^{t(n)} \leq e^{-\omega(\log n)}=\operatorname{neg}(n)$
A less naive approach would be to assume that A goes over output sequentially.

Proving that g is one-way - the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then
$\operatorname{Pr}_{y \leftarrow g\left(U_{n}^{t(n)}\right)}\left[\mathrm{A}(y) \in g^{-1}(y)\right] \leq(1-\alpha(n))^{t(n)} \leq e^{-\omega(\log n)}=\operatorname{neg}(n)$
A less naive approach would be to assume that A goes over output sequentially.
Unfortunately, we can assume none of the above.

Failing Sets

Failing Sets

Definition 18 (failing set)

A function $f:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$-failing set for A, if for large enough n, exists set $\mathcal{S}(n) \subseteq\{0,1\}^{\ell(n)}$ with
(1) $\operatorname{Pr}\left[f\left(U_{n}\right) \in \mathcal{S}(n)\right] \geq \delta(n)$, and
(2) $\operatorname{Pr}\left[\mathrm{A}(y) \in f^{-1}(y)\right]<\varepsilon(n)$, for every $y \in \mathcal{S}(n)$

Failing Sets

Definition 18 (failing set)

A function $f:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$-failing set for A , if for large enough n, exists set $\mathcal{S}(n) \subseteq\{0,1\}^{\ell(n)}$ with
(1) $\operatorname{Pr}\left[f\left(U_{n}\right) \in \mathcal{S}(n)\right] \geq \delta(n)$, and
(2) $\operatorname{Pr}\left[\mathrm{A}(y) \in f^{-1}(y)\right]<\varepsilon(n)$, for every $y \in \mathcal{S}(n)$

Claim 19

Let f be a $(1-\alpha)$-OWF. Then f has $(\alpha(n) / 2,1 / p(n))$-failing set for any PPT A and $p \in$ poly.

Failing Sets

Definition 18 (failing set)

A function $f:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$-failing set for A, if for large enough n, exists set $\mathcal{S}(n) \subseteq\{0,1\}^{\ell(n)}$ with
(1) $\operatorname{Pr}\left[f\left(U_{n}\right) \in \mathcal{S}(n)\right] \geq \delta(n)$, and
(2) $\operatorname{Pr}\left[\mathrm{A}(y) \in f^{-1}(y)\right]<\varepsilon(n)$, for every $y \in \mathcal{S}(n)$

Claim 19

Let f be a $(1-\alpha)$-OWF. Then f has $(\alpha(n) / 2,1 / p(n))$-failing set for any PPT A and $p \in$ poly.

Proof: Assume \exists PPT A, a $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ such that for every $n \in \mathcal{I}, \exists \mathcal{L}(n) \subseteq\{0,1\}^{n}$ with
(1) $\operatorname{Pr}\left[f\left(U_{n}\right) \in \mathcal{L}(n)\right] \geq 1-\alpha(n) / 2$, and
(2) $\operatorname{Pr}\left[\mathrm{A}(y) \in f^{-1}(y)\right] \geq 1 / p(n)$, for every $y \in \mathcal{L}(n)$

We'll use A to contradict the hardness of f.

One Way Functions

000000000000000

Weak One Way Functions

Using A to invert f

Using A to invert f

Algorithm 20 (The inverter B)

Input: $y \in\{0,1\}^{n}$.
Do (with fresh randomness) for $n p(n)$ times:
If $x=\mathrm{A}(y) \in f^{-1}(y)$, return x
Clearly, B is a PPT

Using A to invert f

Algorithm 20 (The inverter B)

Input: $y \in\{0,1\}^{n}$.
Do (with fresh randomness) for $n p(n)$ times:
If $x=\mathrm{A}(y) \in f^{-1}(y)$, return x
Clearly, B is a PPT

Claim 21

For every $n \in \mathcal{I}$, it holds that
$\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{B}(y) \in f^{-1}(y)\right]>1-\alpha(n)$
Hence, f is not $(1-\alpha(n))$-one-way \square

Proof of Claim 21(all probabilities below are also over $\left.y \leftarrow f\left(U_{n}\right)\right)$:

$$
\operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y)\right]
$$

Proof of Claim 21(all probabilities below are also over $\left.y \leftarrow f\left(U_{n}\right)\right):$

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y)\right] \\
& \quad \geq \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y) \wedge y \in \mathcal{L}(n)\right]
\end{aligned}
$$

Proof of Claim 21(all probabilities below are also over $\left.y \leftarrow f\left(U_{n}\right)\right)$:

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y)\right] \\
& \quad \geq \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y) \wedge y \in \mathcal{L}(n)\right] \\
& \quad=\operatorname{Pr}[y \in \mathcal{L}(n)] \cdot \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)\right]
\end{aligned}
$$

Proof of Claim 21(all probabilities below are also over $\left.y \leftarrow f\left(U_{n}\right)\right):$

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y)\right] \\
& \quad \geq \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y) \wedge y \in \mathcal{L}(n)\right] \\
& \quad=\operatorname{Pr}[y \in \mathcal{L}(n)] \cdot \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)\right] \\
& \quad \geq(1-\alpha(n) / 2) \cdot\left(1-(1-1 / p(n))^{n p(n)}\right)
\end{aligned}
$$

Proof of Claim 21(all probabilities below are also over $\left.y \leftarrow f\left(U_{n}\right)\right)$:

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y)\right] \\
& \quad \geq \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y) \wedge y \in \mathcal{L}(n)\right] \\
& \quad=\operatorname{Pr}[y \in \mathcal{L}(n)] \cdot \operatorname{Pr}\left[\mathrm{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)\right] \\
& \quad \geq(1-\alpha(n) / 2) \cdot\left(1-(1-1 / p(n))^{n p(n)}\right) \\
& \quad \geq(1-\alpha(n) / 2) \cdot\left(1-2^{-n}\right)>1-\alpha(n) . \square
\end{aligned}
$$

Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Claim 22

Assume \exists PPT A, $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ s.t.

$$
\begin{equation*}
\operatorname{Pr}_{z \leftarrow g\left(U_{n}^{(n)}\right)}\left[\mathrm{A}(z) \in g^{-1}(z)\right] \geq 1 / p(n) \tag{2}
\end{equation*}
$$

for every $n \in \mathcal{I}$. Then \exists PPT B and $q \in$ poly s.t.

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow \mathcal{S}}\left[\mathrm{~B}(y) \in f^{-1}(y)\right] \geq 1 / q(n) \tag{3}
\end{equation*}
$$

for every $n \in \mathcal{I}$ and $\mathcal{S} \subseteq\{0,1\}^{n}$ with $\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}[\mathcal{S}] \geq \alpha(n) / 2$.
Namely, f does not have a $(\alpha(n) / 2,1 / q(n))$-failing set.

Algorithm B

Algorithm 23 (No failing-set algorithm B)

Input: $y \in\{0,1\}^{n}$.
(1) Choose $z=\left(z_{1}, \ldots, z_{t}\right) \leftarrow g\left(U_{n}^{t}\right)$ and $i \leftarrow[t]$
(2) Set $z^{\prime}=\left(z_{1}, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_{t}\right)$
(3) Return $\mathrm{A}\left(z^{\prime}\right)_{i}$

Algorithm B

Algorithm 23 (No failing-set algorithm B)

Input: $y \in\{0,1\}^{n}$.
(1) Choose $z=\left(z_{1}, \ldots, z_{t}\right) \leftarrow g\left(U_{n}^{t}\right)$ and $i \leftarrow[t]$
(2) Set $z^{\prime}=\left(z_{1}, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_{t}\right)$
(3) Return $\mathrm{A}\left(z^{\prime}\right)_{i}$

Fix $n \in \mathcal{I}$ and a set $\mathcal{S} \subseteq\{0,1\}^{n}$ of the right probability. We analyze B's success probability using the following (inefficient) algorithm B^{*} :

Algorithm B*

Definition 24 (Bad)

For $z \in \operatorname{Im}(g)$ (the image of g), we set $\operatorname{Bad}(z)=1$ iff $\nexists i \in[t]$ with $z_{i} \in \mathcal{S}$.
B^{*} differ from B in the way it chooses z^{\prime} : in case $\operatorname{Bad}(z)=1$, it sets $z^{\prime}=z$. Otherwise, it sets i to an arbitrary index $j \in[t]$ with $z_{j} \in \mathcal{S}$, and sets z^{\prime} as B does with respect to this i.

Algorithm B*

Definition 24 (Bad)

For $z \in \operatorname{Im}(g)$ (the image of g), we set $\operatorname{Bad}(z)=1$ iff $\nexists i \in[t]$ with $z_{i} \in \mathcal{S}$.
B^{*} differ from B in the way it chooses z^{\prime} : in case $\operatorname{Bad}(z)=1$, it sets $z^{\prime}=z$. Otherwise, it sets i to an arbitrary index $j \in[t]$ with $z_{j} \in \mathcal{S}$, and sets z^{\prime} as B does with respect to this i.

Claim 25

$\operatorname{Pr}_{y \leftarrow \mathcal{S}}\left[\mathrm{~B}^{*}(y) \in f^{-1}(y)\right] \geq \frac{1}{p(n)}-\operatorname{neg}(n)$,
and therefore $\operatorname{Pr}_{y \leftarrow \mathcal{S}}\left[\mathrm{~B}(y) \in f^{-1}(y)\right] \geq \frac{1}{t(n) p(n)}-\operatorname{neg}(n) . \square$

Claim 25 follows from the following two claims,

Claim 26

$\operatorname{Pr}_{z \leftarrow g\left(U_{n}^{t}\right)}[\operatorname{Bad}(z)]=\operatorname{neg}(n)$

Claim 27

Let $Z=g\left(U_{n}^{t}\right)$ and let Z^{\prime} be the value of z^{\prime} induced by a random execution of B^{*} on $y \leftarrow\left(f\left(U_{n}\right) \mid f\left(U_{n}\right) \in \mathcal{S}\right)$). Then Z and Z^{\prime} are identically distributed.

The claims imply Claim 25.

The claims imply Claim 25.

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow \mathcal{S}}\left[\mathrm{~B}^{*}(y) \in f^{-1}(y)\right] \geq \operatorname{Pr}_{z \leftarrow g\left(U_{n}^{t}\right)}\left[\mathrm{A}(z) \in g^{-1}(z) \wedge \neg \operatorname{Bad}(z)\right] \tag{4}
\end{equation*}
$$

The claims imply Claim 25.

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow \mathcal{S}}\left[\mathrm{~B}^{*}(y) \in f^{-1}(y)\right] \geq \operatorname{Pr}_{z \leftarrow g\left(U_{n}^{t}\right)}\left[\mathrm{A}(z) \in g^{-1}(z) \wedge \neg \operatorname{Bad}(z)\right] \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{Pr}_{z \leftarrow g\left(U_{n}^{t}\right)}\left[\mathrm{A}(z) \in g^{-1}(z)\right] \tag{5}\\
& \leq \operatorname{Pr}\left[\mathrm{A}(z) \in g^{-1}(Z) \wedge \neg \operatorname{Bad}(z)\right]+\operatorname{Pr}[\operatorname{Bad}(z)]
\end{align*}
$$

The claims imply Claim 25.

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow \mathcal{S}}\left[\mathrm{~B}^{*}(y) \in f^{-1}(y)\right] \geq \operatorname{Pr}_{z \leftarrow g\left(U_{n}^{t}\right)}\left[\mathrm{A}(z) \in g^{-1}(z) \wedge \neg \operatorname{Bad}(z)\right] \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{Pr}_{z \leftarrow g\left(U_{n}^{t}\right)}\left[\mathrm{A}(z) \in g^{-1}(z)\right] \tag{5}\\
& \leq \operatorname{Pr}\left[\mathrm{A}(z) \in g^{-1}(Z) \wedge \neg \operatorname{Bad}(z)\right]+\operatorname{Pr}[\operatorname{Bad}(z)]
\end{align*}
$$

It follows that

$$
\begin{aligned}
\operatorname{Pr}_{y \leftarrow \mathcal{S}}\left[\mathrm{~B}^{*}(y) \in f^{-1}(y)\right] & \geq \operatorname{Pr}_{z \leftarrow g\left(U_{n}^{t}\right)}\left[\mathrm{A}(z) \in g^{-1}(z)\right]-\operatorname{neg}(n) \\
& \geq \frac{1}{p(n)}-\operatorname{neg}(n) . \square
\end{aligned}
$$

Proof of Claim $26 ?$

Proof of Claim 26?

Proof of Claim 27: Consider the following process for sampling
Z_{i} :
(1) Let $\beta=\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}[\mathcal{S}]$. Set $\ell_{i}=1 \mathrm{wp} \beta$ and $\ell_{i}=0$ otherwise.
(2) If $\ell_{i}=1$, let $y \leftarrow\left(f\left(U_{n}\right) \mid f\left(U_{n}\right) \in \mathcal{S}\right)$. Otherwise, set $y \leftarrow\left(f\left(U_{n}\right) \mid f\left(U_{n}\right) \notin \mathcal{S}\right)$.
It is easy to see that the above process is correct (samples Z correctly).

Proof of Claim 26?
Proof of Claim 27: Consider the following process for sampling Z_{i} :
(1) Let $\beta=\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}[\mathcal{S}]$. Set $\ell_{i}=1 \mathrm{wp} \beta$ and $\ell_{i}=0$ otherwise.
(2) If $\ell_{i}=1$, let $y \leftarrow\left(f\left(U_{n}\right) \mid f\left(U_{n}\right) \in \mathcal{S}\right)$. Otherwise, set $y \leftarrow\left(f\left(U_{n}\right) \mid f\left(U_{n}\right) \notin \mathcal{S}\right)$.
It is easy to see that the above process is correct (samples Z correctly).
Now all that B* does, is repeating Step 2 for one of the i 's with
$\ell_{i}=1$ (if such exists) \square

Conclusion

Remark 28 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?

Conclusion

Remark 28 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?

Conclusion

Remark 28 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?
What properties of the weak OWF have we used in the proof?

