Foundation of Cryptography (0368-4162-01), Lecture 1 One Way Functions

Iftach Haitner, Tel Aviv University

November 1-8, 2011

Section 1

Notation

Notation I

- For $t \in \mathbb{N}$, let $[t] := \{1, ..., t\}$.
- Given a string x ∈ {0,1}* and 0 ≤ i < j ≤ |x|, let x_{i,...,j} stands for the substring induced by taking the i,..., j bit of x (i.e., x[i]...,x[j]).
- Given a function *f* defined over a set \mathcal{U} , and a set $\mathcal{S} \subseteq \mathcal{U}$, let $f(\mathcal{S}) := \{f(x) : x \in \mathcal{S}\}$, and for $y \in f(\mathcal{U})$ let $f^{-1}(y) := \{x \in \mathcal{U} : f(x) = y\}.$
- poly stands for the set of all polynomials.
- The worst-case running-time of a *polynomial-time* algorithm on input x, is bounded by p(|x|) for some p ∈ poly.
- A function is *polynomial-time computable*, if there exists a polynomial-time algorithm to compute it.

Notation II

- PPT stands for probabilistic polynomial-time algorithms.
- A function $\mu \colon \mathbb{N} \mapsto [0, 1]$ is negligible, denoted $\mu(n) = \operatorname{neg}(n)$, if for any $p \in \operatorname{poly}$ there exists $n' \in \mathbb{N}$ with $\mu(n) \leq 1/p(n)$ for any n > n'.

Distribution and random variables I

- The support of a distribution *P* over a finite set *U*, denoted Supp(*P*), is defined as {*u* ∈ *U* : *P*(*u*) > 0}.
- Given a distribution *P* and en event *E* with Pr_P[*E*] > 0, we let (*P* | *E*) denote the conditional distribution *P* given *E* (i.e., (*P* | *E*)(*x*) = ^{D(x)∧E}/_{Pr_P[E]}).
- For t ∈ N, let let Ut denote a random variable uniformly distributed over {0, 1}^t.
- Given a random variable X, we let x ← X denote that x is distributed according to X (e.g., Pr_{x←X}[x = 7]).
- Given a final set S, we let x ← S denote that x is uniformly distributed in S.

Distribution and random variables II

- We use the convention that when a random variable appears twice in the same expression, it refers to a *single* instance of this random variable. For instance, Pr[X = X] = 1 (regardless of the definition of X).
- Given distribution P over U and $t \in \mathbb{N}$, we let P^t over U^t be defined by $D^t(x_1, \ldots, x_t) = \prod_{i \in [t]} D(x_i)$.
- Similarly, given a random variable X, we let X^t denote the random variable induced by t independent samples from X.

Section 2

One Way Functions

One-Way Functions

Definition 1 (One-Way Functions (OWFs))

A polynomial-time computable function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is one-way, if for any PPT A

$$\mathsf{Pr}_{y \leftarrow f(U_n)}[\mathsf{A}(1^n, y) \in f^{-1}(y)] = \mathsf{neg}(n)$$

U_n: a random variable uniformly distributed over {0,1}ⁿ **polynomial-time computable:** there exists a polynomial-time algorithm *F* , such that F(x) = f(x) for every $x \in \{0, 1\}^*$ **PPT :** probabilistic polynomial-time algorithm **neg:** a function $\mu : \mathbb{N} \mapsto [0, 1]$ is a *negligible* function of *n*, denoted $\mu(n) = \text{neg}(n)$, if for any $p \in$ poly there exists $n' \in \mathbb{N}$ such that g(n) < 1/p(n) for all n > n'We will typically omit 1ⁿ from the parameter list of A

- Asymptotic
- Efficiently computable
- On the average
- Only against PPT's

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- (most) Crypto implies OWFs
- OWFs imply Crypto?
- Where do we find them

- Asymptotic
- Efficiently computable
- On the average
- Only against PPT's
- (most) Crypto implies OWFs
- OWFs imply Crypto?
- Where do we find them
- Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function $f : \{0, 1\}^* \mapsto \{0, 1\}^*$ is one-way, if for any polynomial-size family of circuits $\{C_n\}_{n \in \mathbb{N}}$

$$\Pr_{y \leftarrow f(U_n)}[C_n(y) \in f^{-1}(y)] = \operatorname{neg}(n)$$

Length preserving functions

Definition 3 (length preserving functions)

A function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is length preserving, if |f(x)| = |x| for any $x \in \{0, 1\}^*$

Length preserving functions

Definition 3 (length preserving functions)

A function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is length preserving, if |f(x)| = |x| for any $x \in \{0, 1\}^*$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)

A function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is length preserving, if |f(x)| = |x| for any $x \in \{0, 1\}^*$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Proof idea: use the assumed OWF to create a length preserving one

Partial domain functions

Definition 5 (Partial domain functions)

For $m, \ell: \mathbb{N} \mapsto \mathbb{N}$, let $h: \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}$ denote a function defined over input lengths in $\{m(n)\}_{n \in \mathbb{N}}$, and maps strings of length m(n) to strings of length $\ell(n)$.

The definition of one-wayness naturally extends to such functions.

OWFs imply Length Preserving OWFs cont.

Let $f : \{0, 1\}^* \mapsto \{0, 1\}^*$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g \colon \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n) - |f(x_{1,...,n})|}$$

Note that g is length preserving and efficient (why?).

OWFs imply Length Preserving OWFs cont.

Let $f : \{0, 1\}^* \mapsto \{0, 1\}^*$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define
$$g: \{0, 1\}^{p(n)} \mapsto \{0, 1\}^{p(n)}$$
 as

$$g(x) = f(x_{1,...,n}), 0^{p(n) - |f(x_{1,...,n})|}$$

Note that g is length preserving and efficient (why?).

Claim 7

g is one-way.

OWFs imply Length Preserving OWFs cont.

Let $f : \{0, 1\}^* \mapsto \{0, 1\}^*$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define
$$g \colon \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$$
 as

$$g(x) = f(x_{1,...,n}), 0^{p(n) - |f(x_{1,...,n})|}$$

Note that g is length preserving and efficient (why?).

Claim 7

g is one-way.

How can we prove that *g* is one-way?

OWFs imply Length Preserving OWFs cont.

Let $f : \{0, 1\}^* \mapsto \{0, 1\}^*$ be a OWF, let $p \in$ poly be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define
$$g: \{0, 1\}^{p(n)} \mapsto \{0, 1\}^{p(n)}$$
 as

$$g(x) = f(x_{1,...,n}), 0^{p(n) - |f(x_{1,...,n})|}$$

Note that g is length preserving and efficient (why?).

Claim 7

g is one-way.

How can we prove that *g* is one-way? Answer: using reduction

Proving that g is one-way

Proof:

Assume that g is not one-way. Namely, there exists PPT A a $q \in poly$ and an infinite $\mathcal{I} \subseteq \{p(n) \colon n \in \mathbb{N}\}$, with

$$\operatorname{Pr}_{y \leftarrow g(U_n)}[\mathsf{A}(y) \in g^{-1}(y)] > 1/q(n) \tag{1}$$

for any $n \in \mathcal{I}$.

Proving that g is one-way

Proof:

Assume that g is not one-way. Namely, there exists PPT A a $q \in poly$ and an infinite $\mathcal{I} \subseteq \{p(n) \colon n \in \mathbb{N}\}$, with

$$\mathsf{Pr}_{y \leftarrow g(U_n)}[\mathsf{A}(y) \in g^{-1}(y)] > 1/q(n) \tag{1}$$

for any $n \in \mathcal{I}$. We would like to use A for inverting *f*.

Algorithm 8 (The inverter B)

Input:
$$1^n$$
 and $y \in \{0, 1\}^*$.
• Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$.

2 Return $x_{1,\ldots,n}$.

Algorithm 8 (The inverter B)

```
Input: 1^n and y \in \{0, 1\}^*.
```

1 Let
$$x = A(1^{p(n)}, y, 0^{p(n)-|y|})$$
.

2 Return $x_{1,\ldots,n}$.

Claim 9

Let
$$\mathcal{I}' := \{ n \in \mathbb{N} \colon p(n) \in \mathcal{I} \}$$
. Then

```
I I is infinite
```

For any
$$n \in \mathcal{I}'$$
, it holds that
 $\Pr_{y \leftarrow g(U_n)}[B(y) \in f^{-1}(y)] > 1/q(p(n))$

in contradiction to the assumed one-wayness of f. \Box

.

Conclusion

Remark 10

- We directly related the hardness of *f* to that of *g*
- The reduction is not "security preserving"

From partial domain functions to all-length functions

Construction 11

Given a function
$$f: \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}$$
,
 $f_{all}: \{0, 1\}^* \mapsto \{0, 1\}^*$ as

$$f_{all}(x) = f(x_{1,...,k(n)}), 0^{n-k(n)}$$

where n = |x| and $k(n) := \max\{m(n') \le n : n' \in \mathbb{N}\}$.

From partial domain functions to all-length functions

Construction 11

Given a function $f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}$, $f_{all} : \{0, 1\}^* \mapsto \{0, 1\}^*$ as

$$f_{all}(x) = f(x_{1,...,k(n)}), 0^{n-k(n)}$$

where n = |x| and $k(n) := \max\{m(n') \le n \colon n' \in \mathbb{N}\}$.

Claim 12

Assume that *f* is a one-way function and that *m* is monotone, polynomial-time commutable an satisfies $\frac{m(n+1)}{m(n)} \le p(n)$ for some $p \in \text{poly}$, then f_{all} is a one-way function. Further, if *f* is length preserving, then so is f_{all} .

Proof: ?

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is α -one-way, if

$$\mathsf{Pr}_{\mathbf{y} \leftarrow f(U_n)}[\mathsf{A}(1^n, \mathbf{y}) \in f^{-1}(\mathbf{y})] \leq \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is α -one-way, if

$$\mathsf{Pr}_{\mathbf{y} \leftarrow f(U_n)}[\mathsf{A}(1^n, \mathbf{y}) \in f^{-1}(\mathbf{y})] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

 (strong) OWF according to Definition 1, are neg(n)-one-way according to the above definition

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is α -one-way, if

$$\mathsf{Pr}_{\mathbf{y} \leftarrow f(U_n)}[\mathsf{A}(1^n, \mathbf{y}) \in f^{-1}(\mathbf{y})] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

- (strong) OWF according to Definition 1, are neg(n)-one-way according to the above definition
- 2 Examples

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f : \{0, 1\}^* \mapsto f : \{0, 1\}^*$ is α -one-way, if

$$\mathsf{Pr}_{y \leftarrow f(U_n)}[\mathsf{A}(1^n, y) \in f^{-1}(y)] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

- (strong) OWF according to Definition 1, are neg(n)-one-way according to the above definition
- 2 Examples
- Oan we "amplify" weak OWF to strong ones?

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{2}{3}$ -one-way, but not (strong) one-way

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{2}{3}$ -one-way, but not (strong) one-way

Proof: let *f* be a OWF. Define g(x) = (1, f(x)) if $x_1 = 1$, and 0 otherwise.

Weak to Strong OWFs

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Weak to Strong OWFs

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Proof: we assume wig that f is length preserving (can we do so?)

Construction 16 (g – the strong one-way function)

Let $t: \mathbb{N} \mapsto \mathbb{N}$ be a polynomial-time computable function satisfying $t(n) \in \omega(\log n/\alpha(n))$. Define $g: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\}^n)^{t(n)}$ as

$$g(x_1,\ldots,x_t)=f(x_1),\ldots,f(x_t)$$

Weak to Strong OWFs

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Proof: we assume wig that f is length preserving (can we do so?)

Construction 16 (g – the strong one-way function)

Let $t: \mathbb{N} \mapsto \mathbb{N}$ be a polynomial-time computable function satisfying $t(n) \in \omega(\log n/\alpha(n))$. Define $g: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\}^n)^{t(n)}$ as

$$g(x_1,\ldots,x_t)=f(x_1),\ldots,f(x_t)$$

Claim 17

g is one-way.

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\mathsf{Pr}_{\mathbf{y} \leftarrow g(U_n^{t(n)})}[\mathsf{A}(\mathbf{y}) \in g^{-1}(\mathbf{y})] \le (1 - \alpha(n))^{t(n)} \le e^{-\omega(\log n)} = \mathsf{neg}(n)$$

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\mathsf{Pr}_{\mathbf{y} \leftarrow g(U_n^{t(n)})}[\mathsf{A}(\mathbf{y}) \in g^{-1}(\mathbf{y})] \le (1 - \alpha(n))^{t(n)} \le e^{-\omega(\log n)} = \mathsf{neg}(n)$$

A less naive approach would be to assume that A goes over output sequentially.

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\mathsf{Pr}_{\mathbf{y} \leftarrow g(U_n^{t(n)})}[\mathsf{A}(\mathbf{y}) \in g^{-1}(\mathbf{y})] \le (1 - \alpha(n))^{t(n)} \le e^{-\omega(\log n)} = \mathsf{neg}(n)$$

A less naive approach would be to assume that A goes over output sequentially.

Unfortunately, we can assume none of the above.

Failing Sets

Failing Sets

Definition 18 (failing set)

A function $f : \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$ -failing set for A, if for large enough *n*, exists set $S(n) \subseteq \{0,1\}^{\ell(n)}$ with

•
$$\Pr[f(U_n) \in \mathcal{S}(n)] \ge \delta(n)$$
, and

2
$$\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$$
, for every $y \in S(n)$

Failing Sets

Definition 18 (failing set)

A function $f : \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$ -failing set for A, if for large enough *n*, exists set $S(n) \subseteq \{0,1\}^{\ell(n)}$ with

•
$$\Pr[f(U_n) \in \mathcal{S}(n)] \ge \delta(n)$$
, and

2
$$\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$$
, for every $y \in S(n)$

Claim 19

Let *f* be a $(1 - \alpha)$ -OWF. Then *f* has $(\alpha(n)/2, 1/p(n))$ -failing set for any PPT A and $p \in \text{poly}$.

Failing Sets

Definition 18 (failing set)

A function $f : \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$ -failing set for A, if for large enough *n*, exists set $S(n) \subseteq \{0,1\}^{\ell(n)}$ with

•
$$\Pr[f(U_n) \in \mathcal{S}(n)] \ge \delta(n)$$
, and

2
$$\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$$
, for every $y \in S(n)$

Claim 19

Let *f* be a $(1 - \alpha)$ -OWF. Then *f* has $(\alpha(n)/2, 1/p(n))$ -failing set for any PPT A and $p \in \text{poly}$.

Proof: Assume \exists PPT A, a $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ such that for every $n \in \mathcal{I}$, $\exists \mathcal{L}(n) \subseteq \{0, 1\}^n$ with

•
$$\Pr[f(U_n) \in \mathcal{L}(n)] \ge 1 - \alpha(n)/2$$
, and

2
$$\Pr[A(y) \in f^{-1}(y)] \ge 1/p(n)$$
, for every $y \in \mathcal{L}(n)$

We'll use A to contradict the hardness of f.

Using A to invert f

Using A to invert f

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$. Do (with fresh randomness) for np(n) times: If $x = A(y) \in f^{-1}(y)$, return x

Clearly, B is a PPT

Using A to invert f

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$. Do (with fresh randomness) for np(n) times: If $x = A(y) \in f^{-1}(y)$, return x

Clearly, B is a PPT

Claim 21

For every $n \in \mathcal{I}$, it holds that $\Pr_{y \leftarrow f(U_n)}[B(y) \in f^{-1}(y)] > 1 - \alpha(n)$

Hence, *f* is not $(1 - \alpha(n))$ -one-way

 $\Pr[\mathsf{B}(y) \in f^{-1}(y)]$

 $\begin{aligned} & \mathsf{Pr}[\mathsf{B}(y) \in f^{-1}(y)] \\ & \geq \quad \mathsf{Pr}[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)] \end{aligned}$

$\begin{aligned} & \Pr[\mathsf{B}(y) \in f^{-1}(y)] \\ & \geq & \Pr[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)] \\ & = & \Pr[y \in \mathcal{L}(n)] \cdot \Pr[\mathsf{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)] \end{aligned}$

$\begin{aligned} & \Pr[\mathsf{B}(y) \in f^{-1}(y)] \\ & \geq \quad \Pr[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)] \\ & = \quad \Pr[y \in \mathcal{L}(n)] \cdot \Pr[\mathsf{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)] \\ & \geq \quad (1 - \alpha(n)/2) \cdot (1 - (1 - 1/p(n))^{np(n)}) \end{aligned}$

$\begin{aligned} & \Pr[\mathsf{B}(y) \in f^{-1}(y)] \\ & \geq \quad \Pr[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)] \\ & = \quad \Pr[y \in \mathcal{L}(n)] \cdot \Pr[\mathsf{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)] \\ & \geq \quad (1 - \alpha(n)/2) \cdot (1 - (1 - 1/p(n))^{np(n)}) \\ & \geq \quad (1 - \alpha(n)/2) \cdot (1 - 2^{-n}) > 1 - \alpha(n). \end{aligned}$

Proving that *g* is one-way

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Claim 22

Assume \exists PPT A, $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ s.t.

$$\Pr_{z \leftarrow g(U_n^{t(n)})}[A(z) \in g^{-1}(z)] \ge 1/p(n)$$
 (2)

for every $n \in \mathcal{I}$. Then \exists PPT B and $q \in$ poly s.t.

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}(y) \in f^{-1}(y)] \ge 1/q(n) \tag{3}$$

for every $n \in \mathcal{I}$ and $\mathcal{S} \subseteq \{0,1\}^n$ with $\Pr_{y \leftarrow f(U_n)}[\mathcal{S}] \ge \alpha(n)/2$.

Namely, *f* does not have a $(\alpha(n)/2, 1/q(n))$ -failing set.

Algorithm B

Algorithm 23 (No failing-set algorithm B)

Input: $y \in \{0, 1\}^n$.

• Choose
$$z = (z_1, \ldots, z_t) \leftarrow g(U_n^t)$$
 and $i \leftarrow [t]$

2 Set
$$z' = (z_1, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_t)$$

Algorithm B

Algorithm 23 (No failing-set algorithm B)

Input: $y \in \{0, 1\}^n$.

• Choose
$$z = (z_1, \ldots, z_t) \leftarrow g(U_n^t)$$
 and $i \leftarrow [t]$

2 Set
$$z' = (z_1, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_t)$$

3 Return $A(z')_i$

Fix $n \in \mathcal{I}$ and a set $S \subseteq \{0, 1\}^n$ of the right probability. We analyze B's success probability using the following (inefficient) algorithm B^{*}:

Algorithm B*

Definition 24 (Bad)

For $z \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

B^{*} differ from B in the way it chooses z': in case Bad(z) = 1, it sets z' = z. Otherwise, it sets *i* to an arbitrary index $j \in [t]$ with $z_j \in S$, and sets z' as B does with respect to this *i*.

Algorithm B*

Definition 24 (Bad)

For $z \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

B^{*} differ from B in the way it chooses z': in case Bad(z) = 1, it sets z' = z. Otherwise, it sets *i* to an arbitrary index $j \in [t]$ with $z_j \in S$, and sets z' as B does with respect to this *i*.

Claim 25

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \geq \frac{1}{p(n)} - \operatorname{neg}(n),$$

and therefore $\Pr_{y \leftarrow S}[\mathsf{B}(y) \in f^{-1}(y)] \geq \frac{1}{t(n)\rho(n)} - \operatorname{neg}(n).$

Claim 25 follows from the following two claims,

Claim 26

$$\Pr_{z \leftarrow g(U_n^t)}[\operatorname{Bad}(z)] = \operatorname{neg}(n)$$

Claim 27

Let $Z = g(U_n^t)$ and let Z' be the value of z' induced by a random execution of B^{*} on $y \leftarrow (f(U_n) \mid f(U_n) \in S))$. Then Z and Z' are identically distributed. The claims imply Claim 25.

The claims imply Claim 25.

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z) \land \neg \operatorname{Bad}(z)]$$
(4)

The claims imply Claim 25.

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z) \land \neg \operatorname{Bad}(z)]$$
(4)

$$\begin{aligned} &\mathsf{Pr}_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z)] \\ &\leq \mathsf{Pr}[\mathsf{A}(z) \in g^{-1}(Z) \land \neg \operatorname{\mathsf{Bad}}(z)] + \mathsf{Pr}[\operatorname{\mathsf{Bad}}(z)] \end{aligned} \tag{5}$$

The claims imply Claim 25.

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z) \land \neg \operatorname{Bad}(z)]$$
(4)

$$\begin{aligned} &\mathsf{Pr}_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z)] \\ &\leq \mathsf{Pr}[\mathsf{A}(z) \in g^{-1}(Z) \land \neg \operatorname{\mathsf{Bad}}(z)] + \mathsf{Pr}[\operatorname{\mathsf{Bad}}(z)] \end{aligned} \tag{5}$$

It follows that

$$\mathsf{Pr}_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \mathsf{Pr}_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z)] - \mathsf{neg}(n)$$

 $\ge rac{1}{p(n)} - \mathsf{neg}(n). \Box$

Proof of Claim 26?

Proof of Claim 26?

Proof of Claim 27: Consider the following process for sampling Z_i :

• Let $\beta = \Pr_{y \leftarrow f(U_n)}[S]$. Set $\ell_i = 1$ wp β and $\ell_i = 0$ otherwise.

② If
$$\ell_i = 1$$
, let $y \leftarrow (f(U_n) | f(U_n) \in S)$. Otherwise, set $y \leftarrow (f(U_n) | f(U_n) \notin S)$.

It is easy to see that the above process is correct (samples *Z* correctly).

Proof of Claim 26?

Proof of Claim 27: Consider the following process for sampling Z_i :

• Let
$$\beta = \Pr_{y \leftarrow f(U_n)}[S]$$
. Set $\ell_i = 1$ wp β and $\ell_i = 0$ otherwise.

② If
$$\ell_i = 1$$
, let $y \leftarrow (f(U_n) | f(U_n) \in S)$. Otherwise, set $y \leftarrow (f(U_n) | f(U_n) \notin S)$.

It is easy to see that the above process is correct (samples Z correctly).

Now all that B^{*} does, is repeating Step 2 for one of the *i*'s with $\ell_i = 1$ (if such exists) \Box

Remark 28 (hardness amplification via parallel repetition)

• Can we give a more efficient (secure) reduction?

Conclusion

Remark 28 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?

Conclusion

Remark 28 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?
 What properties of the weak OWF have we used in the proof?