Foundation of Cryptography
(0368-4162-01), Lecture 5

Interactive Proofs and Zero Knowledge

Iftach Haitner, Tel Aviv University

December 4, 2011

Part |

Interactive Proofs

Interactive Vs. Interactive Proofs

Definition 1 (NP)

L € NP iff 3¢ € poly and poly-time algorithm V such that:
@ Vx € £n{0,1}" there exists w € {0,1}4" s.t. V(x, w) = 1
@ V(x,-)=0forevery x ¢ L

@ Non-interactive proof
@ Interactive proofs?

Interactive protocols

@ Interactive algorithm

@ Protocol 7 = (A, B)

@ RV describing the parties joint output (A(ia), B(ig))(/))
@ m-round algorithm, m-round protocol

Interactive Proofs

Definition 2 (Interactive Proof (IP))

A protocol (P, V) is an interactive proof for £, if V is PPT and the
following hold:

Completeness Vx € L, Pr[{(P,V)(x)) = Accept] > 2/3

Soundness Vx ¢ L, and any algorithm P*
Pr[((P*, V)(x)) = Accept] < 1/3

@ IP = PSPACE
@ We typically consider (and achieve) perfect completeness
@ Negligible “soundness error" achieved via repetition.

@ soundness only against PPT. computationally sound
proofs/interactive arguments.

@ efficient provers via “auxiliary input"

IP for GNI

Section 1

IP for GNI

IP for GNI

graph isomorphism

My, — the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs Gy = ([m], Eg) and Gy = ([m], E1) are isomorphic,
denoted Gg = Gy, if 37 € My, such that

(U, V) € Ey iff (7T(U),7T(V)) € Ey.

Gl = {(Go,G1)Z Go = G1}

@ Assume reasonable mapping from graphs to strings
@ Gl e NP
@ Does GNI = {(Gp,G1): Gg # G1} € NP?

@ We will show a simple interactive proof for GNI Idea: Beer
tasting...

IP for GNI

IP for GNI

Protocol 4 ((P,V))
Common input Go = ([m], Ep), G1 = ([m], E1)

@ V chooses b + {0,1} and 7 < My, and sends
w(Ep) = {(7(u),w(v)): (u,v) € Ep} to P

©Q Psend b toV (tries to set b’ = b)

© Vacceptsiff b/ = b

<

The above protocol is IP for GNI, with perfect completeness
and soundness error 3.

IP for GNI

Proving Claim 5

@ Graph isomorphism is an equivalence relation (separates
the set of all graph pairs into separate subsets)

@ ([m],=(E;)) is a random element in [G;] — the equivalence
class of G;
Hence,
Go=Gy: Prip =b] < .
Go # Gq: Pr[b/ = b] =1 (i.e., i can, possibly inefficiently,
extracted from 7 (E;))
L]

Part Il

Zero knowledge Proofs

The concept of zero knowledge

@ Proving w/o revealing any addition information.

@ What does it mean?
Simulation paradigm.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge
proof (CZKP) for L, if V PPT V*, 3 PPT S such that
{{(P,V*)(X)) }xec ~c {S(X)}xes-

Perfect ZK (PZKP)/statistical ZK (SZKP) — the above dist. are
identicallly/statistically close, even for unbounded V*.

@ ZK is a property of the prover.

© ZK only required to hold with respect to true statements.
© wilg. V*’s outputs is its “view".

© Trivial to achieve for £ € BPP

© Extension: auxiliary input

Q@ The “standard" NP proof is typically not zero knowledge
@ Next class — ZK for all NP

ZK Proof for Gl

Section 2

ZK Proof for Gl

ZK Proof for Gl

ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 7 ((P, V))

Common input x = (Go = ([m], Eo), G1 = ([m], E))
P’s input a permutation 7 such that 7(E;) = Eo

@ P chooses 7’ « Ny and sends E = 7/(Ep) to V

© Vsends b+« {0,1}toP

Q if b=0, P sets 7’ = 7/, otherwise, it sends 7’/ = 7’ o 7w to V
Q V accepts iff 7’(Ep) = E

Claim 8

The above protocol is SZKP for Gl, with perfect completeness
and soundness 3.

ZK Proof for Gl

Proving Claim 8

Completeness Clear
Soundness |If exist j € {0, 1} for which Az’ € N, with

ZK

7'(Ej) = E, then V rejects w.p. at least .
Assuming V rejects w.p. less than % and lett g
and 7y be the values guaranteed by the above
observation (i.e., mapping Ey and E; to E
respectively).

Then 7, ' (1(E1)) = 1o = (Go,G1) € Gl
Idea: for (Gg, G1) € Gl, it is easy to generate a
random transcript for Steps 1-2, and to be able to
open it with prob 3.

ZK Proof for Gl

The simulator

For a start we consider a deterministic cheating verifier V* that
never aborts.
Algorithm 9 (S)
Input: x = (Go = ([m], Ey),G1 = ([m], E1))
Do |x| times:
@ Choose b’ + {0,1} and 7 « Ny, and “send" 7(E) to
V*(x).
©Q Let bbe V*'s answer. If b= b/, send 7 to V*, output V*'s
output and halt.
Otherwise, rewind the simulation to its first step.
Abort

P V)N eal ® 1SN} yeal

ZK Proof for Gl

Proving Claim 10

Algorithm 11 (S')
InpUt: X = (GO = ([m]a E0)7G1 = ([m]7 E1))
Do |x| times:
@ Choose 7 + My and sends E = 7(Ep) to V*(x).
Q Let b be V*’s answer.
W.p. 3, find 7’ such that E = 7/(E,) and send it to V*,
output V*’s output and halt.
Otherwise, rewind the simulation to its first step.

Abort

S(x) = S'(x) for any x € GI.

Proof: ?

ZK Proof for Gl

Proving Claim 10 cont.

Algorithm 13 (S”)

Input: x = (Go = ([m], Eo), G1 = ([m], £1))
@ Choose 7 + M, and sends E = 7(Ep) to V*(x).

© Find 7’ such that E = «/(Ep), send it to V*, output V*’s
output and halt.

Claim 14

Vx € Gl it holds that
Q ((P,V*(x))) = 8" (x).
@ SD(S"(x),S'(x)) < 2=,

Proof: ? (1) is clear.

ZK Proof for Gl

Proving Claim 14(2)

Fix (E, ') and let a = Prgy([(E, 7).

It holds that
A
Prol(E.x)l=a-) (1 - 5)1—1 5
i=1
=(1-2"M).q

Hence, SD(S"(x), S'(x)) < 2-J

ZK Proof for Gl

Remarks

@ Randomized verifiers

© Aborting verifiers — Normalize aborting probability

© Auxiliary input

© Negligible soundness error? Sequentiall/Parallel
composition

© Perfect ZK for “expected time simulators"

Q “Black box" simulation

Black-box ZK

Section 3

Black-box ZK

Black-box ZK

Black-box simulators

Definition 15 (Black-box simulator)

(P, V) is CZKP with black-box simulation for £, if 3 oracle-aided
PPT S s.t. for every deterministic polynomial-time? V*:

{(P(wx), V*(2:)) ()} xec e {8Y %) (x)}xer

for any {(wx, zx) € Re(x) x {0,1}* }xer.
Prefect and statistical variants are defined analogously.

2L ength of auxiliary input does not count for the running time.

@ “Most simulators" are black box
© Strictly weaker then general simulation!

Zero Knowledge for all NP

Section 4

Zero Knowledge for all NP

Zero Knowledge for all NP
©0000000

CZKP for 3COL

CZKP for 3COL

@ Assuming that OWFs exists, we give a CZKP for 3COL .

@ We show how to transform it for any £ € NP (using that
3COL € NPQC).

Definition 16 (3COL)

G=(M.E) € 3COL, if 3 ¢: M [3] s.t. p(u) # ¢(v) for every
(u,v) € E.

We use commitment schemes.

http://www.cs.tau.ac.il/~iftachh/Courses/FOC/Fall11/Slides/Commitments.pdf

Zero Knowledge for all NP
0®000000

CZKP for 3COL

The protocol

Let 73 be the set of all permutations over [3]. We use perfectly
binding commitment Com (statistically binding?).
Protocol 17 ((P, V))

Common input: Graph G = (M, E) with n = |G|
P’s input: a (valid) coloring ¢ of G

@ P chooses 7 «+ N3 and sets 1) = mo ¢

Q Vv € M: P commits to ¥(v) using Com(17).
Let ¢, and d, be the resulting commitment and
decommitment.

© Vsendse=(u,v)«+ EtoP
Q P sends (du, ¥ (u)), (dv,¥(v)) to V
© V verifies that (1) both decommitments are valid, (2)

P(u), ¢(v) € [3] and (3) ¢ (u) # P(V).

Zero Knowledge for all NP
00®00000

CZKP for 3COL

The above protocol is a CZKP for 3COL, with perfect
completeness and soundness 1/ |E|.

Completeness: Clear

Soundness: Let {c,},cm be the commitments resulting from
an interaction of V with an arbitrary P*.
Define ¢: M — [3] as follows:
Vv € M: let ¢(v) be the (single) value that it is
possible to decommit ¢, into (if not in [3], set
o(v) =1).
If G ¢ 3COL, then 3(u, v) € E s.t. (u) = ¢(v).
Hence V rejects such x w.p. a least 1/ |E]|

Zero Knowledge for all NP
000@0000

CZKP for 3COL

Proving ZK

Fix a deterministic, non-aborting V* that gets no auxiliary input.

Algorithm 19 (S)
Input: A graph G = (M, E) with n = |G|
Do n- |E| times:
@ Choose € = (u,Vv) + E. Sety(u) + [3],
P(v) < B]\ {¢(u)}, and ¢(w) = 1 for w € M\ {u, v}
©Q Vv € M: commit to ¥(v) to V* (resulting in ¢, and d,)
© Let e be the edge sent by V*.
If e= €, send (dy, ¥ (u)), (dv,1(v)) to V*, output V*’s
output and halt.
Otherwise, rewind the simulation to its first step.

Abort

Zero Knowledge for all NP
00008000

CZKP for 3COL

Proving ZK cont.

{(P(wx), V) ()}, c3coL ~c {SV" ¥ (X))}, 3c0L for any
{wx € R3coL (M} eacoL-

Zero Knowledge for all NP
00000800

CZKP for 3COL

Consider the following (inefficient simulator)
Algorithm 21 (S')
Input: G = (V, E) with n = |G|

Find (using brute force) a valid coloring ¢ of G
Do n- |E| times

@ Act as the honest prover does given private input ¢

© Let e be the edge sent by V*.
W.p. 1/|E|, S’ sends (¢ (u), du), (¢ (v), dv) to V*, output
V*’s output and halt.
Otherwise, rewind the simulation to its first step.

Abort

Claim 22

{8V M)} e3coL ~e (8" ¥ (M)} eacoL

Proof: ?

Zero Knowledge for all NP
00000080

CZKP for 3COL

Proving Claim 22

Assume 3 PPT D, p € poly and an infinite set Z C 3COL s.t.
PrD(|x|,SY"®(x)) = 1] — PrD(|x|,S" ¥ (x)) = 1]| > 1/p(|x])

forall x € 7.
Hence, 3 PPT R* and b # b’ € [3] such that

{Viewg-(S(b), R*(x))(1") }xez 3¢ {Viewg-(S(H'), R*(x)) (1"} xez

where S is the sender in Com.
We critically used the non-uniform security of Com

Zero Knowledge for all NP
0000000@

CZKP for 3COL

S’ is a good simulator

{(P(w), V) (%)} . c300L ~e (8" X (0}, .3c0L- for any
{wyx € Rg1(N)},c3c0L-

Proof: ?

Zero Knowledge for all NP
.

Remarks

Remarks

@ Aborting verifiers

@ Auxiliary inputs

@ Soundness amplification

@ Non-uniform hiding guarantee

Zero Knowledge for all NP
0

Extending to NP

Extending to all £ € NP

Let (P, V) be a CZKP for 3COL, and let Mapy and Map, be
two poly-time functions s.t.

@ Vx € {0,1}*: x € L +— Mapy(x) € 3COL,
@ Vx € Land w € R (x): Mapy (X, w) € R3c o (Mapx(x))

Protocol 24 ((P.,V,))
Common input: x € {0,1}*
Pc's input: w € Rz(x)
@ The two parties interact in
((P(Mapy,(x, w)),V)(Mapx(x))), where P and V. taking
the role of P and V respectively.

© V. accepts iff V accepts in the above execution.

Zero Knowledge for all NP
oe

Extending to NP

Extending to all £ € NP cont.

(P2, V) is a CZKP for £ with the same completeness and
soundness as (P, V) as for 3COL.

@ Completeness and soundness: Clear.

@ Zero knowledge: Let S (an efficient) ZK simulator for
(P, V) (for 3COL).
Define S, (x) to output S(Mapy(x)), while replacing the
string Mapy(x) in the output of S with x.
{(P(Wx). V) (x)}xec e {Sy ") (x)}xec for some Vi,
implies {(P(Mapy(x, wx)), V*)(X)},3coL #c
{8V ()} e3coL

@ V¥(x): find x~' = Map, ' (x) and act like V% (x~")

	Interactive Proofs
	IP for GNI

	Zero knowledge Proofs
	ZK Proof for GI
	Black-box ZK
	Zero Knowledge for all NP
	CZKP for 3COL
	Remarks
	Extending to NP

