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Part I

Interactive Proofs
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Interactive Vs. Interactive Proofs

Definition 1 (NP)
L ∈ NP iff ∃` ∈ poly and poly-time algorithm V such that:

∀x ∈ L ∩ {0,1}n there exists w ∈ {0,1}`(n) s.t. V(x ,w) = 1
V(x , ·) = 0 for every x /∈ L

Non-interactive proof
Interactive proofs?
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Interactive protocols

Interactive algorithm
Protocol π = (A,B)

RV describing the parties joint output 〈A(iA),B(iB))(i)〉
m-round algorithm, m-round protocol
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Interactive Proofs

Definition 2 (Interactive Proof (IP))
A protocol (P,V) is an interactive proof for L, if V is PPT and the
following hold:
Completeness ∀x ∈ L, Pr[〈(P,V)(x)〉 = Accept] ≥ 2/3
Soundness ∀x /∈ L, and any algorithm P∗

Pr[〈(P∗,V)(x)〉 = Accept] ≤ 1/3

IP = PSPACE

We typically consider (and achieve) perfect completeness
Negligible “soundness error" achieved via repetition.
soundness only against PPT: computationally sound
proofs/interactive arguments.
efficient provers via “auxiliary input"
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Section 1

IP for GNI
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graph isomorphism

Πm – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)
Graphs G0 = ([m],E0) and G1 = ([m],E1) are isomorphic,
denoted G0 ≡ G1, if ∃π ∈ Πm such that
(u, v) ∈ E0 iff (π(u), π(v)) ∈ E1.
GI = {(G0,G1) : G0 ≡ G1}.

Assume reasonable mapping from graphs to strings
GI ∈ NP

Does GNI = {(G0,G1) : G0 6≡ G1} ∈ NP?

We will show a simple interactive proof for GNI Idea: Beer
tasting...
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IP for GNI

Protocol 4 ((P,V))

Common input G0 = ([m],E0),G1 = ([m],E1)

1 V chooses b ← {0,1} and π ← Πm, and sends
π(Eb) = {(π(u), π(v)) : (u, v) ∈ Eb} to P

2 P send b′ to V (tries to set b′ = b)
3 V accepts iff b′ = b

Claim 5

The above protocol is IP for GNI, with perfect completeness
and soundness error 1

2 .
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Proving Claim 5

Graph isomorphism is an equivalence relation (separates
the set of all graph pairs into separate subsets)
([m], π(Ei)) is a random element in [Gi ] — the equivalence
class of Gi

Hence,
G0 ≡ G1: Pr[b′ = b] ≤ 1

2 .
G0 6≡ G1: Pr[b′ = b] = 1 (i.e., i can, possibly inefficiently,

extracted from π(Ei))
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Part II

Zero knowledge Proofs
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The concept of zero knowledge

Proving w/o revealing any addition information.
What does it mean?
Simulation paradigm.
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Zero knowledge Proof

Definition 6 (computational ZK)
An interactive proof (P,V) is computational zero-knowledge
proof (CZKP) for L, if ∀ PPT V∗, ∃ PPT S such that
{〈(P,V∗)(x)〉}x∈L ≈c {S(x)}x∈L.
Perfect ZK (PZKP)/statistical ZK (SZKP) – the above dist. are
identicallly/statistically close, even for unbounded V∗.

1 ZK is a property of the prover.
2 ZK only required to hold with respect to true statements.
3 wlg. V∗’s outputs is its “view".
4 Trivial to achieve for L ∈ BPP
5 Extension: auxiliary input
6 The “standard" NP proof is typically not zero knowledge
7 Next class — ZK for all NP
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Section 2

ZK Proof for GI
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ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 7 ((P,V))

Common input x = (G0 = ([m],E0),G1 = ([m],E1))

P’s input a permutation π such that π(E1) = E0

1 P chooses π′ ← Πm and sends E = π′(E0) to V
2 V sends b ← {0,1} to P
3 if b = 0, P sets π′′ = π′, otherwise, it sends π′′ = π′ ◦ π to V
4 V accepts iff π′′(Eb) = E

Claim 8

The above protocol is SZKP for GI, with perfect completeness
and soundness 1

2 .
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Proving Claim 8

Completeness Clear
Soundness If exist j ∈ {0,1} for which @π′ ∈ Πm with

π′(Ej) = E , then V rejects w.p. at least 1
2 .

Assuming V rejects w.p. less than 1
2 and lett π0

and π1 be the values guaranteed by the above
observation (i.e., mapping E0 and E1 to E
respectively).
Then π−1

0 (π1(E1)) = π0 =⇒ (G0,G1) ∈ GI.
ZK Idea: for (G0,G1) ∈ GI, it is easy to generate a

random transcript for Steps 1-2, and to be able to
open it with prob 1

2 .
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The simulator

For a start we consider a deterministic cheating verifier V∗ that
never aborts.

Algorithm 9 (S)
Input: x = (G0 = ([m],E0),G1 = ([m],E1))
Do |x | times:

1 Choose b′ ← {0,1} and π ← Πm, and “send" π(Eb′) to
V∗(x).

2 Let b be V∗’s answer. If b = b′, send π to V∗, output V∗’s
output and halt.
Otherwise, rewind the simulation to its first step.

Abort

Claim 10
{〈(P,V∗)(x)〉}x∈GI ≈ {S(x)}x∈GI
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Proving Claim 10

Algorithm 11 (S′)
Input: x = (G0 = ([m],E0),G1 = ([m],E1))
Do |x | times:

1 Choose π ← Πm and sends E = π(E0) to V∗(x).
2 Let b be V∗’s answer.

W.p. 1
2 , find π′ such that E = π′(Eb) and send it to V∗,

output V∗’s output and halt.
Otherwise, rewind the simulation to its first step.

Abort

Claim 12
S(x) ≡ S′(x) for any x ∈ GI.

Proof: ?
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Proving Claim 10 cont.

Algorithm 13 (S′′)
Input: x = (G0 = ([m],E0),G1 = ([m],E1))

1 Choose π ← Πm and sends E = π(E0) to V∗(x).
2 Find π′ such that E = π′(Eb), send it to V∗, output V∗’s

output and halt.

Claim 14
∀x ∈ GI it holds that

1 〈(P,V∗(x))〉 ≡ S′′(x).
2 SD(S′′(x),S′(x)) ≤ 2−|x |.

Proof: ? (1) is clear.



ZK Proof for GI Black-box ZK Zero Knowledge for all NP

Proving Claim 14(2)

Fix (E , π′) and let α = PrS′′(x)[(E , π′)].
It holds that

PrS′(x)[(E , π′)] = α ·
|x |∑
i=1

(1− 1
2

)i−1 · 1
2

= (1− 2−|x |) · α

Hence, SD(S′′(x),S′(x)) ≤ 2−|x |
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Remarks

1 Randomized verifiers
2 Aborting verifiers – Normalize aborting probability
3 Auxiliary input
4 Negligible soundness error? Sequentiall/Parallel

composition
5 Perfect ZK for “expected time simulators"
6 “Black box" simulation
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Section 3

Black-box ZK
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Black-box simulators

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for L, if ∃ oracle-aided
PPT S s.t. for every deterministic polynomial-timea V∗:

{(P(wx ),V∗(zx ))(x)}x∈L ≈c {SV∗(x ,zx )(x)}x∈L

for any {(wx , zx ) ∈ RL(x)× {0,1}∗}x∈L.
Prefect and statistical variants are defined analogously.

aLength of auxiliary input does not count for the running time.

1 “Most simulators" are black box
2 Strictly weaker then general simulation!
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Section 4

Zero Knowledge for all NP
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CZKP for 3COL

CZKP for 3COL

Assuming that OWFs exists, we give a CZKP for 3COL .
We show how to transform it for any L ∈ NP (using that
3COL ∈ NPC).

Definition 16 (3COL)
G = (M,E) ∈ 3COL, if ∃ φ : M 7→ [3] s.t. φ(u) 6= φ(v) for every
(u, v) ∈ E .

We use commitment schemes.

http://www.cs.tau.ac.il/~iftachh/Courses/FOC/Fall11/Slides/Commitments.pdf
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CZKP for 3COL

The protocol

Let π3 be the set of all permutations over [3]. We use perfectly
binding commitment Com (statistically binding?).

Protocol 17 ((P,V))

Common input: Graph G = (M,E) with n = |G|
P’s input: a (valid) coloring φ of G

1 P chooses π ← Π3 and sets ψ = π ◦ φ
2 ∀v ∈ M: P commits to ψ(v) using Com(1n).

Let cv and dv be the resulting commitment and
decommitment.

3 V sends e = (u, v)← E to P
4 P sends (du, ψ(u)), (dv , ψ(v)) to V
5 V verifies that (1) both decommitments are valid, (2)
ψ(u), ψ(v) ∈ [3] and (3) ψ(u) 6= ψ(v).
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CZKP for 3COL

Claim 18
The above protocol is a CZKP for 3COL, with perfect
completeness and soundness 1/ |E |.

Completeness: Clear
Soundness: Let {cv}v∈M be the commitments resulting from

an interaction of V with an arbitrary P∗.
Define φ : M 7→ [3] as follows:
∀v ∈ M: let φ(v) be the (single) value that it is
possible to decommit cv into (if not in [3], set
φ(v) = 1).
If G /∈ 3COL, then ∃(u, v) ∈ E s.t. ψ(u) = ψ(v).
Hence V rejects such x w.p. a least 1/ |E |
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CZKP for 3COL

Proving ZK

Fix a deterministic, non-aborting V∗ that gets no auxiliary input.

Algorithm 19 (S)
Input: A graph G = (M,E) with n = |G|
Do n · |E | times:

1 Choose e′ = (u, v)← E . Set ψ(u)← [3],
ψ(v)← [3] \ {ψ(u)}, and ψ(w) = 1 for w ∈ M \ {u, v}

2 ∀v ∈ M: commit to ψ(v) to V∗ (resulting in cv and dv )
3 Let e be the edge sent by V∗.

If e = e′, send (du, ψ(u)), (dv , ψ(v)) to V∗, output V∗’s
output and halt.
Otherwise, rewind the simulation to its first step.

Abort
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CZKP for 3COL

Proving ZK cont.

Claim 20

{(P(wx ),V∗)(x)}x∈3COL ≈c {SV∗(x)(x)}x∈3COL, for any
{wx ∈ R3COL(x)}x∈3COL.
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CZKP for 3COL

Consider the following (inefficient simulator)

Algorithm 21 (S′)
Input: G = (V ,E) with n = |G|
Find (using brute force) a valid coloring φ of G
Do n · |E | times

1 Act as the honest prover does given private input φ
2 Let e be the edge sent by V∗.

W.p. 1/ |E |, S′ sends (ψ(u),du), (ψ(v),dv ) to V∗, output
V∗’s output and halt.
Otherwise, rewind the simulation to its first step.

Abort

Claim 22

{SV∗(x)(x)}x∈3COL ≈c {S′V
∗(x)(x)}x∈3COL

Proof: ?
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CZKP for 3COL

Proving Claim 22

Assume ∃ PPT D, p ∈ poly and an infinite set I ⊆ 3COL s.t.∣∣∣Pr[D(|x | ,SV∗(x)(x)) = 1]− Pr[D(|x | ,S′V
∗(x)

(x)) = 1]
∣∣∣ ≥ 1/p(|x |)

for all x ∈ I.
Hence, ∃ PPT R∗ and b 6= b′ ∈ [3] such that

{ViewR∗(S(b),R∗(x))(1|x |)}x∈I 6≈c {ViewR∗(S(b′),R∗(x))(1|x |)}x∈I

where S is the sender in Com.
We critically used the non-uniform security of Com



ZK Proof for GI Black-box ZK Zero Knowledge for all NP

CZKP for 3COL

S′ is a good simulator

Claim 23

{(P(wx ),V∗)(x)}x∈3COL ≈c {S′V
∗(x)(x)}x∈3COL, for any

{wx ∈ RGI(x)}x∈3COL.

Proof: ?
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Remarks

Remarks

Aborting verifiers
Auxiliary inputs
Soundness amplification
Non-uniform hiding guarantee
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Extending to NP

Extending to all L ∈ NP

Let (P,V) be a CZKP for 3COL, and let MapX and MapW be
two poly-time functions s.t.

∀x ∈ {0,1}∗: x ∈ L ←→ MapX (x) ∈ 3COL,
∀x ∈ L and w ∈ RL(x): MapW (x ,w) ∈ R3COL(MapX (x))

Protocol 24 ((PL,VL))

Common input: x ∈ {0,1}∗
PL’s input: w ∈ RL(x)

1 The two parties interact in
〈(P(MapW (x ,w)),V)(MapX (x))〉, where PL and VL taking
the role of P and V respectively.

2 VL accepts iff V accepts in the above execution.
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Extending to NP

Extending to all L ∈ NP cont.

Claim 25

(PL,VL) is a CZKP for L with the same completeness and
soundness as (P,V) as for 3COL.

Completeness and soundness: Clear.
Zero knowledge: Let S (an efficient) ZK simulator for
(P,V) (for 3COL).
Define SL(x) to output S(MapX (x)), while replacing the
string MapX (x) in the output of S with x .
{(P(wx ),V∗)(x)}x∈L 6≈c {SV∗(x)

L (x)}x∈L for some V∗L,
implies {(P(MapW (x ,wx )),V∗)(x)}x∈3COL 6≈c

{SV∗(x)(x)}x∈3COL,

V∗(x): find x−1 = Map−1
X (x) and act like V∗L(x−1)
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