Foundation of Cryptography (0368-4162-01), Lecture 5 Interactive Proofs and Zero Knowledge

Iftach Haitner, Tel Aviv University

December 4, 2011

Part I

Interactive Proofs

Interactive Vs. Interactive Proofs

Definition 1 (NP)

 $\mathcal{L} \in \mathbf{NP}$ iff $\exists \ell \in \text{poly and poly-time algorithm V such that:}$

• $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1

•
$$V(x, \cdot) = 0$$
 for every $x \notin \mathcal{L}$

- Non-interactive proof
- Interactive proofs?

Interactive protocols

- Interactive algorithm
- Protocol *π* = (A, B)
- RV describing the parties joint output (A(i_A), B(i_B))(i))
- *m*-round algorithm, *m*-round protocol

Interactive Proofs

Definition 2 (Interactive Proof (IP))

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is PPT and the following hold:

 $\textbf{Completeness} \ \forall x \in \mathcal{L}, \, \mathsf{Pr}[\langle (\mathsf{P},\mathsf{V})(x) \rangle = \texttt{Accept}] \geq 2/3$

Soundness $\forall x \notin \mathcal{L}$, and *any* algorithm P* $\Pr[\langle (P^*, V)(x) \rangle = \texttt{Accept}] \leq 1/3$

- IP = PSPACE
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.
- soundness only against PPT. computationally sound proofs/interactive arguments.
- efficient provers via "auxiliary input"

Section 1

IP for GNI

graph isomorphism

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0 = ([m], E_0)$ and $G_1 = ([m], E_1)$ are *isomorphic*, denoted $G_0 \equiv G_1$, if $\exists \pi \in \Pi_m$ such that $(u, v) \in E_0$ iff $(\pi(u), \pi(v)) \in E_1$. $GI = \{(G_0, G_1) : G_0 \equiv G_1\}.$

- Assume reasonable mapping from graphs to strings
- $GI \in NP$
- Does $GNI = \{(G_0, G_1) : G_0 \not\equiv G_1\} \in NP?$
- We will show a simple interactive proof for GNI Idea: Beer tasting...

IP for GNI

Protocol 4 ((P,V))

Common input $G_0 = ([m], E_0), G_1 = ([m], E_1)$

- V chooses $b \leftarrow \{0, 1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b) = \{(\pi(u), \pi(v)) : (u, v) \in E_b\}$ to P
- **2** P send b' to V (tries to set b' = b)
- V accepts iff b' = b

Claim 5

The above protocol is IP for GNI, with perfect completeness and soundness error $\frac{1}{2}$.

Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- ([*m*], π(*E_i*)) is a random element in [G_i] the equivalence class of G_i

Hence,

$$\begin{aligned} & \mathbf{G}_0 \equiv \mathbf{G}_1 \text{:} \ & \mathsf{Pr}[b'=b] \leq \frac{1}{2} \text{.} \\ & \mathbf{G}_0 \not\equiv \mathbf{G}_1 \text{:} \ & \mathsf{Pr}[b'=b] = 1 \text{ (i.e., } i \text{ can, possibly inefficiently,} \\ & \text{ extracted from } \pi(E_i)) \end{aligned}$$

Part II

Zero knowledge Proofs

The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean? Simulation paradigm.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V*, \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{S(x)\}_{x \in \mathcal{L}}$. Perfect ZK (PZKP)/statistical ZK (SZKP) – the above dist. are identically/statistically close, even for *unbounded* V*.

- ZK is a property of the prover.
- 2K only required to hold with respect to true statements.
- In the second second
- Trivial to achieve for $\mathcal{L} \in BPP$
- Extension: auxiliary input
- The "standard" NP proof is typically not zero knowledge
- Output Class ZK for all NP

Section 2

ZK Proof for GI

ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 7 ((P,V))

Common input
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

P's input a permutation π such that $\pi(E_1) = E_0$

• P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V

2 V sends
$$b \leftarrow \{0, 1\}$$
 to P

If
$$b = 0$$
, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V

• V accepts iff $\pi''(E_b) = E$

Claim 8

The above protocol is SZKP for GI, with perfect completeness and soundness $\frac{1}{2}$.

Proving Claim 8

Completeness Clear **Soundness** If exist $j \in \{0, 1\}$ for which $\nexists \pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$. Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to Erespectively). Then $\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in GI$.

ZK Idea: for $(G_0, G_1) \in GI$, it is easy to generate a random transcript for Steps 1-2, and to be able to open it with prob $\frac{1}{2}$.

The simulator

For a start we consider a deterministic cheating verifier V^* that never aborts.

Algorithm 9 (S)

Input:
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

Do $|x|$ times:

- Choose $b' \leftarrow \{0, 1\}$ and $\pi \leftarrow \Pi_m$, and "send" $\pi(E_{b'})$ to $V^*(x)$.
- 2 Let *b* be V*'s answer. If b = b', send π to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 10

$$\{\langle (\mathsf{P},\mathsf{V}^*)(x)\rangle\}_{x\in\mathsf{GI}}\approx\{\mathsf{S}(x)\}_{x\in\mathsf{GI}}$$

Proving Claim 10

Algorithm 11 (S')

Input:
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

Do $|x|$ times:

- Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

W.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$ and send it to V^{*}, output V^{*}'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 12

 $S(x) \equiv S'(x)$ for any $x \in GI$.

Proof: ?

Proving Claim 10 cont.

Algorithm 13 (S")

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- Choose $\pi \leftarrow \prod_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- Find π' such that $E = \pi'(E_b)$, send it to V*, output V*'s output and halt.

Claim 14

 $\forall x \in GI \text{ it holds that}$

•
$$\langle (\mathsf{P}, \mathsf{V}^*(x)) \rangle \equiv \mathsf{S}''(x).$$

• $\mathsf{SD}(\mathsf{S}''(x), \mathsf{S}'(x)) \le 2^{-|x|}.$

Proof: ? (1) is clear.

Proving Claim 14(2)

Fix
$$(E, \pi')$$
 and let $\alpha = \Pr_{S''(x)}[(E, \pi')]$.
It holds that

$$\Pr_{\mathbf{S}'(x)}[(E,\pi')] = \alpha \cdot \sum_{i=1}^{|x|} (1 - \frac{1}{2})^{i-1} \cdot \frac{1}{2}$$
$$= (1 - 2^{-|x|}) \cdot \alpha$$

Hence, $SD(S''(x), S'(x)) \leq 2^{-|x|} \square$

Remarks

- Randomized verifiers
- Aborting verifiers Normalize aborting probability
- Auxiliary input
- Negligible soundness error? Sequentiall/Parallel composition
- Perfect ZK for "expected time simulators"
- Image: "Black box" simulation

Section 3

Black-box ZK

Black-box simulators

Definition 15 (Black-box simulator)

(P, V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time^a V^{*}:

$$\{(\mathsf{P}(w_x),\mathsf{V}^*(z_x))(x)\}_{x\in\mathcal{L}}\approx_{c}\{\mathsf{S}^{\mathsf{V}^*(x,z_x)}(x)\}_{x\in\mathcal{L}}$$

for any $\{(w_x, z_x) \in R_{\mathcal{L}}(x) \times \{0, 1\}^*\}_{x \in \mathcal{L}}$. Prefect and statistical variants are defined analogously.

^aLength of auxiliary input does not count for the running time.

- Most simulators" are black box
- Strictly weaker then general simulation!

Section 4

Zero Knowledge for all NP

- Assuming that OWFs exists, we give a CZKP for 3COL.
- We show how to transform it for any $\mathcal{L} \in NP$ (using that $3COL \in NPC$).

Definition 16 (3COL)

 $G = (M, E) \in 3$ COL, if $\exists \phi : M \mapsto [3]$ s.t. $\phi(u) \neq \phi(v)$ for every $(u, v) \in E$.

We use commitment schemes.

The protocol

Let π_3 be the set of all permutations over [3]. We use perfectly binding commitment Com (statistically binding?).

Protocol 17 ((P, V))

Common input: Graph G = (M, E) with n = |G|P's input: a (valid) coloring ϕ of G

- **1** P chooses $\pi \leftarrow \Pi_3$ and sets $\psi = \pi \circ \phi$
- ∀v ∈ M: P commits to ψ(v) using Com(1ⁿ). Let c_v and d_v be the resulting commitment and decommitment.
- V sends $e = (u, v) \leftarrow E$ to P
- P sends $(d_u, \psi(u)), (d_v, \psi(v))$ to V
- S V verifies that (1) both decommitments are valid, (2) $\psi(u), \psi(v) \in [3]$ and (3) $\psi(u) \neq \psi(v)$.

Claim 18

The above protocol is a CZKP for 3COL, with perfect completeness and soundness 1/|E|.

Completeness: Clear

Soundness: Let $\{c_v\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary P*. Define $\phi \colon M \mapsto [3]$ as follows: $\forall v \in M$: let $\phi(v)$ be the (single) value that it is possible to decommit c_v into (if not in [3], set $\phi(v) = 1$). If G \notin 3COL, then $\exists (u, v) \in E$ s.t. $\psi(u) = \psi(v)$. Hence V rejects such x w.p. a least 1/|E|

Proving ZK

Fix a deterministic, non-aborting V* that gets no auxiliary input.

Algorithm 19 (S)

Input: A graph G = (M, E) with n = |G|Do $n \cdot |E|$ times:

- Choose $e' = (u, v) \leftarrow E$. Set $\psi(u) \leftarrow [3]$, $\psi(v) \leftarrow [3] \setminus \{\psi(u)\}$, and $\psi(w) = 1$ for $w \in M \setminus \{u, v\}$
- **2** $\forall v \in M$: commit to $\psi(v)$ to V^{*} (resulting in c_v and d_v)
- Let *e* be the edge sent by V*.
 If *e* = *e'*, send (*d*_u, ψ(*u*)), (*d*_v, ψ(*v*)) to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Black-box ZK

CZKP for 3COL

Proving ZK cont.

Claim 20

$\{ (\mathsf{P}(w_x), \mathsf{V}^*)(x) \}_{x \in 3\text{COL}} \approx_c \{ \mathsf{S}^{\mathsf{V}^*(x)}(x) \}_{x \in 3\text{COL}}, \text{ for any} \\ \{ w_x \in \mathsf{R}_{3\text{COL}}(x) \}_{x \in 3\text{COL}}.$

Consider the following (inefficient simulator)

Algorithm 21 (S')

Input:
$$G = (V, E)$$
 with $n = |G|$

Find (using brute force) a valid coloring ϕ of G

Do $n \cdot |E|$ times

- Let *e* be the edge sent by V*.
 W.p. 1/|*E*|, S' sends (ψ(u), d_u), (ψ(v), d_v) to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 22

$$\{\mathsf{S}^{\mathsf{V}^*(x)}(x)\}_{x\in\mathsf{3COL}}\approx_c \{\mathsf{S}'^{\mathsf{V}^*(x)}(x)\}_{x\in\mathsf{3COL}}$$

Proof: ?

Proving Claim 22

Assume \exists PPT D, $p \in$ poly and an infinite set $\mathcal{I} \subseteq$ 3COL s.t.

$$\left| \Pr[\mathsf{D}(|x|, \mathsf{S}^{\mathsf{V}^*(x)}(x)) = 1] - \Pr[\mathsf{D}(|x|, {\mathsf{S}'}^{\mathsf{V}^*(x)}(x)) = 1] \right| \ge 1/\rho(|x|)$$

for all $x \in \mathcal{I}$. Hence, $\exists PPT R^*$ and $b \neq b' \in [3]$ such that

 $\{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(\textit{b}),\mathsf{R}^*(\textit{x}))(1^{|\textit{x}|})\}_{\textit{x}\in\mathcal{I}} \not\approx_{\textit{c}} \{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(\textit{b}'),\mathsf{R}^*(\textit{x}))(1^{|\textit{x}|})\}_{\textit{x}\in\mathcal{I}}$

where S is the sender in Com. We critically used the non-uniform security of Com Black-box ZK

CZKP for 3COL

S' is a good simulator

Claim 23

$$\{ (\mathsf{P}(w_x), \mathsf{V}^*)(x) \}_{x \in 3\text{COL}} \approx_c \{ \mathsf{S}'^{\mathsf{V}^*(x)}(x) \}_{x \in 3\text{COL}}, \text{ for any} \\ \{ w_x \in \mathsf{R}_{\mathsf{GI}}(x) \}_{x \in 3\text{COL}}.$$

Proof: ?

Remarks

Remarks

- Aborting verifiers
- Auxiliary inputs
- Soundness amplification
- Non-uniform hiding guarantee

Extending to NP

Extending to all $\mathcal{L} \in NP$

Let (P, V) be a CZKP for 3COL, and let Map_X and Map_W be two poly-time functions s.t.

- $\forall x \in \{0,1\}^*$: $x \in \mathcal{L} \longleftrightarrow Map_X(x) \in 3COL$,
- $\forall x \in \mathcal{L} \text{ and } w \in R_{L}(x)$: $\operatorname{Map}_{W}(x, w) \in R_{\operatorname{3GOL}}(\operatorname{Map}_{X}(x))$

Protocol 24 (($P_{\mathcal{L}}, V_{\mathcal{L}}$))

Common input: $x \in \{0, 1\}^*$

- $\mathsf{P}_{\mathcal{L}}$'s input: $w \in \mathsf{R}_{\mathcal{L}}(x)$
 - The two parties interact in ((P(Map_W(x, w)), V)(Map_X(x))), where P_L and V_L taking the role of P and V respectively.

2 $V_{\mathcal{L}}$ accepts iff V accepts in the above execution.

Extending to NP

Extending to all $\mathcal{L} \in NP$ cont.

Claim 25

 $(\mathsf{P}_\mathcal{L},\mathsf{V}_\mathcal{L})$ is a CZKP for $\mathcal L$ with the same completeness and soundness as (P,V) as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL). Define $S_{\mathcal{L}}(x)$ to output $S(Map_X(x))$, while replacing the string $Map_X(x)$ in the output of S with x. $\{(P(w_x), V^*)(x)\}_{x \in \mathcal{L}} \not\approx_c \{S_{\mathcal{L}}^{V^*(x)}(x)\}_{x \in \mathcal{L}}$ for some $V_{\mathcal{L}}^*$, implies $\{(P(Map_W(x, w_x)), V^*)(x)\}_{x \in 3COL} \not\approx_c \{S^{V^*(x)}(x)\}_{x \in 3COL}$,
- V^{*}(x): find $x^{-1} = \operatorname{Map}_X^{-1}(x)$ and act like V^{*}_L(x^{-1})