Foundation of Cryptography (0368-4162-01), Lecture 3

Hardcore Predicates for Any One-way Function

Iftach Haitner, Tel Aviv University

November 22, 2011

Hardcore Predicates

Definition 1 (hardcore predicates)

A polynomial-time computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of the function $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n}[\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \mathsf{neg}(n),$$

for any PPT P.

Theorem 2 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$, is an hardcore predicate of g.

Note that if f is one-to-one, then so is g.

Section 1

The Information Theoretic Case

Definition 3 (min-entropy)

The min entropy of a random variable X, is defined

$$\mathsf{H}_{\infty}(X) := \min_{y \in \mathsf{Supp}(X)} \log \frac{1}{\mathsf{Pr}_X[y]}.$$

Examples

- X is uniform over a set of size 2^k
- $(X \mid f(X) = y)$, where $f: \{0,1\}^n \mapsto \{0,1\}^n$ is 2^k to 1 and X is uniform over $\{0,1\}^n$

Pairwise independent hashing

Pairwise independent hashing

Definition 4 (pairwise independent hash functions)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is pairwise independent, if for every $x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Lemma 5 (leftover hash lemma)

Let X be a random variable over $\{0,1\}^n$ with $H_{\infty}(X) \ge k$ and let \mathcal{H} be a family of pairwise independent hash functions from $\{0,1\}^n$ to $\{0,1\}^m$, then

$$\mathsf{SD}((h,h(x))_{h\leftarrow\mathcal{H},x\leftarrow\mathcal{X}},(h,y)_{h\leftarrow\mathcal{H},y\leftarrow\{0,1\}^m})\leq 2^{(m-k-2))/2}.$$

* We typically simply write $SD((H, H(X)), (H, U_m))$, where H is uniformly distributed over \mathcal{H} .

Efficient function families

Definition 6 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if the following hold:

- **Samplable.** \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .
 - **Efficient.** There exists a polynomial-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Hardcore predicate for regular OWF

Lemma 7

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

$$g(x,h)=(f(x),h),$$

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to the computational case? Proof: We prove the claim by showing that

Claim 8

 $SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = neg(n)$, where the rv H = H(n) is uniformly distributed over \mathcal{H}_n .

Does this conclude the proof?

Proving Claim 8

Proof: For $y \in f(\{0,1\}^n) := \{f(x) : x \in \{0,1\}^n\}$, let the rv X_y be uniformly distributed over $f^{-1}(y) := \{x \in \{0,1\}^n : f(x) = y\}$.

$$\begin{split} & \text{SD}((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) \\ &= \sum_{y \in f(\{0,1\}^n)} \Pr[f(U_n) = y] \cdot \text{SD}((f(U_n), H, H(U_n) \mid f(U_n) = y)) \\ &\qquad \qquad , (f(U_n), H, U_1 \mid f(U_n) = y)) \\ &= \sum_{y \in f(\{0,1\}^n)} \Pr[f(U_n) = y] \cdot \text{SD}((y, H, H(X_y)), (y, H, U_1)) \\ &\leq \max_{y \in f(\{0,1\}^n)} \text{SD}((y, H, H(X_y)), (y, H, U_1)) \\ &\leq \max_{y \in f(\{0,1\}^n)} \text{SD}((H, H(X_y)), (H, U_1)) \end{split}$$

Since $H_{\infty}(X_y) = \log(d(n))$ for any $y \in f(\{0,1\}^n)$, The leftover hash lemma yields that

$$\begin{array}{lcl} \text{SD}((H,H(X_y)),(H,U_1)) & \leq & 2^{(1-H_{\infty}(X_y)-2))/2} \\ & = & 2^{(1-\log(d(n)))/2} = \operatorname{neg}(n). \quad \Box \end{array}$$

hardcore predicate for regular functions

Further remarks

Remark 9

- We can output $\Theta(\log d(n))$ bits,
- g and b are not defined over all input length.

Section 2

The Computational Case

Proving Goldreich-Levin Theorem

Theorem 10 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n \text{ as } g(x,r) = f(x), r.$ Then $b(x, r) = \langle x, r \rangle_2$, is an hardcore predicate of g.

Note that if b(x, r) is (almost) a family of pairwise independent hash functions.

Proof: Assume
$$\exists$$
 PPT A, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with
$$\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)}, \tag{1}$$

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0,1\}^n$.

We show \exists PPT B and $q \in$ poly with $\Pr_{y \leftarrow f(U_n)}[\mathsf{B}(y) \in f^{-1}(y)] \ge \frac{1}{a(n)},$ (2)

for every $n \in \mathcal{I}$. In the following fix $n \in \mathcal{I}$.

Focusing on a good set

Claim 11

There exists a set $S \subseteq \{0,1\}^n$ with

- \bullet $\frac{|\mathcal{S}|}{2^n} \geq \frac{1}{2p(n)}$, and
- 2 $\alpha(x) := \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \alpha(x) \ge \frac{1}{2} + \frac{1}{2p(n)}\}$. It follows that

$$\Pr[\mathsf{A}(g(U_n,R_n)) = b(U_n,R_n)] \leq \Pr[U_n \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}]$$
$$\leq \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}] \square$$

We will present $q \in \text{poly}$ and a PPT B such that

$$\Pr[\mathsf{B}(y = f(x)) \in f^{-1}(y) \ge \frac{1}{g(n)},$$
 (3)

for every $x \in S$. Fix $x \in S$.

Perfect case

The perfect case $\alpha(x) = 1$

For every $i \in [n]$, it holds that

$$A(f(x),e^i)=b(x,e^i),$$

where
$$e^i = (\underbrace{0,\ldots,0}_{i-1},1,\underbrace{0,\ldots,0}_{n-i}).$$

• Hence,
$$x_i = \langle x, e^i \rangle_2 = \mathsf{A}(f(x), e^i)$$

We let
$$B(f(x)) = (A(f(x), e^1), ..., A(f(x), e^n))$$

Easy case

Easy case: $\alpha(x) \ge 1 - \text{neg}(n)$

Fact 12

- **1** $\forall r \in \{0,1\}^n$, the rv $(r \oplus R_n)$ is uniformly dist. over $\{0,1\}^n$
- $\forall w, y \in \{0,1\}^n, \text{ it holds that } b(x,w) \oplus b(x,y) = b(x,w \oplus y)$

Hence, $\forall i \in [n]$:

- varphi $\forall r \in \{0,1\}^n$ it holds that $x_i = b(x,r) \oplus b(x,r \oplus e^i)$
- $Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)]$ $\ge 1 \text{neg}(n)$

We let
$$B(f(x)) = (A(f(x), R_n) \oplus A(f(x), R_n \oplus e^1)), \dots, A(f(x), R_n) \oplus A(f(x), R_n \oplus e^n)).$$

Intermediate case

Intermediate case: $\alpha(x) \geq \frac{3}{4} + \frac{1}{q(n)}$

For any $i \in [n]$, it holds that

$$Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i]$$
(4)

$$\geq \operatorname{Pr}[A(f(x),R_n)=b(x,R_n)\wedge A(f(x),R_n\oplus e^i)=b(x,R_n\oplus e^i)]$$

$$\geq \frac{1}{2} + \frac{2}{q(n)}$$

Algorithm 13 (B)

Input: $f(x) \in \{0, 1\}^n$

- For every $i \in [n]$
 - Sample $r^1, \ldots, r^v \in \{0, 1\}^n$ uniformly at random
 - Let $m_i = \operatorname{\mathsf{maj}}_{i \in [v]} \{ (A(f(x), r^j) \oplus A(f(x), r^j \oplus e^j) \}$
- ② Output (m_1, \ldots, m_n)

B's success provability

The following holds for "large enough" v = v(n).

Claim 14

For every $i \in [n]$, it holds that $Pr[m_i = x_i] \ge 1 - \text{neg}(n)$.

Proof: For $j \in [v]$, let the indicator $v \in W^j$ be 1, iif

$$A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i.$$

We want to lowerbound $\Pr\left[\sum_{j=1}^{\nu}W^{j}>\frac{\nu}{2}\right]$.

• The W^j are iids and $\mathsf{E}[W^j] \geq \frac{1}{2} + \frac{2}{q(n)}$, for every $j \in [v]$

Lemma 15 (Hoeffding's inequality)

Let X^1, \ldots, X^v be iid over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{\nu} X^j}{\nu} - \mu| \ge \varepsilon] \le 2 \cdot \exp(-2\varepsilon^2 \nu) \text{ for every } \varepsilon > 0.$$

We complete the proof taking $X^j = W^j$, $\varepsilon = 1/4q(n)$ and $v \in \omega(\log(n) \cdot q(n)^2)$.

Actual case

The actual case:
$$\alpha(x) \ge \frac{1}{2} + \frac{1}{q(n)}$$

- What goes wrong?
- Idea: guess the values of $\{b(x, r^1), \dots, b(x, r^v)\}$ (instead of calling $\{A(f(x), r^1), \dots, A(f(x), r^v)\}$)
- Problem: negligible success probability
- Solution: choose the samples in a correlated manner

Algorithm B

Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} - 1$. We let $\mathcal{L} \subseteq [\ell]$ stands for non-empty subset.

Algorithm 16 (B)

Input: $f(x) \in \{0, 1\}^n$

- **①** Sample uniformly (and independently) $t_1, \ldots, t_\ell \in \{0, 1\}^n$
- **2** For all $\mathcal{L} \subseteq [\ell]$, set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$
- **3** Guess $\{b(x, t^i)\}$, and compute $\{b(x, r^{\mathcal{L}})\}$ (how?)
- For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subseteq \{0,1\}^n} \{ A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$

Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1, iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$. We want to lowerbound $\Pr[\sum_{\mathcal{L} \subset [\ell]} W^{\mathcal{L}} > \frac{v}{2}]$

Problem: the $W^{\mathcal{L}}$'s are dependent!

Analyzing B's success probability

- Let T^1, \ldots, T^ℓ be iid over $\{0, 1\}^n$.
- ② For every $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Fact 17

- $\mathbf{0} \ \, \forall \mathcal{L} \subseteq [\ell] \text{, } \textit{R}^{\mathcal{L}} \textit{ is uniformly distributed over } \{0,1\}^n$
- ② $\forall w, y \in \{0,1\}^n$ and $\forall \mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = y] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = y]$

That is, the $R^{\mathcal{L}}$'s are pairwise independent.

Proving Fact 17(2)

Assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$\begin{aligned} & \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = y] \\ &= \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} & \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \\ & \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = y \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} & \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} & \Pr[T^2, \dots, T^\ell] = (t^2, \dots, t^\ell) \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} & \Pr[T^2, \dots, T^\ell] = (t^2, \dots, t^\ell) \\ &= 2^{-n} \cdot 2^{-n} = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = y] \Box \end{aligned}$$

Actual case

Pairwise independence variables

Definition 18 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$$

For every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, the rvs $R^{\mathcal{L}}$ and $R^{\mathcal{L}'}$ are pairwise independent, and therefore also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ (why?).

Lemma 19 (Chebyshev's inequality)

Let X^1, \ldots, X^{ν} be pairwise-independent random variables with expectation μ and variance σ^2 . Then, for every $\varepsilon > 0$,

$$\Pr\left[\left|\frac{\sum_{j=1}^{\nu} X^{j}}{\nu} - \mu\right| \ge \varepsilon\right] \le \frac{\sigma^{2}}{\varepsilon^{2} \nu}$$

B's success provability cont

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

•
$$E[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$$

•
$$Var(W^{\mathcal{L}}) := E[W^{\mathcal{L}}]^2 - E[(W^{\mathcal{L}})^2] \le 1$$

Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
 (5)

and by a union bound, B outputs x with probability $\frac{1}{2}$. Taking the guessing into account, yields that B outputs x with probability at least $2^{-\ell-1} \in \Omega(n/q(n)^2)$.

Reflections

- **Hardcore functions.** Similar ideas allows to output log *n* "pseudorandom bits"
- Alternative proof for the LHL. Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume that $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0. Hence
 - **1** ∃ (a possibly inefficient) algorithm D that distinguishes $(R_n, \langle R_n, X \rangle_2)$ from (R_n, U_1) with advantage α
 - **2** \exists A that predicts $\langle R_n, X \rangle_2$ given R_n with prob $\frac{1}{2} + \alpha$
 - ③ (by GL) ∃B that guesses X "from nothing", with prob $\alpha^{O(1)} > 2^{-t}$

Reflections

Reflections cont.

List decoding. An efficient encoding $C: \{0,1\}^n \mapsto \{0,1\}^m$, and a decoder D. Such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x): $D(c,\delta) \text{ outputs a list of size at most poly}(1/\delta) \text{ that whp. contains } x$ The code we used here is known as the

LPN - learning parity with noise. Find x given polynomially many samples of $\langle x, R_n \rangle_2 + N$, where $\Pr[N=1] \leq \frac{1}{2} - \delta$. The difference comparing to Goldreich-Levin – no control over the R_n 's.

Hadamard code