Foundation of Cryptography (0368-4162-01), Lecture 3

Hardcore Predicates for Any One-way Function

Iftach Haitner, Tel Aviv University

November 22, 2011

Hardcore Predicates

Definition 1 (hardcore predicates)

A polynomial-time computable function $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of the function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[P(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPT P.

Theorem 2 (Goldreich-Levin)

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a OWF, and define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=f(x), r$. Then $b(x, r)=\langle x, r\rangle_{2}$, is an hardcore predicate of g.

Note that if f is one-to-one, then so is g.

Section 1

The Information Theoretic Case

Definition 3 (min-entropy)

The min entropy of a random variable X, is defined

$$
\mathrm{H}_{\infty}(X):=\min _{y \in \operatorname{Supp}(X)} \log \frac{1}{\operatorname{Pr}_{X}[y]}
$$

Examples

- X is uniform over a set of size 2^{k}
- $(X \mid f(X)=y)$, where $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is 2^{k} to 1 and X is uniform over $\{0,1\}^{n}$

Pairwise independent hashing

Definition 4 (pairwise independent hash functions)

A function family \mathcal{H} from $\{0,1\}^{n}$ to $\{0,1\}^{m}$ is pairwise independent, if for every $x \neq x^{\prime} \in\{0,1\}^{n}$ and $y, y^{\prime} \in\{0,1\}^{m}$, it holds that $\left.\operatorname{Pr}_{h \leftarrow \mathcal{H}}\left[h(x)=y \wedge h\left(x^{\prime}\right)=y^{\prime}\right)\right]=2^{-2 m}$.

Lemma 5 (leftover hash lemma)

Let X be a random variable over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq k$ and let \mathcal{H} be a family of pairwise independent hash functions from $\{0,1\}^{n}$ to $\{0,1\}^{m}$, then

$$
\mathrm{SD}\left((h, h(x))_{h \leftarrow \mathcal{H}, x \leftarrow X},(h, y)_{\left.h \leftarrow \mathcal{H}, y \leftarrow\{0,1\}^{m}\right)} \leq 2^{(m-k-2)) / 2} .\right.
$$

* We typically simply write $\operatorname{SD}\left((H, H(X)),\left(H, U_{m}\right)\right)$, where H is uniformly distributed over \mathcal{H}.

Efficient function families

Definition 6 (efficient function family)

An ensemble of function families $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ is efficient, if the following hold:
Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^{n}, outputs (the description of) a uniform element in \mathcal{F}_{n}.
Efficient. There exists a polynomial-time algorithm that given $x \in\{0,1\}^{n}$ and (a description of) $f \in \mathcal{F}_{n}$, outputs $f(x)$.

Hardcore predicate for regular OWF

Lemma 7

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H}=\left\{\mathcal{H}_{n}\right\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^{n}$. Define
$g:\{0,1\}^{n} \times \mathcal{H}_{n} \mapsto\{0,1\}^{n} \times \mathcal{H}_{n}$ as

$$
g(x, h)=(f(x), h),
$$

then $b(x, h)=h(x)$ is an hardcore predicate of g.
How does it relate to the computational case?
Proof: We prove the claim by showing that

Claim 8

SD $\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)=$ neg (n), where the rv $H=H(n)$ is uniformly distributed over \mathcal{H}_{n}.

Does this conclude the proof?

hardcore predicate for regular functions

Proving Claim 8

Proof: For $y \in f\left(\{0,1\}^{n}\right):=\left\{f(x): x \in\{0,1\}^{n}\right\}$, let the rv X_{y} be uniformly distributed over $f^{-1}(y):=\left\{x \in\{0,1\}^{n}: f(x)=y\right\}$.
$\operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)$
$=\sum_{y \in f\left(\{0,1\}^{n}\right)} \operatorname{Pr}\left[f\left(U_{n}\right)=y\right] \cdot \operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right) \mid f\left(U_{n}\right)=y\right)\right.$

$$
\begin{aligned}
& \left.=\sum_{y \in f\left(\{0,1\}^{n}\right)} \operatorname{Pr}\left[f\left(U_{n}\right)=y\right] \cdot \operatorname{SD}\left(\left(y, H, H\left(U_{n}\right), H, U_{1} \mid f\left(U_{n}\right)\right),\left(y, H, U_{1}\right)\right)\right) \\
& \leq \max _{y \in f\left(\{0,1\}^{n}\right)} \operatorname{SD}\left(\left(y, H, H\left(X_{y}\right)\right),\left(y, H, U_{1}\right)\right) \\
& \leq \max _{y \in f\left(\{0,1\}^{n}\right)} \operatorname{SD}\left(\left(H, H\left(X_{y}\right)\right),\left(H, U_{1}\right)\right)
\end{aligned}
$$

Since $\mathrm{H}_{\infty}\left(X_{y}\right)=\log (d(n))$ for any $y \in f\left(\{0,1\}^{n}\right)$, The leftover hash lemma yields that

$$
\begin{aligned}
\operatorname{SD}\left(\left(H, H\left(X_{y}\right)\right),\left(H, U_{1}\right)\right) & \leq 2^{\left.\left(1-H_{\infty}\left(X_{y}\right)-2\right)\right) / 2} \\
& =2^{(1-\log (d(n))) / 2}=\operatorname{neg}(n) .
\end{aligned}
$$

Further remarks

Remark 9

- We can output $\Theta(\log d(n))$ bits,
- g and b are not defined over all input length.

Section 2

The Computational Case

Proving Goldreich-Levin Theorem

Theorem 10 (Goldreich-Levin)

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a OWF, and define
$g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=f(x), r$.
Then $b(x, r)=\langle x, r\rangle_{2}$, is an hardcore predicate of g.
Note that if $b(x, r)$ is (almost) a family of pairwise independent hash functions.
Proof: Assume \exists PPT A, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{p(n)} \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$, where U_{n} and R_{n} are uniformly (and independently) distributed over $\{0,1\}^{n}$.
We show \exists PPT B and $q \in$ poly with

$$
\begin{align*}
& \text { T B and } q \in \text { poly with } \tag{2}\\
& \operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{B}(y) \in f^{-1}(y)\right] \geq \frac{1}{q(n)},
\end{align*}
$$

for every $n \in \mathcal{I}$. In the following fix $n \in \mathcal{I}$.

Focusing on a good set

Claim 11

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with
(1) $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
(2) $\alpha(x):=\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

Proof: Let $\mathcal{S}:=\left\{x \in\{0,1\}^{n}: \alpha(x) \geq \frac{1}{2}+\frac{1}{2 p(n)}\right\}$. It follows that

$$
\begin{gathered}
\operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] \leq \operatorname{Pr}\left[U_{n} \notin \mathcal{S}\right] \cdot\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \\
\leq\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \square
\end{gathered}
$$

We will present $q \in$ poly and a PPT B such that

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{B}(y=f(x)) \in f^{-1}(y) \geq \frac{1}{q(n)},\right. \tag{3}
\end{equation*}
$$

for every $x \in \mathcal{S}$. Fix $x \in \mathcal{S}$.

Perfect case

The perfect case $\alpha(x)=1$

For every $i \in[n]$, it holds that

$$
\mathrm{A}\left(f(x), e^{i}\right)=b\left(x, e^{i}\right)
$$

where $e^{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1, \underbrace{0, \ldots, 0}_{n-i})$.

- Hence, $x_{i}=\left\langle x, e^{i}\right\rangle_{2}=\mathrm{A}\left(f(x), e^{i}\right)$

We let $\mathrm{B}(f(x))=\left(\mathrm{A}\left(f(x), e^{1}\right), \ldots, \mathrm{A}\left(f(x), e^{n}\right)\right)$

Easy case: $\alpha(x) \geq 1-\operatorname{neg}(n)$

Fact 12

(1) $\forall r \in\{0,1\}^{n}$, the $r v\left(r \oplus R_{n}\right)$ is uniformly dist. over $\{0,1\}^{n}$
(2) $\forall w, y \in\{0,1\}^{n}$, it holds that $b(x, w) \oplus b(x, y)=b(x, w \oplus y)$

Hence, $\forall i \in[n]$:
(1) $\forall r \in\{0,1\}^{n}$ it holds that $x_{i}=b(x, r) \oplus b\left(x, r \oplus e^{i}\right)$
(2) $\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge \mathrm{A}\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right]$ $\geq 1-\operatorname{neg}(n)$
We let $\mathrm{B}(f(x))=\left(\mathrm{A}\left(f(x), R_{n}\right) \oplus \mathrm{A}\left(f(x), R_{n} \oplus\right.\right.$ $\left.\left.\left.e^{1}\right)\right), \ldots, \mathrm{A}\left(f(x), R_{n}\right) \oplus \mathrm{A}\left(f(x), R_{n} \oplus e^{n}\right)\right)$.

Intermediate case

Intermediate case: $\alpha(x) \geq \frac{3}{4}+\frac{1}{q(n)}$
For any $i \in[n]$, it holds that

$$
\begin{align*}
& \operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \tag{4}\\
& \quad \geq \operatorname{Pr}\left[A\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge A\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right] \\
& \quad \geq \frac{1}{2}+\frac{2}{q(n)}
\end{align*}
$$

Algorithm 13 (B)

Input: $f(x) \in\{0,1\}^{n}$
(1) For every $i \in[n]$

- Sample $r^{1}, \ldots, r^{v} \in\{0,1\}^{n}$ uniformly at random
- Let $m_{i}=\operatorname{maj}_{j \in[\nu]}\left\{\left(A\left(f(x), r^{j}\right) \oplus A\left(f(x), r^{j} \oplus e^{i}\right)\right\}\right.$
(2) Output $\left(m_{1}, \ldots, m_{n}\right)$

B's success provability

The following holds for "large enough" $v=v(n)$.

Claim 14

For every $i \in[n]$, it holds that $\operatorname{Pr}\left[m_{i}=x_{i}\right] \geq 1-\operatorname{neg}(n)$.
Proof: For $j \in[v]$, let the indicator rv W^{j} be 1 , iif $A\left(f(x), r^{j}\right) \oplus A\left(f(x), r^{j} \oplus e^{i}\right)=x_{i}$.
We want to lowerbound $\operatorname{Pr}\left[\sum_{j=1}^{v} W^{j}>\frac{v}{2}\right]$.

- The W^{j} are iids and $E\left[W^{j}\right] \geq \frac{1}{2}+\frac{2}{q(n)}$, for every $j \in[v]$

Lemma 15 (Hoeffding's inequality)

Let X^{1}, \ldots, X^{v} be iid over $[0,1]$ with expectation μ. Then,
$\operatorname{Pr}\left[\left|\frac{\sum_{j=v}^{v} X^{j}}{v}-\mu\right| \geq \varepsilon\right] \leq 2 \cdot \exp \left(-2 \varepsilon^{2} v\right)$ for every $\varepsilon>0$.
We complete the proof taking $X^{j}=W^{j}, \varepsilon=1 / 4 q(n)$ and $v \in \omega\left(\log (n) \cdot q(n)^{2}\right)$.

Actual case

The actual case: $\alpha(x) \geq \frac{1}{2}+\frac{1}{q(n)}$

- What goes wrong?
- Idea: guess the values of $\left\{b\left(x, r^{1}\right), \ldots, b\left(x, r^{\nu}\right)\right\}$ (instead of calling $\left\{\mathrm{A}\left(f(x), r^{1}\right), \ldots, \mathrm{A}\left(f(x), r^{\vee}\right)\right\}$)
- Problem: negligible success probability
- Solution: choose the samples in a correlated manner

Actual case

Algorithm B

Fix $\ell=\ell(n)($ will be $O(\log n))$ and set $v=2^{\ell}-1$.
We let $\mathcal{L} \subseteq[\ell]$ stands for non-empty subset.

Algorithm 16 (B)

Input: $f(x) \in\{0,1\}^{n}$
(1) Sample uniformly (and independently) $t_{1}, \ldots, t_{\ell} \in\{0,1\}^{n}$
(2) For all $\mathcal{L} \subseteq[\ell]$, set $r^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} t^{i}$
(3) Guess $\left\{b\left(x, t^{i}\right)\right\}$, and compute $\left\{b\left(x, r^{\mathcal{L}}\right)\right\}$ (how?)
(4) For all $i \in[n]$, let

$$
m_{i}=\operatorname{maj}_{\mathcal{L} \subseteq\{0,1\}^{n}}\left\{\mathrm{~A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)\right\}
$$

(5) Output $\left(m_{1}, \ldots, m_{n}\right)$

Fix $i \in[n]$, and let $W^{\mathcal{L}}$ be 1 , iff $\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)=x_{i}$. We want to lowerbound $\operatorname{Pr}\left[\sum_{\mathcal{L} \subseteq \ell \ell]} W^{\mathcal{L}}>\frac{v}{2}\right]$
Problem: the $W^{\mathcal{L}}$'s are dependent!

Actual case

Analyzing B's success probability

(1) Let T^{1}, \ldots, T^{ℓ} be iid over $\{0,1\}^{n}$.
(2) For every $\mathcal{L} \subseteq[\ell]$, let $R^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} T^{i}$.

Fact 17

(1) $\forall \mathcal{L} \subseteq[\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^{n}$
(2) $\forall w, y \in\{0,1\}^{n}$ and $\forall \mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$, it holds that $\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{C}^{\prime}}=y\right]=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=y\right]$

That is, the $R^{\mathcal{L}}$'s are pairwise independent.

Actual case

Proving Fact 17(2)

Assume wig. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

$$
\begin{aligned}
& \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=y\right] \\
& =\sum_{\left(t^{2}, \ldots, t^{\ell}\right) \in\{0,1\}^{(\ell-1) n}} \operatorname{Pr}\left[\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] . \\
& \quad \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=y \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
& =\sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}}\right.} \operatorname{Pr}\left[\left(T^{2}\right)=w\right. \\
& \left.\quad \cdot \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
& \left.\left.=\sum_{\left(t^{\mathcal{L}^{\prime}}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{C}}\right.} \operatorname{Pr}\left[\left(T^{\left.t^{\prime}\right)=w}, \ldots, T^{\ell}\right)=\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \cdot 2^{-n}\right)\right] \\
& =2^{-n} \cdot 2^{-n}=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=y\right] \square
\end{aligned}
$$

Pairwise independence variables

Definition 18 (pairwise independent random variables)

A sequence of random variables X^{1}, \ldots, X^{v} is pairwise independent, if $\forall i \neq j \in[v]$ and $\forall a, b$, it holds that

$$
\operatorname{Pr}\left[X^{i}=a \wedge X^{j}=b\right]=\operatorname{Pr}\left[X^{i}=a\right] \cdot \operatorname{Pr}\left[X^{j}=b\right]
$$

For every $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$, the rvs $R^{\mathcal{L}}$ and $R^{\mathcal{L}^{\prime}}$ are pairwise independent, and therefore also $W^{\mathcal{L}}$ and $W^{\mathcal{L}^{\prime}}$ (why?).

Lemma 19 (Chebyshev's inequality)

Let X^{1}, \ldots, X^{\vee} be pairwise-independent random variables with expectation μ and variance σ^{2}. Then, for every $\varepsilon>0$,

$$
\operatorname{Pr}\left[\left|\frac{\sum_{j=1}^{v} x^{j}}{v}-\mu\right| \geq \varepsilon\right] \leq \frac{\sigma^{2}}{\varepsilon^{2} v}
$$

Actual case

B's success provability cont

Assuming that B always guesses $\left\{b\left(x, t^{\prime}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

Taking $\varepsilon=1 / 2 q(n)$ and $v=2 n / \varepsilon^{2}$ (i.e., $\ell=\left\lceil\log \left(2 n / \varepsilon^{2}\right)\right\rceil$), yields that

$$
\begin{equation*}
\operatorname{Pr}\left[m_{i}=x_{i}\right]=\operatorname{Pr}\left[\frac{\sum_{\mathcal{L} \subseteq[l]} W^{\mathcal{L}}}{v}>\frac{1}{2}\right] \geq 1-\frac{1}{2 n} \tag{5}
\end{equation*}
$$

and by a union bound, B outputs x with probability $\frac{1}{2}$.
Taking the guessing into account, yields that B outputs x with probability at least $2^{-\ell-1} \in \Omega\left(n / q(n)^{2}\right)$.

Reflections

Hardcore functions. Similar ideas allows to output $\log n$ "pseudorandom bits"
Alternative proof for the LHL. Let X be a rv with over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq t$, and assume that $\mathrm{SD}\left(\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right),\left(R_{n}, U_{1}\right)\right)>\alpha=2^{-c \cdot t}$ for some universal $c>0$. Hence
(1) \exists (a possibly inefficient) algorithm D that distinguishes $\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right)$ from (R_{n}, U_{1}) with advantage α
(2) $\exists \mathrm{A}$ that predicts $\left\langle R_{n}, X\right\rangle_{2}$ given R_{n} with prob $\frac{1}{2}+\alpha$
(3) (by GL) $\exists \mathrm{B}$ that guesses X "from nothing", with prob $\alpha^{O(1)}>2^{-t}$

Reflections cont.

List decoding. An efficient encoding $C:\{0,1\}^{n} \mapsto\{0,1\}^{m}$, and a decoder D. Such that the following holds for any $x \in\{0,1\}^{n}$ and c of hamming distance $\frac{1}{2}-\delta$ from $C(x)$:
$D(c, \delta)$ outputs a list of size at most poly $(1 / \delta)$ that whp. contains x
The code we used here is known as the Hadamard code
LPN - learning parity with noise. Find x given polynomially many samples of $\left\langle x, R_{n}\right\rangle_{2}+N$, where $\operatorname{Pr}[N=1] \leq \frac{1}{2}-\delta$.
The difference comparing to Goldreich-Levin - no control over the R_{n} 's.

