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Abstract

Imagine a group of people where each day a pair of them want to go to the same

place (e.g., their place of work). Each person in the group owns a car, but they

prefer to save money and go together. How will they decide who will drive, and who

will be the passenger? This is called the “carpool” problem.

We look at the online case, where it is not known in advance who will be in each

pair. The algorithm must make decisions with only knowledge of previous events

and of the current event. In this paper, we concentrate on the case where the event

sequence is generated by an oblivious adversary, one that knows the algorithm, but

does not have knowledge of the algorithm’s random coin tosses (if there are any).

How is the performance of an algorithm measured? After all the events have been

processed, define the unfairness of each person as the absolute value of the difference

between the number of times the person has driven and the amount of times they

have been a passenger. The algorithm must minimize this value for each person in

the group.

There are two different scenarios that are of interest, one where every pair is possible

and one where there is a fixed rider every day and only the identity of the other

rider changes.

We show three lower bounds:

• For the case with a fixed rider, we prove an Ω(n) lower bound for any algorithm,

in the case that the event sequence is generated by an adaptive adversary.

• For the case with a fixed rider, there exists an algorithm which achieves a

constant expected unfairness when the events are uniform. We show an Ω(
√
n)



lower bound in the case where the events are determined by an oblivious

adversary.

• For the case where every pair is possible (i.e., there is no fixed rider), there

exists a natural randomized greedy algorithm. We show an Ω(log n) lower

bound for this algorithm if the events are generated by an oblivious adversary.

All the lower bounds shown are constructive, i.e., we show an event sequence that

achieves these bounds.





Table of Contents

Acknowledgments iv

1: Introduction 1

1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Adaptive Adversaries on the Star . . . . . . . . . . . . . . . . 4

1.1.2 Star Algorithm with Oblivious Adversaries on the Star . . . . 5

1.1.3 Randomized Global Greedy with Oblivious Adversaries on the

Clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2: Problem Statement 6

2.1 The Carpool Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Offline vs. Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Input Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Expected Unfairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Oblivious Adversary Toolbox . . . . . . . . . . . . . . . . . . . . . . 11

3: Lower Bound of Ω(n) for Adaptive Adversaries on the

Star 12

3.1 Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4: Oblivious Adversary Toolbox 17

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Normalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.3 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.4 Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5: Lower Bound of Ω(
√
n) for the Star Algorithm on the

Star 22

5.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.2 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.3 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.4 Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.5 The Lower Bound Sequence . . . . . . . . . . . . . . . . . . . 28

5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.3 Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.4 The Lower Bound Sequence . . . . . . . . . . . . . . . . . . . 37

6: Lower Bound of Ω(log n) for Randomized Global Greedy

on the Clique 40

6.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ii



6.1.1 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.3 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.4 Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.5 The Lower Bound Sequence . . . . . . . . . . . . . . . . . . . 48

6.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.2 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.4 Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.5 The Lower Bound Sequence . . . . . . . . . . . . . . . . . . . 60

7: Summary 65

7.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

*

iii



Acknowledgments

First, I would like to thank my supervisor Prof. Amos Fiat. Amos has given me a

wonderful opportunity to discover the world of research.

He has been very supportive of me and has helped with anything needed. We have

met many Fridays and Saturdays to talk about this research. Thank you very much!

Next, I would like to thank Claire Mathieu, Elias Koutsoupias and Anna Karlin

with whom I have had many fruitful exchanges regarding the carpooling problem in

general and specifically the lower bounds shown in this paper.

iv



I Introduction

In multiple experimental studies involving hundreds of graduate students, Loewen-

stein, Thompson, and Bazerman [7] give evidence that individuals are strongly averse

to outcomes where they are at a disadvantage relative to others. Moreover, albeit

significantly less so, the grad students were also averse to outcomes where they have

a relative advantage in payoff. Fehr and Schmidt [4] coined the phrase inequity

aversion to describe this phenomena. Festinger [5] had much earlier introduced

the concept of cognitive dissonance, and inequity aversion is modelled as a special

case thereof. Supposedly, inequity aversion may lead individuals to make significant

changes, including stopping interpersonal relationships where inequities arise.

The interest in online real-time services that allow drivers and passengers to organize

carpooling has been increasing in the last several years. Just looking at the amount

of carpooling applications available for smartphones suggests that there is interest

in this field.

One of the applications available is “Carma” [2] (formerly known as “Avego”). They

provide a service that pairs drivers and passengers in selected metropolitan areas.

The driver is allowed to collect a small fee for each mile driven.

Even one of the biggest technology companies has recently shown interest. In July

2015, the Google owned Waze has announced a ride-sharing service [10]. This appli-

cation pairs drivers and passengers that are taking a similar route and is currently

(August 2015) available in Israel’s Tel Aviv area.

The main theoretical model of interest was introduced by Fagin and Williams [3].

This is a stylized mathematical model in which one can study questions related to

minimizing inequity. As described in [3], “suppose that n people, tired of spending

1



their time and money in gasoline lines, decide to form a carpool. We present a

scheduling algorithm for determining which person should drive on any given day.

We want a scheduling algorithm that will be perceived as fair by all the members.”

A priori, it seems that fairness should not be hard to achieve, but — unfortunately

— precise answers as to what extent one can avoid inequity have been sought over

two decades with seemingly little progress. 1

Formally, each day t, a set of people St ⊆ {1, . . . , n} form a carpool. The goal is to

choose who drives, so that on all days t, the overall driving burden to date has been

partitioned fairly: Let fi(t) be driver i’s fair share of the driving on day t, which

is 1/|St| for each i ∈ St and 0 otherwise. Define Fi(t) to be driver i’s fair share

of the driving on all days up to day t, that is Fi(t) =
∑

τ≤t fi(τ), and let Di(t) be

the number of times i has actually driven out of the first t days. For a particular

sequence {St}Tt=1, and algorithm for deciding who drives, we define

the unfairness on day t = max
driver i

|Di(t)− Fi(t)|.

A carpool algorithm decides which person in St drives on day t; the maximum

unfairness of the algorithm is

max
T≥1

max
{St}Tt=1

[unfairness on day T ].

The offline version of the problem, when {St}Tt=1 is known in advance, is easy: there

is an algorithm that guarantees maximum unfairness of 1 (see, e.g. [9].)

Ajtai, Aspnes, Naor, Rabani, Schulman, and Waarts [1] studied the online version

of problem, in which the algorithm must select a driver on day t, based only on

the history up to time t. They obtained a number of extremely interesting results.

First, they showed that, up to losing a factor of 2, one may assume that all the sets

St consist of two persons. Thus, one can think of the process as a sequence of edge

1 We remark that this notion of equity is not that from interactions between Tom and Jerry both
are (approximately) equally well off. The notion here is global, taking all their interactions into
account. In total, Tom and Jerry should be approximately equal in payoff.
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additions2, say St = (i, j) at time t, to a multigraph on {1, . . . , n} (the people), with

the algorithmic decision being one of choosing the orientation of the edge (towards

the driver for that carpool). The goal then is to minimize3

max
vertex i

| indegree(i)− outdegree(i) | .

Ajtai et al. obtained results for two different online settings: when the events

(carpools) are selected at random, and when the events sequence is selected by an

oblivious adversary that knows the algorithm, but not the outcome of any random

choices the algorithm makes.

The first algorithm they considered was Global Greedy: on event (i, j), the driver

among i and j with minimum unfairness drives; in case of a tie, the choice is arbi-

trary. For a uniformly random event sequence, they showed that for each t, Global

Greedy has expected unfairness on that day of O(log log n).

For the adversarial case, Ajtai et al showed that every deterministic algorithm has

unfairness bn/2c. They also showed that this is tight: Global Greedy has unfair-

ness at most n/2 for every event sequence. They were able to obtain a better

upper bound4 using Randomized Local Greedy: This algorithm considers each pair

of drivers separately, and alternates which one drives each time they form a carpool.

The only randomness is in the uniformly random choice of which of the two drives

the very first time they carpool. They showed that Randomized Local Greedy has

maximum unfairness equal to Θ(
√
n log n). Finally, they proved that every random-

ized algorithm has maximum unfairness equal to Ω
(
(log n)1/3

)
.

2 We will call these edge additions events.
3 Note that indegree(i)− outdegree(i) = 2(Di(t)− Fi(t)). Dropping the factor of 1/2 in defining
the unfairness of a driver simplifies the discussion slightly.
4 Randomized Global Greedy, the version of Global Greedy in which ties are broken at random, is
conjectured to be much better, perhaps even polylog(n).
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1.1 Our Results

In paper [6] we (Fiat, Karlin, Koutsoupias, Mathieu and Zach) take a different

approach, studying the carpool problem in the context of social networks. The social

network context for the carpool problem is the setting where the people involved

belong to a social network G, and every event (carpool) is a pair of people that are

connected in the social network, i.e., an edge of G. In this context, the work of [3, 1]

can be seen as studying the special case where the social network is a clique.

Let G be a social network with n vertices, and of maximum degree d. We show that

it is enough to look at the case where G is a star with d leaves. We prove that for

every deterministic algorithm there exists a sequence resulting in unfairness bd/2c

and showed that this is tight. In the case the events are random, Global Greedy has

expected unfairness at least Ω((log n/ log log n)1/3). Also an analysis was given for

static algorithms. Static algorithms form a very natural class of randomized online

algorithms. Intuitively, they render an adversary powerless to construct a bad event

sequence: every event sequence performs the same against such an algorithm. It is

shown that every randomized static algorithm has unfairness Ω(
√
d) and therefore,

Randomized Local Greedy is essentially optimal among static algorithms.

In the full paper [6] the Star Algorithm is introduced and a O(1) bound on the

unfairness is shown where in the case that the graph is a star and the events are

randomly uniform. From this, bounds of Ω(log d) for a graph of bounded degree d

and Ω(log n) for a graph with bounded genus (e.g. a planar graph) are derived.

In this thesis I will not cover all of [6] but only the lower bounds in which I was

most involved.

1.1.1 Adaptive Adversaries on the Star

We present an adaptive adversary that achieves unfairness of at least n/4 for any

randomized algorithm, where n is the number of leaves.
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1.1.2 Star Algorithm with Oblivious Adversaries on the Star

We show a sequence that achieves a lower bound of Ω(
√
n). This hints that, in

essence, this algorithm is no better than any static algorithm when the events are

generated by an oblivious adversary.

1.1.3 Randomized Global Greedy with Oblivious Adversaries on the Clique

Ajtai et al [1] first presented the Randomized Global Greedy algorithm, and proved an

O(log n) upper bound when the events are uniformly random. We show a sequence

that achieves a lower bound of Ω(log n), and thus prove that Randomized Global

Greedy is Ω(log n) with an oblivious adversary. This is a new result, previously no

lower bound was known for Randomized Global Greedy better than the Ω(log1/3 n)

bound known for any randomized algorithm.

1.2 Notation

In what follows, we often suppress the dependence on t in our notation for the un-

fairness of driver i at time t. We label our vertices with natural numbers, specifically,

we use i to denote the driver i and u(i) to denote the unfairness of driver i at time

t (i.e., u(i) := 2Di(t) − Fi(t) = indegree(i) − outdegree(i)), where t is understood.

(Note that since u(i) is equal to indegree(i)−outdegree(i), it holds that
∑

i u(i) = 0

at all times.)
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II Problem Statement

2.1 The Carpool Problem

First we define the carpool problem formally. Let there be n vertices, V = {1, 2, . . . , n}

where each vertex represents a “rider”. Each day t there is a event σt = (vt, wt)

where vt, wt ∈ V and vt 6= wt. The algorithm must decide which of vt and wt will

drive. Denote dt as the driver on day t, and denote pt as the passenger on day t.

Let σ = σ1, σ2, . . . , σT be a sequence of events spanning T days. The unfairness

uσ(v) of vertex v over the event sequence σ is defined as

uσ(v) = |{1 ≤ t ≤ T |dt = v}| − |{1 ≤ t ≤ T |pt = v}|

Throughout this paper σ is implied so we use the notation u(v) instead of uσ(v).

The goal of the algorithm is to minimize

max
σ

max
v
|uσ(v)|.

This value is called the unfairness of the algorithm.

2.2 Social Networks

We consider a new model for the carpool problem which restricts the set of possible

events to a graph G. Thus only events of the form σt = (vt, wt) where the edge

(vt, wt) ∈ E(G) are possible.

A very simple example of a social network is the “star”, i.e., there is a distinguished

root r which must ride every day. E.g., we can state that for every t, vt = r.
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An adversarial lower bound on the star can easily be extended to a bound on a

graph with maximum degree d. Let vd be a maximal degree vertex. The vertex vd

and its adjacent edges induce a subgraph which is a star with d leaves. Run the

adversary on this graph. Thus a bound of Ω(f(n)) on the star becomes a bound of

Ω(f(d)) on a graph with maximum degree d.

In the context of social networks, the general case where every event (vt, wt) such

that vt, wt ∈ V is possible can be viewed as a clique, so G = Kn.

2.3 Offline vs. Online

Fagin and Williams [3] present the offline version of the problem, i.e., the algorithm

knows the whole sequence of events σ beforehand and when deciding who will be

the driver the algorithm has full knowledge of all past and future events. There is

an algorithm that guarantees maximum unfairness of 1 in this setting.

The online version of the problem is when only the previous and current event are

known at time t and the algorithm must make a decision who will drive before being

revealed the event σt+1. In this paper we solely consider the online case.

2.4 Input Settings

Three main types of input settings have been studied:

1. Stochastic Uniform Model - each event σt is uniformly and independently

distributed over all possible events (vt, wt) ∈ G.

2. Oblivious Adversary - the adversary who generates the sequence has full knowl-

edge of the algorithm but not of the instantiation of the random coin tosses

made.

3. Adaptive Adversary - the adversary has full knowledge of the algorithm and

learns the random coin tosses made by the algorithm, but only after assign-

7



ments are made. An adaptive adversary considers all previous events issued

and all previous actions made by the algorithm.

In this thesis we focus on the case where the events are generated by oblivious and

adaptive adversaries.

2.5 Fairness

In this subsection, we leave the 2-player scenario and look at the generalized carpool

problem in which at most k > 0 (and not necessarily 2) players want to carpool each

day. The fairness notion described above was first presented by Fagin and Williams

[3].

For a set V of n players define the event σt = (v1, v2, . . . , vn(t)) where 0 < n(t) ≤ k is

the number of players that want to carpool on day t. The event sequence spanning

T days is σ = σ1, σ2, . . . , σT .

Using this terminology the number of times player v should drive is optimally

∑
{1≤t≤T |v∈σt}

1

n(t)
.

If for all t, n(t) = 2, each player should drive half the days they participate. This is

the fairness notion used in this paper.

Naor [8] takes an axiomatic approach to defining fairness. Let φv(σ) be the “fair

share” of player v for event sequence σ. An algorithm should minimize the abso-

lute difference between the number of times player v drives and φv(σ). The four

requirements of φ are:

1. Full Coverage: The sum of the fair shares of all players equals the total number

of days in the event sequence, i.e.,
∑

v∈V φv(σ) = T .

2. Symmetry: If two players have exactly the same schedule, that is they appear

on the same set of days, then their fair shares should be the same.

8



3. Dummy: A player that never shows on any day has fair share 0.

4. Concatenation: Given two event sequences σ1, σ2 consider the event sequence

σ = σ1‖σ2. The fair share of each player v for σ is the sum of the fair shares

of v for σ1 and σ2, i.e., φv(σ) = φv(σ1) + φv(σ2).

Naor proves that the only function satisfying these requirements is the one given by

Fagin and Williams.

2.6 Expected Unfairness

We need to define unfairness for randomized algorithms. Let σ be an event sequence,

π the random coin tosses generated by the algorithm. The expected unfairness over

σ is

Eπ

[
max
v
|uσ(v)|

]
.

And thus the goal of the algorithm is to minimize

max
σ

Eπ

[
max
v
|uσ(v)|

]
.

2.7 Bounds

Tables 2.1 and 2.2 summarize old and new results under various input assumptions

and various underlying graphs. Inputs are either stochastic uniform sequences, gen-

erated by oblivious adversaries, or generated by adaptive adversaries. The underly-

ing graphs are the clique, the star network, and graphs of bounded degree/genus.

We (Fiat et al.) present these new bounds in paper [6]. In this thesis, I only present

the lower bounds in which I was most involved.

First we show a Θ(n) lower bound for any randomized algorithm on the star if the

event sequence is generated by an adaptive adversary.
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Setting
RGG

on the Clique
RLG

on the Clique
Det. Alg.

on the Clique
Stochastic Uniform Θ(log log n) [1] O(

√
n log n) [1] Θ(log log n) [1]

Oblivious Adversary
Ω(log1/3(n)) [1]

Ω(log n) Theorem 6.2.14
O(
√
n log n) [1] Θ(n) [1]

Adaptive Adversary Θ(n) [1] Θ(n) [1] Θ(n) [1]

Table 2.1: Previous and new bounds on the competitive ratios ob-
tained by Randomized Global Greedy (RGG), Randomized Local
Greedy (RLG) and deterministic algorithms in various settings.

Setting
Star Algorithm
on the Star

RGG
on the Star

Random Alg.
on the Star

Stochastic Uniform Θ(1) [6] Ω(( logn
log logn

)1/3) [6] ???

Oblivious Adversary Ω(
√
n) Theorem 5.2.9 ??? ???

Adaptive Adversary Θ(n) Theorem 3.2.5 Θ(n) Theorem 3.2.5 Θ(n) Theorem 3.2.5

Table 2.2: The bounds shown in this paper for the different algo-
rithms on the star. RGG is Randomized Global Greedy.

Setting
RGG on
the line

Det. Alg., bounded
genus graphs

Det. Alg.,
max. degree d

Stochastic Uniform Ω(( logn
log logn

)1/3) [6] O(log n) [6] ???

Oblivious Adversary Ω(( logn
log logn

)1/3) [6] ??? Θ(d) [6]

Table 2.3: The bounds shown in this paper for different social net-
works. RGG is Randomized Global Greedy.
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Also, we show that while Randomized Global Greedy has a large asymptotic bound

on its expected unfairness when run on the star for uniform adversaries, there exists

an algorithm, the Star Algorithm, which achieves a constant expected unfairness.

We also show that, unfortunately, this algorithm has a large expected unfairness for

oblivious adversaries, Ω(
√
n).

Finally, we improve the known Ω(log1/3 n) bound for Randomized Global Greedy for

oblivious adversaries when run on the clique, and show that it is Ω(log n).

In this thesis we only present the new bounds for oblivious and adaptive adversaries,

and not those for stochastic uniform event sequences.

2.8 Oblivious Adversary Toolbox

A major contribution of this thesis is the techniques, or “toolbox”, used to prove

the oblivious adversary lower bounds. In Section 4 we present idealized versions of

sequences, that after being processed manipulate the unfairness of the vertices in

specific ways. In Sections 5 and 6 we give concrete examples of sequences which have

these properties for, respectively, the Star Algorithm on the star and Randomized

Global Greedy on the clique.
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III Lower Bound of Ω(n) for Adaptive Adversaries on the

Star

In this section we show a constructive Ω(n) lower bound for any randomized

algorithm, when the social network is a star, in the adaptive adversary input setting.

3.1 Adversary

Let V = {1, 2, . . . , n} be the leaves of the star and let r be the root. We define

an adaptive adversary and prove that it achieves a lower bound of Ω(n) for any

randomized algorithm.

Recall that the unfairness u(v) for v ∈ S can be either positive,negative or zero.

Define the subsets:

V + = {v ∈ V |u(v) > 0},

V − = {v ∈ V |u(v) < 0},

V 0 = {v ∈ V |u(v) = 0}.

Remark 3.1.1. For simplicity, we assume that n is divisible by 4, but this is not

necessary.

Our adversary generates a sequence, until either |u(r)| ≥ n/4 or there is a leaf v

such that |u(v)| ≥ n/4. The sequence is generated as follows:

1. If there is a leaf v such that v ∈ V 0 then issue the event (r, v).

2. If V 0 = ∅ and |V +| ≥ n/2 then let V + = {v1, . . . , vk} such that u(vj) ≤ u(vj+1)

and issue the events (r, vj) in order of increasing j. Stop after processing an

event increases u(vj).
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3. If V 0 = ∅ and |V −| > n/2 then let V − = {v1, . . . , vk} such that u(vj) ≥ u(vj+1)

and issue the events (r, vj) in order of increasing j. Stop after processing an

event decreases u(vj).

3.2 Analysis

Lemma 3.2.1. The event sequence generated by the adaptive adversary described

above is well defined, i.e.,

1. Exactly one of the three cases happens at each iteration.

2. In case 2 either the unfairness of a leaf increases or u(r) > n/4.

3. In case 3 either the unfairness of a leaf decreases or u(r) < −n/4.

Proof. Each leaf is in exactly one of V +, V −, V 0 thus |V +| + |V −| + |V 0| = n. So

either V 0 6= ∅ and the first case occurs. Or |V +|+ |V −| = n and either |V +| ≥ n/2

and the second case is encountered or |V −| > n/2 and the third case happens.

We defined that the adversary stops if |u(r)| ≥ n/4. Thus, before entering this

iteration it holds that |u(r)| < n/4. If case 2 was entered, then |V +| ≥ n/2. If

the unfairness of all the leaves decreased then subsequent to each (r, vj) event the

unfairness of the root increased by 1. We assumed that u(r) > −n/4 and thus the

unfairness is now

u(r) > −n
4
+
n

2
=
n

4
.

If case 3 occurred, then |V −| > n/2. If the unfairness of all the leaves increased

then subsequent to each (r, vj) event the unfairness of the root decreased by 1. We

assumed that u(r) < n/4 and thus the unfairness is now

u(r) <
n

4
− n

2
= −n

4
.
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Define the potential function

Φ(V ) =
∑
v∈V

n|u(v)|.

Note that this potential function does not take into account the unfairness of the

root.

Lemma 3.2.2. After each iteration of the adversary’s decision loop the potential

Φ(V ) increases by at least n− 1 or |u(r)| ≥ n/4.

Proof. If |u(r)| ≥ n/4 we are done. Assume that |u(r)| < n/4. Let Φ = Φ(V ) be

the potential, u(v) be the unfairness of leaf v before processing the events generated

during the iteration. Let Φ′ = Φ(V ) be the potential, u′(v) be the unfairness of leaf

v subsequent to processing the events generated during the iteration.

We prove this by case analysis:

1. If there exists a leaf v such that v ∈ V 0 then |u′(v) − u(v)| = 1 so Φ′ − Φ =

n1 − n0 = n− 1.

2. If |V +| ≥ n/2 then from Lemma 3.2.1 the unfairness of one leaf was increased

and at most the unfairness of n− 1 leaves was decreased.

3. If |V −| > n/2 then from Lemma 3.2.1 the unfairness of one leaf was decreased

and at most the unfairness of n− 1 leaves was increased.

In cases 2 and 3 above, let the leaf whose value was changed be v` (remember the

14



order {v1, . . . , vk} such that |u(vj)| ≤ |u(vj+1)|). Thus

Φ′ − Φ =
∑
1≤j≤`

[
n|u

′(vj)| − n|u(vj)|
]

= n|u(v`)|+1 − n|u(v`)| +
∑

1≤j≤`−1

[
n|u(vj)|−1 − n|u(vj)|

]
≥ n|u(v`)|+1 − n|u(v`)| +

∑
1≤j≤`−1

[
n|u(v`)|−1 − n|u(v`)|

]
≥ n|u(v`)|+1 − n|u(v`)| + (n− 1)

[
n|u(v`)|−1 − n|u(v`)|

]
= n|u(v`)|+1 − n · n|u(v`)| + (n− 1)n|u(v`)|−1

= (n− 1)n|u(v`)|−1 ≥ n− 1.

Theorem 3.2.3. Assume that the social network is a star. For any randomized

algorithm, the adversary presented achieves unfairness Ω(n).

Proof. From Lemma 3.2.1 the event sequence generated by the adversary is well

defined and from Lemma 3.2.2, after each iteration of the adversary’s decision loop

either the potential Φ(V ) increases by at least n− 1 or |u(r)| ≥ n/4.

The initial potential is Φ(V ) = n. If after (n · nn/4−1)/(n− 1)− 1 iterations of the

loop the inequality |u(r)| < n/4 always holds then

Φ(V ) ≥ n · nn/4−1 − (n− 1) + n ≥ n · nn/4−1 + 1.

So there must be at least one leaf with unfairness ≥ n/4.

Remark 3.2.4. In [6] we present a non-constructive proof that the unfairness of any

deterministic algorithm is at least bn/2c and we also present an algorithm that

achieves this upper bound.

Theorem 3.2.5. The carpool problem on the star is Θ(n) if the event sequence is

generated by an adaptive adversary.

15



Proof. In [6] we present a deterministic algorithm with an upper bound of O(n) in

the adversarial input setting.

From 3.2.3 any algorithm must have an Ω(n) bound.
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IV Oblivious Adversary Toolbox

Previous tools used to give lower bounds for online algorithms in the context of obliv-

ious adversaries seem to consist of “guessing” a short sequence of random decisions,

and effectively transforming an oblivious adversary into a deterministic adversary

on a much smaller set of agents.

To obtain our lower bounds, we make use of some new techniques that may possibly

be of independent interest. We define the notion of “set unfairness” and then present

specific event sequences that manipulate this value. These can be seen as a generic

“toolbox” to be used by oblivious adversaries.

4.1 Preliminaries

We use the following notation:

1. Let V = {1, 2, . . . , n} be the set of vertices.

2. Let u(v) for v ∈ V be the unfairness of the vertex v.

3. The unfairness vector of S ⊆ V , S = {v1, v2, . . . , vm} is 〈u(v1), u(v2), . . . , u(vn)〉.

We extend the definition of unfairness of vertices to a notion of unfairness of sets.

We call this the “potential” of a set.

Definition 4.1.1 (Set Potential). Define the potential of a set S ⊆ V with respect

to a “base unfairness” u ∈ Z as

Φu(S) =
∑
v∈S

(u(v)− u).

17



Observation 4.1.2. Let u ∈ Z be some value, let S ⊆ V be a set of vertices,

and let σ = (v1, w1), (v2, w2), . . . , (vT , wT ) be a sequence of events such that for all

1 ≤ t ≤ T , vt, wt ∈ S. Denote Φinit(S) = Φu(S) before the sequence σ is processed,

Φend(S) = Φu(S) after the sequence is processed. Then Φinit(S) = Φend(S).

Another important notion is the “potential capacity” of a set.

Definition 4.1.3 (Potential Capacity). Let u ∈ Z be a “base unfairness”, A be an

algorithm and S ⊆ V be a set of vertices. Define capAu (S), the “potential capacity”

of S, to be the maximum absolute value of Φu(S). I.e., for any sequence of events

σ, the absolute value of the potential, Φu(S), after A processes σ, is bounded above

by capAu (S):

|Φu(S)| ≤ capAu (S).

4.2 Sequences

Remark 4.2.1. We present idealized sequences giving the principle ideas behind our

toolbox. We introduce these idealized sequences so as to give some intuition regard-

ing the purpose of the concrete sequences presented later on.

The actual sequences presented have weaker guarantees than the ones shown here.

Still, these weaker guarantees suffice to prove the lower bounds.

Remark 4.2.2. These sequences only issue events to vertices given to them as argu-

ments. Thus, they do not change the unfairness of any other vertex.

4.2.1 Pushing

This is a sequence on which several of the sequences presented later are based upon.

This sequence transfers or “pushes” potential from one set to another.

Properties of the idealized sequence pushAu (S1, S2):

Given an algorithmA, S1, S2 subsets of V , u ∈ Z, the idealized sequence pushAu (S1, S2)

has the following properties:
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Let Φ1
init = Φu(S1),Φ

2
init = Φu(S2) be the potentials before the algorithm A processes

pushAu (S1, S2). Similarly, let Φ1
end = Φu(S1),Φ

2
end = Φu(S2) be the potentials after

A processes the sequence pushAu (S1, S2). If |Φ1
init + Φ2

init| ≤ capAu (S2) then

Φ2
end = Φ1

init + Φ2
init.

Remark 4.2.3. From Observation 4.1.2 this implies that Φ1
end = 0.

Remark 4.2.4. The guarantees of pushAu (S1, S2) depend on the choice of u, for a

different value the guarantees won’t necessarily hold.

4.2.2 Normalizing

This sequence “normalizes” the unfairness of the vertices in S ⊆ V and makes them

equal.

Property of the idealized sequence normalizeAu (S):

Let S ⊆ V such that Φu(S) = 0 for some u ∈ Z. Then after the algorithm A

processes normalizeAu (S), for every v, w ∈ S

u(v) = u(w) = u.

4.2.3 Distillation

This sequence concentrates or “distills” the potential of a set S into a subset of S. For

this to be defined, the vertices of S need to be well ordered. E.g. S = {v1, v2, . . . , vm}

and vi < vj if i < j.

Definition 4.2.5 (distillAu (S, k)). Given k pairwise disjoint subsets of S

S1 = (v1, v2, . . . , vk), S2 = (vk+1, vk+2, . . . , v2k), . . . , Sm/k(vm−k+1, vm−k+2, . . . vm).
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Let A be an algorithm. Define the `’th push subsequence as

push` = pushAu (S`,

m/k⋃
i=`+1

Si).

Define distillAu (S, k) as the concatenation of m/k − 1 push sequences

distillAu (S, k) = push1‖push2‖ · · · ‖pushm/k−1.

Remark 4.2.6. From the guarantees of pushu(S1, S2), subsequent to algorithm A

processing distillAu (S, k) and for any 1 ≤ ` ≤ m/k, if |Φu(S)| ≤ capAu (
⋃m/k
i=`+1 Si)

then

Φu(

m/k⋃
i=`+1

Si) = Φu(S).

4.2.4 Accumulation

The final sequence in our toolbox. This sequence repeatedly generates unfairness in

a subset and pushes this unfairness into another subset.

First we look at a subsequence that generates the unfairness, genAu (G1, G2).

Properties of the idealized sequence genAu (G1, G2):

Let A be an algorithm, G1, G2 ⊂ V and let Φ1 = Φu(G1) be the potential before

A processes genAu (G1, G2) and let Φ′1 = Φu(G1) be the potential after A processes

genAu (G1, G2). Then genAu (G1, G2) is a sequence such that Φ′1, Φ1 are independent,

i.e., for all k ∈ Z, P (Φ′1 = k|Φ1) = P (Φ′1 = k) and there is a constant probability

that Φ1 6= 0.

The “accumulation” sequence uses both gen() and push() as subsequences.

Definition 4.2.7 (accAu (G1, G2, A, α)). Let A be an algorithm, G1, G2, A ⊂ V be

pairwise disjoint and let α ∈ N. Define

accAu (G1, G2, A, α) =
(
genAu (G1, G2)‖pushAu (G1, A)

)α
,
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where α is the number of repetitions of the subsequence genAu (G1, G2)‖pushAu (G1, A).

Thus G1, G2 are “generator” sets and A is an “accumulator” set.

Intuitively, the sequence accAu (G1, G2, A, α) generates unfairness in G1 and pushes

it into A an α number of times. So the potential Φu(A) does a (biased or unbiased)

random walk bounded by −capAu (A) and capAu (A). Thus, after many steps, we

expect that |Φu(A)| = Ω(capAu (A)).
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V Lower Bound of Ω(
√
n) for the Star Algorithm on the

Star

Consider the graph consisting of the star with 2n + 2 leaves (i.e., all events are to

pairs (r, v) where r is the root vertex and v is one of the leaves). Let the leaves be

V = {1, 2, . . . , 2n+ 2}.

The Star Algorithm is the following:

1. Every leaf 1 ≤ v ≤ 2n + 2 has a counter xv ∈ {−1, 0, 1}. Let S0, S1, and S−1

be random pairwise disjoint sets of sizes |S0| = n+1, |S1| = (n+1)/2, |S−1| =

(n + 1)/2. Initially, set xv = 0 for all v ∈ S0, set xv = 1 for all v ∈ S1, and

set xv = −1 for all v ∈ S−1. The root r maintains a counter xr = −
∑

v∈V xv,

which is initially equal to zero.

2. When a random event (r, v) arrives, if xv 6= 0 then the algorithm orients the

edge so that xv = 0. If xv = 0 and xr 6= 0 then the algorithm orients the edge

so that |xr| decreases. If xv = xr = 0 then the choice is random.

During the analysis we assume that u(v) = xv, i.e., the unfairness of a leaf is the

value of its counter. Note that this does not change an asymptotic bound by much

because |u(v)− xv| ≤ 1.

Remark 5.0.8. In the paper [6] we use the Star Algorithm to prove an upper bound

on the unfairness of uniform stochastic sequences derived from the star graph or

bounded genus graphs. For the upper bound it suffices that the sets S0, S1, S−1

be initialized deterministically. We note that the upper bound also holds if the

initialization were random.
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Contrawise, a lower bound for oblivious adversaries with deterministic initialization

is trivially Ω(n), the real question arises when the Sj sets are initialized randomly.

We show a non-trivial lower bound on the expected unfairness under various initial-

ization scenarios.

We prove the following theorem.

Theorem 5.0.9. Consider the graph consisting of the star with n leaves and root

r. Then there exists a sequence of events σ, such that E[|u(r)|] = Ω(n) after σ is

processed by the Star Algorithm.

Remark 5.0.10. This lower bound sequence also works if the initialization of the

counters is independent and identically distributed. I.e, if independently for all

v ∈ V , P (xv = −1) = P (xv = 1) = 1/4 and P (xv = 0) = 1/2.

5.1 Sequences

In this section we define concrete sequences that have similar properties to the ideal

ones presented in Section 4.

5.1.1 Preliminaries

In this section we consider Φu(S) where u = 0 and S is a set of leaves. Henceforth,

for S ⊆ V we use the notation

Φ(S) = Φ0(S) =
∑
v∈S

u(v).

We also omit the subscript u for the sequences we define, and we omit the superscript

A as it is implicitly assumed to be the Star Algorithm.

Let NZ(S) = |{v ∈ S|u(v) 6= 0}| be the number of leaves in S with non-zero unfair-

ness. Note that NZ(S) = |Φ(S)| iff either for all v ∈ S u(v) ∈ {0, 1} or for all v ∈ S

u(v) ∈ {−1, 0}.
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Remark 5.1.1. In Section 4.1 we defined a notion of “potential capacity” for a set

S ⊆ V . For the Star Algorithm, this notion is best approximated by cap(S) =

NZ(S).

5.1.2 Pushing

The sequence presented here is similar to the one presented in Section 4.2.1, albeit

with slightly different guarantees.

Let v′, v′′ ∈ V be distinct leaves and S = {v1, v2, v3, . . . , vm} a set of m leaves such

that {v′, v′′} and S are disjoint and m is even.

The sequence push({v′, v′′}, S) is composed of four subsequences

pushs1({v′, v′′}, S) = (r, v′), (r, v′′),

pushd1({v′, v′′}, S) = (r, vm), (r, vm), (r, vm−1), (r, vm−1), . . . , (r, v1), (r, v1),

(r, v′′), (r, v′′), (r, v′), (r, v′),

pushs2({v′, v′′}, S) = (r, v′), (r, v′′),

pushd2({v′, v′′}, S) = (r, vm), (r, vm), (r, vm−1), (r, vm−1), . . . , (r, v1), (r, v1),

(r, v′′), (r, v′′), (r, v′), (r, v′).

I.e,

push({v′, v′′}, S) = pushs1({v′, v′′}, S)‖pushd1({v′, v′′}, S)‖

pushs2({v′, v′′}, S)‖pushd2({v′, v′′}, S).

Remark 5.1.2. The subsequences pushs1({v′, v′′}, S) and pushs2({v′, v′′}, S) are iden-

tical as are pushd1({v′, v′′}, S) and pushd2({v′, v′′}, S). The differentiation between

them is helpful in the analysis.

Let Φinit(S) = Φ(S), Φinit({v′, v′′}) = Φ({v′, v′′}) be the potentials prior to process-

ing the sequence push({v′, v′′}, S), Φend(S) = Φ(S), Φend({v′, v′′}) = Φ({v′, v′′}) be

the potentials subsequent to processing the sequence push({v′, v′′}, S).
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The following lemma states the effect of push({v′, v′′}, S) on the potential of S.

Lemma 5.1.3. If |Φinit(S) + Φinit({v′, v′′})| ≤ NZ(S) then E[Φend(S)] = Φinit(S) +

Φinit({v′, v′′}).

Remark 5.1.4. This is the analog to the idealized case where |Φinit(S)+Φinit({v′, v′′})| ≤

cap(S)⇒ Φend(S) = Φinit(S) + Φ({v′, v′′}), i.e., not in expectation.

Example 5.1.5. To better clarify how this sequence works, we provide an example.

Let G be star with 4 vertices, V = {1, 2, 3, 4}.

We look at a possible processing of the event sequence push({1, 2}, {3, 4}). This

translates into the requests

• pushs1({1, 2}, {3, 4}) = (r, 1), (r, 2),

• pushd1({1, 2}, {3, 4}) = (r, 4), (r, 4), (r, 3), (r, 3), (r, 2), (r, 2), (r, 1), (r, 1),

• pushs2({1, 2}, {3, 4}) = (r, 1), (r, 2),

• pushd2({1, 2}, {3, 4}) = (r, 4), (r, 4), (r, 3), (r, 3), (r, 2), (r, 2), (r, 1), (r, 1).

Assume that the initial state is as given in Figure 5.1.

u(r) = 0

u(1) = 1

u(2) = 1

u(3) = -1

u(4) = -1

Figure 5.1: The initial state before processing push({1, 2}, {3, 4}).

Look at the state transitions subsequent to processing pushs1({1, 2}, {3, 4}). After

processing (r, 1) the only possibility is u(r) = 1 and u(1) = 0. So after processing

(r, 2) the state is u(r) = 2 and u(2) = 0.

25



u(r) = 1

u(1) = 0

u(2) = 1

u(3) = -1

u(4) = -1

(a)

u(r) = 2

u(1) = 0

u(2) = 0

u(3) = -1

u(4) = -1

(b)

Figure 5.2: The state after: (a) processing event (r, 1); (b) processing
event (r, 2).

Now look at the effect of processing pushd1({1, 2}, {3, 4}). After processing the

events (r, 4), (r, 4), the transitions in state are u(r) = 0 and u(4) = −1. After

processing the remainder of pushd1({1, 2}, {3, 4}), which is (r, 3), (r, 3), the state

stays the same.

u(r) = 0

u(1) = 0

u(2) = 0

u(3) = -1

u(4) = 1

Figure 5.3: The state after processing events (r, 4), (r, 4).

Subsequent to processing pushs2({1, 2}, {3, 4}), there are two possible states: one

with u(1) = 1, u(2) = −1, and u(r) = 0; another with u(1) = −1, u(2) = 1, and

u(r) = 0. For the rest of this example assume that the first possibility occurred.
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u(r) = 0

u(1) = 0

u(2) = 0

u(3) = -1

u(4) = 1

(a)

u(r) = 0

u(1) = 1

u(2) = -1

u(3) = -1

u(4) = 1

(b)

Figure 5.4: The state after: (a) processing subsequence
pushd1({1, 2}, {3, 4}); (b) processing subsequence pushs2({1, 2}, {3, 4}).

The unfairness of the root is 0, so processing pushd2({1, 2}, {3, 4}) has no effect.

u(r) = 0

u(1) = 1

u(2) = -1

u(3) = -1

u(4) = 1

Figure 5.5: The state after processing the whole sequence
push({1, 2}, {3, 4}).

The effect of push({1, 2}, {3, 4}) was to move the potential of the set {1, 2} to the

set {3, 4}.

5.1.3 Distillation

This is defined the same as in Section 4.2.3. Let S = {v1, v2, v3, . . . , vm} be a set

of m leaves such that m is even. As we assume that k = 2, we use the simplified

notation distill(S).
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Let

distill(S) = push({v1, v2}, {v3, . . . , vm})‖push({v3, v4}, {v5, . . . , vm})‖ · · · ‖

push({vm−3, vm−2}, {vm−1, vm}).

The sequence distill(S) distills the unfairness of S into the leaves with large indices.

Formally we prove the following lemma.

Lemma 5.1.6. With probability at least 1/2, there exists an `′ such that after the

algorithm processes the sequence distill(S)

• |Φ(S`′)| ≥ |Φ(S)|, and,

• NZ(S`′) = |Φ(S`′)|.

5.1.4 Accumulation

Again, this is a sequence with similar guarantees to those of the ideal sequence

presented in Section 4.2.4. Let G1 be a set of two leaves, G1 = {v′, v′′}, and let

G2 = {g1, g2, . . . , gn}, and A = {a1, a2, . . . , an} be sets of n leaves. Assume that

G1, G2, and A are pairwise disjoint.

First, let the generator be

gen({v′, v′′}, G2) = push({v′, v′′}, G2).

Thus acc(G1, G2, A, α) has the structure

acc(G1, G2, A, α) =
(
push({v′, v′′}, G2)‖push({v′, v′′}, A)

)α
.

5.1.5 The Lower Bound Sequence

Using the subsequences introduced we now show the concrete sequence that achieves

the lower bound.
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Split the leaves V = {1, 2, 3, . . . , 2n+ 2} into 3 random disjoint sets:

• G1 = {v′, v′′}.

• G2 = {g1, g2, . . . , gn}.

• A = {a1, a2, . . . , an}.

Define the event sequence R = (r, aj), j ∈ {3n/4 + 1, 3n/4 + 2, . . . , n}. The lower

bound is proved by running the algorithm on the sequence

acc(G1, G2, A, α)‖distill(A)‖R.

Remark 5.1.7. We assume that n is divisible by 4, this is not necessary.

5.2 Analysis

First, we prove a general property regarding the distribution of leaves with non-zero

unfairness.

Lemma 5.2.1. Consider any set T of leaves, any t and any sequence σ of t events.

Assume that the initial configuration is that a random set of 1/2 of the leaves are

assigned unfairness of zero, a random 1/4 of the leaves have unfairness of -1 and

the remainder are assigned unfairness 1. Then after the Star Algorithm processes σ

P

(
NZ(T ) ≥ |T |

2

)
≥ 1

2
.

Proof. The probability of any pattern of zeros/non-zeros is equal to the probability

of the same pattern reversed where non-zeros exchange roles with zeros. Ergo, the

probability that the number of zeros exceeds 1/2 equals the probability that the

number of non-zeros exceeds 1/2.
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5.2.1 Pushing

This is the sequence as defined in Section 5.1.2.

Lemma 5.2.2. Assume that the current configuration has u(r) = 0. Then after

processing the sequence push({v′, v′′}, S), one still has that u(r) = 0.

Proof. For simpler notation we omit the parameters of push({v′, v′′}, S) and just

write push. We use this simplification also for the subsequences of push.

Table 5.1 considers the effect of the sequence pushs1 assuming u(r) = 0 initially.

Observe that resulting state has u(r) ∈ {−2, 0, 2}. Table 5.2 gives the effect of a

double event of the form (r, v), (r, v) (v ∈ {v′, v′′} ∪ S), assuming u(r) ∈ {−2, 0, 2}.

Combining these effects, Table 5.3 gives the effect of the sequence pushs1||pushd1

assuming u(r) = 0 initially.

Observe that all states except (0, 1, 1) and (0,−1,−1) lead to u(r) = 0, and that no

state leads to (0, 1, 1) nor to (0,−1,−1). Thus, it follows by applying Table 5.3 twice

that the sequence pushs1||pushd1||pushs2||pushd2 leads to u(r) = 0 except possibly

when going through the intermediate state (±2, 0, 0).

It only remains to analyze the effect of the sequence pushs2||pushd2 on (±2, 0, 0).

Processing pushs2 leads to (0, 1, 1) or to (0,−1,−1), and pushd2 then keep this

unchanged. Thus in all cases, after processing push({v′, v′′}, S) one still has that

u(r) = 0.

Lemma 5.2.3. Assume that initially u(r) = 0. Then for v ∈ {v′, v′′} ∪ S, u(v) = 0

before processing push({v′, v′′}, S) iff u(v) = 0 after processing push({v′, v′′}, S).

Proof. A more careful analysis of Tables 5.1, 5.2 and 5.3 leads to the following

possibilities for 〈u(v′), u(v′′)〉 after push({v′, v′′}, S) has been processed: if all the

leaves in S with non-zero unfairness have the same unfairness, then processing

push({v′, v′′}, S) keeps everything unchanged; otherwise, the result is distributed

according to Table 5.4.
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〈u(v′), u(v′′)〉
before

〈u(v′), u(v′′)〉
after

u(r) after Probability

〈−1,−1〉 〈0, 0〉 -2 1
〈0,−1〉 〈1, 0〉 or 〈−1, 0〉 -2 or 0 1/2, 1/2
〈1, 1〉 〈0, 0〉 2 1
〈0, 1〉 〈−1, 0〉 or 〈1, 0〉 2 or 0 1/2, 1/2

〈−1, 0〉 or 〈1, 0〉 〈0,−1〉 or 〈0, 1〉 0 1
〈−1, 1〉 or 〈1,−1〉 〈0, 0〉 0 1

〈0, 0〉 〈−1, 1〉 or 〈1,−1〉 0 1/2, 1/2

Table 5.1: Effect of events (r, v′), (r, v′′), assuming u(r) = 0 before.

〈u(r), u(v)〉 before 〈u(r), u(v)〉 after
〈−2,−1〉 unchanged
〈−2, 0〉 unchanged
〈−2,1〉 〈0,−1〉
〈0,−1〉 unchanged
〈0, 0〉 unchanged
〈0, 1〉 unchanged
〈2,−1〉 〈0,1〉
〈2, 0〉 unchanged
〈2, 1〉 unchanged

Table 5.2: Effect of events (r, v), (r, v) where v ∈ {v′, v′′} ∪ S

〈u(r), u(v′), u(v′′)〉 before 〈u(r), u(v′), u(v′′)〉 after
〈0,−1,−1〉 〈0,0,0〉 or 〈−2, 0, 0〉
〈0,−1, 0〉 〈0, 0,−1〉
〈0,−1, 1〉 〈0, 0, 0〉
〈0, 0,−1〉 〈0,−1, 0〉 or 〈0,1,0〉
〈0, 0, 0〉 〈0, 1,−1〉 or 〈0,−1, 1〉
〈0, 0, 1〉 〈0, 1, 0〉 or 〈0,−1,0〉
〈0, 1,−1〉 〈0, 0, 0〉
〈0, 1, 0〉 〈0, 0, 1〉
〈0, 1, 1〉 〈0,0,0〉 or 〈2, 0, 0〉

Table 5.3: Effect of events pushs1({v′, v′′}, S)||pushd1({v′, v′′}, S). The
bold states are the ones where there was a change of u(vk) for some
vk ∈ S.
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〈u(v′), u(v′′)〉 before 〈u(v′), u(v′′)〉 after
〈−1,−1〉 〈−1,1〉 or 〈1,−1〉
〈−1, 0〉 〈−1, 0〉 or 〈1,0〉
〈−1, 1〉 〈−1, 1〉 or 〈1,−1〉
〈0,−1〉 〈0,−1〉 or 〈0,1〉
〈0, 0〉 〈0, 0〉
〈0, 1〉 〈0, 1〉 or 〈0,−1〉
〈1,−1〉 〈1,−1〉 or 〈−1, 1〉
〈1, 0〉 〈1, 0〉 or 〈−1,0〉
〈1, 1〉 〈−1,1〉 or 〈1,−1〉

Table 5.4: Effect of event sequence push({v′, v′′}, S), assuming u(r) = 0
before (and therefore after), and assuming that the non-zero unfair-
nesses of leaves in S∪{v′, v′′} do not all have the same sign. The bold
states are the ones where there was a change of u(ik) for some ik ∈ S.
When there are two final states, they each have probability 1/2.

Looking at Table 5.4, we note that for every v ∈ {v′, v′′}∪S, u(v) = 0 after processing

push({v′, v′′}, S) iff we already had u(v) = 0 before processing push({v′, v′′}, S).

Recall that Φinit(S) = Φ(S), Φinit({v′, v′′}) = Φ({v′, v′′}) are the potentials before

processing the sequence push({v′, v′′}, S); that Φend(S) = Φ(S), Φend({v′, v′′}) =

Φ({v′, v′′}) are the potentials after processing the sequence; and that NZ(S) =

|{v ∈ S|u(v) 6= 0}|.

Lemma 5.2.4. If |Φinit(S) + Φinit({v′, v′′})| ≤ NZ(S) then E[Φend(S)] = Φinit(S) +

Φinit({v′, v′′}).

Proof. From Lemma 5.2.2, u(r) = 0 before and after the sequence is processed,

and since no event concerns any leaf outside {v′, v′′} ∪ S, we have Φinit({v′, v′′}) +

Φinit(S) = Φend({v′, v′′}) + Φend(S).

Looking at the right column of Table 5.4, we observe that after processing push({v′, v′′}, S)

the value Φ({v′, v′′}) ∈ {−1, 0, 1} with expectation 0. This is true for any initial

value of 〈u(v′), u(v′′)〉. Thus E[Φend(S)] = Φinit(S) + Φinit({v′, v′′}).
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5.2.2 Distillation

We repeat the definition as given in Section 5.1.3. Let S = {v1, v2, v3, . . . , vm} be a

set of m leaves such that m is even. For ` ≤ m, define the tail S` of set S:

S` = {vk ∈ S|` ≤ k ≤ m}.

.

Lemma 5.2.5. With probability at least 1/2, there exists an `′ such that after the

algorithm processes the sequence distill(S):

• |Φ(S`′)| ≥ |Φ(S)|, and,

• NZ(S`′) = |Φ(S`′)|.

Proof. For any ` such that |Φinit(S)+Φinit({v′, v′′})| ≤ NZ(S), denote Φ` as the value

of Φ(S`) before processing push({v`, v`+1}, S`+2). From Lemma 5.2.4, E[Φ`+2] = Φ`.

Thus, if we look at the random variable Φ`, it is performing an unbiased random

walk with self-loops.

Let `′ be the first ` where NZ(S`) = |Φ`|. Denote this point in time t′. Given that

Φ` performed an unbiased random walk, with probability 1/2, |Φ`′| ≥ |Φ(S)|. Thus

at time t′, with probability 1/2

|Φ(S`′)| ≥ |Φ(S)|.

Given that all the later events in the sequence distill(S) are for leaves in S`′ , both

Φ(S`′) and NZ(S`′) are the same at time t′ and after distill(S) was processed.
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5.2.3 Accumulation

This is the sequence defined in Section 5.1.3. Let G1 be a set of two leaves, G1 =

{v′, v′′}, and let G2 = {g1, g2, . . . , gn}, and A = {a1, a2, . . . , an} be sets of n leaves.

Assume that G1, G2, A are pairwise disjoint.

First, let the generator be

gen({v′, v′′}, G2) = push({v′, v′′}, G2).

Thus acc(G1, G2, A, α) has the structure

acc(G1, G2, A, α) = (push({v′, v′′}, G2)‖push({v′, v′′}, A))α. (5.1)

Lemma 5.2.6. With probability 1/16, for a large enough α ∈ N, after the Star

Algorithm processes the sequence acc(G1, G2, A, α)

|Φ(A)| ≥ NZ(A)

2
.

Proof. Initially, with probability 1/2, exactly one of u(v′) and u(v′′) is non-zero.

Independently and with probability at least 1/4, NZ(A) < NZ(G2) − 1. Assume

that the sets {v′, v′′}, G2, A were chosen such that both of these are true.

From Table 5.4, the push({v′, v′′}, G2) and push({v′, v′′}, A) subsequences don’t

change the property that exactly one of u(v′), u(v′′) is non-zero nor do they change

the property that u(r) = 0.

From u(r) = 0 we conclude Φ(A) + Φ(G2) + u(v′) + u(v′′) = 0 and adding the fact

|u(v′) + u(v′′)| = 1 we get |Φ(A) + Φ(G2)| = 1. Given that Φ(A),Φ(G2) ∈ Z, they

must not have the same sign, so |Φ(A) + Φ(G2)| = ||Φ(A)| − |Φ(G2)||.

We proceed by contradiction. Assume that |Φ(G2)| = NZ(G2). Then |Φ(A) +

Φ(G2)| = ||Φ(A)| − |Φ(G2)|| = ||Φ(A)| − NZ(G2)|. But |Φ(A)| ≤ NZ(A) and

we assumed that NZ(A) < NZ(G2)− 1 so ||Φ(A)| − NZ(G2)| = NZ(G2)− |Φ(A)| ≥
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NZ(G2)−NZ(A) > 1 which is a contradiction to |Φ(A)+Φ(G2)| = 1. Thus |Φ(G2)| <

NZ(G2).

If |Φ(G2)| < NZ(G2) then from Table 5.4, after processing each push({v′, v′′}, G2)

subsequence: with probability 1/2 the sum u(v′) + u(v′′) is unchanged and with

probability 1/2 it is negated. Thus, regardless of the value of u(v′) + u(v′′) be-

fore processing push({v′, v′′}, G2), the distribution of u(v′)+u(v′′) before processing

push({v′, v′′}, A) is:

P (u(v′) + u(v′′) = −1) = 1

2
,

P (u(v′) + u(v′′) = 1) =
1

2
.

We define a Markov chain (shown in Figure 5.6) of the state of Φ(A), where a tran-

sition occurs each time a sequence push({v′, v′′}, A) is processed. The probabilities

of the transitions are:

For Φ /∈ {−NZ(A),NZ(A)}

P (Φ→ Φ− 2) =
1

4
,

P (Φ→ Φ) =
1

2
,

P (Φ→ Φ + 2) =
1

4
.

For Φ = −NZ(A)

P (Φ→ Φ) =
3

4
,

P (Φ→ Φ + 2) =
1

4
.
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−NZ(A)
−NZ(A)

+1
· · · NZ(A)

−1
NZ(A)

3/4

1/4

1/2

1/4 1/4

1/2

1/4

3/4

Figure 5.6: The Markov chain for Φ(A). The node labels are the
potential Φ(A) at that state, the edge labels are the transition prob-
abilities.

For Φ = NZ(A)

P (Φ→ Φ− 2) =
1

4
,

P (Φ→ Φ) =
3

4
.

This is an ergodic, regular Markov chain. Thus the limit of the distribution is

a stationary distribution. Moreover, the transition matrix is symmetric, thus the

stationary distribution is uniform. Φ(A) is bounded between −NZ(A) and NZ(A).

Then for a large enough α, with probability≥ 1/2, after the Star Algorithm processes

acc(G1, G2, A, α)

|Φ(A)| ≥ NZ(A)

2
.

Corollary 5.2.7. With probability at least 1/32, after the Star Algorithm processes

the sequence acc(G1, G2, A, α)

|Φ(A)| ≥ n

4
.

Proof. From Lemma 5.2.6

P

(
|Φ(A)| ≥ NZ(A)

2

)
≥ 1

16
.
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Applying Lemma 5.2.1 to A after the sequence acc(G1, G2, A, α) has been processed

P

(
NZ(A) ≥ |A|

2

)
= P

(
NZ(A) ≥ n

2

)
≥ 1

2
.

These two are independent, thus

P
(
|Φ(A)| ≥ n

4

)
≥ P

(
|Φ(A)| ≥ NZ(A)

2

∧
NZ(A) ≥ n

2

)
= P

(
|Φ(A)| ≥ NZ(A)

2

)
· P
(
NZ(A) ≥ n

2

)
≥ 1

32
.

5.2.4 The Lower Bound Sequence

Recall the lower bound sequence presented in Section 5.1.5,

acc(G1, G2, A, α)‖distill(A)‖R.

Let A′ = {aj|3n/4 + 1 ≤ j ≤ n} be the last n/4 indices in A.

Lemma 5.2.8. After the Star Algorithm processes the sequence acc(G1, G2, A, α)‖distill(A),

we have

P
(
|Φ(A′)| ≥ n

8

)
≥ 1

128
.

Proof. Applying Lemma 5.2.1 to A′ after the sequence acc(G1, G2, A, α)‖distill(A)

has been processed

P

(
NZ(A′) ≥ |A

′|
2

)
= P

(
NZ(A′) ≥ n

8

)
≥ 1

2
. (5.2)

From Corollary 5.2.7

P
(
|Φ(A)| ≥ n

4

)
≥ 1

32
. (5.3)
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The probability that the Equation 5.2 holds is not independent from the probability

that Equation 5.3 holds, but they are positively correlated. Thus,

P
((

NZ(A′) ≥ n

8

)
∧
(
|Φ(A)| ≥ n

4

))
≥ 1

64
. (5.4)

From Lemma 5.2.5, with probability 1/2, after distill(A) is processed there exists

an `′ such that

|Φ(A`′)| ≥ |Φ(A)|, and, NZ(A`′) = |Φ(A`′)|. (5.5)

These events in Equations 5.4 and 5.5 are independent, so they occur simultaneously

with probability ≥ 1/128.

From |Φ(A)| ≥ n/4, we obtain that `′ ≤ 3n/4 because |Φ(A`′)| ≤ |A`′ | and |Φ(A`′)| ≥

|Φ(A)|. Thus A′ ⊆ A`′ so NZ(A′) = |Φ(A′)|.

From NZ(A′) ≥ n/8, we get that |Φ(A′)| ≥ n/8.

Theorem 5.2.9. The sequence acc(G1, G2, A, α)‖distill(A)‖R achieves an expected

unfairness of Ω(
√
n) on the Star Algorithm when run on a star graph with n leaves.

Proof. From Lemma 5.2.8, after processing acc(G1, G2, A, α)‖distill(A)

P
(
|Φ(A′)| ≥ n

8

)
≥ 1

128
.

Assume WLOG that Φ(A′) ≥ n/8. Then at this point in time, (prior to processing

R), at least n/8 of the leaves in A′ have unfairness 1 and at most n/8 have unfairness

0.

The effect of the events R are similar to a random walk for u(r). Each time leaf a

with unfairness 1 is requested, the value u(r) increases by 1. If u(r) > 0 then each

time a leaf with unfairness 0 is requested, then u(r) decreases by 1. If u(r) ≤ 0

then requesting a leaf with unfairness 0 might increase u(r). Thus, a random walk
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is a lower bound on the unfairness of u(r). A random walk of length n/8 has an

expected value of Ω(
√
n). So, after processing the events R the expected value of

u(r) is Ω(
√
n).

This occurs with probability greater than 1/128, so the expected unfairness of r

after processing acc(G1, G2, A, α)‖distill(A)‖R is

Ω(
√
n).
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VI Lower Bound of Ω(log n) for Randomized Global

Greedy on the Clique

In this section we show a lower bound of Ω(log n) on the Randomized Global Greedy

(which we refer to as RGG) algorithm when applied to a clique with n vertices. I.e.,

all events are pairs (v, w) where v 6= w are vertices. We show this lower bound for

event sequences generated by oblivious adversaries.

Given that the next even is (v, w), Randomized Global Greedy does the following:

• If u(v) > u(w) then set w to drive. This decreases u(v) and increases u(w).

• If u(v) < u(w) then set v to drive. This increases u(v) and decreases u(w).

• If u(v) = u(w) then set v to drive with probability 1/2 and set w to drive with

probability 1/2.

6.1 Sequences

In this section we present sequences that are similar to the ideal ones presented in

Section 4.

Let V be the set of vertices, V = {1, 2, . . . , n}, and let u(v) be the unfairness of a

vertex v ∈ V . Define the potential function for S ⊆ V and u ∈ Z as

Φu(S) =
∑
v∈S

(u(v)− u).

We omit the superscript A as it is implicitly assumed to be Randomized Global

Greedy.
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Remark 6.1.1. In Section 4.1 we defined a notion of “potential capacity” for a set

S ⊆ V . In the case of Randomized Global Greedy, for any u ∈ Z, and for any

∅ 6= S ⊆ V the value Φu(S) is unbounded.

Let F be the family of sequences defined later in this section. Let σ ∈ F and let

Sσ = {v ∈ V |(v, w) ∈ σ} be the set of vertices effected by σ. All the sequences

defined keep the invariant: for any v ∈ Sσ if u(v) ∈ {u− 1, u, u + 1} prior to RGG

processing σ then u(v) ∈ {u− 1, u, u+ 1} subsequent to RGG processing σ.

Thus, we define the potential capacity for family F to be

capFu (S) = |S|.

6.1.1 Pushing

This is a concrete example of a push() sequence as presented in Section 4.2.1. Let

v′, v′′, r ∈ V be distinct vertices and let S = {v1, v2, v3, . . . , vm} be a set ofm vertices

such that v′, v′′, r /∈ S. In addition to the parameters specified in Section 4.2.1, this

sequence takes as a parameter an additional vertex r ∈ V . The vertex r is a “virtual

root”. Also, let u ∈ Z be the “base unfairness“

Let α ∈ N be a large number, as a function of |V | = n. This value needs to be large

so that the pushing property occurs with high probability.

The sequence pushu({v′, v′′}, S, r) is composed of three subsequences

pushs1u ({v′, v′′}, S, r) = (r, v′), (r, v′′),

pushdu({v′, v′′}, S, r) = (r, vm), (r, vm), (r, vm−1), (r, vm−1), . . . , (r, v1), (r, v1),

pushs2u ({v′, v′′}, S, r) = (r, v′′), (r, v′).

I.e.,

pushu({v′, v′′}, S, r) =
(
pushs1u ({v′, v′′}, S, r)‖

pushdu({v′, v′′}, S, r)‖pushs2u ({v′, v′′}, S, r)
)α
.
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Remark 6.1.2. Although this sequence is similar to the push() sequence used in the

lower bound proof for Star Algorithm, there are some differences:

1. There is only one “double event” subsequence, pushdu({v′, v′′}, S, r).

2. The events (r, v′), (r, v′) and (r, v′′), (r, v′′) are not issued by pushdu({v′, v′′}, S, r).

3. The second “single event” subsequence (pushs2u ({v′, v′′}, S, r)) is in reversed

order compared with the first one (pushs1u ({v′, v′′}, S, r)). Thus, unlike in the

Star Algorithm’s sequence, they are not equal.

4. The subsequences are repeated many, α ∈ N, times and not only once.

Remark 6.1.3. The number of repetitions α is not a parameter of pushu({v′, v′′}, S, r)

because it is a function of |V | = n and identical for each pushu() sequence regardless

of its parameters.

We only analyze the sequence pushu({v′, v′′}, S, r) under the assumption that pred-

icates (a), (b), and (c) hold, defined as follows: (a) For some u ∈ Z, u(r) = u, (b)

That u(v′), u(v′′) ∈ {u− 1, u+ 1}, and (c) For all v ∈ S, u(v) ∈ {u− 1, u+ 1}.

Define Φinit(S) = Φ(S) and Φinit({v′, v′′}) = Φ({v′, v′′}) as the potentials before pro-

cessing the sequence pushu({v′, v′′}, S, r). Define Φend(S) = Φ(S) and Φend({v′, v′′}) =

Φ({v′, v′′}) as the potentials after processing the sequence. We prove the following

lemma.

Lemma 6.1.4. If |u(v′) + u(v′′) + Φinit(S)| <= |S| then, with high probability,

after the RGG algorithm processes the sequence pushu({v′, v′′}, S, r) the equality

Φend(S) = Φinit(S) + Φinit({v′, v′′}) holds.

Example 6.1.5. To better clarify how this sequence works, we provide an example.

Let |V | = 5 vertices. Denote one of the vertices as the “virtual root” r and denote

the others as {1, 2, 3, 4}. We look at the case α = 2.

Look at a possible processing of the event sequence push0({1, 2}, {3, 4}, r). This

translates into events
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• pushs10 ({1, 2}, {3, 4}, r) = (r, 1), (r, 2),

• pushd0({1, 2}, {3, 4}, r) = (r, 4), (r, 4), (r, 3), (r, 3),

• pushs20 ({1, 2}, {3, 4}, r) = (r, 2), (r, 1).

Thus

push0({1, 2}, {3, 4}, r) = ((r, 1), (r, 2), (r, 4), (r, 4), (r, 3), (r, 3), (r, 2), (r, 1))2.

Assume that the initial state is as given in Figure 6.1.

u(r) = 0

u(1) = 1

u(2) = 1

u(3) = -1

u(4) = -1

Figure 6.1: The state before processing push0({1, 2}, {3, 4}, r).

Look at the state transitions when processing the sequence pushs1({1, 2}, {3, 4}).

There is only one possibility after processing event (r, 1), u(r) = 1 and u(1) = 0.

But, after processing (r, 2) there are two possible states: one with u(r) = 0 and

u(2) = 2; another with u(r) = 2 and u(2) = 0. In this example, we assume that the

first possible state occurred.
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u(r) = 1

u(1) = 0

u(2) = 1

u(3) = -1

u(4) = -1

(a)

u(r) = 0

u(1) = 0

u(2) = 2

u(3) = -1

u(4) = -1

(b)

Figure 6.2: The state after: (a) processing event (r, 1); (b) processing
event (r, 2).

Given that u(r) = 0, the processing of pushd0({1, 2}, {3, 4}, r) has no effect. Thus,

before processing pushd0({1, 2}, {3, 4}, r), u(r) = 0, u(1) = 0, and u(2) = 2. Process-

ing pushs20 ({1, 2}, {3, 4}, r) returns the state to its initial value, u(r) = 0, u(1) = 1,

and u(2) = 1.

u(r) = 0

u(1) = 0

u(2) = 2

u(3) = -1

u(4) = -1

(a)

u(r) = 0

u(1) = 1

u(2) = 1

u(3) = -1

u(4) = -1

(b)

Figure 6.3: The state after: (a) processing subse-
quence pushd0({1, 2}, {3, 4}, r); (b) processing subsequence
pushs20 ({1, 2}, {3, 4}, r).

We now examine the effects of the second repetition of pushs10 ‖pushd0‖pushs20 . There

is still only one possibility after processing event (r, 1), u(r) = 1, and u(1) = 0.

But this repetition, after processing (r, 2) we assume that u(r) = 2, u(1) = 0, and

u(2) = 0.
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u(r) = 1

u(1) = 0

u(2) = 1

u(3) = -1

u(4) = -1

(a)

u(r) = 2

u(1) = 0

u(2) = 0

u(3) = -1

u(4) = -1

(b)

Figure 6.4: The state after: (a) processing event (r, 1); (b) processing
event (r, 2).

Now u(r) = 2 and subsequent to processing pushd0({1, 2}, {3, 4}, r), u(4) = 1 and

u(r) = 0. Processing pushs20 ({1, 2}, {3, 4}, r) can lead to two states: the first u(1) =

−1 and u(2) = 1; the second u(1) = 1 and u(2) = −1. Assume that the first

occurred.

u(r) = 0

u(1) = 0

u(2) = 0

u(3) = -1

u(4) = 1

(a)

u(r) = 0

u(1) = 1

u(2) = -1

u(3) = -1

u(4) = 1

(b)

Figure 6.5: The state after: (a) processing event sub-
sequence pushd0({1, 2}, {3, 4}, r); (b) processing subsequence
pushs20 ({1, 2}, {3, 4}, r).

The state shown in Figure 6.5 (b) is the final state after processing push0({1, 2}, {3, 4}, r).

The overall effect of sequence push0({1, 2}, {3, 4}, r) was to move the potential in

set {1, 2} to the set {3, 4}, while keeping u(r) = 0.
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6.1.2 Normalization

We achieve guarantees close to the ideal ones presented in 4.2.2. Let S = {v1, v2, . . . , vm} ⊆

V , |S| = m, and let u ∈ Z. Assume that m is even.

Let α′ ∈ N be a large integer, as a function of |V | = n. Let θk be a sequence of

random variables, each of which takes a a uniform distribution over vertices in S,

furthermore they are correlated as θ2j−1 6= θ2j for all j. Define normalizeu(S) as

follows:

normalize1u(S) = (v1, v2)‖(v3, v4)‖ · · · ‖(vm−1, vm),

normalize2u(S) = (θ1, θ2)‖(θ1, θ2)‖(θ3, θ4)‖|(θ3, θ4), ‖ · · · ‖(θα′−1, θα′‖(θα′−1, θα′),

normalizeu(S) = normalize1u(S)‖normalize2u(S).

We analyze this sequence only when every vertex v ∈ S has unfairness u(v) ∈

{u− 1, u+ 1} and only when Φu(S) = 0.

We prove the following lemma.

Lemma 6.1.6. Let S ⊆ V be a set such that Φu(S) = 0 for some u ∈ Z and that for

every vertex v ∈ S, the unfairness u(v) ∈ {u− 1, u+ 1}. After the RGG algorithm

processes normalizeu(S), with high probability, for every v ∈ S the unfairness u(v) =

u.

Remark 6.1.7. The number of repetitions α′ is not a parameter of normalizeu(S)

because it is a function of |V | = n and not a function of any of the parameters of

normalizeu(S).

6.1.3 Distillation

The definition of distill() shown here is very similar to the idealized one presented in

Section 4.2.3. In addition to the parameters specified in Section 4.2.3, this sequence

takes as a parameter a vertex r ∈ V . The vertex r is a “virtual root”. Let S =
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{v1, v2, v3, . . . , vm} be a set of m vertices such that m is even. We fix k = 2, and

thus to simplify the notation we omit k as a parameter and write distillu(S, r).

The distillu(S, r) event sequence is

distillu(S, r) = pushu({v1, v2}, {v3, . . . , vm}, r)‖pushu({v3, v4}, {v5, . . . , vm}, r)‖

· · · ‖pushu({vm−3, vm−2}, {vm−1, vm}, r).

Define the tail of S, S`, as S` = {vk ∈ S|k ≥ `}. Formally we prove that

Lemma 6.1.8. With high probability, after the RGG algorithm processes the se-

quence distillu(S)

Φu(S|S|−|Φu(S)|+1) = Φu(S).

Remark 6.1.9. Note that the set S|S|−|Φu(S)|+1 is the last |Φu(S)| vertices in S.

6.1.4 Accumulation

The sequences described herein give similar guarantees to those shown in Section

4.2.4. The new accumulation sequences are composed of two ideal generators and

accumulators. Let u ∈ Z be the “base unfairness”.

Choose pairwise disjoint subsets of V :

G1 = {v1, v2} ⊆ V, G2 = {v3, v4} ⊆ V,

A1 = {a11, a12, . . . , a1m} ⊆ V, A2 = {a21, a22, . . . , a2m} ⊆ V,

and choose r ∈ V \ (G1 ∪ G2 ∪ A1 ∪ A2). Call r a virtual root. Assume that m is

even.
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Define the sequence accu(G1, G2, A1, A2, r, α):

create(Ai) = (ai1, a
i
2), (a

i
1, a

i
2), . . . , (a

i
m − 1, aim),

genu(G1, G2) = normalizeu({v1, v2, v3, v4})‖(v1, v3)‖(v2, v4),

acciu(G1, G2, A1, A2, r) = genu(G1, G2, r)‖pushu(G1, A1, r)‖pushu(G2, A2, r),

accu(G1, G2, A1, A2, r, α) = create(A1)‖create(A2)‖

acc1u(G1, G2, A1, A2, r)‖ · · · ‖accαu(G1, G2, A1, A2, r).

We only analyze this sequence under the following conditions:

• Φu({v1, v2, v3, v4}) = 0.

• For every v ∈ A1, u(v) = u.

• For every v ∈ A2, u(v) = u.

• u(r) = u.

• Φu(A1) = −Φu(A2).

We prove the following lemma.

Lemma 6.1.10. Assume the conditions above hold. After the RGG algorithm

processes the sequence accu(G1, G2, A1, A2, α), P
(
(|Φu(A1)| ≥ m/2) ∧ (|Φu(A2)| ≥

m/2)
)
≥ 1/2.

6.1.5 The Lower Bound Sequence

In this section we show how to use the “accumulate” sequence in order to achieve

a Ω(log n) bound for the Randomized Global Greedy algorithm. To do this, we

define a sequence iter(S). Intuitively, iter(S) splits the vertices into 3 pairs of sets,

“accumulates” each pair, and then recursively calls iter() Ω(log n) times.
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Remark 6.1.11. In this section we assume that m is divisible by 12, but this is not

necessary. If m = k (mod 12) where k 6= 0 then redefine S to be S without k

vertices.

Let there be a “base unfairness” u ∈ Z and let S ⊆ V , |S| = m + 5, be a set of

vertices. Partition S into the following:

1. A virtual root r.

2. Two generator sets G1, G2, each of size 2.

3. Three pairs of sets (A1
1, A

1
2),(A

2
1, A

2
2), and (A3

1, A
3
2) where for i ∈ {1, 2, 3}, j ∈

{1, 2}, |Aij| = m/6.

We only analyze this sequence when, for some u ∈ Z, it holds that for every v ∈ S,

u(v) = u.

For i ∈ {1, 2, 3}, j ∈ {1, 2} denote Aij = {(aij)k |1 ≤ k ≤ m/6} and (Aij)
′ =

{(aij)k |m/12 + 1 ≤ k ≤ m/6} (i.e., the last m/12 vertices).

Define the subsequences iteri(S), for i ∈ {1, 2, 3} and α ∈ N as

iteri(S) = accu(G1, G2, A
i
1, A

i
2, r, α)‖distill(Ai1, r)‖distill(Ai2, r)‖iter((Ai1)′)‖iter((Ai2)′).

Finally, define the sequence

iter(S) = iter1(S)‖iter2(S)‖iter3(S).

These recursive calls can continue until reaching a depth of Ω(log n) because the

sizes of the sets decrease exponentially, i.e.,

|(Ai1)′|
|S|

=
|(Ai2)′|
|S|

=
1− 5/|S|

12
≈ 1

12
.
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The lower bound for RGG is achieved proven by giving the sequence iter(V ) as

input.

Theorem 6.1.12. The sequence iter(V ) achieves an expected unfairness of Ω(log n)

for Randomized Global Greedy on the clique.

6.2 Analysis

Denote V as the set of vertices, V = {1, 2, . . . , n}. Let u(v) be the unfairness of a

vertex where v ∈ V .

For S ⊆ V define the potential of S as

Φu(S) =
∑
v∈S

(u(v)− u).

6.2.1 Pushing

For clarity, we repeat the definition given in Section 6.1.1. Fix the “base unfairness”

to be u for some u ∈ Z. The sequence pushu({v′, v′′}, S, r) has three parameters:

1. A “virtual root” r such that u(r) = u.

2. Two vertices, whose unfairness will be pushed, v′ and v′′ such that v′, v′′ ∈

{u− 1, u+ 1}

3. A set S, which the unfairness will be pushed into, such that for every v ∈ S

u(v) ∈ {u− 1, u+ 1}.

Let S = {v1, v2, v3, . . . , vm}. Recall the definition of pushu({v′, v′′}, S, r)

pushu({v′, v′′}, S) =
(
pushs1u ({v′, v′′}, S, r)‖pushdu({v′, v′′}, S, r)‖pushs2u ({v′, v′′}, S, r)

)α
,
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〈u(v′), u(v′′)〉
before

〈u(v′), u(v′′)〉
after

r after Probability

〈u− 1, u− 1〉 〈u, u〉 u-2 1/2
〈u− 1, u− 1〉 〈u, u− 2〉 u 1/2
〈u− 1, u+ 1〉 〈u, u〉 u 1
〈u+ 1, u− 1〉 〈u, u〉 u 1
〈u+ 1, u+ 1〉 〈u, u+ 2〉 u 1/2
〈u+ 1, u+ 1〉 〈u, u〉 u+2 1/2

Table 6.1: Effect of events (r, v′), (r, v′′), where u(v′), u(v′′) ∈ {u−1, u+1}
and assuming u(r) = u before the pair arrived.

where

pushs1u ({v′, v′′}, S, r) = (r, v′), (r, v′′),

pushdu({v′, v′′}, S, r) = (r, vm), (r, vm), (r, vm−1), (r, vm−1), . . . , (r, v1), (r, v1),

pushs2u ({v′, v′′}, S, r) = (r, v′′), (r, v′).

Lemma 6.2.1. Let r be a “virtual root”, T = {v′, v′′} ∪ S. Assume that u(r) = u

and that for every vertex v in T , u(v) ∈ {u − 1, u + 1} . Then — process-

ing the subsequence pushs1u ({v′, v′′}, S, r)‖pushdu({v′, v′′}, S, r)‖pushs2u ({v′, v′′}, S, r)

keeps u(r) = u unchanged and u(v) ∈ {u− 1, u+ 1} still holds.

Proof. For brevity the parameters of pushu({v′, v′′}, S, r) and its subsequences are

omitted in this proof.

Initially, u(r) = u and for every vertex v ∈ T it holds that u(v) ∈ {u − 1, u + 1}.

Table 6.1 considers the of subsequence pushs1u and summarizes the possible values

of u(r), u(v′), and u(v′′).

Note that after processing pushs1u it is possible that u(v′) ∈ {u− 2, u, u+2} or that

u(v′′) ∈ {u− 2, u, u+ 2}.

If after pushs1u , u(r) = u then from Table 6.2 the subsequence pushdu does not affect

either u(r) or any u(vk).
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u(r) before u(vk) before u(r) after u(vk) after
u u-1 u u-1
u u+1 u u+1
u-2 u-1 u-2 u-1
u-2 u+1 u u-1
u+2 u-1 u u+1
u+2 u+1 u+2 u+1

Table 6.2: Effect of events, (r, vk), (r, vk). Note that u(r) and u(vk)
are unchanged except in two cases: (a) if prior to (r, vk), (r, vk) being
processed, u(r) = u − 2 and u(vk) = u + 1 or — (b) u(r) = u + 2 and
u(vk) = u− 1.

〈u(v′), u(v′′)〉
before

u(r) before
〈u(v′), u(v′′)〉

after
u(r) after Probability

〈u, u− 2〉 u 〈u− 1, u− 1〉 u 1
〈u, u〉 u-2 〈u− 1, u− 1〉 u 1
〈u, u〉 u 〈u− 1, u+ 1〉 u 1/2
〈u, u〉 u 〈u+ 1, u− 1〉 u 1/2
〈u, u〉 u+2 〈u+ 1, u+ 1〉 u 1
〈u, u+ 2〉 u 〈u+ 1, u+ 1〉 u 1

Table 6.3: Effect of events (r, v′′), (r, v′), when u(r) ∈ {u − 2, u, u + 2}
before the pair arrived and 〈u(v′), u(v′′)〉 is possible after pushs1u

If after pushs1u , u(r) = u − 2 then let k, 1 ≤ k ≤ m be the largest index such that

u(vk) = u + 1. After pushdu is processed then u(vk) = u − 1, u(r) = u, and all the

other values are unchanged.

If after pushs1u , u(r) = u + 2 then let k, 1 ≤ k ≤ m be the largest index such that

u(vk) = u − 1. After pushdu is processed then u(vk) = u + 1, u(r) = u, and all the

other values are unchanged.

It might be that in the cases u(r) = u − 2 or u(r) = u + 2 there is no such k.

Thus processing pushdu does not change either u(r) or any u(vk). In this case,

after processing the sequence pushs2u then from Table 6.3 the value of u(r) = u,

u(v′) = u(v′′) and u(v′), u(v′′) ∈ {u− 1, u+ 1}.

Thus, after processing pushs2u both u(r) = u and u(v′), u(v′′) are in {u− 1, u+1} so

this is correct after processing the whole subsequence pushs1u ‖pushdu‖pushs2u .
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Define Φinit(S) = Φ(S), Φinit({v′, v′′}) = Φ({v′, v′′}) as the potentials before process-

ing the sequence pushu({v′, v′′}, S, r), and define Φend(S) = Φ(S), Φend({v′, v′′}) =

Φ({v′, v′′}) as the potentials after processing the sequence pushu({v′, v′′}, S, r).

Lemma 6.2.2. If |u(v′) + u(v′′) + Φinit(S)| <= |S| then, with high probability,

after the RGG algorithm processes the sequence pushu({v′, v′′}, S, r) the equality

Φend(S) = Φinit(S) + Φinit({v′, v′′}) holds.

Proof. The parameters of pushu({v′, v′′}, S, r) and its subsequences are omitted in

this proof.

From Lemma 6.2.1, each time before processing pushs1u the unfairness of the root is

u, i.e., u(r) = u, and for every vertex v ∈ S, u(v) ∈ {u− 1, u+ 1}.

Look at different possible values of 〈u(v′), u(v′′)〉 before pushs1u was processed and

analyze the effect of processing the subsequence pushs1u ‖pushdu‖pushs2u .

1. If 〈u(v′), u(v′′)〉 = 〈u− 1, u− 1〉 then with probability 1/2, u(r) = u− 2 after

processing pushs1u . We assumed |u(v′) + u(v′′) + Φinit(S)| <= |S|, so after

processing pushdu there exists a w1 ∈ S where u(w1) decreases by 2. With

probability 1/2, u(r) stays the same, processing pushdu doesn’t change the

unfairness of any vertex, and after pushs2u , 〈u(v′), u(v′′)〉 = 〈u− 1, u− 1〉.

2. If 〈u(v′), u(v′′)〉 = 〈u + 1, u + 1〉 then with probability 1/2, u(r) = u + 2

after processing pushs1u . We assumed |u(v′) + u(v′′) + Φinit(S)| <= |S|, so

after processing pushdu there exists a w−1 ∈ S where u(w−1) increases by 2.

With probability 1/2, u(r) stays the same, processing pushdu doesn’t change

the unfairness of any vertex, and after pushs2u , 〈u(v′), u(v′′)〉 = 〈u+ 1, u+ 1〉.

3. In all other cases, u(r) doesn’t change after processing pushs1u so processing

pushdu doesn’t change the unfairness of any vertex.

If u(v′) 6= u(v′′) then after processing each σs2` sequence, the inequality u(v′) 6= u(v′′)

still holds and u(v′), u(v′′) ∈ {u−1, u+1}. Thus Φend(S) = Φinit(S)+Φinit({v′, v′′}).
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If u(v′) = u(v′′) then with high probability after a σs1` subsequence is processed

u(r) 6= u and thus u(v′) 6= u(v′′). After the corresponding σs2` is processed Φend(S) =

Φinit(S) + Φinit({v′, v′′}). Given that now u(v′) 6= u(v′′) this invariant keeps during

subsequent processing of σs1` subsequences.

Thus, with high probability,

Φend(S) = Φinit(S) + Φinit({v′, v′′})

after processing pushu.

Remark 6.2.3. As the above can happen with as high probability as needed, for the

remainder of the paper we assume that it occurs with probability 1.

6.2.2 Distillation

Fix the “base unfairness” to be u for some u ∈ Z. The sequence distillu(S, r), as

defined in Section 6.1.3, has two parameters:

1. A “virtual root” r such that u(r) = u.

2. A set S such that for every v ∈ S the unfairness u(v) ∈ {u− 1, u+ 1}.

Let S ⊆ V , |S| = m where m is even. Denote S = {v1, v2, . . . , vm} and define the

tail of S, S` = {ik ∈ S|k ≥ `}.

Lemma 6.2.4. With high probability, after the RGG algorithm processes the se-

quence distillu(S, r)

Φu(S|S|−|Φu(S)|+1) = Φu(S).

Proof. Let Φinit(S`) = Φu(S`) be the unfairness of S` prior to processing the subse-

quence pushu({v`−2, v`−1}, S`, r), and let Φend(S`) = Φu(S`) be the unfairness subse-

quent to processing the subsequence pushu({v`−2, v`−1}, S`, r).
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From Lemma 6.2.2, if |u(v`−2) + u(v`−1) + Φinit(S`)| <= |S`| then Φend(S`) =

Φinit(S`) + Φinit({v`−2, v`−1}). From induction

Φend(S`) = Φu(S1) = Φu(S). (6.1)

Let `′ be the first ` such that |u(v`′−2) + u(v`′−1) + Φinit(S`)| > |S ′`|. So |u(v`′−2) +

u(v`′−1) + Φinit(S`)| = |S ′`|+ 2 and |Φend(S`′−2)| = |u(v`′−2) + u(v`′−1) + Φinit(S`)| =

|S ′`| − 2 = |S`′−2|. Also, From Equation 6.1, Φend(S`′−2) = Φu(S). So |S`′−2| =

|Φu(S)|.

The rest of the sequence only contains vertices in S`′ ⊆ S`′−2, and from Lemma

6.2.1 the value of u(r) stays u. So, after the RGG algorithm processes the sequence

distillu(S, r), Φu(S`′−2) = Φu(S).

From the definition |S`′−2| = m− `′+3 and we have shown that Φu(S`′−2) = Φu(S)

so m− `′ + 3 = Φu(S) and `
′ − 2 = |S| − |Φu(S)|+ 1.

Remark 6.2.5. As the above can happen with as high probability as needed, for the

remainder of the paper we assume that it occurs with probability 1.

6.2.3 Normalization

Let S = {v1, v2, . . . , vm} ⊆ V . Recall the definition of normalizeu(S) presented in

Section 6.1.2:

normalize1u(S) = (v1, v2)‖(v3, i4)‖ · · · ‖(vm−1, vm),

normalize2u(S) = (θ1, θ2)‖(θ1, θ2)‖(θ3, θ4)‖|(θ3, θ4), ‖ · · · ‖(θα′−1, θα′‖(θα′−1, θα′),

normalizeu(S) = normalize1u(S)‖normalize2u(S).

Lemma 6.2.6. Let S ⊆ V be a set such that Φu(S) = 0 and that for every vertex

v ∈ S the unfairness u(v) ∈ {u− 1, u+1}. Then after the RGG algorithm processes

normalizeu(S), with high probability, for every v ∈ S u(v) = u.
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〈u(θ2j−1), u(θ2j)〉
before

〈u(θ2j−1), u(θ2j)〉
after

〈u− 2, u− 2〉 〈u− 2, u− 2〉
〈u− 2, u〉 〈u− 2, u〉
〈u-2,u+2〉 〈u,u〉
〈u, u〉 〈u, u〉
〈u, u+ 2〉 〈u, u+ 2〉
〈u+ 2, u+ 2〉 〈u+ 2, u+ 2〉

Table 6.4: Effect of events (θ2j−1), (θ2j)‖(θ2j−1), (θ2j), when
u(θ2j−1), u(θ2j) ∈ {u − 2, u, u + 2}. The order of the vertices is not
important, so symmetries have been omitted for brevity.

Proof. First look at the effect of normalize1u(S). The only possible values of 〈u(v2j−1), u(v2j)〉

before normalize1u(S) is processed are 〈u − 1, u − 1〉, 〈u − 1, u + 1〉, 〈u + 1, u − 1〉,

〈u + 1, u + 1〉. Thus, after processing the sequence normalize1u(S) it holds that

u(v2j−1), u(v2j) ∈ {u− 2, u, u+ 2}.

Table 6.4 shows the effect of processing (θ2j−1), (θ2j)‖(θ2j−1), (θ2j). Let u(θ2j−1), u(θ2j)

be the values before the events were processed, and let u′(θ2j−1), u
′(θ2j) be the val-

ues after the events were processed. The only cases in which 〈u(θ2j−1), u(θ2j)〉 6=

〈u′(θ2j−1), u′(θ2j)〉 and 〈u(θ2j−1), u(θ2j)〉 6= 〈u′(θ2j), u′(θ2j−1)〉 are 〈u(θ2j−1), u(θ2j)〉 ∈

{〈u− 2, u+ 2〉, 〈u+ 2, u− 2〉}.

Define #u(S) as the number of vertices in S with unfairness u

#u(S) = |{v ∈ S|u(v) = u}|.

It arises from Table 6.4 that a subsequence (θ2j−1), (θ2j)‖(θ2j−1), (θ2j) can increase

the value of #u(S) but that it cannot decrease its value. Given that Φu(S) = 0, if

there exists a v′ ∈ S such that u(v′) = u − 2 then there must exist a v′′ ∈ S such

that u(v′′) = u + 2. Thus if #u(S) 6= |S|, with probability ≥ 1/m2, both of these

are chosen and then #u(S) increases by 2.

The value #u(S) cannot decrease and for each subsequence (θ2j−1), (θ2j)‖(θ2j−1)

processed it increases with probability ≥ 1/m2. Given that α′ is large, with high
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probability after processing normalizeu(S) for every vertex v in S, u(v) = u.

Remark 6.2.7. As the above can happen with as high probability as needed, for the

remainder of the paper we assume that it occurs with probability 1.

6.2.4 Accumulation

Let u ∈ Z be the “base unfairness”. Recall the definition given in Section 6.1.4.

1. Sets G1 = {v1, v2}, G2 = {v3, v4}.

2. Set A1 = {a11, a12, . . . , a1m}.

3. Set A2 = {a21, a22, . . . , a2m}.

4. Vertex r is “virtual root”.

Assume that {r}, A1, A2, G1, G2 are pairwise disjoint.

Recall the definition of accu(G1, G2, A1, A2, r, α):

create(Ai) = (ai1, a
i
2), (a

i
1, a

i
2), . . . , (a

i
m − 1, aim),

genu(G1, G2) = normalizeu({v1, v2, v3, v4})‖(v1, v3)‖(v2, v4),

acciu(G1, G2, A1, A2, r) = genu(G1, G2, r)‖pushu(G1, A1, r)‖pushu(G2, A2, r),

accu(G1, G2, A1, A2, r, α) = create(A1)‖create(A2)‖

acc1u(G1, G2, A1, A2, r)‖ · · · ‖accαu(G1, G2, A1, A2, r).

We only analyze this sequence under the following conditions:

Φu({v1, v2, v3, v4}) = 0. (6.2)

∀v ∈ A1.u(v) = u. (6.3)

∀v ∈ A2.u(v) = u. (6.4)

u(r) = u. (6.5)
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We prove the following lemma.

Lemma 6.2.8. Assume conditions 6.2 - 6.5 hold. After the RGG algorithm pro-

cesses the sequence genu(G1, G2), with high probability,

Φu({v1, v2}) = −Φu({v3, v4}),

P (Φu({v1, v2}) = −2) = P (Φu({v1, v2}) = 2) = 1/4,

P (Φu({v1, v2}) = 0) = 1/2,

P (Φu({v3, v4}) = −2) = P (Φu({v3, v4}) = 2) = 1/4, and,

P (Φu({v3, v4}) = 0) = 1/2.

Proof. We assumed Φu({v1, v2, v3, v4}) = 0. Both of the events in the sequence

(v1, v3)‖(v2, v4) are for vertices in {v1, v2, v3, v4} thus after processing genu(G1, G2)

still Φu({v1, v2, v3, v4}) = 0.

The potential Φu({v1, v2, v3, v4}) = Φu({v1, v2}) + Φu({v3, v4}) so Φu({v1, v2}) =

−Φu({v3, v4}).

After the RGG algorithm processes normalizeu({v1, v2, v3, v4}), with high probabil-

ity, u(v1) = u(v2) = u(v3) = u(v4) = u. The results of processing (v1, v3) and of pro-

cessing (v2, v4) are independent so P
(
u(v1) = u(v2)

)
= P

(
u(v1) 6= u(v2)

)
= 1/2 and

P
(
u(v3) = u(v4)

)
= P

(
u(v3) 6= u(v4)

)
= 1/2. Given that u(v1), u(v2), u(v3), u(v4) ∈

{u− 1, u+ 1} this concludes the proof.

Lemma 6.2.9. Assume conditions 6.2 - 6.5 hold. After the RGG algorithm pro-

cesses the sequence accu(G1, G2, A1, A2, α), P
(
(|Φu(A1)| ≥ m/2) ∧ (|Φu(A2)| ≥

m/2)
)
≥ 1/2.

Proof. Define Φ` to be the value Φu(A1) after the RGG algorithm processes

acc`u(G1, G2, A1, A2, r).

The first sequence processed is create(A1)‖create(A2). After this sequence is pro-

cessed, every vertex v ∈ A1 ∪ A2 has unfairness u− 1 or v has unfairness u + 1. It

is also still true that Φ(A1) = Φ(A2) = 0.
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We assumed that initially Φu({v1, v2, v3, v4}) = 0. From Lemma 6.2.8, Φu({v1, v2}) =

−Φu({v3, v4}) after the genu(G1, G2) sequence is processed. After

pushu(G1, A1, r)‖pushu(G2, A2, r) is processed it is true that Φ(A1) = −Φ(A2) since

u(r) = u and Φu({v1, v2}) = Φu({v3, v4}) = 0.

From induction, after acciu(G1, G2, A1, A2, r) is processed Φu({v1, v2, v3, v4}) = 0 and

Φ(A1) = −Φ(A2).

Define Φ` = Φu(A1). Look at the value Φ` as a Markov chain (shown in Figure 6.6) ,

where transitions are between the times the algorithm processes acc`u(G1, G2, A1, A2, r)’s.

From Lemma 6.2.2, if |Φ`| 6= |A1|, Φ`+1 = Φ`+Φu({v1, v2}). From Lemma 6.2.8 the

value Φu({v1, v2}) is distributed:

P (Φu({v1, v2}) = −2) = 1/4,

P (Φu({v1, v2}) = 0) = 1/2,

P (Φu({v1, v2}) = 2) = 1/4.

Note that the cases |Φ`| = m are different then the other cases, in these cases no

more unfairness can be pushed into A1.

If Φ` /∈ {−m,m} (remember |A1| = m) the probabilities between transitions are

P (Φ→ Φ− 2) =
1

4
,

P (Φ→ Φ) =
1

2
,

P (Φ→ Φ + 2) =
1

4
.

If Φ` = m then the probabilities are

P (Φ→ Φ− 2) =
1

4
,

P (Φ→ Φ) =
3

4
.
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−m −m+ 2 · · · m− 2 m

3/4

1/4

1/2

1/4 1/4

1/2

1/4

3/4

Figure 6.6: The Markov chain for Φ`. The node labels are the poten-
tial Φ` at that state, the edge labels are the transition probabilities.

If Φ` = −m then the probabilities are

P (Φ→ Φ) =
3

4
,

P (Φ→ Φ + 2) =
1

4
.

This is an ergodic, regular Markov chain. Thus the limit of the distribution is

stationary, regardless of the starting position. Moreover, the transition matrix is

symmetric, so the limit distribution is uniform. |A1| = m so, after the RGG algo-

rithm processes accu(G1, G2, A1, A2, r, α),

P
(
|Φu(A1)| ≥

m

2

)
≥ 1

2
.

We proved that Φu(A1) = −Φu(A2) so |Φu(A1)| ≥ m/2 iff |Φu(A2)| ≥ m/2.

6.2.5 The Lower Bound Sequence

The following is a repetition of the definition first given in Section 6.1.5. Let there

be a “base unfairness” u ∈ Z. Let S ⊆ V , |S| = m + 5, such that for every v ∈ S,

u(v) = u.

Remark 6.2.10. In this section we assume that m is divisible by 12, but this is not

necessary. If m = k (mod 12) where k 6= 0 then redefine S to be S without k
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vertices.

Split S into the following

1. A virtual root r.

2. Two generator sets G1, G2 each of size 2.

3. Three pairs of sets (A1
1, A

1
2),(A

2
1, A

2
2),(A

3
1, A

3
2) where for i ∈ {1, 2, 3}, j ∈ {1, 2},

|Aij| = m/6.

For i ∈ {1, 2, 3}, j ∈ {1, 2} denote Aij = {(aij)k |1 ≤ k ≤ m/6} and (Aij)
′ =

{(aij)k |m/12 + 1 ≤ k ≤ m/6} (i.e., the last m/12 vertices).

Define the subsequences iteri(S), for i ∈ {1, 2, 3} and α ∈ N a large value

iteri(S) =accu(G1, G2, A
i
1, A

i
2, r, α)‖distill(Ai1, r)‖

distill(Ai2, r)‖iter((Ai1)′)‖iter((Ai2)′).

Define the sequence

iter(S) = iter1(S)‖iter2(S)‖iter3(S).

These recursive calls can continue till a depth of Ω(log n) because the sizes of the

sets decrease exponentially, i.e.,

|(Ai1)′|
|S|

=
|(Ai2)′|
|S|

=
1− 5/|S|

12
≈ 1

12
.

The lower bound is proven by running the sequence iter(V ).

Corollary 6.2.11. Let i ∈ {1, 2, 3}, j ∈ {1, 2}. With probability 1/2, after the

Randomized Global Greedy algorithm processes distill(Aij, r)

|Φu((A
i
1)
′)| = |(Ai1)′| and |Φu((A

i
2)
′)| = |(Ai2)′|.
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Proof. For i ∈ {1, 2, 3}, j ∈ {1, 2}, denote Φi
j = Φu(A

i
j) as the potential of Aij after

the RGG algorithm processes accu(G1, G2, A
i
1, A

i
2, r, α). This potential is the same

as the one after processing accu(G1, G2, A
i
1, A

i
2, r, α)‖distill(Aij, r).

From Lemma 6.2.9, with probability 1/2, |Φi
1| ≥ m/2 and |Φi

2| ≥ m/2. If this occurs

then from Lemma 6.2.4, after the RGG algorithm processes distill(Ai1, r)‖distill(Ai2, r),

|Φu((A
i
1)
′)| = |Φu((A

i
2)
′)| = m/2 = |(Ai1)′| = |(Ai2)′|.

We show an analysis that after Ω(log n) steps, with probability ≥ 1/2, there exists

a set (Aij)
′ for i ∈ {1, 2, 3}, j ∈ {1, 2} such that all of the vertices in (Aij)

′ have

unfairness Ω(log n). We show this not for the absolute value, the unfairness itself is

large and positive. A similar analysis could be done for a negative unfairness.

Look at the iter(V ) calls as creating a tree. The root of the tree is V , and it has at

most three children, each of the pairs of sets. These are ((Ai1)
′, (Ai2)

′) for i ∈ {1, 2, 3}.

Now, iter(Aij) is called for j ∈ {1, 2}. This continues the tree.

We define that an edge between a parent S and a child ((Ai1)
′, (Ai2)

′) exists if

|Φu((A
i
1)
′)| = |(Ai1)′| and |Φu((A

i
2)
′)| = |(Ai2)′|. From Lemma 6.2.11 this occurs with

probability 1/2. If this occurs, exactly one of the sets (Ai1)
′, (Ai2)

′ has Φu((A
i
j)
′) =

|(Aij)′|, i.e., the potential increases.

The adversary does not know which one of the sets (Ai1)
′ or (Ai2)

′ has an increased

unfairness (again, not the absolute value but the value itself). Thus, both of the

sets are part of the recursive call. For the analysis, we look only at the set with

increased unfairness and its children. I.e., only these sets are part of the tree.

Remark 6.2.12. Let S be a set such that there is no path between S and V . In this

case, it is not possible to apply Lemma 6.2.11. Randomly decide which one of the

sets (Ai1)
′ or (Ai2)

′ is chosen, and define that an edge exists between S and this set

with probability 1/2.
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V

(A1
2)
′

. . . . . . . . .

(A2
1)
′

. . . . . . . . .

(A3
1)
′

. . . . . . . . .

Figure 6.7: An example of a tree of sets. Solid lines are existing
edges, dashed lines are edges that don’t exist. The set (Ai1)

′, or (Ai2)
′

shown is the one where the unfairness of each vertex increased, or
a random one if |Φu((Ai1)′)| < |(Ai1)′| and |Φu((Ai2)′)| < |(Ai2)′|.

Lemma 6.2.13. For all d, the probability of there being a path from the root to a

vertex at depth d is at least 1/2.

Proof. Denote the vertex Ski as the i’th vertex at depth k. Note that the number of

vertices at depth k is 3k. We are interested whether the node at depth 1 has a path

to a node at depth d.

Let the indicator variable Xk
i denote whether the vertex Ski has a path to depth d.

Note that for all i, Xd
i = 1.

Each vertex Ski has 3 children, Sk+1
3i , Sk+1

3i+1, S
k+1
3i+2. From Lemma 6.2.11 and Remark

6.2.12:

P
(
Xk
i = 0

)
≤ 1

2

Xk+1
3i +Xk+1

3i+1+X
k+1
3i+2

.

All the indicator variables at the same depth, {Xk+1
i |1 ≤ i ≤ 3k+1}, are independent

and identically distributed. Denote the probability that Xk+1
i = 1 as pk+1. Thus

(
Xk+1

3i +Xk+1
3i+1 +Xk+1

3i+2

)
∼ Bin(3, pk+1).

So

P
(
Xk
i = 1

)
= pk ≥ 1−

3∑
j=0

1

2

j
(
3

j

)
(pk+1)

j(1− pk+1)
(3−j).
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Assume that pk+1 ≥ 1/2 then:

pk ≥1−
3∑
j=0

1

2

j
(
3

j

)
(pk+1)

j(1− pk+1)
(3−j)

≥1−
3∑
j=0

1

2

j+3
(
3

j

)
=1− 1

8

(
1 +

3

2
+

3

4
+

1

8

)
=1− 27

64

≥1

2
.

From the definition pd = 1 ≥ 1/2 so from induction p1 ≥ 1/2 and thus with

probability greater than 1/2 there is a path from the root to a node at depth d.

Theorem 6.2.14. The sequence iter(V ) achieves an expected unfairness of Ω(log n)

for the Randomized Global Greedy algorithm when run on a clique.

Proof. From Lemma 6.2.13, after the Randomized Global Greedy algorithm processes

iter(V ) there exists with probability ≥ 1/2 a path between the root and a vertex at

depth Ω(log n). Thus there exist sets such that each iteration the value of u increases

by one. After Ω(log n) iterations there exists a set such that u = Ω(log n).
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VII Summary

7.1 Our Results

We have shown three main results in this thesis:

1. We introduced an adaptive adversary that achieves unfairness of at least n/4

for any randomized algorithm, where n is the number of leaves.

2. We presented a sequence that achieves a lower bound of Ω(
√
n) for the Star

Algorithm when the social network is a star.

3. We showed a sequence that achieves a lower bound of Ω(log n) for Randomized

Global Greedy when the social network is a clique.

In addition, we presented a “toolbox” of sequences which were used to prove the

lower bounds for the oblivious adversaries.

7.2 Open Questions

There are several outstanding open questions regarding bounds for oblivious adver-

saries that follow from this thesis:

• Does Randomized Global Greedy achieve Θ(log n) on the clique?

• Is the lower bound of Ω(log n) for Randomized Global Greedy also correct on

the star?

• Is there also an upper bound of O(log n) for Randomized Global Greedy on the

star?

65



• Is there another algorithm that achieves O(log n) either on the clique or on

the star?

• Does there exist an algorithm that achieves O(1) on a significant class of

graphs?
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 תקציר

 

דמיינו קבוצה של אנשים שבכל יום זוג מהם רוצים לנסוע למקום משותף )למשל למקום    

כסף ולנסוע ביחד. כיצד לחסוך  מעדיפיםעבודתם(. בבעלות כל אחד מן האנשים רכב, אך הם 

 הסדר ההסעותמי ייקח את רכבו וינהג בו, ומי ייסע איתו? בעיה זו נקראת בעיית  יוחלט

(carpooling .)בלעז 

(, כלומר כשלא ידוע מראש בכל יום מי זוג האנשים שירצו onlineנסתכל על המקרה המקוון )   

ת בלבד, בלי ידע ות הקודמות ועל סמך הבקשה הנוכחילנסוע. על המנגנון להחליט על סמך הבקש

נון נתרכז במקרה בו רשימת הבקשות נוצרת על ידי יריב שיודע כיצד המנג על הבקשות העתידיות.

 פועל, אך לא יודע את ההגרלות האקראיות של המנגנון )אם קיימות כאלה(.

, ניתן להגדיר חוסר שיוויון עבור כל אדם שהמנגנון טיפל בכל הבקשותכיצד נמדד מנגנון? לאחר   

כערך המוחלט של הפרש כמות הפעמים שהסיע וכמות הפעמים שנסע. על מנגנון למזער את 

 .בקבוצהאדם המספר הזה עבור כל 

 

בו אפשרי שכל זוג שחקנים יסעו יחדיו, ותרחיש בו יש  שנתעניין בשני תרחישים שונים, תרחי  

 אדם קבוע שנוסע כל יום ויש מספר אנשים שיכולים להצטרף אליו.

 

 עבודה זו מציגה שלושה חסמים תחתונים:   

  ,נראה חסם  שלא מקבל החלטות אקראיות עבור כל מנגנוןובמקרה בו יש אדם קבוע

 .Ω(n)תחתון של 

 ,במקרה בו הבקשות ישנו מנגנון שמשיג ביצועים קבועים  במקרה בו יש אדם קבוע

Ω(n)ולא נקבעות על ידי יריב(. אנו נראה חסם תחתון של  מתפלגות בצורה אחידה
0.5

)  

 .במקרה בו הבקשות מגיעות מיריב עבור מנגנון זה

  יכולים לנסוע יחדיו נראה חסם של עבור המנגנון החמדן כאשר כל זוג אנשיםΩ(log n). 

 

, כלומר נראה סדרה של בקשות שמשיגה קונסטרוקטיבייםכל החסמים שנראה יהיו חסמים   

 חסם זה.
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