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Abstract

Imagine a group of people where each day a pair of them want to go to the same
place (e.g., their place of work). Each person in the group owns a car, but they
prefer to save money and go together. How will they decide who will drive, and who

will be the passenger? This is called the “carpool” problem.

We look at the online case, where it is not known in advance who will be in each
pair. The algorithm must make decisions with only knowledge of previous events
and of the current event. In this paper, we concentrate on the case where the event
sequence is generated by an oblivious adversary, one that knows the algorithm, but

does not have knowledge of the algorithm’s random coin tosses (if there are any).

How is the performance of an algorithm measured? After all the events have been
processed, define the unfairness of each person as the absolute value of the difference
between the number of times the person has driven and the amount of times they
have been a passenger. The algorithm must minimize this value for each person in

the group.

There are two different scenarios that are of interest, one where every pair is possible
and one where there is a fixed rider every day and only the identity of the other

rider changes.

We show three lower bounds:

e For the case with a fixed rider, we prove an 2(n) lower bound for any algorithm,

in the case that the event sequence is generated by an adaptive adversary.

e For the case with a fixed rider, there exists an algorithm which achieves a

constant expected unfairness when the events are uniform. We show an Q(y/n)



lower bound in the case where the events are determined by an oblivious

adversary.

e For the case where every pair is possible (i.e., there is no fixed rider), there
exists a natural randomized greedy algorithm. We show an Q(logn) lower

bound for this algorithm if the events are generated by an oblivious adversary.

All the lower bounds shown are constructive, i.e., we show an event sequence that

achieves these bounds.
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[ Introduction

In multiple experimental studies involving hundreds of graduate students, Loewen-
stein, Thompson, and Bazerman [7] give evidence that individuals are strongly averse
to outcomes where they are at a disadvantage relative to others. Moreover, albeit
significantly less so, the grad students were also averse to outcomes where they have
a relative advantage in payoff. Fehr and Schmidt [4] coined the phrase inequity
aversion to describe this phenomena. Festinger [5] had much earlier introduced
the concept of cognitive dissonance, and inequity aversion is modelled as a special
case thereof. Supposedly, inequity aversion may lead individuals to make significant

changes, including stopping interpersonal relationships where inequities arise.

The interest in online real-time services that allow drivers and passengers to organize
carpooling has been increasing in the last several years. Just looking at the amount

of carpooling applications available for smartphones suggests that there is interest

in this field.

One of the applications available is “Carma” [2] (formerly known as “Avego”). They
provide a service that pairs drivers and passengers in selected metropolitan areas.

The driver is allowed to collect a small fee for each mile driven.

Even one of the biggest technology companies has recently shown interest. In July
2015, the Google owned Waze has announced a ride-sharing service [10]. This appli-
cation pairs drivers and passengers that are taking a similar route and is currently

(August 2015) available in Israel’s Tel Aviv area.

The main theoretical model of interest was introduced by Fagin and Williams [3].
This is a stylized mathematical model in which one can study questions related to

minimizing inequity. As described in [3], “suppose that n people, tired of spending



their time and money in gasoline lines, decide to form a carpool. We present a
scheduling algorithm for determining which person should drive on any given day.
We want a scheduling algorithm that will be perceived as fair by all the members.”
A priori, it seems that fairness should not be hard to achieve, but — unfortunately
— precise answers as to what extent one can avoid inequity have been sought over

two decades with seemingly little progress. !

Formally, each day ¢, a set of people S; C {1,...,n} form a carpool. The goal is to
choose who drives, so that on all days ¢, the overall driving burden to date has been
partitioned fairly: Let f;(¢) be driver i’s fair share of the driving on day ¢, which
is 1/|Sy| for each ¢ € S; and 0 otherwise. Define F;(t) to be driver i’s fair share
of the driving on all days up to day ¢, that is Fi(t) = >__, fi(7), and let D;(t) be
the number of times ¢ has actually driven out of the first ¢t days. For a particular
sequence {S;}L ,, and algorithm for deciding who drives, we define

the unfairness on day ¢ = max |D;(t) — F;(t)].

driver 1%

A carpool algorithm decides which person in S; drives on day ¢; the maximum

unfairness of the algorithm is

max max [unfairness on day T.
T21 {8},
The offline version of the problem, when {S;}_; is known in advance, is easy: there

is an algorithm that guarantees maximum unfairness of 1 (see, e.g. [9].)

Ajtai, Aspnes, Naor, Rabani, Schulman, and Waarts [1] studied the online version
of problem, in which the algorithm must select a driver on day ¢, based only on
the history up to time ¢t. They obtained a number of extremely interesting results.
First, they showed that, up to losing a factor of 2, one may assume that all the sets

S; consist of two persons. Thus, one can think of the process as a sequence of edge

! We remark that this notion of equity is not that from interactions between Tom and Jerry both
are (approximately) equally well off. The notion here is global, taking all their interactions into
account. In total, Tom and Jerry should be approximately equal in payoff.



additions?, say S; = (i, j) at time ¢, to a multigraph on {1,...,n} (the people), with
the algorithmic decision being one of choosing the orientation of the edge (towards

the driver for that carpool). The goal then is to minimize®

max | indegree(i) — outdegree(i) | .
vertex 1

Ajtai et al. obtained results for two different online settings: when the events
(carpools) are selected at random, and when the events sequence is selected by an
oblivious adversary that knows the algorithm, but not the outcome of any random

choices the algorithm makes.

The first algorithm they considered was Global Greedy: on event (i,7), the driver
among ¢ and 7 with minimum unfairness drives; in case of a tie, the choice is arbi-
trary. For a uniformly random event sequence, they showed that for each t, Global

Greedy has expected unfairness on that day of O(loglogn).

For the adversarial case, Ajtai et al showed that every deterministic algorithm has
unfairness |n/2]. They also showed that this is tight: Global Greedy has unfair-
ness at most n/2 for every event sequence. They were able to obtain a better
upper bound* using Randomized Local Greedy: This algorithm considers each pair
of drivers separately, and alternates which one drives each time they form a carpool.
The only randomness is in the uniformly random choice of which of the two drives
the very first time they carpool. They showed that Randomized Local Greedy has
maximum unfairness equal to ©(y/nlogn). Finally, they proved that every random-

ized algorithm has maximum unfairness equal to Q((logn)'/?).

2'We will call these edge additions events.

3 Note that indegree(i) — outdegree(i) = 2(D;(t) — F;(t)). Dropping the factor of 1/2 in defining
the unfairness of a driver simplifies the discussion slightly.

4 Randomized Global Greedy, the version of Global Greedy in which ties are broken at random, is
conjectured to be much better, perhaps even polylog(n).



1.1 Owur Results

In paper [6] we (Fiat, Karlin, Koutsoupias, Mathieu and Zach) take a different
approach, studying the carpool problem in the context of social networks. The social
network context for the carpool problem is the setting where the people involved
belong to a social network GG, and every event (carpool) is a pair of people that are
connected in the social network, i.e., an edge of G. In this context, the work of [3, 1]

can be seen as studying the special case where the social network is a clique.

Let G be a social network with n vertices, and of maximum degree d. We show that
it is enough to look at the case where G is a star with d leaves. We prove that for
every deterministic algorithm there exists a sequence resulting in unfairness |d/2|
and showed that this is tight. In the case the events are random, Global Greedy has
expected unfairness at least Q((logn/loglogn)/?). Also an analysis was given for
static algorithms. Static algorithms form a very natural class of randomized online
algorithms. Intuitively, they render an adversary powerless to construct a bad event
sequence: every event sequence performs the same against such an algorithm. It is
shown that every randomized static algorithm has unfairness Q(\/c_i) and therefore,

Randomized Local Greedy is essentially optimal among static algorithms.

In the full paper [6] the Star Algorithm is introduced and a O(1) bound on the
unfairness is shown where in the case that the graph is a star and the events are
randomly uniform. From this, bounds of Q(logd) for a graph of bounded degree d

and Q(logn) for a graph with bounded genus (e.g. a planar graph) are derived.

In this thesis I will not cover all of [6] but only the lower bounds in which I was

most involved.

1.1.1 Adaptive Adversaries on the Star

We present an adaptive adversary that achieves unfairness of at least n/4 for any

randomized algorithm, where n is the number of leaves.



1.1.2  Star Algorithm with Oblivious Adversaries on the Star

We show a sequence that achieves a lower bound of Q(y/n). This hints that, in
essence, this algorithm is no better than any static algorithm when the events are

generated by an oblivious adversary.

1.1.3 Randomized Global Greedy with Oblivious Adversaries on the Clique

Ajtai et al [1] first presented the Randomized Global Greedy algorithm, and proved an
O(log n) upper bound when the events are uniformly random. We show a sequence
that achieves a lower bound of Q(logn), and thus prove that Randomized Global
Greedy is Q(logn) with an oblivious adversary. This is a new result, previously no
lower bound was known for Randomized Global Greedy better than the Q(log"®n)

bound known for any randomized algorithm.

1.2 Notation

In what follows, we often suppress the dependence on ¢ in our notation for the un-
fairness of driver ¢ at time t. We label our vertices with natural numbers, specifically,
we use ¢ to denote the driver i and u(i) to denote the unfairness of driver i at time
t (i.e., u(i) := 2D;(t) — F;(t) = indegree(i) — outdegree(i)), where ¢ is understood.
(Note that since (i) is equal to indegree (i) — outdegree(i), it holds that >, u(i) =0

at all times.)



I[I  Problem Statement

2.1 The Carpool Problem

First we define the carpool problem formally. Let there be n vertices, V = {1,2,...,n}
where each vertex represents a “rider”. Each day ¢ there is a event oy = (vy, wy)
where v, w; € V and vy # w;. The algorithm must decide which of v, and w; will

drive. Denote d; as the driver on day ¢, and denote p; as the passenger on day t.

Let 0 = 01,09,...,07 be a sequence of events spanning 7" days. The unfairness

uy(v) of vertex v over the event sequence o is defined as

up(v) = [{L <t < Tldy = v}| — [{1 <t < Tlp, = v}

Throughout this paper o is implied so we use the notation u(v) instead of u,(v).

The goal of the algorithm is to minimize

max max|u,(v)].
g v

This value is called the unfairness of the algorithm.

2.2 Social Networks

We consider a new model for the carpool problem which restricts the set of possible
events to a graph G. Thus only events of the form o, = (v;, w;) where the edge

(v, wy) € E(G) are possible.

A very simple example of a social network is the “star”, i.e., there is a distinguished

root r which must ride every day. E.g., we can state that for every t, v, = 7.



An adversarial lower bound on the star can easily be extended to a bound on a
graph with maximum degree d. Let vy be a maximal degree vertex. The vertex vy
and its adjacent edges induce a subgraph which is a star with d leaves. Run the
adversary on this graph. Thus a bound of (f(n)) on the star becomes a bound of

Q(f(d)) on a graph with maximum degree d.

In the context of social networks, the general case where every event (v, w;) such

that vy, w; € V' is possible can be viewed as a clique, so G = K,,.

2.3 Offline vs. Online

Fagin and Williams [3] present the offline version of the problem, i.e., the algorithm
knows the whole sequence of events o beforehand and when deciding who will be
the driver the algorithm has full knowledge of all past and future events. There is

an algorithm that guarantees maximum unfairness of 1 in this setting.

The online version of the problem is when only the previous and current event are
known at time ¢ and the algorithm must make a decision who will drive before being

revealed the event o,,1. In this paper we solely consider the online case.

2.4 Input Settings

Three main types of input settings have been studied:

1. Stochastic Uniform Model - each event o; is uniformly and independently

distributed over all possible events (v, w;) € G.

2. Oblivious Adversary - the adversary who generates the sequence has full knowl-
edge of the algorithm but not of the instantiation of the random coin tosses

made.

3. Adaptive Adversary - the adversary has full knowledge of the algorithm and

learns the random coin tosses made by the algorithm, but only after assign-



ments are made. An adaptive adversary considers all previous events issued

and all previous actions made by the algorithm.

In this thesis we focus on the case where the events are generated by oblivious and

adaptive adversaries.

2.5 Fairness

In this subsection, we leave the 2-player scenario and look at the generalized carpool
problem in which at most & > 0 (and not necessarily 2) players want to carpool each

day. The fairness notion described above was first presented by Fagin and Williams
[3].

For a set V' of n players define the event oy = (v1,v2, ..., V) Where 0 < n(t) < kis
the number of players that want to carpool on day ¢t. The event sequence spanning

T days iso = 01,092,...,0T.
Using this terminology the number of times player v should drive is optimally

1
2w

{1<t<T|ve€o:}

If for all ¢, n(t) = 2, each player should drive half the days they participate. This is

the fairness notion used in this paper.

Naor [8] takes an axiomatic approach to defining fairness. Let ¢,(0) be the “fair
share” of player v for event sequence o. An algorithm should minimize the abso-
lute difference between the number of times player v drives and ¢,(c). The four

requirements of ¢ are:

1. Full Coverage: The sum of the fair shares of all players equals the total number

of days in the event sequence, i.e., > _\, ¢y(0) =T

2. Symmetry: If two players have exactly the same schedule, that is they appear

on the same set of days, then their fair shares should be the same.



3. Dummy: A player that never shows on any day has fair share 0.

4. Concatenation: Given two event sequences oy, oy consider the event sequence
0 = o1||os. The fair share of each player v for o is the sum of the fair shares

of v for oy and o9, i.e., ¢,(0) = dp(01) + Py(02).

Naor proves that the only function satisfying these requirements is the one given by

Fagin and Williams.

2.6 Expected Unfairness

We need to define unfairness for randomized algorithms. Let o be an event sequence,
7 the random coin tosses generated by the algorithm. The expected unfairness over
o is

E, [mfux |uc,(v)|]

And thus the goal of the algorithm is to minimize

max F, [max |ug(v)|] :

2.7 Bounds

Tables 2.1 and 2.2 summarize old and new results under various input assumptions
and various underlying graphs. Inputs are either stochastic uniform sequences, gen-
erated by oblivious adversaries, or generated by adaptive adversaries. The underly-

ing graphs are the clique, the star network, and graphs of bounded degree/genus.

We (Fiat et al.) present these new bounds in paper [6]. In this thesis, I only present

the lower bounds in which I was most involved.

First we show a ©(n) lower bound for any randomized algorithm on the star if the

event sequence is generated by an adaptive adversary.



Setting

RGG
on the Clique

RLG
on the Clique

Det. Alg.
on the Clique

Stochastic Uniform

O(loglogn) [1]

O(vnlogn) [1]

O(loglogn) [1]

Q(log'(n)) [1]

Oblivious Adversary Q(log n) Theorem 6.2.14 O(v/nlogn) [1] O©(n) [1]
Adaptive Adversary O(n) [1] O(n) [1] O(n) [1]
Table 2.1: Previous and new bounds on the competitive ratios ob-
tained by Randomized Global Greedy (RGG), Randomized Local
Greedy (RLG) and deterministic algorithms in various settings.
Settin Star Algorithm RGG Random Alg.
& on the Star on the Star on the Star
Stochastic Uniform o(1) [6] Q(peer-)'?) [6] 777
Oblivious Adversary | ©(y/n) Theorem 5.2.9 77 77
Adaptive Adversary | ©(n) Theorem 3.2.5 | ©(n) Theorem 3.2.5 | ©(n) Theorem 3.2.5

Table 2.2: The bounds shown in this paper for the different algo-
rithms on the star. RGG is Randomized Global Greedy.

Setting RGG on Det. Alg., bounded Det. Alg.,
the line genus graphs max. degree d
Stochastic Uniform Q((b{gﬂ%)l/?’) 6] O(logn) [6] 777
Oblivious Adversary Q((log’ﬁ)gn)l/ 3) (6] 777 O(d) [6]

Table 2.3: The bounds shown in this paper for different social net-
works. RGG is Randomized Global Greedy.
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Also, we show that while Randomized Global Greedy has a large asymptotic bound
on its expected unfairness when run on the star for uniform adversaries, there exists
an algorithm, the Star Algorithm, which achieves a constant expected unfairness.

We also show that, unfortunately, this algorithm has a large expected unfairness for

oblivious adversaries, Q(y/n).

Finally, we improve the known Q(log'? n) bound for Randomized Global Greedy for

oblivious adversaries when run on the clique, and show that it is Q(logn).

In this thesis we only present the new bounds for oblivious and adaptive adversaries,

and not those for stochastic uniform event sequences.

2.8 Oblivious Adversary Toolbox

A major contribution of this thesis is the techniques, or “toolbox”, used to prove
the oblivious adversary lower bounds. In Section 4 we present idealized versions of
sequences, that after being processed manipulate the unfairness of the vertices in
specific ways. In Sections 5 and 6 we give concrete examples of sequences which have
these properties for, respectively, the Star Algorithm on the star and Randomized

Global Greedy on the clique.

11



[T Lower Bound of Q(n) for Adaptive Adversaries on the
Star

In this section we show a constructive 2(n) lower bound for any randomized

algorithm, when the social network is a star, in the adaptive adversary input setting.

3.1 Adversary

Let V= {1,2,...,n} be the leaves of the star and let r be the root. We define
an adaptive adversary and prove that it achieves a lower bound of (n) for any

randomized algorithm.
Recall that the unfairness u(v) for v € S can be either positive,negative or zero.

Define the subsets:

vVt = {ve V) >0},
Vo = {veV]ulv) <0},

V0 = {ve V() =0}
Remark 3.1.1. For simplicity, we assume that n is divisible by 4, but this is not
necessary.

Our adversary generates a sequence, until either |u(r)| > n/4 or there is a leaf v

such that |u(v)| > n/4. The sequence is generated as follows:

1. If there is a leaf v such that v € V° then issue the event (r,v).

2. VO =0and |[VT| > n/2 thenlet V' = {vy,..., v} such that u(v;) < u(v;i1)
and issue the events (r,v;) in order of increasing j. Stop after processing an

event increases u(v;).

12



3. VP =0and [V-| > n/2thenlet V= = {vy,..., v} such that u(v;) > u(v;41)
and issue the events (r,v;) in order of increasing j. Stop after processing an

event decreases u(v;).

3.2 Analysis

Lemma 3.2.1. The event sequence generated by the adaptive adversary described

above is well defined, i.e.,

1. FEzxactly one of the three cases happens at each iteration.
2. In case 2 either the unfairness of a leaf increases or u(r) > n/4.
3. In case 3 either the unfairness of a leaf decreases or u(r) < —n/4.

Proof. Each leaf is in exactly one of V', V= V? thus [V + |V~ |+ |[V° = n. So
either V° # () and the first case occurs. Or [V| + [V~| = n and either V| > n/2

and the second case is encountered or |V ~| > n/2 and the third case happens.

We defined that the adversary stops if |u(r)| > n/4. Thus, before entering this
iteration it holds that |u(r)| < n/4. If case 2 was entered, then |[V| > n/2. If
the unfairness of all the leaves decreased then subsequent to each (r,v;) event the
unfairness of the root increased by 1. We assumed that u(r) > —n/4 and thus the

unfairness is now

If case 3 occurred, then |V ~| > n/2. If the unfairness of all the leaves increased
then subsequent to each (r,v;) event the unfairness of the root decreased by 1. We

assumed that u(r) < n/4 and thus the unfairness is now

u(r) <

13



Define the potential function

(V) =) el

veV

Note that this potential function does not take into account the unfairness of the

root.

Lemma 3.2.2. After each iteration of the adversary’s decision loop the potential

O(V) increases by at least n — 1 or |u(r)| > n/4.

Proof. 1f |u(r)| > n/4 we are done. Assume that |u(r)| < n/4. Let & = &(V) be
the potential, u(v) be the unfairness of leaf v before processing the events generated
during the iteration. Let ® = ®(V') be the potential, v’(v) be the unfairness of leaf

v subsequent to processing the events generated during the iteration.

We prove this by case analysis:

1. If there exists a leaf v such that v € VY then |[u/(v) — u(v)] = 1s0 &' — P =

0

n'—nd=n-—1.

2. If |[V*| > n/2 then from Lemma 3.2.1 the unfairness of one leaf was increased

and at most the unfairness of n — 1 leaves was decreased.

3. If V7| > n/2 then from Lemma 3.2.1 the unfairness of one leaf was decreased

and at most the unfairness of n — 1 leaves was increased.

In cases 2 and 3 above, let the leaf whose value was changed be v, (remember the

14



order {vy,..., v} such that |u(v;)| < |u(vj41)]). Thus

o — E:%wwn_mwm}

1<j<t
= pludl+l _ plu(el 4 Z \u(va n|u(vj)|]
1<j<t—1
> pleal+1 _ pluwe)l Z nlue)l= n\u(ve)q
1<j<f—1
> pluedl+l el (n—1) [n|u(w)\—1 _ n\u(ve)q

_ el @0l ()01

= (n—1npot > p 1,

]

Theorem 3.2.3. Assume that the social network is a star. For any randomized

algorithm, the adversary presented achieves unfairness Q(n).

Proof. From Lemma 3.2.1 the event sequence generated by the adversary is well
defined and from Lemma 3.2.2, after each iteration of the adversary’s decision loop

either the potential ®(V') increases by at least n — 1 or |u(r)| > n/4.

The initial potential is ®(V) = n. If after (n-n™4"')/(n — 1) — 1 iterations of the

loop the inequality |u(r)| < n/4 always holds then

dV)>n-n"*1—(n—1)+n>n-n"/*141.

So there must be at least one leaf with unfairness > n/4. ]

Remark 3.2.4. In [6] we present a non-constructive proof that the unfairness of any
deterministic algorithm is at least [n/2] and we also present an algorithm that

achieves this upper bound.

Theorem 3.2.5. The carpool problem on the star is ©(n) if the event sequence is

generated by an adaptive adversary.

15



Proof. In [6] we present a deterministic algorithm with an upper bound of O(n) in

the adversarial input setting.

From 3.2.3 any algorithm must have an (n) bound. O

16



IV Oblivious Adversary Toolbox

Previous tools used to give lower bounds for online algorithms in the context of obliv-
ious adversaries seem to consist of “guessing” a short sequence of random decisions,
and effectively transforming an oblivious adversary into a deterministic adversary

on a much smaller set of agents.

To obtain our lower bounds, we make use of some new techniques that may possibly
be of independent interest. We define the notion of “set unfairness” and then present
specific event sequences that manipulate this value. These can be seen as a generic

“toolbox” to be used by oblivious adversaries.

4.1 Preliminaries

We use the following notation:

1. Let V. ={1,2,...,n} be the set of vertices.
2. Let u(v) for v € V' be the unfairness of the vertex v.

3. The unfairness vector of S C V', .S = {vy,v9, ..., 05} is (u(vy), u(ve), ..., u(vy,)).

We extend the definition of unfairness of vertices to a notion of unfairness of sets.

We call this the “potential” of a set.

Definition 4.1.1 (Set Potential). Define the potential of a set S C V' with respect

to a “base unfairness” u € Z as
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Observation 4.1.2. Let u € Z be some value, let S C V be a set of vertices,
and let 0 = (v1,wy), (va, ws), ..., (vp,wr) be a sequence of events such that for all
1<t <T,v,w €S5. Denote it (S) = Pu(S) before the sequence o is processed,

Dena(S) = ©,(S) after the sequence is processed. Then @iyt (S) = Penal(S).

Another important notion is the “potential capacity” of a set.

Definition 4.1.3 (Potential Capacity). Let u € Z be a “base unfairness”, A be an
algorithm and S C V be a set of vertices. Define cap(S), the “potential capacity”
of S, to be the maximum absolute value of ®,(S). Ie., for any sequence of events
o, the absolute value of the potential, ®,,(5), after A processes o, is bounded above
by capzt(S):

[.(S)] < capy(S).

4.2 Sequences

Remark 4.2.1. We present idealized sequences giving the principle ideas behind our
toolbox. We introduce these idealized sequences so as to give some intuition regard-

ing the purpose of the concrete sequences presented later on.

The actual sequences presented have weaker guarantees than the ones shown here.

Still, these weaker guarantees suffice to prove the lower bounds.

Remark 4.2.2. These sequences only issue events to vertices given to them as argu-

ments. Thus, they do not change the unfairness of any other vertex.

4.2.1 Pushing

This is a sequence on which several of the sequences presented later are based upon.

This sequence transfers or “pushes” potential from one set to another.
Properties of the idealized sequence pushf(Sl, Sa):

Given an algorithm A, Sy, Sy subsets of V', u € Z, the idealized sequence pushf(Sl, Ss)

has the following properties:
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Let ®!

init —

®,(S)), P2, = ,(S2) be the potentials before the algorithm A processes

push?'(Sy, S,). Similarly, let &L , = ®,(S;), ®2 , = ®,(S2) be the potentials after

A processes the sequence push?'(Sy, Sy). If [®L. + ®2 | < cap(S,) then

init

+ @2

init*

— P!

init

(1)2

end

Remark 4.2.3. From Observation 4.1.2 this implies that ®! ;, = 0.

Remark 4.2.4. The guarantees of pushuA(Sl, Sy) depend on the choice of u, for a

different value the guarantees won’t necessarily hold.

4.2.2  Normalizing

This sequence “normalizes” the unfairness of the vertices in S C V' and makes them

equal.
Property of the idealized sequence normalize;!(S):

Let S C V such that ®,(S) = 0 for some u € Z. Then after the algorithm A

processes normalize?(S), for every v, w € S

4.2.8  Distillation

This sequence concentrates or “distills” the potential of a set S into a subset of S. For
this to be defined, the vertices of S need to be well ordered. E.g. S = {v1,va, ..., 05}

and v; <wvjifi < j.

Definition 4.2.5 (distill(S, k)). Given k pairwise disjoint subsets of S

Sl = (’01, Vo, ... ,Uk), 52 = (Uk+1; V425 - - - ,ng), o ey Sm/k(vm_kﬂ, Um—k+25 - - - Um).
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Let A be an algorithm. Define the £’th push subsequence as

m/k
push’ = push?(S,, U Si).

1=0+1

Define distill*(S, k) as the concatenation of m/k — 1 push sequences
distﬂlf(S7 k) = pUShlﬂpuShQH . Hpushm/k*l,

Remark 4.2.6. From the guarantees of push,(Si, S2), subsequent to algorithm A

processing distill*(S, k) and for any 1 < £ < m/k, if |®,(S)| < capuA(U?i/g]il Si)

then
m/k

i=t+1
4.2.4  Accumulation

The final sequence in our toolbox. This sequence repeatedly generates unfairness in

a subset and pushes this unfairness into another subset.
First we look at a subsequence that generates the unfairness, gen’*(G, Gs).
Properties of the idealized sequence gen(Gy, G):

Let A be an algorithm, G1,Gs C V and let ®; = ®,(G;) be the potential before
A processes gen’'(G1,Gy) and let ®, = ®,(G1) be the potential after A processes
gen? (G4, Gy). Then gen? (G, Gs) is a sequence such that @), ®; are independent,
i.e., for all k € Z, P(®} = k|®;) = P(P] = k) and there is a constant probability
that &, # 0.

The “accumulation” sequence uses both gen() and push() as subsequences.

Definition 4.2.7 (acc (G, Go, A, ). Let A be an algorithm, G, Gy, A C V be

pairwise disjoint and let a € N. Define
acc; (G1, G2, A, a) = (gen(G1, Ga)|lpush;(G1, A))°,
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where « is the number of repetitions of the subsequence gen(Gy, Gy)||push (G, A).

Thus G, G5 are “generator” sets and A is an “accumulator” set.

Intuitively, the sequence acc;(G1,Ga, A, @) generates unfairness in G; and pushes
it into A an o number of times. So the potential ®,(A) does a (biased or unbiased)
random walk bounded by —cap(A4) and cap*(A). Thus, after many steps, we
expect that |®,(A)] = Q(capt(A)).
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V' Lower Bound of (y/n) for the Star Algorithm on the

Star

Consider the graph consisting of the star with 2n + 2 leaves (i.e., all events are to

pairs (r,v) where r is the root vertex and v is one of the leaves). Let the leaves be

V={1,2,...,2n+2}.

The Star Algorithm is the following:

1. Every leaf 1 < v < 2n + 2 has a counter z, € {—1,0,1}. Let Sy, S1, and S_4
be random pairwise disjoint sets of sizes |So| =n+1,|51| = (n+1)/2,|S_1]| =
(n+1)/2. Initially, set x, = 0 for all v € Sp, set z, = 1 for all v € S, and
set x, = —1 for all v € S_;. The root r maintains a counter x, = — ZUGV Tys

which is initially equal to zero.

2. When a random event (r,v) arrives, if x, # 0 then the algorithm orients the
edge so that x, = 0. If x, = 0 and z, # 0 then the algorithm orients the edge

so that |z,| decreases. If z, = x, = 0 then the choice is random.

During the analysis we assume that u(v) = z,, i.e., the unfairness of a leaf is the
value of its counter. Note that this does not change an asymptotic bound by much

because |u(v) — z,| < 1.

Remark 5.0.8. In the paper [6] we use the Star Algorithm to prove an upper bound
on the unfairness of uniform stochastic sequences derived from the star graph or
bounded genus graphs. For the upper bound it suffices that the sets Sy, Si, S
be initialized deterministically. We note that the upper bound also holds if the

initialization were random.
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Contrawise, a lower bound for oblivious adversaries with deterministic initialization
is trivially 2(n), the real question arises when the S; sets are initialized randomly.
We show a non-trivial lower bound on the expected unfairness under various initial-

1zation scenarios.
We prove the following theorem.

Theorem 5.0.9. Consider the graph consisting of the star with n leaves and root
r. Then there exists a sequence of events o, such that E|u(r)|] = Q(n) after o is

processed by the Star Algorithm.

Remark 5.0.10. This lower bound sequence also works if the initialization of the

counters is independent and identically distributed. I.e, if independently for all

veV, Plx,=—-1)=P(z,=1)=1/4 and P(x, =0) = 1/2.

5.1 Sequences

In this section we define concrete sequences that have similar properties to the ideal

ones presented in Section 4.

5.1.1 Preliminaries

In this section we consider ®,,(S) where u =0 and S is a set of leaves. Henceforth,

for S C V we use the notation

O(S) = Do(S) = > u(v).

vES

We also omit the subscript u for the sequences we define, and we omit the superscript

A as it is implicitly assumed to be the Star Algorithm.

Let NZ(S) = |[{v € S|u(v) # 0}| be the number of leaves in S with non-zero unfair-
ness. Note that NZ(S) = |®(9)] iff either for all v € S u(v) € {0,1} or for all v € S
u(v) € {-1,0}.
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Remark 5.1.1. In Section 4.1 we defined a notion of “potential capacity” for a set
S C V. For the Star Algorithm, this notion is best approximated by cap(S) =
NZ(S).

5.1.2  Pushing

The sequence presented here is similar to the one presented in Section 4.2.1, albeit

with slightly different guarantees.

Let v',v"” € V be distinct leaves and S = {v1,vs,v3,...,v,} a set of m leaves such

that {v/,v"} and S are disjoint and m is even.

The sequence push({v’,v"},S) is composed of four subsequences

push® ({v,v"},8) = (r,v'), (r,v"),

push® ({v/, 0"}, 8) = (r,0m), (1, 0m), (1, V), (73 Vi ), - (1, 01), (1, 01),
(r, "), (r,0"), (r,01), (r,0),

push™({v,v"}, 8) = (r,v'), (r,v"),

push®({v/,0"},8) = (r,0m), (1, 0m), (1, Omr)s (73 Vi ), - - (1, 00), (1, 01),

(r, "), (r,0"), (r,0"), (r,0").

Le,

push({¢/,v"},S) = pUShSI({Ul, v}, 8) ||pushd1({v/, "} 9)||

push52({v', v}, 8) ||pushd2({v/, v}, 9).

Remark 5.1.2. The subsequences push®! ({v/, v"}, S) and push®*({¢/,v"}, S) are iden-
tical as are push™ ({v/,v"}, S) and push®™({v’,v"},S). The differentiation between
them is helpful in the analysis.

Let @yt (S) = @(S), Pinis({v/,0"}) = &({¢/,v"}) be the potentials prior to process-
ing the sequence push({v’,v"},S), Pena(S) = P(S), Pena({v',0"}) = &({v',v"}) be

the potentials subsequent to processing the sequence push({v’,v"}, 5).
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The following lemma states the effect of push({v’,v"}, S) on the potential of S.
Lemma 5.1.3. If [®y,1(S) + Pinis ({0, 0"})| < NZ(S) then E[®ena(S)] = Pini(S) +
Dy ({0, 0"}).

Remark 5.1.4. This is the analog to the idealized case where |®;yi (S)+Pinit ({0, 0" })] <

cap(S) = Pena(S) = Pinit(S) + P({v,v"}), i.e., not in expectation.

Example 5.1.5. To better clarify how this sequence works, we provide an example.

Let G be star with 4 vertices, V = {1,2,3,4}.

We look at a possible processing of the event sequence push({1,2},{3,4}). This

translates into the requests
o push™({1,2},{3,4}) = (,1),(r,2),
o push®({1,2}, {3,4}) = (r,4), (r,4), (r,3), (r, 3), (,2), (r,2), (r, 1), (r, 1),
o push™({1,2},{3,4}) = (,1),(r,2),
o push™({1,2},{3,4}) = (r,4), (r,4), (,3), (r,3), (r,2), (r,2), (r, 1), (r, 1).

Assume that the initial state is as given in Figure 5.1.

Figure 5.1: The initial state before processing push({1, 2}, {3,4}).

Look at the state transitions subsequent to processing push® ({1,2}, {3,4}). After
processing (7, 1) the only possibility is u(r) = 1 and u(1) = 0. So after processing
(r,2) the state is u(r) = 2 and u(2) = 0.
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(a) (b)

Figure 5.2: The state after: (a) processing event (r,1); (b) processing
event (r,2).

Now look at the effect of processing push™({1,2},{3,4}). After processing the
events (r,4), (r,4), the transitions in state are u(r) = 0 and u(4) = —1. After

processing the remainder of push®({1,2},{3,4}), which is (r,3), (r,3), the state

stays the same.

Figure 5.3: The state after processing events (r,4), (r,4).

Subsequent to processing push®({1,2}, {3,4}), there are two possible states: one
with u(1) = 1, u(2) = —1, and u(r) = 0; another with u(1) = —1, u(2) = 1, and

u(r) = 0. For the rest of this example assume that the first possibility occurred.
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(a) (b)

Figure 5.4: The state after: (a) processing subsequence
push? ({1,2}, {3,4}); (b) processing subsequence push®?({1,2}, {3,4}).

The unfairness of the root is 0, so processing push®({1,2}, {3,4}) has no effect.

Figure 5.5: The state after processing the whole sequence
push({1,2},{3,4}).

The effect of push({1,2}, {3,4}) was to move the potential of the set {1,2} to the
set {3,4}.

5.1.8 Dastillation

This is defined the same as in Section 4.2.3. Let S = {vy,v9,v3,...,v,} be a set
of m leaves such that m is even. As we assume that & = 2, we use the simplified

notation distill(.S).
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Let

diStﬂl(S) = pus}l({”la U2}a {U?n cee >Um})||puSh({'037 U4}7 {U57 cee 7vm})” T ”

pUSh({Umf& /Umf2}7 {’Umfla Um})-

The sequence distill(.S) distills the unfairness of S into the leaves with large indices.

Formally we prove the following lemma.

Lemma 5.1.6. With probability at least 1/2, there exists an ¢’ such that after the

algorithm processes the sequence distill(.S)
[ |q)(Sg/)| Z |®<S)|, CL’I’Ld,

o NZ(Sp) = |®(S0)].

5.1.4  Accumulation

Again, this is a sequence with similar guarantees to those of the ideal sequence
presented in Section 4.2.4. Let G be a set of two leaves, G; = {v/,v"}, and let
Gs = {91,92,---,9n}, and A = {ay,as,...,a,} be sets of n leaves. Assume that

G1,G9, and A are pairwise disjoint.

First, let the generator be

gen({v',v"}, Ga) = push({v',v"}, Gs).

Thus acc(Gy, Ga, A, @) has the structure

acc(Gy, Gz, A, a) = (push({v,v"}, Go)||push({v/,v"}, A))".

5.1.5 The Lower Bound Sequence

Using the subsequences introduced we now show the concrete sequence that achieves

the lower bound.
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Split the leaves V' = {1,2,3,...,2n + 2} into 3 random disjoint sets:
o G ={v v}

L GQ = {917927"'7gn}~

o A={ay,a9,...,a,}.

Define the event sequence R = (r,a;), j € {3n/4+ 1,3n/4 +2,...,n}. The lower

bound is proved by running the algorithm on the sequence
acc(Gy, Ga, A, o) ||distill(A)]| R.

Remark 5.1.7. We assume that n is divisible by 4, this is not necessary.

5.2 Analysis

First, we prove a general property regarding the distribution of leaves with non-zero

unfairness.

Lemma 5.2.1. Consider any set T of leaves, any t and any sequence o of t events.
Assume that the initial configuration is that a random set of 1/2 of the leaves are
assigned unfairness of zero, a random 1/4 of the leaves have unfairness of -1 and

the remainder are assigned unfairness 1. Then after the Star Algorithm processes o

T 1

P NZ(T) > |—| > —.

2 2
Proof. The probability of any pattern of zeros/non-zeros is equal to the probability
of the same pattern reversed where non-zeros exchange roles with zeros. Ergo, the
probability that the number of zeros exceeds 1/2 equals the probability that the

number of non-zeros exceeds 1/2. [l
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5.2.1 Pushing

This is the sequence as defined in Section 5.1.2.

Lemma 5.2.2. Assume that the current configuration has u(r) = 0. Then after

processing the sequence push({v',v"},S), one still has that u(r) = 0.

Proof. For simpler notation we omit the parameters of push({v',v"},S) and just

write push. We use this simplification also for the subsequences of push.

Table 5.1 considers the effect of the sequence push® assuming u(r) = 0 initially.
Observe that resulting state has u(r) € {—2,0,2}. Table 5.2 gives the effect of a
double event of the form (r,v), (r,v) (v € {v/,v"} U YS), assuming u(r) € {—2,0,2}.
Combining these effects, Table 5.3 gives the effect of the sequence push51||pushd1
assuming u(r) = 0 initially.

Observe that all states except (0,1,1) and (0, —1, —1) lead to u(r) = 0, and that no
state leads to (0, 1,1) nor to (0, —1, —1). Thus, it follows by applying Table 5.3 twice
that the sequence push®™||push®||push®||push® leads to u(r) = 0 except possibly

when going through the intermediate state (£2,0,0).

It only remains to analyze the effect of the sequence push82||pushd2 on (£2,0,0).
Processing push® leads to (0,1,1) or to (0,—1,—1), and push®™ then keep this
unchanged. Thus in all cases, after processing push({v',v”},S) one still has that
u(r) =0.

O

Lemma 5.2.3. Assume that initially u(r) = 0. Then for v e {v/,0v"}US, u(v) =0

before processing push({v',v"},S) iff u(v) =0 after processing push({v',v"}, S).

Proof. A more careful analysis of Tables 5.1, 5.2 and 5.3 leads to the following
possibilities for (u(v'),u(v"”)) after push({v’,v”},S) has been processed: if all the
leaves in S with non-zero unfairness have the same unfairness, then processing
push({v',v"},S) keeps everything unchanged; otherwise, the result is distributed

according to Table 5.4.
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w%ii’gr(: ) <U(Ua)f7t1(:1gv ) u(r) after | Probability
(—1,-1) {0,0) 2 1
(0,-1) (1,0) or (—1,0) -2 or 0 1/2,1/2
T,1) {0,0) 2 1
(0,1) (—1,0) or (1,0 2o0r0 1/2,1/2
(—1,0) or {1,0) | (0,—1) or (0,1 0
(—1,1) or (1,—1) (0,0) 0 1
(0,0) (—1,1) or (1, 1) 0 1/2,1/2

Table 5.1: Effect of events (r,

V'), (r,v"), assuming u(r) = 0 before.

(u(r),u(v)) before

(u(r),u(v)) after

unchanged
unchanged
<07 _1>
unchanged
unchanged
unchanged
(0.1)
unchanged
unchanged

Table 5.2: Effect of events (r,

v), (r,v) where v € {v/,v"} US

(u(r), u(v'), (v”)) before | (u(r),u(v’),u(v"”)) after
0,-1,-1) (0,0,0) or (—2,0,0)
<07 7 > <0 0 _1>
<07 71> < ? ’O>
(0,0,-1) (0,—1,0) or (0, >
<0,,> (0,1,- 1>0f<0 1)
(0,0,1) (0,1,0) or (0, 10>
(0,1,-1) (0,0,0)
(0,1,0) (0,0,1)
(0,1,1) (0,0,0) or (2,0,0)

Table 5.3: Effect of events push®({v/,v"}, S)||push®({+/,v"}, S).

The

bold states are the ones where there was a change of u(vy) for some

UkGS.
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(u(v"),u(v")) before | (u(v'),u(v")) after
(—1,-1) (—=1,1) or (1,-1)
(=1,0) (=1,0) or (1,0)
<_171> <_ ) > or <1a_1>
(0,-1) (0,—1) or (0,1)
(0,0) (0,0)
(0,1) (0,1) or (0,—1)
(1,-1) (1,—1) or (—1,1)
(1,0) (1,0) or (—1,0)
(1,1) (—1,1) or (1,—1)

Table 5.4: Effect of event sequence push({v',v"},S), assuming u(r) =0
before (and therefore after), and assuming that the non-zero unfair-
nesses of leaves in SU{v’,v”} do not all have the same sign. The bold
states are the ones where there was a change of u(i;) for some i; € S.
When there are two final states, they each have probability 1/2.

Looking at Table 5.4, we note that for every v € {v/,v"}US, u(v) = 0 after processing
push({v’,v"}, S) iff we already had u(v) = 0 before processing push({v’,v"},5). O

Recall that ®;,1(S) = P(S), Pinic({v,0"}) = ¢({v/,v"}) are the potentials before
processing the sequence push({v',v"},S); that ®ena(S) = P(S5), Pena({v',v"}) =
O({v',v"}) are the potentials after processing the sequence; and that NZ(S) =

{v € Slu(v) # 0}].

Lemma 5.2.4. If |Dit(S) + Pinie ({v/,0"})| < NZ(S) then E[Pena(S)] = Pinit(S) +
(I)init({vla U”})-

Proof. From Lemma 5.2.2, u(r) = 0 before and after the sequence is processed,

and since no event concerns any leaf outside {v',v"} U S, we have ®;,({0',v"}) +

Pinit (S) = Pena({v',v"}) + Pena(S)-

Looking at the right column of Table 5.4, we observe that after processing push({v,v"},S)
the value ®({v',v"}) € {—1,0,1} with expectation 0. This is true for any initial
value of (u(v'),u(v"”)). Thus E[®ena(S)] = Pinit(S) + Pinis ({v/, 0" }). O
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5.2.2 Distillation

We repeat the definition as given in Section 5.1.3. Let S = {vy, v2,v3,..., 0} be a

set of m leaves such that m is even. For ¢ < m, define the tail Sy of set S

Sg:{vkeswfl{igm}

Lemma 5.2.5. With probability at least 1/2, there exists an ¢’ such that after the

algorithm processes the sequence distill(S):

[ ‘@(Sg/)’ Z ‘@(SH, and,

o NZ(Se) = |®(Sk)|-

Proof. For any ¢ such that | Dyt (S) 4+ Pinic({v/, 0" })| < NZ(S), denote ®; as the value
of ®(S;) before processing push({ve, vg41}, Ser2). From Lemma 5.2.4, E[® 5] = O,.
Thus, if we look at the random variable ®,, it is performing an unbiased random

walk with self-loops.

Let ¢ be the first £ where NZ(Sy) = |®¢|. Denote this point in time t’. Given that
¥, performed an unbiased random walk, with probability 1/2, |®x| > |®(S)|. Thus

at time ¢’, with probability 1/2

[2(Se)| = |2(S)].

Given that all the later events in the sequence distill(S) are for leaves in Sy, both

®(Sy) and NZ(Sy) are the same at time ¢ and after distill(S) was processed.
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5.2.3  Accumulation

This is the sequence defined in Section 5.1.3. Let GG; be a set of two leaves, Gy =
{v/;,v"}, and let Go = {¢1,92,...,9n}, and A = {ay,as,...,a,} be sets of n leaves.

Assume that G, Gy, A are pairwise disjoint.

First, let the generator be

gen({v',v"}, Ga) = push({v',v"}, Gs).

Thus acc(Gy, Go, A, ) has the structure
acc(Gy, G, A, ) = (push({v',v"}, Gy)||push({v',v"}, A))“. (5.1)

Lemma 5.2.6. With probability 1/16, for a large enough o € N, after the Star
Algorithm processes the sequence acc(Gy, Ga, A, @)

NZ(A)

D(4)] 2

Proof. Initially, with probability 1/2, exactly one of u(v") and u(v”) is non-zero.
Independently and with probability at least 1/4, NZ(A) < NZ(G3) — 1. Assume

that the sets {v/,v"}, Go, A were chosen such that both of these are true.

From Table 5.4, the push({v/,v"},G2) and push({v’,v"}, A) subsequences don’t
change the property that exactly one of u(v'), u(v") is non-zero nor do they change
the property that u(r) = 0.

From u(r) = 0 we conclude ®(A) + ®(G2) + u(v') + u(v”) = 0 and adding the fact
lu(v') + u(v”)| = 1 we get |®(A) + ®(G2)| = 1. Given that ®(A), P(G3) € Z, they
must not have the same sign, so |P(A) + ®(Gy)| = ||P(A)| — [P(G2)]].

We proceed by contradiction. Assume that |®(Gy)| = NZ(Gs). Then |[®(A) +
(Gy)| = [[@(A)] — [®(Go)l| = [|@(A)] = NZ(Gy)|. But |®(A)] < NZ(A) and
we assumed that NZ(A) < NZ(Gy) — 1 so ||P(A)] — NZ(G2)| = NZ(Gs) — |P(A)] >
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NZ(G5)—NZ(A) > 1 which is a contradiction to |®(A)+P(G2)| = 1. Thus |P(G2)| <
NZ(G,).

If |®(Gy)| < NZ(G5) then from Table 5.4, after processing each push({v’,v"}, G3)
subsequence: with probability 1/2 the sum u(v') + u(v”) is unchanged and with
probability 1/2 it is negated. Thus, regardless of the value of u(v") + u(v”) be-

fore processing push({v’,v"}, G3), the distribution of u(v") +u(v") before processing

push({v/,v"}, A) is:

We define a Markov chain (shown in Figure 5.6) of the state of ®(A), where a tran-
sition occurs each time a sequence push({v’,v"}, A) is processed. The probabilities

of the transitions are:

For & ¢ {~NZ(A),NZ(A)}

1

P(@—)@—Z):Z,

1

P(<I>—><I>):§,

1

For & = —NZ(A)

3

P(<I>—><I>):Z,

1

P(<I>—><I>+2):Z.
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Figure 5.6: The Markov chain for ®(A). The node labels are the
potential ®(A) at that state, the edge labels are the transition prob-
abilities.
For & = NZ(A)
1
P(®—d-2)= T
3
P(® — @) = 1

This is an ergodic, regular Markov chain. Thus the limit of the distribution is
a stationary distribution. Moreover, the transition matrix is symmetric, thus the
stationary distribution is uniform. ®(A) is bounded between —NZ(A) and NZ(A).
Then for a large enough «, with probability > 1/2, after the Star Algorithm processes

acc(G1, Gy, A, «)
NZ(A)

(4)] >~

Corollary 5.2.7. With probability at least 1/32, after the Star Algorithm processes

the sequence acc(Gy, Gy, A, )
|©(A)]

Y
r-El S

Proof. From Lemma 5.2.6




Applying Lemma 5.2.1 to A after the sequence acc(G1, Go, A, a) has been processed

5.2.4 The Lower Bound Sequence

Recall the lower bound sequence presented in Section 5.1.5,

acc(G1, Ga, A, a)||distill(A)|| R.

Let A" = {a;]|3n/4+ 1 < j < n} be the last n/4 indices in A.

Lemma 5.2.8. After the Star Algorithm processes the sequence acc(Gy, Gy, A, o) ||distill(A),

we have

Ple(a) =) >

Proof. Applying Lemma 5.2.1 to A’ after the sequence acc(Gy, Ge, A, a)||distill(A)

has been processed

!/ |‘1,| !/ n ]'
> = > — ) > —. .
P(NZ(A)_ 5 P(NZ(A)_ 8> 2 5 (5.2)
From Corollary 5.2.7
n 1
P A >—-) > —. .
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The probability that the Equation 5.2 holds is not independent from the probability

that Equation 5.3 holds, but they are positively correlated. Thus,

P((NZ(A’) > ) A <|<1>(A)| > %)) > 6i4. (5.4)

|3

From Lemma 5.2.5, with probability 1/2, after distill(A) is processed there exists
an ¢’ such that

|®(Aw)| = |®(A)], and, NZ(Ay) = |©(Ap)]. (5.5)

These events in Equations 5.4 and 5.5 are independent, so they occur simultaneously

with probability > 1/128.

From |®(A)| > n/4, we obtain that ¢/ < 3n/4 because |P(Ay)| < |Awp| and |P(Ap)| >
|®(A)|. Thus A’ C Ay so NZ(A') = |®(4)).

From NZ(A") > n/8, we get that |®(A")| > n/8.

]

Theorem 5.2.9. The sequence acc(Gy, Ga, A, o)||distill(A)||R achieves an expected

unfairness of Q(y/n) on the Star Algorithm when run on a star graph with n leaves.

Proof. From Lemma 5.2.8, after processing acc(G1, G, A, «)||distill(A)

1
P(lo) > ) > —.
8 128
Assume WLOG that ®(A’) > n/8. Then at this point in time, (prior to processing

R), at least n/8 of the leaves in A’ have unfairness 1 and at most n/8 have unfairness

0.

The effect of the events R are similar to a random walk for u(r). Each time leaf a
with unfairness 1 is requested, the value u(r) increases by 1. If u(r) > 0 then each
time a leaf with unfairness 0 is requested, then u(r) decreases by 1. If u(r) < 0

then requesting a leaf with unfairness 0 might increase u(r). Thus, a random walk
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is a lower bound on the unfairness of u(r). A random walk of length n/8 has an

expected value of Q(y/n). So, after processing the events R the expected value of
u(r) is Q(v/n).

This occurs with probability greater than 1/128, so the expected unfairness of r
after processing acc(Gy, Go, A, o)||distill(A)|| R is

Q(vn).
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VI Lower Bound of Q)(logn) for Randomized Global
Greedy on the Clique

In this section we show a lower bound of 2(logn) on the Randomized Global Greedy
(which we refer to as RGG) algorithm when applied to a clique with n vertices. Le.,
all events are pairs (v, w) where v # w are vertices. We show this lower bound for

event sequences generated by oblivious adversaries.

Given that the next even is (v, w), Randomized Global Greedy does the following:

o If u(v) > u(w) then set w to drive. This decreases u(v) and increases u(w).
o If u(v) < u(w) then set v to drive. This increases u(v) and decreases u(w).

e If u(v) = u(w) then set v to drive with probability 1/2 and set w to drive with

probability 1/2.

6.1 Sequences

In this section we present sequences that are similar to the ideal ones presented in

Section 4.

Let V' be the set of vertices, V = {1,2,...,n}, and let u(v) be the unfairness of a

vertex v € V. Define the potential function for S C V and u € Z as

We omit the superscript A as it is implicitly assumed to be Randomized Global

Greedy.
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Remark 6.1.1. In Section 4.1 we defined a notion of “potential capacity” for a set
S C V. In the case of Randomized Global Greedy, for any u € Z, and for any
0 # S CV the value ®,(S) is unbounded.

Let F be the family of sequences defined later in this section. Let o € F and let
Sy = {v € V|(v,w) € o} be the set of vertices effected by o. All the sequences
defined keep the invariant: for any v € S, if u(v) € {u — 1,u,u + 1} prior to RGG

processing o then u(v) € {u — 1,u,u + 1} subsequent to RGG processing o.

Thus, we define the potential capacity for family F to be
capy, (S) =15].

6.1.1 Pushing

This is a concrete example of a push() sequence as presented in Section 4.2.1. Let
V', 0" r € V be distinct vertices and let S = {vy, vq, vs, ..., v, } be a set of m vertices
such that v',v”,r ¢ S. In addition to the parameters specified in Section 4.2.1, this
sequence takes as a parameter an additional vertex r € V. The vertex r is a “virtual

root”. Also, let u € Z be the “base unfairness*

Let @ € N be a large number, as a function of |V| = n. This value needs to be large

so that the pushing property occurs with high probability.

The sequence push, ({v,v"},S,r) is composed of three subsequences

push®! ({v/,v"}, S,7) = (r,2), (r,0"),
pushz({v', V"1 S ) = (1 vm), (1 0m), (7 V1), (7, U)o (1 01), (7, 01),

pushy?({v, 0"}, 8, 7) = (r,0"), (r,0").
Le.,

push, ({v',v"},S,r) = (pushzl({v’, "}, S|

pushy ({v/,v"}, S, r)|[pushi?({v', 0"}, S, 7))".
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Remark 6.1.2. Although this sequence is similar to the push() sequence used in the

lower bound proof for Star Algorithm, there are some differences:
1. There is only one “double event” subsequence, push®({v’,v"}, S, 7).
2. The events (r,v'), (r,v') and (r,v"), (r,v") are not issued by push?({v/, v"}, S, r).

3. The second “single event” subsequence (push®’({v',v"},S,7)) is in reversed
order compared with the first one (push®'({v’,v”}, S,7)). Thus, unlike in the

Star Algorithm’s sequence, they are not equal.

4. The subsequences are repeated many, a € N, times and not only once.

Remark 6.1.3. The number of repetitions « is not a parameter of push,, ({v',v"}, S, r)
because it is a function of |V'| = n and identical for each push,, () sequence regardless

of its parameters.

We only analyze the sequence push, ({v/,v"}, S, 7) under the assumption that pred-
icates (a), (b), and (c) hold, defined as follows: (a) For some u € Z, u(r) = u, (b)
That u(v'),u(v”) € {u—1,u+ 1}, and (c) For all v € S, u(v) € {u—1,u+ 1}.
Define @1 (5) = ®(5) and Py ({0, 0"}) = &({v',v"}) as the potentials before pro-
cessing the sequence push,, ({v',v"}, S, r). Define ®enq(S) = @(5) and Pepa ({v/,0"}) =
O({v',v"}) as the potentials after processing the sequence. We prove the following

lemma.
Lemma 6.1.4. If |u(v") + u(v") + ®4,i(S)| <= |S]| then, with high probability,
after the RGG algorithm processes the sequence push,({v',v"},S,r) the equality

Pena(S) = Pinit(S) + Pinis ({v,v"}) holds.

Example 6.1.5. To better clarify how this sequence works, we provide an example.
Let |V| = 5 vertices. Denote one of the vertices as the “virtual root” r and denote

the others as {1,2,3,4}. We look at the case a = 2.

Look at a possible processing of the event sequence pushy({1,2},{3,4},r). This

translates into events

42



° pushél({l, 2},{3,4},7r) = (r, 1), (r,2),
e push$({1,2},{3,4},7) = (r,4), (r,4), (r,3), (1,3),

e push®({1,2},{3,4},7) = (r,2), (r,1).

Thus

push,({1,2},{3,4},7) = ((r, 1), (r,2), (r,4), (r,4), (r,3), (r,3), (r,2), (r, 1))

Assume that the initial state is as given in Figure 6.1.

Figure 6.1: The state before processing push,({1, 2}, {3,4},r).

Look at the state transitions when processing the sequence push® ({1,2},{3,4}).
There is only one possibility after processing event (r,1), u(r) = 1 and u(1) = 0.
But, after processing (r,2) there are two possible states: one with u(r) = 0 and
u(2) = 2; another with u(r) = 2 and u(2) = 0. In this example, we assume that the

first possible state occurred.
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(a) (b)

Figure 6.2: The state after: (a) processing event (r,1); (b) processing
event (r,2).

Given that u(r) = 0, the processing of pushd({1,2}, {3,4},r) has no effect. Thus,
before processing pushd({1,2},{3,4},7), u(r) = 0, u(1) = 0, and u(2) = 2. Process-

ing pushi*({1,2}, {3,4},r) returns the state to its initial value, u(r) = 0, u(1) = 1,

and u(2) = 1.
(a) (b)
Figure 6.3: The state after: (a) processing subse-
quence  pushd({1,2},{3,4},7); (b) processing subsequence

pushi?({1,2},{3,4},7).

We now examine the effects of the second repetition of push!||pushg||pushs?. There
is still only one possibility after processing event (r,1), u(r) = 1, and u(1) = 0.
But this repetition, after processing (r,2) we assume that u(r) = 2,u(1) = 0, and

u(2) = 0.
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(a) (b)

Figure 6.4: The state after: (a) processing event (r,1); (b) processing
event (r,2).

Now u(r) = 2 and subsequent to processing pushd({1,2}, {3,4},7), u(4) = 1 and

u(r) = 0. Processing pushi®({1,2},{3,4},r) can lead to two states: the first u(1) =

—1 and u(2) = 1; the second u(1) = 1 and u(2) = —1. Assume that the first
occurred.
(a) (b)
Figure 6.5: The state after: (a) processing event sub-
sequence pushd({1,2},{3,4},7); (b) processing subsequence

pushg?({1,2}, {3,4},7).

The state shown in Figure 6.5 (b) is the final state after processing push, ({1, 2}, {3,4}, 7).
The overall effect of sequence push,({1,2},{3,4},7) was to move the potential in

set {1,2} to the set {3,4}, while keeping u(r) = 0.
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6.1.2 Normalization

We achieve guarantees close to the ideal ones presented in 4.2.2. Let S = {v1,vg,..., v} C

V', |S| = m, and let u € Z. Assume that m is even.

Let o € N be a large integer, as a function of |V| = n. Let 6 be a sequence of
random variables, each of which takes a a uniform distribution over vertices in S,

furthermore they are correlated as 09,1 # 6y; for all j. Define normalize,(S) as

follows:
normalize’,(S) = (v1,v2)||(vs, va)|| - - - || (Vim—1, Vi),
normalizey,(S) = (61, 62)[|(61, 02)[| (83, 04) || (83, 04), || - - [|(Ber—1, O [|(Br—1, O,

normalize, (S) = normalize, (S)||normalize? (S).

We analyze this sequence only when every vertex v € S has unfairness u(v) €

{u —1,u+ 1} and only when ¢,(S5) = 0.

We prove the following lemma.

Lemma 6.1.6. Let S C 'V be a set such that ®,(S) = 0 for some u € Z and that for
every verter v € S, the unfairness u(v) € {u — 1,u+ 1}. After the RGG algorithm
processes normalize, (S), with high probability, for everyv € S the unfairness u(v) =

u.

Remark 6.1.7. The number of repetitions «’ is not a parameter of normalize,(S)
because it is a function of |V| = n and not a function of any of the parameters of

normalize, (S).

6.1.83 Dastillation

The definition of distill() shown here is very similar to the idealized one presented in
Section 4.2.3. In addition to the parameters specified in Section 4.2.3, this sequence

takes as a parameter a vertex r € V. The vertex r is a “virtual root”. Let S =

46



{v1,v2,v3,..., 05} be a set of m vertices such that m is even. We fix k = 2, and

thus to simplify the notation we omit k as a parameter and write distill, (S, r).

The distill, (S, 7) event sequence is

distill, (S, ) = push,, ({vi,vo},{vs, ..., vm }, 7)||push, ({vs, va}, {vs, ..., v}, 7))l

e HPUShu({Umfg, Umf2}7 {vmfla Um}a T)'

Define the tail of S, Sy, as Sy = {vx € S|k > £}. Formally we prove that

Lemma 6.1.8. With high probability, after the RGG algorithm processes the se-
quence distill, (S)

Du(Ss1-1@u(s)+1) = Pu(S).

Remark 6.1.9. Note that the set S|s|—jo,(s)+1 is the last |®,(S)] vertices in S.

6.1.4 Accumulation

The sequences described herein give similar guarantees to those shown in Section
4.2.4. The new accumulation sequences are composed of two ideal generators and

accumulators. Let © € Z be the “base unfairness”.

Choose pairwise disjoint subsets of V:

G1 = {v, v} CV, Gy ={vs,v4} CV,

Al :{a%,a%,...,&}n}g‘/, Agz{a%,ag,...,az}gv,

and choose 7 € V' \ (G1 UGy U A U Ay). Call r a virtual root. Assume that m is

even.
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Define the sequence acc,(G1, Go, Ay, A, 1, 0):

create(4;) = (al, ab), (a%,al),. .., (a’, —1,a’),
gen, (G, G3) = normalize, ({v1, ve, v3,v4})||(v1, v3)]|(v2, v4),
accl (G1, Gy, Ay, Ay, 1) = gen, (G, Gy, 7)|push, (G1, Ay, 7)||push, (Gy, Ay, 1),
acc, (G, G, A1, Ay, 1, ) = create(Ay)||create(As)||

acci(Gl, Gz, Al, AQ, 7’)“ s ‘|aCC3<G1, GQ, Al, AQ, T).

We only analyze this sequence under the following conditions:

(Pu({vh V2, Vs, U4}) — 0

For every v € Ay, u(v) = u.

For every v € Ay, u(v) = w.
o u(r)=u.

o D (A) = —D,(Ay).

We prove the following lemma.

Lemma 6.1.10. Assume the conditions above hold. After the RGG algorithm
processes the sequence acc, (G, Ga, A1, Az, @), P((|®u(A1)] > m/2) A (|P,(A2)| >
m/2)) >1/2.

6.1.5 The Lower Bound Sequence

In this section we show how to use the “accumulate” sequence in order to achieve
a (logn) bound for the Randomized Global Greedy algorithm. To do this, we
define a sequence iter(.S). Intuitively, iter(S) splits the vertices into 3 pairs of sets,

“accumulates” each pair, and then recursively calls iter() Q(logn) times.
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Remark 6.1.11. In this section we assume that m is divisible by 12, but this is not
necessary. If m = k (mod 12) where k # 0 then redefine S to be S without k

vertices.

Let there be a “base unfairness” u € Z and let S C V, |S| = m + 5, be a set of

vertices. Partition .S into the following:

1. A virtual root r.
2. Two generator sets G1, Ga, each of size 2.

3. Three pairs of sets (A}, AL),(A2, A2), and (A3, A3) where for i € {1,2,3},j €
{1,2}, |4} = m/6.

We only analyze this sequence when, for some u € 7Z, it holds that for every v € S,

u(v) = u.

For i € {1,2,3},j € {1,2} denote A} = {(a}) |1 < k < m/6} and (A)) =

{(a})k Im/12+1 < k <m/6} (i.e., the last m/12 vertices).

Define the subsequences iter;(S), for i € {1,2,3} and o € N as

iter;(S) = acc, (G, Ga, AL, A, r, )|\ distill (AL, r) ||distill( AL, r)[|iter((A})")]|iter((ASL)).

Finally, define the sequence

iter(S) = itery (9)||itera(9)|liters(S).

These recursive calls can continue until reaching a depth of 2(logn) because the

sizes of the sets decrease exponentially, i.e.,

(A _ [(A3)] _ 1=5/]S] T

9] S| 12 12
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The lower bound for RGG is achieved proven by giving the sequence iter(V') as

input.

Theorem 6.1.12. The sequence iter(V') achieves an expected unfairness of Q(logn)

for Randomized Global Greedy on the clique.

6.2 Analysis

Denote V' as the set of vertices, V = {1,2,...,n}. Let u(v) be the unfairness of a

vertex where v € V.

For S C V define the potential of S as

0,(5) = (u(v) —u).

veS

6.2.1 Pushing

For clarity, we repeat the definition given in Section 6.1.1. Fix the “base unfairness”

to be u for some u € Z. The sequence push, ({v',v"}, S,r) has three parameters:

1. A “virtual root” r such that u(r) = u.

2. Two vertices, whose unfairness will be pushed, v and v” such that v',0v" €

{u—1,u+1}

3. A set S, which the unfairness will be pushed into, such that for every v € S

u(v) € {fu—1,u+1}.
Let S = {vy,v9,0v3,...,0,}. Recall the definition of push, ({v',v"},S,r)

push, ({v',v"}, ) = (pushil({v', 0"}, S, r)||push? ({¢/, "}, S, r)||push?({v/,v"}, S, T))a,
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<u<1{)();fgr(ev ) (u(vagf,tzlgv )) r after | Probability
u-lu-1 (u,u) w2 |12
(u—1,u—1) (u,u — 2) u 1/2
<U_1,U+1> <u’u> u 1
(u+1,u—1) (u, u) u 1
(u+1,u+1) (u,u+2) u 1/2
(u+T1,u+1) (u, u) ut2 1/2

Table 6.1: Effect of events (r,v'), (r,v”), where u(v'), u(v") € {u—1,u+1}
and assuming u(r) = u before the pair arrived.

where

push?! ({v/, 0"}, S,7) = (r,v"), (r,v"),
pUShZ({UI7 U”}v Sv T) = (T’ Um}v (T’, Um)v (7“, Um—l)a (7", UM—1)7 SRR (7’, Ul)v (7“, Ul)a

pushy’({v',v"}, 8, 7) = (r,0"), (r,0").

Lemma 6.2.1. Let r be a “virtual root”, T = {v',v"} U S. Assume that u(r) = u
and that for every vertex v in T, u(v) € {u — 1,u+ 1} . Then — process-
ing the subsequence pushi'({v’,v"}, S, r)||push®({v’,v"}, S, r)||push:?({v,v"}, S, r)

keeps u(r) = u unchanged and u(v) € {u — 1,u + 1} still holds.

Proof. For brevity the parameters of push,({v’,v"}, S,r) and its subsequences are

omitted in this proof.

Initially, u(r) = u and for every vertex v € T it holds that u(v) € {u — 1,u + 1}.
Table 6.1 considers the of subsequence pushi1 and summarizes the possible values

of u(r),u(v"), and u(v”).

Note that after processing push®' it is possible that u(v') € {u — 2,u,u + 2} or that

u(v”) € {u — 2,u,u + 2}.

If after push‘zl, u(r) = u then from Table 6.2 the subsequence pushz does not affect

either u(r) or any u(uvg).
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u(r) before | u(vy) before | u(r) after | u(vy) after
u u-1 u u-1
u u+1 u u+1
u-2 u-1 u-2 u-1
u-2 u+1 u u-1
u+2 u-1 u u+1
u+2 u+1 u+2 u+1

Table 6.2: Effect of events, (r,vg),(r,vr). Note that u(r) and wu(vg)
are unchanged except in two cases: (a) if prior to (r,vg), (r,vx) being
processed, u(r) = v —2 and u(vg) = u+1 or — (b) u(r) = v+ 2 and
u(vg) =u—1.

/ " 7 77
<“(?{)g%;lr(ev ) u(r) before ww;&?ﬁ” ) u(r) after | Probability
(w0 —2) TR B 7 i :
(u, ) vz | utu-1) | |
(u, u) u (u—1,u+1) u 1/2
(u, u) u (u+1,u—1) u 1/2
(u, u) ut2 (u+1,u+1) 1 1
(u,u+2) u (u+1,u+1) u 1

Table 6.3: Effect of events (r,v"), (r,v'), when u(r) € {u — 2,u,u + 2}
before the pair arrived and (u(v'),u(v")) is possible after push®!

If after push®', u(r) = u — 2 then let k, 1 < k < m be the largest index such that
u(vr) = u 4 1. After push? is processed then u(vy) = u — 1, u(r) = u, and all the

other values are unchanged.

If after pushzl, u(r) = u + 2 then let £, 1 < k < m be the largest index such that
u(vy) = u — 1. After push? is processed then u(vy) = u + 1, u(r) = u, and all the

other values are unchanged.

It might be that in the cases u(r) = u — 2 or u(r) = u + 2 there is no such k.
Thus processing push? does not change either u(r) or any u(vg). In this case,
after processing the sequence pushff then from Table 6.3 the value of u(r) = wu,

u(v') = u(v") and u(v’), u(v”) € {u—1,u+ 1}.

Thus, after processing push®? both u(r) = u and u(v'), u(v”) are in {u —1,u+1} so

this is correct after processing the whole subsequence push®'||push?||push??. O
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Define @i (S) = ®(5), Pt ({0/,v"}) = ®({v/,v"}) as the potentials before process-
ing the sequence push, ({v/,v"}, S,7), and define ®e,q(S) = P(S), Pena({v',v"}) =

O({v',v"}) as the potentials after processing the sequence push, ({v',v"},S,r).

Lemma 6.2.2. If [u(v) + u(v”) + @i (S)| <= |S| then, with high probability,
after the RGG algorithm processes the sequence push, ({v',v"},S,r) the equality
(I)end(S) = (binit(s) + @init({v/,v”}) holds.

Proof. The parameters of push,({v/,v"},S,r) and its subsequences are omitted in

this proof.

From Lemma 6.2.1, each time before processing pushf;1 the unfairness of the root is

u, i.e., u(r) = u, and for every vertex v € S, u(v) € {u — 1,u+ 1}.

Look at different possible values of (u(v'),u(v")) before push®' was processed and

analyze the effect of processing the subsequence push?!||push?||push??.

1. If (u(v),u(v")) = (u— 1,u — 1) then with probability 1/2, u(r) = u — 2 after
processing push®'. We assumed |u(v') + u(v”) + ®nie(S)| <= |S], so after
processing pushﬁ there exists a w; € S where u(w;) decreases by 2. With
probability 1/2, u(r) stays the same, processing push? doesn’t change the

unfairness of any vertex, and after push?®?, (u(v'), u(v")) = (u — 1,u — 1).

2. If (u(v),u(v")) = (u+ 1,u + 1) then with probability 1/2, u(r) = u + 2
after processing push®'. We assumed |u(v’) + u(v") 4+ ®iit(S)| <= |9, so
after processing push? there exists a w_, € S where u(w_,) increases by 2.
With probability 1/2, u(r) stays the same, processing push? doesn’t change

the unfairness of any vertex, and after push®?, (u(v'), u(v")) = (u +1,u + 1).

3. In all other cases, u(r) doesn’t change after processing push®' so processing

pushfi doesn’t change the unfairness of any vertex.

If u(v') # u(v”) then after processing each o3? sequence, the inequality u(v') # u(v")

still holds and u(v"), u(v") € {u—1,u+1}. Thus Pepa(S) = Pinit (S) + Pinse ({v/, V" }).
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If u(v') = u(v”) then with high probability after a o' subsequence is processed
u(r) # w and thus u(v') # u(v”). After the corresponding o2 is processed ®,q(S) =
Dinit (S) + Pinie ({0, 0"}). Given that now u(v') # u(v”) this invariant keeps during

subsequent processing of ¢! subsequences.

Thus, with high probability,

(I)end(S) - q)init(S) + q)init({vla UU})

after processing push,,. O
Remark 6.2.3. As the above can happen with as high probability as needed, for the

remainder of the paper we assume that it occurs with probability 1.

6.2.2 Distillation

Fix the “base unfairness” to be u for some u € Z. The sequence distill, (S, r), as

defined in Section 6.1.3, has two parameters:

1. A “virtual root” r such that u(r) = u.

2. A set S such that for every v € S the unfairness u(v) € {u —1,u+ 1}.

Let S C V., |S| = m where m is even. Denote S = {vy,vs,...,v,} and define the

tail of S, Sy = {iy € S|k > (}.

Lemma 6.2.4. With high probability, after the RGG algorithm processes the se-
quence distill, (S, r)

Do (S)51- 1@y (5)|41) = PulS).

Proof. Let ®ii(Se) = ®,(S¢) be the unfairness of S, prior to processing the subse-
quence push,, ({ve—2,vi-1}, Se, 1), and let $epq(Sy) = P, (Sy) be the unfairness subse-

quent to processing the subsequence push, ({vs_a,ve_1}, Se, 7).
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From Lemma 6.2.2, if |u(vy_o) + u(ve_1) + Pinic(Se)| <= |Se| then Penq(Se) =

;010 (Se) + Pinis ({ve—2, ve_1}). From induction

B (Sy) = Bu(S1) = Bu(S). (6.1)

Let ¢ be the first £ such that |u(vy_2) + w(ve_1) + Pinit(Se)| > [5)]- So |u(ve—2) +
w(ve—1) + Pinit(Se)| = S| + 2 and | Pena(Sp—2)| = |u(ve—2) + w(ve—1) + Pinit(Se)| =
|S)| — 2 = |Sp_a|. Also, From Equation 6.1, ®enq(Spr—2) = ®u(S). So [Sp_o| =
|©u(S)]

The rest of the sequence only contains vertices in Sy C Sp_5, and from Lemma

6.2.1 the value of u(r) stays u. So, after the RGG algorithm processes the sequence
distill, (S, 7), @y (Se_2) = P.(S).

From the definition |Sy_o| = m — ¢’ + 3 and we have shown that ®,(Sy_2) = ©,(S)

som—{'+3=&,(5) and ' — 2 = [S] — [D,(5)] + 1. -

Remark 6.2.5. As the above can happen with as high probability as needed, for the

remainder of the paper we assume that it occurs with probability 1.

6.2.3 Normalization

Let S = {v1,v2,...,v,} C V. Recall the definition of normalize,(S) presented in
Section 6.1.2:

normalize’ (S) = (vi, v2)||(vs, ig)|| - || (Vm—1, Vm),
normalize;,(S) = (61, 602)[|(61, 62)[| (83, 04) || (83, 04), || - - |81, O [|(Br—1, O,

normalize, (S) = normalize,. (S)||normalize? (S).

Lemma 6.2.6. Let S C V be a set such that ®,(S) = 0 and that for every vertex
v € S the unfairness u(v) € {u—1,u+1}. Then after the RGG algorithm processes

normalize, (S), with high probability, for every v € S u(v) = u.
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(u(foj—1),u(ba;)) | (ulfoj-1),u(b2))
before after
(u—2,u—2) (u—2,u—2)
<u—2,u) <u_27u>

(u-2,u+2) (u,u)
(u, u) (u, u)
(u,u+2) (u,u+2)
(u+2,u+2) (u+2,u+2)

Table 6.4: Effect of events (02j-1),(02;)|(62j-1),(62;), when
u(f2j—1),u(f2;) € {u — 2,u,u + 2}. The order of the vertices is not
important, so symmetries have been omitted for brevity.

Proof. First look at the effect of normalize,, (S). The only possible values of (u(vy;_1), u(vs;))
before normalize,.(S) is processed are (u — 1,u — 1), (u — 1,u+ 1), (u+ 1,u — 1),

(u+ 1,u + 1). Thus, after processing the sequence normalize.,(S) it holds that
u(vaj—1), u(vey) € {u — 2, u,u+ 2}.

Table 6.4 shows the effect of processing (69;_1), (02;)|[(02j-1), (02;). Let u(fa;_1), u(bs;)

be the values before the events were processed, and let u/(6y;_1), w' (625) be the val-

ues after the events were processed. The only cases in which (u(62;_1),u(6s;)) #
(u'(02-1), v (025)) and (u(Bz;-1), u(b;)) # (u'(02;), v (02-1)) are (u(fa;-1), u(ba;)) €
{{(u=2,u+2),(u+2u—2)}

Define #,(S) as the number of vertices in S with unfairness u

#u(5) = {v € Slu(v) = u}|.

It arises from Table 6.4 that a subsequence (02;_1), (62;)]|(f2j-1), (f2;) can increase
the value of #,(S) but that it cannot decrease its value. Given that ®,(S) = 0, if
there exists a v' € S such that u(v') = u — 2 then there must exist a v” € S such
that u(v”) = u + 2. Thus if #,(S) # |S|, with probability > 1/m?, both of these

are chosen and then #,(S) increases by 2.

The value #,(S) cannot decrease and for each subsequence (02;_1), (62;)]/(02;-1)

processed it increases with probability > 1/m?. Given that o’ is large, with high
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probability after processing normalize,(S) for every vertex v in S, u(v) = u. O]

Remark 6.2.7. As the above can happen with as high probability as needed, for the

remainder of the paper we assume that it occurs with probability 1.

6.2.4 Accumulation

Let u € Z be the “base unfairness”. Recall the definition given in Section 6.1.4.
1. Sets Gy = {vy,v2}, Go = {v3, v4}.

2. Set Ay ={aij,ad, ... al }.

m

3. Set Ay = {a?,a3,...,a%}.

m

¢

4. Vertex r is “virtual root”.

Assume that {r}, A;, Ay, G1, G5 are pairwise disjoint.

Recall the definition of acc,(G1, Ga, A1, Ag, 7, @):

create(4;) = (al, ab), (a%,as),. .., (a’, —1,a’),
gen, (G, Gy) = normalize, ({v1, ve, v3,v4})||(v1, v3)][(v2, v4),
acc, (G, Gy, Ay, Ag, 1) = gen,(G1, Gy, 7)||push, (G, Ay, 7)||push, (Gy, Ag, 1),
acc,(G1, Ga, Ay, As,r, ) = create(A;)||create(As)||

acci(Gl, G27 Al, AQ, 7’)“ ce HaCC3<G1, GQ, Al, AQ, 7").

We only analyze this sequence under the following conditions:

O, ({1, va,v3,v4}) = 0. (6.2)
Vv € Aju(v) = u. (6.3)
Yo € Apu(v) = u. (6.4)
u(r) = u. (6.5)
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We prove the following lemma.

Lemma 6.2.8. Assume conditions 6.2 - 6.5 hold. After the RGG algorithm pro-

cesses the sequence gen,(G1, G), with high probability,

Dy ({vr,v2}) = = Pu({vs, va}),
P(®,({v1,v2}) = =2) = P(®u({v1,v2}) = 2) = 1/4,
P(®y({vr,v2}) = 0) =1/2,
P(®,({vs,v4}) = =2) = P(®,({vs,v4}) = 2) = 1/4, and,

P(®,({vs,v4}) =0) =1/2.

Proof. We assumed @, ({v1,ve,v3,v4}) = 0. Both of the events in the sequence
(v1,v3)]|(ve, vg) are for vertices in {vy, va, v, v4} thus after processing gen, (G, G2)

still q)u<{U1, Vg, U3, U4}) =0.

The potential @, ({vy,vs,v3,v4}) = Pu({v1,v2}) + Pu({vs,v4}) so O, ({v1,v2}) =
—®u({vs, va}).

After the RGG algorithm processes normalize, ({v1, v, v3,v4}), with high probabil-
ity, u(vy) = u(vy) = u(vs) = u(vy) = u. The results of processing (v, v3) and of pro-
cessing (v2,v4) are independent so P(u(v1) = u(vs)) = P(u(v1) # u(v2)) = 1/2 and
P(u(vs) = u(vs)) = P(u(vs) # u(vs)) = 1/2. Given that u(vy), u(vs), u(vs), u(vs) €

{u —1,u + 1} this concludes the proof. O
Lemma 6.2.9. Assume conditions 6.2 - 6.5 hold. After the RGG algorithm pro-

cesses the sequence accy(G1,Ga, A1, A, @), P((|®u(A1)] = m/2) A (|Pu(Az)] >
m/2)) > 1/2.

Proof. Define ®, to be the value ®,(A;) after the RGG algorithm processes
acc (G, Go, Ay, Ay, 7).

The first sequence processed is create(A;)||create(As). After this sequence is pro-

cessed, every vertex v € Ay U Ay has unfairness © — 1 or v has unfairness v + 1. It

is also still true that ®(A;) = ®(A) = 0.
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We assumed that initially @, ({vy, ve, v3,v4}) = 0. From Lemma 6.2.8, ®,,({vy,v2}) =
—®,({vs,v4}) after the gen,(G1,G2) sequence is processed. After
push, (Gy, Ay, 7)||push, (G2, Aa, 1) is processed it is true that $(A;) = —P(Ay) since
u(r) = u and @, ({vy,v2}) = @, ({vs,v4}) = 0.

From induction, after acc! (G1, Ga, Ay, As, 1) is processed @, ({vy, v, v3,v4}) = 0 and
B(Ay) = —B(Ay).

Define ¢, = ®,,(A;). Look at the value &, as a Markov chain (shown in Figure 6.6) ,

where transitions are between the times the algorithm processes acct (G, G, A1, As, 7)’s.

From Lemma 6.2.2, if |®y| # |A1|, ®ry1 = Pr+ Py({v1,v2}). From Lemma 6.2.8 the

value @, ({vy,v,}) is distributed:

P(®y({v1,02}) = =2) = 1/4,
P(®y({v1,v2}) = 0) = 1/2,

P(®,({v1,v2}) =2) =1/4.

Note that the cases |®,| = m are different then the other cases, in these cases no

more unfairness can be pushed into A;.

If &y ¢ {—m,m} (remember |A;| = m) the probabilities between transitions are

1
P@®—&-2)=.
1
P(® = @) =,

1
P(®—®+2)= .

If &, = m then the probabilities are

P(®—®—2) =

9

=W =

P(® — @) =

29



3/4 1/2 1/2 3/4
&ﬂéﬂ - Wémé

Figure 6.6: The Markov chain for ®,. The node labels are the poten-
tial &, at that state, the edge labels are the transition probabilities.

If ®, = —m then the probabilities are

P(® — ®) =

N S V)

P®—®+2)=

This is an ergodic, regular Markov chain. Thus the limit of the distribution is
stationary, regardless of the starting position. Moreover, the transition matrix is
symmetric, so the limit distribution is uniform. |A;| = m so, after the RGG algo-

rithm processes acc, (G1, Ge, A1, Ao, 7, ),

PleuAn = ) 2 5.

We proved that ®,(A;) = —®,(As) so [P, (A1) > m/2 iff |@,(A2)] > m/2.

6.2.5 The Lower Bound Sequence

The following is a repetition of the definition first given in Section 6.1.5. Let there
be a “base unfairness” v € Z. Let S C V, |[S| = m + 5, such that for every v € S,

u(v) = u.

Remark 6.2.10. In this section we assume that m is divisible by 12, but this is not

necessary. If m = k (mod 12) where k # 0 then redefine S to be S without k
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vertices.
Split .S into the following
1. A virtual root r.

2. Two generator sets GGy, G5 each of size 2.

3. Three pairs of sets (AL, AL), (A% A3),(A3, A3) where for i € {1,2,3},5 € {1,2},
|AL| = m/6.

For i € {1,2,3},j € {1,2} denote A’ = {(a’), |1 < k < m/6} and (A}) =

{(@})k Im/12+1 < k <m/6} (i.e., the last m/12 vertices).

Define the subsequences iter;(S), for i € {1,2,3} and o € N a large value

1terz(s> :accu(Gb G27 Azh A227 T, Oé) ||d18t111(“4117 T) H

distill(Aé, r) ||iter((A§)/) Hiter((Aé)/).
Define the sequence

iter(S) = itery (S)]|iters(S)|liters(.S).

These recursive calls can continue till a depth of Q(logn) because the sizes of the

sets decrease exponentially, i.e.,

(A _ [(A3)] _ 1=5/1S] T
9] 9] 12 12

The lower bound is proven by running the sequence iter(V).

Corollary 6.2.11. Let i € {1,2,3},5 € {1,2}. With probability 1/2, after the

Randomized Global Greedy algorithm processes distill(A§, T)

|4 ((A1))] = [(A})'] and [, ((A3)")] = [(A3)']-
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Proof. For i € {1,2,3},j € {1,2}, denote ® = ®,(A’) as the potential of A} after
the RGG algorithm processes acc,(G1, Go, A%, AL, r, o). This potential is the same

as the one after processing acc, (G, Ga, A, Ab, r, o) || distill (A}, 7).

From Lemma 6.2.9, with probability 1/2, |®}] > m/2 and |®5| > m/2. If this occurs

then from Lemma 6.2.4, after the RGG algorithm processes distill( A%, r)||distill( A, r),

[@u((A71))] = [@u((A5))] = m/2 = [(A})'] = [(A3)']

We show an analysis that after Q(logn) steps, with probability > 1/2; there exists
a set (A2) for i € {1,2,3},j € {1,2} such that all of the vertices in (A%)" have
unfairness 2(logn). We show this not for the absolute value, the unfairness itself is

large and positive. A similar analysis could be done for a negative unfairness.

Look at the iter(V') calls as creating a tree. The root of the tree is V', and it has at
most three children, each of the pairs of sets. These are ((A})', (4%)) fori € {1,2,3}.

Now, iter(A?) is called for j € {1,2}. This continues the tree.

We define that an edge between a parent S and a child ((A%)’, (AL)) exists if
|@,((AD))] = |(AY)] and |@,((A4%))] = |(AL)'|. From Lemma 6.2.11 this occurs with
probability 1/2. If this occurs, exactly one of the sets (A7), (Ab) has ®,((A})) =

|(A%)'|, i.e., the potential increases.

The adversary does not know which one of the sets (A%) or (A%) has an increased
unfairness (again, not the absolute value but the value itself). Thus, both of the
sets are part of the recursive call. For the analysis, we look only at the set with

increased unfairness and its children. I.e., only these sets are part of the tree.

Remark 6.2.12. Let S be a set such that there is no path between S and V. In this
case, it is not possible to apply Lemma 6.2.11. Randomly decide which one of the
sets (A%)" or (A%) is chosen, and define that an edge exists between S and this set

with probability 1/2.
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Figure 6.7: An example of a tree of sets. Solid lines are existing
edges, dashed lines are edges that don’t exist. The set (A4}), or (A})
shown is the one where the unfairness of each vertex increased, or
a random one if |®,((A}))] < [(A})']| and |®,((4A5))] < |(AL)'].

Lemma 6.2.13. For all d, the probability of there being a path from the root to a

vertex at depth d is at least 1/2.

Proof. Denote the vertex S¥ as the i’th vertex at depth k. Note that the number of
vertices at depth k is 3¥. We are interested whether the node at depth 1 has a path

to a node at depth d.

Let the indicator variable X* denote whether the vertex S¥ has a path to depth d.

Note that for all 4, X¢ = 1.

Each vertex SF has 3 children, S5, S5t SEEL . From Lemma 6.2.11 and Remark

6.2.12:

k+1 k+1 k+1
P(Xk ) X?n' +X37L+1+X3i+2
E— ) <

)

N | —

All the indicator variables at the same depth, {XF™!|1 < i < 3¥1} are independent

and identically distributed. Denote the probability that Xf“ =1 as pgy1. Thus

(X:I)fz‘Jrl + ngill + X:fzilz) ~ Bin(gapk-l-l)-

So
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Assume that px1 > 1/2 then:

3

17 /53 , i
pr >1— Z <]) (pk—f—l)J(l —pk+1)(3 2

L9
7=0
21913 /3
>1-) =
21-3°3 ()
7=0
1 +3 3+
8 2 4 8
2
64
1
>,
=9

From the definition p; = 1 > 1/2 so from induction p; > 1/2 and thus with

probability greater than 1/2 there is a path from the root to a node at depth d. [

Theorem 6.2.14. The sequence iter(V') achieves an expected unfairness of 2(logn)

for the Randomized Global Greedy algorithm when run on a clique.

Proof. From Lemma 6.2.13, after the Randomized Global Greedy algorithm processes
iter(V') there exists with probability > 1/2 a path between the root and a vertex at
depth Q(logn). Thus there exist sets such that each iteration the value of u increases

by one. After Q(logn) iterations there exists a set such that u = Q(logn). O
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VI Summary

7.1 Our Results

We have shown three main results in this thesis:

1. We introduced an adaptive adversary that achieves unfairness of at least n/4

for any randomized algorithm, where n is the number of leaves.

2. We presented a sequence that achieves a lower bound of Q(y/n) for the Star

Algorithm when the social network is a star.

3. We showed a sequence that achieves a lower bound of Q(logn) for Randomized

Global Greedy when the social network is a clique.

In addition, we presented a “toolbox” of sequences which were used to prove the

lower bounds for the oblivious adversaries.

7.2 Open Questions

There are several outstanding open questions regarding bounds for oblivious adver-

saries that follow from this thesis:

e Does Randomized Global Greedy achieve ©(logn) on the clique?

e Is the lower bound of Q(logn) for Randomized Global Greedy also correct on

the star?

e Is there also an upper bound of O(log n) for Randomized Global Greedy on the

star?
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e Is there another algorithm that achieves O(logn) either on the clique or on

the star?

e Does there exist an algorithm that achieves O(1) on a significant class of

graphs?
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