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ABSTRACT
We study k-resilient Nash equilibria, joint strategies where
no member of a coalition C of size up to k can do better, even
if the whole coalition defects. We show that such k-resilient
Nash equilibria exist for secret sharing and multiparty com-
putation, provided that players prefer to get the information
than not to get it. Our results hold even if there are only
2 players, so we can do multiparty computation with only
two rational agents. We extend our results so that they hold
even in the presence of up to t players with “unexpected”
utilities. Finally, we show that our techniques can be used
to simulate games with mediators by games without media-
tors.

Categories and Subject Descriptors: F.0 [Theory of
Computation]: General.

General Terms: Economics, Security, Theory.

Keywords: Distributed Computing, Game Theory, Secret
Sharing, Secure Multiparty Computation.
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1. INTRODUCTION
Traditionally, work on secret sharing and multiparty com-

putation in the cryptography community, just like work in
distributed computation, has divided the agents into “good
guys” and “bad guys”. The good guys follow the protocol;
the bad guys do everything in their power to make sure it
does not work. Then results are proved showing that if no
more than a certain fraction of the agents are “bad”, the
protocol will succeed.

Halpern and Teague [10] studied secret sharing under the
assumption that agents were rational : they would only do
what was in their self-interest. For three or more players,
under the assumption that a player prefers to get the secret
over not getting it, they give a randomized protocol with
constant expected running time in which all players learn the
secret. They prove their protocol is a Nash equilibrium that
survives iterated deletion of weakly dominated strategies.

Indeed, traditional results in game theory mostly consider
the equilibrium notions (like Nash equilibrium) that toler-
ates the deviation of only one agent. That is, a joint strategy
(σ1, . . . , σn) is a Nash equilibrium if no agent can do better
by unilaterally deviating (while all the other agents continue
to play their part of the joint strategy). However, in prac-
tice, agents can form coalitions. It could well be that if
three agents form a coalition and they all deviate from the
protocol, then they could all do better.

We define an equilibrium to be k-resilient if it tolerates
deviations by coalitions of size up to k. Roughly speaking, a
joint strategy (σ1, . . . , σn) is k-resilient if, for any coalition
|C| ≤ k that deviates from the equilibrium, none of the
agents in C do better than they do with (σ1, . . . , σn). This
is a very strong notion of resilience (much stronger than
other notions in the literature). We will be interested in
k-resilient practical mechanisms which, roughly speaking,
are protocols that define a k-resilient Nash equilibrium that
survives iterated deletion of weakly dominated strategies.

1.1 Our contributions
In this paper we significantly extend and improve the

results of Halpern and Teague in several important ways.
While continuing to use rationality so as to move away
from the tradition “good guys”–“bad guys” adversary model
that is standard in the distributed computing community,
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we mitigate the “fragility” of Nash equilibrium by allowing
coalitions and tolerating a certain number of agents whose
utilities may be unknown or nonstandard. Our specific con-
tributions include the following:

1. While Halpern and Teague’s results provide a 1-resilient
equilibrium, our main result shows that we can achieve
optimal resilience — an (n−1)-resilient practical mech-
anism — for the n out of n secret-sharing game. This
is of particular interest in the context of secure mul-
tiparty computation. Replacing the use of n out of
n secret sharing in standard multiparty computation
protocols by our (n−1)-resilient rational secret sharing
protocol, it follows that any multiparty computation
that can be carried out with a trusted mediator can
also be carried out without the trusted mediator, in a
highly resilient way.

2. While Halpern and Teague’s results are appropriate
for three or more players, our results work even for
two players. The n = 2 setting is of great interest. For
example, consider Yao’s [25] classic millionaire’s prob-
lem, where two millionaires meet and want to learn
which is richer, in a setting where both millionaires
would like to learn the answer, but would prefer that
the other millionaire does not. We provide the first fair
solution to the problem in this setting. On a perhaps
more practical note, consider rival companies that wish
to securely compute aggregates statistics (e.g., medi-
ans or expectations) based on their combined private
databases. Malkhi et al. [18] recently built a full dis-
tributed implementation of secure computation for two
parties. One of the main open questions raised in the
context of the real-world applicability of such systems
is exactly the problem of fair termination. Our results
solve this problem for any number of agents and arbi-
trary coalitions if agents are rational.

3. Halpern and Teague’s randomized protocol includes a
parameter that essentially determines the probability
of terminating in any given round. To set this pa-
rameter, the protocol designer must know the utilities
of all the agents (or, at least, a lower bound on the
gap between the utility of everyone learning the secret
and the utility of no one learning the secret). This is
also the case for our general protocol. However, we
can show that if k < dn/3e, then we can give a sin-
gle k-resilient practical mechanism that works for all
choices of numerical utility, as long as agents do not
strictly prefer not learning the secret to learning the
secret. Moreover, this protocol does not require cryp-
tographic assumptions. For the case that k = 1, this
solves an open problem raised by Halpern and Teague
[10].

4. A system designer may not be able to count on all
agents having the utility she expects. For example, in
our setting, especially if n is large, there may be some
“altruists” who actually prefer it if more agents learn
the secret. We extend our results to the case where
there are t agents whose utility can be arbitrary, as
long as the remaining n − t agents have the utility
that the designer expects.

5. Finally, our results lead to a deeper understanding of
the power of cheap talk as a method to securely simu-
late an equilibrium without depending on honest me-
diators. In many cases of interest, it can be shown that

a mechanism with desired properties exists if there is
a trusted mediator. But a reliable trusted mediator is
not always available. Izmalkov, Micali, and Lepinski
[12] and Lepinski et al. [16] show, roughly speaking,
that any equilibrium of a game with a mediator can
be simulated by a game without a mediator. How-
ever, their construction relies on a very strong primi-
tive they call an envelope and ballot-box ; it is not clear
that envelopes and ballot-boxes can be implemented
in practice. Ben-Porath [4] shows that we can simu-
late a Nash equilibrium with a mediator provided that
there is a “punishment strategy” which players can use
to threaten potential deviators. Heller [11] strength-
ens Ben-Porath’s result to allow coalitions. We show
that, if we can assume private channels or if we make a
standard cryptographic assumption (that imply obliv-
ious transfer and computationally bounded players),
we can simulate any equilibrium of a game with a me-
diator provided that there is a punishment strategy.
We also show that if k is sufficiently small, then we
can do the simulation even without the punishment
strategy.

Perhaps the most significant issue that we have not yet ad-
dressed is asynchrony. All our results depend on the model
being synchronous. We are currently working on the asyn-
chronous case.

2. DEFINITIONS
We consider games in extensive form, described by a game

tree whose leaves are labeled by the utilities of the players.
We assume that at each node in the game tree player i is in
some local state (intuitively, this local state describes player
i’s initial information and the messages sent and received
by player i). With each run r (i.e., path that ends in a
leaf) in the game tree and player i, we can associate i’s
utility, denoted ui(r), if that path is played. A strategy for
player i is a (possibly randomized) function from i’s local
states to actions. Thus a strategy for player i tells player i
what to do at each node in the game tree. A joint strategy
~σ = (σ1, . . . , σn) for the players determines a distribution
over paths in the game tree. Let ui(~σ) denote player i’s
expected utility if ~σ is played.

Let N = {1, . . . , n} be the set of players. Let Si denote
the set of possible strategies for player i, and let S = S1 ×
. . .×Sn. Given a space A = A1×· · ·×An and a set I ⊂ N let
AI =

Q
i∈I Ai and A−I =

Q
i/∈I Ai. Thus, SI is the strategy

set of players in I. Given x ∈ AI and y ∈ A−I , let (x, y) be
the tuple in A such that (x, y)i = xi if i ∈ I and (x, y)i = yi

otherwise.
A joint strategy is a Nash equilibrium if no player can

gain any advantage by using a different strategy, given that
all the other players do not change their strategies. We
want to define a notion of k-resilient equilibrium that gen-
eralizes Nash equilibrium, but allows a coalition of up to k
players to change their strategies. There has been a great
deal of work on dealing with deviations by coalitions of
players, going back to Aumann [2]. Perhaps most rele-
vant to our work is that of Bernheim, Peleg, and Whinston
[5]. They define a notion of coalition-proof Nash equilibrium
that, roughly speaking, attempts to capture the intuition
that ~σ is a coalition-proof equilibrium if there is no devi-
ation that allows all players to do better. However, they
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argue that this is too strong a requirement, in that some
deviations are not viable: they are not immune from further
deviations. Thus, they give a rather complicated definition
that tries to capture the intuition of a deviation that is im-
mune from further deviations. This work is extended by
Moreno and Wooders [19] to allow correlated strategies.

Since we want to prove possibility results, we are willing
to consider a notion of equilibrium that is even stronger then
those considered earlier in the literature.

Definition 1 (k-resilient equilibrium). Given a non-
empty set C ⊆ N , σC ∈ SC is a group best response for C
to σ−C ∈ S−C if, for all τC ∈ SC and all i ∈ C, we have

ui(σC , σ−C) ≥ ui(τC , σ−C).

A joint strategy ~σ ∈ S is a k-resilient equilibrium if, for all
C ⊆ N with |C| ≤ k, σC is a group best response for C to
σ−C . A strategy is strongly resilient if it is k resilient for
all k ≤ n− 1.

Given some desired functionality F , we say that (Γ, ~σ) is a
k-resilient mechanism for F if ~σ is a k-resilient equilibrium
of Γ and the outcome of (Γ, ~σ) satisfies F . For example, if
~σ is a k-resilient mechanism for secret sharing, then in all
runs of ~σ, everyone would get the secret.

Observe that a 1-resilient equilibrium is just a Nash equi-
librium; thus, this notion generalizes Nash equilibrium. The
notion of k-resilience strengthens Moreno and Wooder’s no-
tion of coalition-proof equilibrium by tolerating arbitrary de-
viations, not just ones that are viable (in that the deviations
themselves are immune to further deviations). Moreover, k-
resilience implies tolerance of deviations where only a single
player in the coalition does better; coalition-proof equilibria
tolerate only deviations where everyone in the coalition does
better. By considering deviations where only one player does
better, we allow situations where one player effectively con-
trols the coalition. This can happen in practice in a network
if one player can “hijack” a number of nodes in the network.
It could also happen if one player can threaten others, or
does so much better as a result of the deviation that he per-
suades other players to go along, perhaps by the promise
of side payments. 1 We do restrict to coalitions of size at
most k, where k is a parameter. Such a restriction seems
reasonable; it is difficult in practice to form and coordinate
large coalitions.

We take a mechanism to be a pair (Γ, ~σ) consisting of a
game and a joint strategy for that game. Intuitively, a mech-
anism designer designs the game Γ and recommends that
player i follow σi in that game. The expectation is that a
“good” outcome will arise if all the players play the recom-
mended strategy in the game. Designing a mechanism es-
sentially amounts to designing a protocol; the recommended
strategy is the protocol, and the game is defined by all possi-
ble deviations from the protocol. (Γ, ~σ) is a practical mech-
anism if ~σ is a Nash equilibrium of the game Γ that survives
iterated deletion of weakly-dominated strategies.2 Similarly
a k-resilient practical mechanism is a practical mechanism
where ~σ is k-resilient.

1Of course, in a more refined model of the game that took
the threats or side-payments into account, everyone in the
coalition would do better.
2We assume the reader is familiar with the concept of iter-
ated deletion; see [21, 10] for details.

3. GAMES WITH MEDIATORS
To prove our results, it is useful to consider games with

mediators. We can think of a mediator as a trusted party.
We will show that if there is an equilibrium in a game using a
mediator, then we can get a similar equilibrium even without
the mediator, provided utilities satisfy certain properties.

Following Forges [6], we view a mediator as a communica-
tion device. Consider a multistage game with T stages with
complete recall. Formally, a mediator is a tuple 〈It

i ,Ot
i ,Pt〉

for i ∈ N and t ∈ T , where It
i is a set of inputs that player

i can send at stage t, Ot
i is a set of outputs for player i at

stage t, and Pt is a function from
Q

i∈N,r≤t I
t
i and (pos-

sibly some random bits r) to
Q

i∈N Ot
i . Less formally, at

each stage t, each player sends a message (input) and the
mediator computes a function (which is possibly random) of
all the messages ever sent and sends each player a piece of
advice (output).

Given a multistage game Γ and a mediator d, we can define
a game Γd, the extension of Γ with d. Each stage t of Γd

can consists of three phases: in the first phase, each player,
i, sends some input in It

i to d; in the second phase, d sends
each player i the appropriate output in Ot

i according to Pt;
and in the third phase, each player makes a move in Γ or no
move at all. The utilities of the players depend only on the
moves made in Γ.

4. RESILIENT SECRET SHARING
In this section we focus on a specific game: m out of n

secret sharing based on Shamir’s scheme [23]. The secret
is f(0), where f is a degree m − 1 (random) polynomial
over a field F such that |F | > n. Agent i is given f(i),
for i = 1, . . . , n; f(i) is agent i’s “share” of the secret. We
assume, without loss of generality, that f(0) 6= 0 (and that
this fact is common knowledge among the players). For ease
of exposition, we assume that the secret is equally likely to
be any nonzero field value (and that this fact is common
knowledge among the players).

For most of this section we assume for ease of exposition
that the initial shares given to each player are signed by the
issuer, in such a way that each other player can verify the
signature of the issuer and no player can forge the signature.
We remove the assumption at the end of the section.

To prove our results, we must formalize the intuition that
players prefer getting the secret to not getting it. Halpern
and Teague [10] did this by assuming that it was possible to
determine whether or not a player learned a secret just by
looking at a run (complete path) in a game tree. To avoid
this assumption, we assume that players must output the
secret (or their best guess at the secret) at the end of the
game. Of course, if they guess wrong, the output will be
incorrect. This approach has the additional advantage that
we can model situations where players get partial informa-
tion about the secret (so that they can guess the value with
high probability).

Given a run r in the game tree, let out(r) be a tuple
where outi(r) = 1 if player i correctly outputs the secret
and outi(r) = 0 if player i outputs a value that is not f(0).
We can now model the fact that players prefer to get the
secret to not getting it using two assumptions that are iden-
tical to those made by Halpern and Teague, except that we
talk about what a player outputs rather than what a player
learns. The following assumption says that player i’s utility
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depends just on the outputs:

U1. If out(r) = out(r′) then ui(r) = ui(r
′) .

The next assumption is that each player strictly prefers
learning the secret to not learning it.

U2. If outi(r) = 1 and outi(r
′) = 0 then ui(r) > ui(r

′).

In some of our results we require a weaker assumption,
namely, that each player never prefers not to learn the se-
cret.

U2′. If outi(r) = 1 and outi(r
′) = 0 then ui(r) ≥ ui(r

′).

Halpern and Teague [10] made an additional assumption
that was needed for their impossibility result, which cap-
tures the intuition that players prefer that as few as possible
of the other players will learn the secret. This property was
not used by Halpern and Teague for their possibility result.
We do not need it for ours either, so we do not make it here.

We provide a strategy for an augmented game with a me-
diator that has a k-resilient equilibrium where all agents
learn the secret, and then show how this strategy can be
implemented without a mediator in a way that survives it-
erated deletion.

Suppose that the game is augmented with a mediator that
uses the following protocol.

• In stage t ≥ 0, the mediator waits to receive an appro-
priate phase 1 message from each player. In stage 0,
this will be a share in polynomial f correctly signed by
the issuer; in stage t > 0, this will be an ack message.
If it does not receive an appropriate message from each
player, the mediator stops playing. If the mediator is
still playing at stage t, then after receiving a phase
1 (of stage t) message from each player, it chooses a
binary random variable ct with Pr[ct = 1] = α (we
specify α below) and a random degree m − 1 polyno-
mial gt over F such that gt(0) = 0. It computes the
polynomial ht = f · ct + gt and, in phase 2, sends each
player i the value ht(i). Note that if ct = 0, then
ht(0) = 0; if ct = 1, ht(0) = f(0). Thus, if ct = 1,
ht encodes the same secret as f ; if ct = 0, then ht

does not encode a secret (and if the players get all the
shares of ht, they will realize that ht does not encode
a secret, since f(0) 6= 0, by assumption).

Consider the following strategy σi for player i.

1. In phase 1 of stage 0, send your share of the secret to
the mediator and set ok := true. In phase 1 of stage
t > 0, if ok = true, send ack to the mediator.

2. If the mediator sends the message at
i in phase 2 of

stage t ≥ 0 and ok = true, then in phase 3 of stage t
send at

i to all the other players. If not all players sent
a message in phase 3, set ok := false. Otherwise, con-
struct the polynomial ht by interpolating the received
shares. If there is no such polynomial, set ok := false.
Otherwise, if ht(0) 6= 0, then stop, set ok := false, and
output ht(0). If ht(0) = 0, continue to the next stage.

We want to show that (σ1, . . . , σn) is a k-resilient equilib-
rium, provided that α is chosen appropriately. If A ⊆ N , let
ui(A) be i’s best-case expected utility if exactly the players
in A learn the secret. To understand why we say “best-case

expected utility” here, note that if the players in A learn
the secret, we assume that their output is the secret. But
the utility of player i also depends on what the players not
in A output. Since the players not in A have no informa-
tion about the secret, the probability that a player not in
A will guess the secret correctly is 1/(|F | − 1). However,
this probability alone does not determine i’s expected pay-
off, since the payoff may depend in part on how the players
not in A correlate their guesses. For example, if the play-
ers not in A agree to all guess the same value, then with
probability 1/(|F | − 1) they all guess the secret, and with
probability (|F | − 2)/(|F | − 1) none do. On the other hand,
if they always make different guesses, then with probability
(n− |A|)/(|F | − 1), exactly one player not in A guesses the
secret, and with probability (|F |− 1−n+ |A|)/(|F |− 1), no
player in A guesses the secret. Let ui(A) be i’s payoff if the
players not in A correlate their guesses in a way that gives
i the best expected payoff, and let mi = maxA⊆N ui(A).

Proposition 1. If α ≤ mini∈N
ui(N)−ui(∅)

mi−ui(∅)
and k < m,

then (σ1, . . . , σn) is a k-resilient practical mechanism for
m out of n secret sharing that has expected running time
O(1/α).

Proof. Clearly if everyone follows the strategy, then,
with probability 1, everyone will eventually learn (and thus
output) the secret, and this will happen in expected time
O(1/α). Consider what happens if some coalition C ⊆ N
of players does not follow the strategy. This could happen
if either (1) some players in C lie about their initial share
in their phase 1 message to the mediator or do not send a
message at all, (2) some players in C do not send an ack
message to the mediator in phase 1 of some round t > 0, or
(3) some players in C either lie or do not send their shares
(received from the mediator in phase 2) to the other players
in phase 3 of some round t.

Since we have assumed that shares are signed by the is-
suer, if some i ∈ C lies about his initial share, then i will
be caught and the mediator will not continue. This clearly
results in a worse outcome for i. Similarly, if some i ∈ C
does not send a share in stage 0 or does not send an ack
message in stage t > 0, then the game stops and no player
learns the secret. This is also a worse outcome for i.

Now suppose that some i ∈ C does not send a share in
phase 3 of round t. With probability 1 − α, the game will
stop and no player will learn the secret. If the game does not
stop (which happens with probability α), the best outcome
player i can hope for is to gain mi. Thus, i ∈ C gains from
sending nothing only if αmi + (1 − α)ui(∅) > ui(N). But
we have assumed that this is not the case. Thus, i will send
something at phase 3.

Now suppose that players in C decide to send X = {xi |
i ∈ C} instead of {ht(i) | i ∈ C}. We say that X is a
compatible response if and only if there exists a degree m−1
polynomial q such that

q(i) =

(
xi − ht(i) if i ∈ C

0 if i ∈ {0, 1, . . . , n} − C.

Note that this condition can be checked by simple interpo-
lation. There are two cases to consider. If X is a com-
patible response, then sending X has the same result as
sending {ht(i) | i ∈ C}. Essentially, sending a compatible
response X at stage t will cause the players to reconstruct
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the polynomial ht + q instead of polynomial ht. However,
since [ht +q](0) = ht(0)+q(0) = ht(0), this does not change
the outcome, i.e. either with probability α all players learn
the secret or with probability 1−α all players interpolate 0
as the secret and continue to the next stage. On the other
hand, if X is not a compatible response, then with probabil-
ity α player i ∈ C learns the secret and gains utility at most
mi, and with probability 1 − α player i does not learn the
secret and the game ends, since other players will attempt to
interpolate [ht + q]. This attempt will either fail or will re-
sult in some [ht + q](0) 6= 0. Thus, i ∈ C gains from sending
a incompatible response only if αmi +(1−α)ui(∅) > ui(N),
which we assume is not the case.

Finally, the fact the ~σ survives iterated deletion is im-
mediate from the sufficient condition given by Halpern and
Teague [10, Theorem 3.2] for a randomized protocol with un-
bounded running time to survive the iterated deletion pro-
cess.

If in the protocol above we use n out of n secret shar-
ing (that is, if the mediator chooses a polynomial of degree
n − 1 = m − 1), then we have a strongly resilient protocol,
provided that α is chosen appropriately. That is, we can
essentially tolerate arbitrary coalitions.

Note that the choice of α here depends on the utilities of
the agents. Implicitly, we are assuming that the mediator
knows these utilities, so that it can choose α appropriately.
Moreover, the expected running time of the protocol de-
pends on α. We now show that if k < m ≤ n − k, then we
can modify the mediator’s algorithm slightly so that the ex-
pected running time is 2 rounds. However, the modification
still depends on the mediator knowing the players’ utilities.
We then show that if k < m ≤ n − 2k, then it is not even
necessary for the mediator to know the utilities at all.

The key observation is that if k ≤ n−m (i.e., if m ≤ n−k),
then the players have sufficiently many shares that they can
reconstruct the secret even if the coalition members do not
send their shares in phase 3. If the coalition members ac-
tually send incorrect values of at

i rather than no value at
all, then the non-coalition members may have a problem.
They will realize that there is no polynomial that interpo-
lates the values that were sent; moreover, they will know
that there exist n−k ≥ m “good” values, all of which lie on
the correct polynomial ht. However, there may be multiple
subsets of size m through which different polynomials can be
interpolated. This problem can be avoided if the mediator
sends each player some information they can use to verify
the truth of the other player’s statements. The verification
process uses Rabin and Ben-Or’s [22] information checking
protocol (ICP).

We modify the mediator’s protocol as follows:

• F (the field from which the coefficients of the polyno-
mial are taken) is chosen such that |F | > 1/β, where
β is a security parameter determined below.

• c is chosen so that Pr(c = 1) = 1/2, rather than α.
• In addition to sending each player i the value ht(i) at

round t, it also sends i a random element yt
ij in F , one

for each player j 6= i. Finally, it sends j a pair (bt
ij , c

t
ij)

of field elements such that ct
ij = bt

ijh
t(i) + yt

ij (so that
it sends i (bt

ji, c
t
ji) for all j 6= i).

We modify σi to the protocol σ′i where i sends j the value
yt

ij in addition to ht(i). Note that if i modifies the value of

ht(i) to h′, i must also modify the value of yt
ij to y′ such

that ct
ij = bt

ijh
′ + y′; otherwise, i’s lie will be caught. The

probability of being able to guess an appropriate y′ is less
than β.

Proposition 2. If β < maxi∈N
ui(N)−ui(∅)

2mi−(ui(N)+ui(∅))
and

k < m ≤ n − k, then (σ′1, . . . , σ
′
n) is a k-resilient practical

mechanism for m out of n secret sharing that has expected
running time 2.

Proof. Clearly if everyone follows the strategy, then,
with probability 1, everyone will eventually learn the secret,
and this will happen in expected time 2. The argument for
k-resiliency proceeds much as that for Proposition 1. But
note that in the case that c = 1, the non-coalition players
will get the secret unless some coalition members lie about
their shares and the lie is not detected. The probability that
a single lie is not detected is at most β; if there are more
lies, the probability of detection is even greater. Thus, if
c = 1 and someone in the coalition lies, with probability at
most β, i’s payoff will be at most mi, and with probability
at least 1−β, i’s payoff will be ui(N). If c = 0 and someone
in the coalition lies, then with probability at least 1−β, the
lie will be detected, and the game will end. If the lie is not
detected, the most that i can hope to get is mi. Thus, i’s
expected utility from being part of a coalition where some-
one lies is at most 1

2
(1−β)ui(∅)+ 1

2
(1−β)ui(N)+βmi. So

i would prefer it’s coalition to lie only if

1

2
(1− β)ui(∅) +

1

2
(1− β)ui(N) + βmi > ui(N).

Note that if k < dn/2e, then we can choose m such that
k < m ≤ n − k, so that Proposition 2 applies. Moreover,
the proof of Proposition 2 shows that we could have taken
Pr(c = 1) = 1/(1 + ε) for any ε > 0 by appropriately modi-
fying β (i.e., by taking the field F sufficiently large), giving
an expected running time of 1 + ε for the protocol.

If k < m ≤ n − 2k, then we can do even better. In this
case, even if everyone in the coalition lies, the non-coalition
members can use Reed-Solomon unique decoding to find the
correct polynomial in time almost linear in n [13]; we do not
need to send verification information. Thus, we consider the
mediator’s initial protocol (except that Pr(c = 1) = 1/2)
and use the original protocol σi for player i.

Proposition 3. If k < m ≤ n− 2k, then (σ1, . . . , σn) is
a k-resilient practical mechanism for any m out of n secret
sharing game that has expected running time 2.

Note that if k < dn/3e, then we can choose m = k +
1 so that Proposition 2 applies. And again, we can take
Pr(c = 1) = 1/(1 + ε) for all ε > 0, to get a protocol with
expected running time 1 + ε. In fact, (σ1, . . . , σn) is a k-
resilient Nash equilibrium even if Pr(c = 1) = 1, that is,
if the mediator sends player i f(i) in stage 0. By results of
Halpern and Teague, however, this protocol does not survive
iterated deletion. To get a practical mechanism, we must
take Pr(c− 1) < 1.

There are many games with mediators that can deal with
secret sharing. For example, the mediator can just send the
secret to each of the players. The advantage of the game
that we have just described is that it can be simulated by the
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players without a mediator using multiparty computation.
The simulation proceeds as follows.

Assume again that the players are given signed shares.
We actually have a sequence of multiparty computations,
one for each round t. For round t, the input of player i to
the multiparty computation consists of the following inputs,
where a and b are parameters of the protocol chosen so that

a/2b ≤ mini∈N
ui(N)−ui(∅)

mi−ui(∅)
(intuitively, a/2b is playing the

role of α):

1. the (signed) secret share that i received initially;
2. a random bitstring ct

i of length b, uniformly distributed
in {0, 1, . . . , 2b};

3. a random degree m−1 polynomial gt
i such that gt

i(0) =
0 and the coefficients of gt

i are uniformly distributed
in the underlying field F .

4. a random bitstring bi of length dlog(|F |)e.

Let

ct =

(
1 if ⊕i∈Nct

i ≤ a2z

0 otherwise,

where ⊕ denotes bitwise exclusive or; let gt = (gt
1+· · ·+gt

n).
The multiparty computation then does essentially what

the mediator does in the previous algorithm. More precisely,
let F t be the function that, given the inputs above, does the
following computation. It checks that the shares sent are
correctly signed; if so, it computes the polynomial f that
interpolates them. It also checks that gt

i(0) = 0 for each
random polynomial. If both of these properties hold, then
let ht = ct · f + gt, as before. The output of F t is then
(ht(1)⊕ b1, . . . , h

t(n)⊕ bn).
There is a circuit that computes F t. As shown by Gol-

dreich, Micali, and Wigderson [8] (GMW from now on), it
is possible to arrange it that the agents have a share in each
node of the circuit. Then, at the end of the computation,
the players each have a share of the output of F t. Using se-
cret sharing, they can then learn the output. Upon learning
the output, since player i knows bi, player i will be able to
compute ht(i); since bt

i is random, no other player will be
able to compute ht(i). After computing ht(i), player i sends
an ack to the other players. If player i gets an ack from all
the other players, it shares ht(i), just as in σi.

A coalition member i will follow the protocol during the
circuit evaluation of F for the same reasons that i follows it
when playing with a mediator: deviation will result either
in i being caught (if i does not send the correct signed share,
does not send a share to some or to all, or sends an incom-
patible response) or will not affect the outcome (if i sends
a compatible response) or will cause some players to obtain
the wrong final shares and may cause all players to learn the
wrong secret (if i sends an incorrect value during the circuit
evaluation). The argument that players will share their se-
crets (i.e., that player i will send all the other players ht(i))
gives a k-resilient equilibrium proceeds just as before.

Thus, coalition members can be viewed as what is known
as “honest-but-curious” or passive adversaries. As is well
known, we can do multiparty computation with such ad-
versaries without cryptographic techniques if k < n/2 [7,
3]; on the other hand, if n/2 ≤ k < n, it seems we must
use the techniques of GMW [8], which use cryptography
and thus our results depend on the existence of oblivious
transfer and computationally bounded players. (Of course,

the assumption that the issuer signs all the shares with an
unforgeable signature also requires cryptography; we show
how to get rid of this assumption later.) The exact crypto-
graphic assumptions we need depend in part on the protocol
we consider. Since we do not wish to focus here on issues
of cryptography, we say assuming cryptography to indicate
that we assume players are computationally bounded and
that enhanced trapdoor permutations [7] exist.3

If we use cryptography (even given the assumptions above),
we typically cannot perfectly implement a desired function-
ality F , since, for example, there is a small probability that
the cryptography will be broken. For our protocols that
use cryptography, we can typically make no guarantee as
to what happens if the cryptography is broken. Thus, we
need to weaken the notion of k-resilient mechanism for F
somewhat to capture this small probability of “error”.

Definition 2. (Γ, ~σ) is a ε-k-resilient mechanism for F
if ~σ satisfies F but, for each coalition C such that |C| ≤ k,
σC is not necessarily a group best response to σ−C , but it is
a ε-best response: no one in the group can do more than ε
better than they would using a best response. That is, for all
C such that |C| ≤ k, for all τC ∈ SC , and all i ∈ C, we have

ui(σC , σ−C) ≥ ui(τC , σ−C)− ε.

Intuitively, if ε is small, although players may be able to do
better, it may not be worth their while to figure out how.
A ε-1-resilient equilibrium is an ε-Nash equilibrium [21].

Theorem 1. Consider the m out of n secret sharing game.
Suppose that players’ utilities satisfy U1.

(a) If k < m ≤ n − 2k, then assuming U2′, there exists
a practical k-resilient mechanism without a mediator
for m out of n secret sharing with an expected running
time of 2 rounds.

(b) If k < m ≤ n − k, then, assuming U2, there exists a
mechanism without a mediator that takes a parameter
β and is a practical k-resilient mechanism for m out
of n secret sharing with an expected running time of 2

rounds if β < maxi∈N
ui(N)−ui(∅)

2mi−(ui(N)+ui(∅))
.

(c) If k < m ≤ n, then, assuming U2 and cryptogra-
phy, for all ε > 0, there exists a mechanism without
a mediator that takes parameter α and is a practical
ε-k-resilient mechanism for m out of n secret shar-
ing with an expected running time of O(1/α) rounds if

α ≤ mini∈N
ui(N)−ui(∅)

mi−ui(∅)
.

Note that Theorem 1(c) applies if m = n = 2 and k = 1;
that is, for all ε > 0, there is a practical ε-1-resilient mecha-
nism for 2 out of 2 secret sharing (assuming cryptography).
Halpern and Teague [10, Cor. 2.2] claim that there is no
practical mechanism for 2 out of 2 secret sharing. Their
argument also suggests that there is no ε-1 resilient mech-
anism for secret sharing. It seems that this corollary is
false. Halpern and Teague show correctly that a strategy in

3Enhanced trapdoor permutations are a set of permutations
such that, given a permutation fα in the set and an element
x generated using an algorithm S, it is hard to compute
f−1

α (x) even if the random coins used by S to generate x
are known. If enhanced trapdoor permutations exist, then
it is possible to do oblivious transfer and to sign secrets with
signatures that cannot be forged.
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what they call A2, where a player sends his share to another
player, will be eliminated by the iterated deletion process.
The argument for Corollary 2.2 implicitly assumes that if
there is an equilibrium in the 2 out of 2 case, where a player
learns the secret, then one of the strategies must be in A2,
that is, a player must realize that he is sending his share to
the other player. But our protocol has the property that a
player does not know when he is sending a “useful” share
to the other player (where a share is useful if α = 1).4 We
remark that Gordon and Katz [9] also describe a mechanism
1-ε mechanism for 2 out of 2 secret sharing (although they
do not explicitly mention the need for ε).

It is also worth noting that, unlike the protocol given by
Halpern and Teague, our protocol has the property that the
secret issuer has to issue the shares only once, at the begin-
ning of the protocol. Gordon and Katz [9] and Lysyanskaya
and Triandopoulos [17] also describe protocols for rational
secret sharing with this property.

Up to now we have assumed that initial shares given to
each player are signed by the issuer using unforgeable sig-
natures. This means that a rational player will always send
his true shares to the mediator at stage 0. We can remove
this assumption using ideas from check vectors and the ICP
protocol [3], much as in the mechanism for the case that
m ≤ n− k. With a mediator, the issuer sends the mediator
the pair (bi, ci) so it can verify i’s signature; without a me-
diator, the issuer sends a different verification pair (bij , cij)
to each agent j 6= i. Using verification in this way, the prob-
ability of a lie going undetected is 1/|F |. We can modify
the bounds on α and in Proposition 1 and Theorem 1(c)
and on β in Proposition 2 and Theorem 1(b) to take this
into account; we leave details to the reader. Note that if
k < m ≤ n − 2k (that is, in the situation of Proposition 3
and Theorem 1(a)), we do not need to verify the signatures
at all. We have a k-resilient equilibrium using the same
arguments as before.

As observed by Halpern and Teague [10], the results for
secret sharing carry over to multiparty computation. We
can give a k-resilient practical mechanism for multiparty
computation by doing the circuit evaluation for f and then
using the rational secret sharing protocol from Theorem 1,
where we choose the optimal m. Thus, for example, if k <
n/3, then by taking m = dn/3e, we have k < m ≤ n −
2k, so Theorem 1(a) applies. Similarly, if k < n/2, then
Theorem 1(b) applies; Theorem 1(c) applies for all k, where
now ui(A) is i’s best-case utility if exactly the agents in A
learn the function value.

There is only one caveat: we can only do multiparty com-
putation if rational players (with the same utilities) can com-
pute the function f using a trusted mediator. This is a non-
trivial requirement. As shown by Shoham and Tennenholtz
[24], functions like parity cannot be computed by rational
players, even with a trusted mediator. (A player will lie
about his value, so that everyone will get the wrong value of
parity, but the lying player can reconstruct the right value.)
Thus, we get the following result, which improves Theorem
4.2 of [10], where now a “round” is taken to be the number
of steps needed to simulate the computation of the circuit.

In the context of multiparty computation, we take outi(r)

4Note that Theorem 1 does not contradict any other claims
of Halpern and Teague. In particular, the claim that there
is no mechanism with a fixed upper bound on its running
time for secret sharing (or multiparty computation) holds.

to be 1 if player i correctly outputs the function value given
the inputs in r, and 0 otherwise; with this change, U1, U2,
and U2′ are well defined.

Theorem 2. Suppose that players’ utilities satisfy U1 and
the players can compute f with a trusted mediator.

(a) If 3k < n, then, assuming U2′, there exists a practi-
cal k-resilient mechanism without a mediator for the
multiparty computation of f with an expected running
time of 2 rounds.

(b) If 2k < n, then assuming U2, there exists a mecha-
nism without a mediator that takes a parameter β and
is a practical k-resilient mechanism for the multiparty
computation of f with an expected running time of 2

rounds if β < maxi∈N
ui(N)−ui(∅)

2mi−(ui(N)+ui(∅))
.

(c) If k < n, then, assuming U2 and cryptography, for all
ε > 0, there exists a practical ε-k-resilient mechanism
for the multiparty computation of f with an expected

running time of O(1/α) rounds if α ≤ mini∈N
ui(N)−ui(∅)

mi−ui(∅)
.

5. TOLERATING PLAYERS WITH
“UNEXPECTED” UTILITIES

In Theorem 1, as well as Propositions 1, 2, and 3, we as-
sumed that all players have utilities that satisfy U1 and U2.
However, in large systems, it seems almost invariably the
case that there will be some fraction of users who do not re-
spond to incentives the way we expect. (Certainly this seems
to be the case with students in large undergraduate classes!)
This is an issue that arises in practice. For example, in a
peer-to-peer network like Kazaa or Gnutella, it would seem
that no rational agent should share files. Whether or not you
can get a file depends only on whether other people share
files; on the other hand, it seems that there are disincentives
for sharing (the possibility of lawsuits, use of bandwidth,
etc.). Nevertheless, people do share files. However, studies
of the Gnutella network have shown almost 70 percent of
users share no files and nearly 50 percent of responses are
from the top 1 percent of sharing hosts [1].

One reason that people might not respond as we expect
is that they have utilities that are different from those we
expect. In the Kazaa example, it may be the case that some
users derive pleasure from knowing that they are the ones
providing files for everyone else. In a computer network,
inappropriate responses may be due to faulty computers or
faulty communication links. Or, indeed, users may simply
be irrational. Whatever the reason, it seems important to
design protocols that tolerate such unanticipated behavior,
so that the payoffs of the users with “standard” utilities do
not get affected by the nonstandard players using different
strategy. This observation motivates the next definition.

Definition 3. A joint strategy ~σ ∈ S is a t-immune if,
for all T ⊆ N with |T | ≤ t, all ~τC ∈ ST , and all i /∈ T , we
have ui(~σ−T , ~τT ) ≥ ui(~σ).

An equivalent reformulation of t-immunity in a game Γ
can be obtained by considering a variant of Γ where nature
moves first, chooses some arbitrary subset of up to t play-
ers, and changes their utilities arbitrarily. This reformula-
tion has the advantage of allowing a more refined analysis
of deviations. Specifically, the set of possible changes to the
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utility functions can be restricted to some fixed set of devi-
ations. For example, when analyzing a Kazaa-like network,
we could consider a game where nature can only change the
utilities of agents so that they are either “standard” or al-
truistic (and so get pleasure out of sharing). We remark
that this idea of modifying utilities reappears in some of our
theorems (cf. the notion of utility variant defined below).

The notion of t-immunity and k-resilience address differ-
ent concerns. For t immunity, we consider the payoffs of the
players not in C; for resilience, we consider the payoffs of
players in C. It is natural to combine both notions.

Definition 4. A joint strategy ~σ ∈ S is (k, t)-robust if
for all C, T ⊆ N such that C ∩ T = ∅, |C| ≤ k, and |T | ≤ t,

for all ~τT ∈ ST , for all ~φC ∈ SC , for all i ∈ C we have

ui(~σ−T , ~τT ) ≥ ui(~σN−(C∪T ), ~φC , ~τT ).

Intuitively, this says that, for all C such that |C| ≤ k, σC

continues to be a best response no matter what strategy τT

the players in a subset T of size t use, as long as the remain-
ing players (i.e., those in N − (C ∪T )), continue to use their
component of ~σ). Note that a k-resilient strategy is a (k, 0)-
robust strategy and a t-immune strategy is a (0, t)-robust
strategy.5 We can define ε-(k, t)-robust equilibrium mech-
anisms in the obvious way; we leave details to the reader.

A modification of our earlier techniques gives a general-
ization of Theorem 1. Roughly speaking, we replace the
condition k < m in Theorem 1 by t + k < m, since it is
always possible that the t players with unexpected utilities
send their shares to the k coalition members. We also replace
expressions of the form m ≤ n−p (where p is either k or 2k)
by m ≤ n− p− 2t, to allow Reed-Solomon unique decoding
if the t players send inappropriate values of the polynomial.
Assuming cryptography, we can replace the m ≤ n bound
with m ≤ n− t by using the GMW compiler [8]. Finally, we
replace the m ≤ n− k bound with m ≤ n− (t + k) by using
the GMW verifiable secret sharing compiler [8].

When doing multiparty computation in a setting where up
to t players can send arbitrary values, we must assume that
getting a value that in some sense is close to the true function
value is good enough. For example, if we are interested in
computing a statistical function such as mean or median,
while the exact answer will depend on the values sent by
everyone, having a small number of incorrect values will not
greatly affect the true value. Indeed, to the extent that we
use multiparty computation to compute statistical functions
of large datasets, we must allow for some corruption of the
inputs. The computed function may contain built-in filters
to exclude out-of-range values, and thus limit the influence
of inappropriate inputs. Given an input vector ~x, define a
t-variant of ~x to be a vector ~y such that |{i : xi 6= yi}| ≤ t.
Let U0(t) be the condition that, if the input of r is ~x, then
outi(r) = 1 iff the output of i in r is f(~y), where ~y is a
t-variant of ~x; otherwise, outi(r) = 0. Intuitively, this says
an output is acceptable iff it is obtained by applying f to
an input that is “close” to the true input.6

5In fact, our results hold for an even stronger form of ro-
bustness: the payoffs of the agents not in T can be taken to
be independent of the actions of the agents in T .
6U0(t) allows us to continue thinking of outi(r) as binary—
either 0 or 1. Suppose that we instead assume that outi(r)
takes arbitrary values in the interval [0, 1], where, intuitively,
the closer i’s output is to the true function value in run r
(given the private inputs in r), the closer outi(r) is to 1.

We can then extend our secret sharing results to multi-
party computation, in the same way we got Theorem 2 from
Theorem 1. (Theorem 2 is the special case where t = 0.)

Theorem 3. Suppose that can compute f with a trusted
mediator and their utilities satisfy U0(t) and U1.

(a) If 3(t + k) < n, then, assuming U2′, there exists a
practical (k, t)-robust mechanism without a mediator
for the multiparty computation of f with an expected
running time of 2 rounds.

(b) If 3t+2k < n, then, assuming U2, there exists a mech-
anism without a mediator that takes a parameter β
and is a practical (k, t)-robust mechanism for the mul-
tiparty computation of f with an expected running time

of 2 rounds if β < maxi∈N
ui(N)−ui(∅)

2mi−(ui(N)+ui(∅))
.

(c) If 2(t + k) < n, then, assuming U2′ and cryptogra-
phy, for all ε > 0, there exists a practical ε-(k, t)-
robust mechanism for multiparty computation with an
expected running time of 2 rounds.

(d) If 2t+k < n, then, assuming U2 and cryptography, for
all ε > 0, there exists a practical ε-(k, t)-robust mecha-
nism for multiparty computation with an expected run-

ning time of O(1/α) rounds if α ≤ mini∈N
ui(N)−ui(∅)

mi−ui(∅)
.

Proof Sketch. For parts (a) and (b), the secret sharing
stage of protocol σ′′ is similar to the protocol in Theorem 1,
except that we now simulate a mediator that continues play-
ing as long as it gets at least n− t signed shares, and players
in later rounds continue if they can interpolate a polyno-
mial h through n − t values (which can be checked using
Reed-Solomon decoding) such that h(0) = 0. For parts (c)
and (d), protocol σ′′ compiles protocol σ using the GMW
compiler [8]. For part (c) verifiable secret sharing compiler
is used [8]. This protects against t arbitrary players (even if
they are malicious).

In all our results that assume cryptography and obtain ε-
(k, t)-robust mechanisms, the security parameter used in the
cryptographic tools is a function of ε and the players utilities.
Lysyanskaya and Triandopoulos [17] independently obtained
a result somewhat like Theorem 3(c) for the special case
that k = 1. Their result seems to hold without requiring
knowledge of the utilities (like Theorem 3(a)), but this is
because their notion of “ε-error” only requires that σC be
an ε-best response with probability 1 − ε; on a set of runs
of probability ε, the difference between the utility using σC

and the optimal response can be arbitrary.

6. SIMULATING COMMUNICATION
EQUILIBRIUM VIA CHEAP TALK

There are many situations where having a mediator makes
it possible to find a better or simpler solution for a game.
We have seen this with multiparty computation. In real life
settings, mediators clearly help with negotiation, for exam-
ple. This leads to an obvious question: when is it the case
that we can simulate a mediator, so that if there is a solu-
tion with a mediator, there is a solution without one. This
question has been studied in both the economics literature
and the computer science literature. In the economics litera-
ture, Ben-Porath [4] showed simulation of Nash equilibrium

Then we can prove our results as long as if i outputs a t-
variant of f(~x) in r, then ui(r) is greater than i’s expected
utility from just guessing the function value.
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is possible if there is a “punishment” strategy. Intuitively, a
punishment strategy provides a threat that players can use
to force compliance with the simulation. For example, in
our secret sharing game the threat is that players will stop
playing if they detect misbehavior. Since we assume that all
players prefer to get the secret than not to get it (no matter
how many other players also get the secret), this is indeed
a punishment. Heller [11] extends Ben-Porath’s results to
allow for coalitions.

In the computer science literature, Izmalkov, Micali, and
Lepinski [12], generalizing the previous work of Lepinski
et al. [16], show that simulation is possible provided that
we can use a very strong primitive called an envelope and
an entity called a ballot-box. A ballot-box is essentially
an honest dealer that can do specific limited actions (like
randomly permute envelopes). Envelopes have two opera-
tions: Send(R, m), which corresponds to the action where
the sender puts m in an envelope, writes his name on the
envelope and hands it to R; and Receive(S), which corre-
sponds to the action where the receiver publicly opens all
envelopes from S and privately reads their contents. As Lep-
inski, Micali, and Shelat [15] observe, envelopes cannot be
implemented even over broadcast channels. Thus, a solution
that depends on envelopes is inadequate when, for example,
players are playing a game over the Internet.

We show that we can simulate a (k, t)-robust equilibrium
using multiparty computation, provided that k and t satisfy
the same bounds as in Theorem 3. Moreover, we do not
always need to assume the existence of a punishment strat-
egy; provided that k and t satisfy the appropriate bounds,
we can replace the use of a punishment strategy by using
Reed-Solomon decoding or (assuming cryptography) by us-
ing verifiable secret sharing and the GMW compiler. To
make this precise, we first formalize the notion of a (k, t)
punishment strategy.

Definition 5. A joint strategy ~ρ is a (k, t)-punishment
strategy with respect to ~σ if for all C, T, P ⊆ N such that
C, T, P are disjoint, |C| ≤ k, |T | ≤ t, and |P | > t, for all

~τT ∈ ST , for all ~φC ∈ SC , for all i ∈ C we have

ui(~σ−T , ~τT ) > ui(~σN−(C∪T∪P ), ~φC , ~τT , ~ρP ).

Intuitively, ~ρ is (k, t)-punishment strategy with respect to ~σ
if, for any coalition C of at most k players and any set T of
nonstandard players, as long as more than t players use the
punishment strategy and the remaining players play their
component of ~σ, all the players in C are worse off than they
would be had everyone not in T played ~σ. The idea is that
the threat of having more than t players use their component
of ~ρ is enough to stop players in C from deviating from ~σ.

Given this definition, we give a complete characterization
of equilibria that can be simulated using what economists
call cheap talk. In the language of distributed computing,
we assume that each pair of agents has a secure private
channel, and can use communication over this channel to
facilitate reaching an equilibrium. Formally, ΓCT is a pri-
vate channel Cheap-Talk (CT) extension of the game Γ if
the mediator in ΓCT acts as a private channel between ev-
ery pair of players. Specifically, we assume that the inputs
that each player i sends to the mediator d in phase 1 of a
stage always have the form ((m1, i1), . . . , (mk, ik)); such an
input should be interpreted as “send message mj to ij”, for
j = 1, . . . k. In phase 2 of that stage, the mediator sim-

ply relays these messages to the appropriate recipients. We
omit the formal details here. Although we present our pro-
tocols as if there are private channels between the players,
for the results where we use cryptography (parts (c) and (d)
of Theorem 4), it suffices that there are public channels.

We now can get a generalization of Theorem 3. The U2
requirement is replaced by the assumption that there is a
punishment strategy; we do not need this assumption for
the cases where U2′ suffices. (Recall that U1 and U2 imply
that not sending messages is a punishment strategy.) Note
that perhaps the right way to think about Theorem 3(a)
(and part (a) of all our other theorems) is that we have a
mechanism that works for a family of games that have the
same game tree except that the utilities of the outcomes may
differ (although they always satisfy U1 and U2). Formally,
we say that a game Γ′ is a utility-variant of a game Γ if
Γ′ and Γ have the same game tree, but the utilities of the
players may be different in Γ and Γ′.

Given a game Γ, let uh
i (~ρ) be i’s best-case payoff if at least

h players use strategy ρj (and the remaining players use an
arbitrary strategy); let mi now denote the maximum payoff
that i receives in Γ. Like the other simulation results in the
literature, our simulation results apply only to normal-form
games, which can be viewed as games where each player
moves only once, and the moves are made simultaneously.

Theorem 4. Suppose that Γ is an n-player normal-form
game and that ~σ is a (k, t)-robust strategy for a game Γd

with a mediator d based on Γ.

(a) If 3(t + k) < n, then there exists a strategy ~σ′ and a
CT extension ΓCT of Γ such that for all utility vari-
ants Γ′ of Γ, if ~σ is a (k, t)-robust strategy for Γ′d, then
(~σ′, Γ′CT ) is a (k, t)-robust mechanism implementing
(~σ, Γ′d), where Γ′CT is the utility variant of ΓCT corre-
sponding to Γ′d. Moreover, ~σ′ has an expected running
time of 2 rounds.

(b) If 3t + 2k < n, and there exists a (k, t)-punishment
strategy ~ρ with respect to ~σ, then there exists a strat-
egy ~σ′ that takes a parameter β and a CT extension

ΓCT of Γ such that if β < maxi∈N
ui(~σ)−ui(~ρ)

2mi−(ui(~σ)+ui(~ρ))
,

then (~σ′, ΓCT ) is a (k, t)-robust mechanism implement-
ing (~σ, Γd), and ~σ′ has an expected running time of 2
rounds.

(c) If 2(t + k) < n, then, assuming cryptography, for all
ε > 0, there exists a strategy ~σ′ and a CT extension
ΓCT of Γ such that if ~σ is a (k, t)-robust strategy for

Γ′d, then (~σ′, ΓCT ) is an ε-(k, t)-robust mechanism that
implements (~σ, Γd), and ~σ′ has an expected running
time of 2 rounds.

(d) If 2t+k < n and there exists a (k, t)-punishment strat-
egy ~ρ with respect to ~σ, then, assuming cryptography,
for all ε > 0, there exists a strategy ~σ′ that takes a

parameter α such that if α ≤ mini∈N
ui(N)−ui(∅)

mi−ui(∅)
, then

(~σ′, ΓCT ) is an ε-(k, t)-robust mechanism implement-
ing (~σ, Γd), and ~σ′ has an expected running time of
O(1/α) rounds.

We remark that if we assume that the strategy ~σ survives
iterated deletion in Γd, then we can assume that ~σ′ does as
well.

Note that in part (a) of Theorem 4 we do not need to know
the utility; in parts (b), (c), and (d) we do. In parts (a) and
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(c), we do not need to assume a punishment strategy; in
parts (b) and (d), we do. Ben-Porath [4] essentially proved
the special case of part (b) where t = 0 and k = 1 (i.e,
where ~σ is a Nash equilibrium). Theorem 4(a) implies that
any Nash equilibrium can be simulated if there are at least
four players, even without a punishment strategy, and thus
significantly strengthens Ben-Porath’s result. Heller [11] ex-
tends Ben-Porath’s result to arbitrary k, proving the special
case of Theorem 4(b) with t = 0. Heller also claims a match-
ing lower bound. While we believe that a matching lower
bound does hold (see Conjecture 1), Heller’s lower bound ar-
gument seems to have some gaps. Specifically, he seems to
assume that all the randomization (if any) in the implemen-
tation happens after messages have been exchanged, rather
than allowing the message exchange itself to depend on the
randomization.

We believe we have tight lower bounds corresponding to
Theorem 4. In particular, we believe we can prove the fol-
lowing, although details remain to be checked.

Conjecture 1. (a) If n = 3(t + k) > 0, then there
exists an n-player game Γ and strategies ~σ such that
~σ is a (k, t)-robust equilibrium for a game Γd with a
mediator d based on Γ, but there is no strategy ~σ′ and
CT extension ΓCT such that (~σ′, ΓCT ) is a (k, t)-robust
mechanism implementing (~σ, Γd).

(b) If n = 3t + 2k > 0 then there exists an n-player game
Γ and strategies ~σ and ~ρ such that ~σ is a (k, t)-robust
strategy with respect to a (k, t)-punishment strategy ~ρ
for a game Γd with a mediator d based on Γ, but there is
no strategy ~σ′ and CT extension ΓCT such that (~σ′, ΓCT )
is a (k, t)-robust mechanism implementing (~σ, Γd).

(c) If n = 2t + 2k > 0 then, assuming cryptography, for
any ε > 0, there exists an n-player game Γ and strate-
gies ~σ and ~ρ such that ~σ is a (k, t)-robust strategy with
respect to a (k, t)-punishment strategy ~ρ for a game Γd

with a mediator d based on Γ, but there is no strategy
~σ′ and CT extension ΓCT such that (~σ′, ΓCT ) is an
ε-(k, t)-robust mechanism implementing (~σ, Γd).

(d) If n = 2t+k > 0 then, assuming cryptography, for any
ε > 0, there exists an n-player game Γ and strategies
~σ such that ~σ is a (k, t)-robust strategy for a game Γd

with a mediator d based on Γ, but there is no strategy
~σ′ and CT extension ΓCT such that (~σ′, ΓCT ) is an
ε-(k, t)-robust mechanism implementing (~σ, Γd).

Our sketch proof of Conjecture 1 uses ideas from the
Byzantine agreement literature. For example, the proof of
part (a) involves constructing a game that essentially cap-
tures Byzantine agreement; we then appeal to the fact that
Byzantine agreement cannot be done without cryptography
if there are more than n/3 Byzantine processes [14]. Simi-
larly, part (c) uses the fact that uniform agreement, where
the faulty processes have to decide on the same value as
the nonfaulty processes (if they decide on anything at all)
cannot be done with generalized omission failures (where
processes may both fail to send message and fail to receive
messages) if there are more than n/2 faulty processes [20].
We also need to use ideas from the GMW compiler to force
processes to behave as if they are only suffering from omis-
sion failures, rather than Byzantine failures. We hope to
complete the proof and report on the details shortly.
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