
Online Companion Caching

Amos Fiat1, Manor Mendel2, and Steven S. Seiden3�

1 School of Computer Science, Tel-Aviv University
fiat@tau.ac.il

2 School of Computer Science, The Hebrew University
mendelma@cs.huji.ac.il

3 Department of Computer Science, Louisiana State University, Baton Rouge

Steve Seiden died in a tragic accident on June 11, 2002. The other au-
thors would like to dedicate this paper to his memory.

Abstract. This paper is concerned with online caching algorithms for
the (n, k)-companion cache, defined by Brehob et. al. [3]. In this model
the cache is composed of two components: a k-way set-associative cache
and a companion fully-associative cache of size n. We show that the
deterministic competitive ratio for this problem is (n+1)(k+1)−1, and
the randomized competitive ratio is O(log n log k) and Ω(log n + log k).

1 Introduction

A popular cache architecture in modern computer systems is the set-associative
cache. In a k-way set-associative cache, a cache of size s is divided into m = s/k
disjoint sets, each of size k. Addresses in main memory are likewise assigned one
of m types, and the i’th associative cache can only store memory cells whose
address is type i. Special cases includes direct-mapped caches, which are 1-way set
associative caches, and fully-associative caches, which are s-way set associative
caches.

In order to overcome “hot-spots”, where the same set associative cache is
being constantly accessed, computer architects have designed hybrid cache ar-
chitectures. Typically such a cache has two or more components. A given item
can be placed in any of the components of the cache. Brehob et. al. [3] consid-
ered the (n, k) companion cache, which consists of two components: A k-way
set associative called the main cache, and a fully-associative cache of size n,
called the companion cache (the names stem from the fact that typically mk �
n). As argued by Brehob et. al. [3], many of the L1-cache designs suggested
in recent years use companion caches as the underlying architecture. Several
variations on the basic companion cache structure are possible. These include
reorganization/no-reorganization and bypassing/no-bypassing. Reorganization
is the ability to move an item from one cache component to another, whereas by-
passing is the ability to avoid storing an accessed item in the cache. A schematic
view of the companion cache is presented in Fig. 1.
� This research was partially supported by the Louisiana Board of Regents Research
Competitiveness Subprogram and by AFOSR grant No. F49620-01-1-0264.

R. Möhring and R. Raman (Eds.): ESA 2002, LNCS 2461, pp. 499–511, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

500 Amos Fiat et al.

k

Type 1

k

Type 2

k

Type 3

k

Type z

Main Cache, unrestricted number
of Type Caches, each of size k

Companion Cache of size n
��
��
�
�
�
�
��
��
�
�

Fig. 1. A schematic description of a companion cache

Since maintenance of the cache must be done online, and this makes it im-
possible to service requests optimally, we use competitive analysis. The usual
assumption is that any referenced item is brought into the cache before it is
accessed. Since items in the cache are accessed much more quickly than those
outside, we associate costs with servicing items as follows: If the referenced item
is already in the cache then we say that the reference is a hit and the cost is
zero. Otherwise, we have a fault or miss which costs one. Roughly speaking, an
online caching algorithm is called r-competitive if for any request sequence the
number of faults is at most r times the number of faults of the optimal offline
algorithm, allowing a constant additive term.

Previous Results: Maintenance of a fully associative cache of size k is the well
known paging problem [2]. Sleator and Tarjan [8] proved that natural algorithms
such as Least Recently Used are k-competitive, and that this is optimal for deter-
ministic online algorithms. Fiat et. al. [4], improved by McGeoch and Sleator [7]
and Achlioptas et. al. [1], show a tight ≈ ln k competitive randomized algo-
rithm. k-way set associative caches can be viewed as a collection of independent
fully associative caches, each of size k, and therefore they are uninteresting al-
gorithmically. Brehob et. al. [3] study deterministic online algorithms for (n, 1)-
companion caches. They investigate the four previously mentioned variants, i.e.,
bypassing/no-bypassing and reorganization/no-reorganization.

Our Results: This paper studies deterministic and randomized caching algo-
rithms for a (n, k)-companion cache. We consider the version where reorganiza-
tion is allowed but bypassing is not.We show that the deterministic competitive
ratio is exactly (n + 1)(k + 1) − 1. For randomized algorithms, we present an
upper bound of O(log n log k) on the competitive ratio, and a lower bound of
Ω(log n+log k). For the special case of k = 1 that was studied in [3], our bounds
on the randomized competitive ratio are tight up to a constant factor. The results
of [3] and those of this paper are summarized and compared in Table 1.

We note that any algorithm for the reorganization model can be implemented
(in online fashion) in the no-reorganization model while incurring a cost at most
three times larger, and any algorithm for the bypassing model can be imple-
mented (in online fashion) in the no-bypassing model while incurring a cost

Online Companion Caching 501

Table 1. Summary of the results in [3] and in this paper. The size of the com-
panion cache is n

Previous Results [3] (only for main cache of size k = 1):

Bypass Reorg’ det’/rand’ Upper Bound Lower Bound

− − det 2n + 2 n + 1√ − det 2n + 3 2n + 2√ √
det 2n + 3

New Results (main cache of arbitrary size k):

Bypass Reorg’ det’/rand’ Upper Bound Lower Bound

− √
det (n + 1)(k + 1)− 1 (n + 1)(k + 1)− 1

−/
√ −/

√
det O(nk) Ω(nk)

−/
√ −/

√
rand O(log k log n) Ω(log k + log n)

at most two times larger. Thus, the competitive ratio (both randomized and
deterministic) differs by at most constant factor between the different models.

The techniques we use generalize phase partitioning and marking algorithms
[6, 4].

2 The Problem

In the (n, k)-companion caching problem, there is a slowmain memory and a fast
cache. The items in main memory are partitioned into m types, the set of types
is T (|T | = m). The cache consists of a two separate components:

– The Main Cache: Consisting of a cache of size k for each type. I.e., every
type t, 1 ≤ t ≤ m, has its own cache of size k which can hold only items of
type t.

– The Companion Cache: A cache of size n which can hold items of any type.

We refer to these components collectively simply as the cache. If an item is stored
somewhere in the cache, we say it is cached. Our basic assumptions are that there
are at least k+1 items of every type and that the number of types, m, is greater
than the size of the companion cache, n.

A caching algorithm is faced with a sequence of requests for items. When
an item is requested it must be cached (i.e., bypassing is not allowed). If the
item is not cached, a fault occurs. The goal is to minimize the number of faults.
A caching algorithm can swap items of the same type between the main and
companion caches without incurring any additional cost (i.e., reorganization is
allowed).

We use the competitive ratio to measure the performance of online algo-
rithms. Formally, given an item request sequence σ, the cost of an online algo-
rithm A on σ, denoted by costA(σ), is the number of faults incurred by A. An

502 Amos Fiat et al.

algorithm is called r-competitive if there exists a constant c, such that for any
request sequence σ, E[costA(σ)] ≤ r · costOpt(σ) + c.

To simplify the analysis later, we mention the following fact (attributed to
folklore):

Proposition 1. We may assume that Opt is lazy, i.e., Opt evicts an item only
when a requested item is not cached.

Straightforward lower bounds follow from the classical paging problem.

Theorem 1. The deterministic competitive ratio for the (n, k)-companion
caching problem is at least (n+ 1)(k+ 1)− 1. The randomized competitive ratio
is at least H(k+1)(n+1)−1 = Ω(log n+ log k).

Proof. Consider the situation where there are (n+1)(k+1) items of n+1 types,
k + 1 items of each type. In this case, a caching algorithm has (n + 1)k + n =
(n + 1)(k + 1) − 1 cache slots available. If we compare this situation to the
regular paging problem where the virtual memory consists of (n+1)(k+1) pages
(items) and the cache is of size (n+1)(k +1)− 1, we find the two problems are
exactly the same. A companion caching algorithm induces a paging algorithm,
and the opposite is also true. Hence a lower bound on the competitive ratio for
paging implies the same lower bound for companion caching. We conclude there
are lower bounds of (n + 1)(k + 1) − 1 on the deterministic competitive ratio
and H(n+1)(k+1)−1 = Ω(log n + log k) on the randomized competitive ratio for
companion caching. ��

3 Phase Partitioning of Request Sequences

In [6, 4] the request sequence for the paging problem is partitioned into phases
as follows: A phase begins either at the beginning of the sequence or immediately
after the end of the previous phase. A phase ends either at the end of the sequence
or immediately before the request for the (k + 1)st distinct page in the phase.
Similarly, we partition the request sequence for the companion caching problem
into phases. However, the more complex nature of our problem implies more
complex partition rules.

Let σ = σ1, σ2, . . . , σ|σ| denote the request sequence. The indices of the
sequence are partitioned into a sequence of disjoint consecutive subsequences
D1, D2, . . . , Df , whose concatenation gives {1, . . . , |σ|}. The indices are also par-
titioned into a sequence of disjoint (ascending) subsequences P1, P2, . . . , Pf .

In Fig. 2 we describe how to generate the sequences Di and Pi. Di is a con-
secutive sequence of indices of requests issued during phase i. Pi is a (possi-
bly non-consecutive, ascending) sequence of indices of requests associated with
phase i.

Given a set of indices A we denote by I(A) = {σ�|� ∈ A} the set of items
requested in A, and by T(A) the set of types of items in I(A). Table 2 shows an
example of phase partitioning.

In [6] it is shown that any paging algorithm faults at least once in each
complete phase. Here we show a similar claim for companion caching.

Online Companion Caching 503

Pi: The indices of the requests associated with phase i.
Di: The indices of the requests issued during phase i.

N(t): The indices of requests of type t that have not yet
been associated with a phase.

M(t) = {σ�|� ∈ N(t)}

For every type t ∈ T : M(t)← ∅, N(t)← ∅
P1 ← ∅, D1 ← ∅

i← 1
For �← 1, 2, . . . Loop on the requests

Let σ� be the current request and t0 be its type.

Let mt ←
(
max{0, |M(t)| − k} t 	= t0

max{0, |M(t0) ∪ {σ�}| − k} t = t0
If
P

t∈T mt > n then End of Phase Processing:
For every type t ∈ T such that mt > 0 do

Pi ← Pi ∪N(t)
M(t)← ∅, N(t)← ∅

i← i + 1
Pi ← ∅, Di ← ∅

Di ← Di ∪ {�}
N(t0)← N(t0) ∪ {�}
M(t0)←M(t0) ∪ {σ�}

Fig. 2. Phase partition rules described as an algorithm

Proposition 2. For any (online or offline) caching algorithm, it is possible to
associate with each phase (except maybe the last one) a distinct fault.

Proof. Consider the request indices in Pi together with the index j that ends the
phase (i.e., j = minDi+1). One of the items in I(Pi) must be evicted after being
requested and before σj is served. This is simply because the cache can not hold
all these items simultaneously. We associate this eviction with the phase.

We must show that we have not associated the same eviction to two distinct
phases. Let i1 and i2 be two distinct phases, i1 < i2. If the evictions associated
with i1 and i2 are of different items then they are obviously distinct. Otherwise,
the evictions associated with i1 and i2 are of the same type t, and t ∈ T(Pi1) ∩
T(Pi2), which means that all indices � ∈ Pi2 , where σ� is of type t, must have
� > maxDi1 . Thus, an eviction associated with phase i2 cannot be associated
with phase i1. ��
To help clarify our argument in the proof of Proposition 2, consider the third
phase in Table 2. Here I(P3) = {b4, b1, b2, b5, d1, d2}, and the phase ends because
of the request to d3. It is not possible that all these items reside in the cache
simultaneously and thus at least one of the items in I(P3) must be evicted before
or on the request for item d3. The item evicted can be either some bi, i = 1, 2, 4, 5,
or some di, i = 1, 2. If, for example, the item evicted is some bi, then this eviction

504 Amos Fiat et al.

Table 2. An example for an (n, k)-companion caching problem where n = 3 and k = 2.
The types are denoted by the letters a, b, c, d. The ith item of type β ∈ {a, b, c, d} is
denoted by βi

Req. seq. a1b1d1c1a2a3b2a4b3c2 b4a5c3d2b1c4a3a2 a1a3b2b4b5 d3 . . .

Phase i = 1 i = 2 i = 3

Di {1, . . . , 10} {11, . . . , 18} {19, . . . , 23}
Pi {1, 2, 5, 6, 7, 8, 9}

�
4, 10, 12, 13,
16, 17, 18

� �
3, 11, 14, 15,
21, 22, 23

�
T(Pi) {a, b} {a, c} {b, d}

must have occurred after maxD1 — the end of the first phase — and therefore
it cannot be an eviction associated with the first phase.

4 Deterministic Marking Algorithms

In a manner similar to [6], based on the phase partitioning of Section 3, we define
a class of online algorithms called marking algorithms.

Definition 1. During the request sequence an item e∈⋃
tM(t) is called marked

(see Figure 2 for a definition of M(t)). An online caching algorithm that never
evicts marked items is called a marking algorithm.

Remarks:

1. The phase partitioning and dynamic update of the set of marked items can
be performed in an online fashion (as given in the algorithm of Fig. 2).

2. At any point in time, the cache can accommodate all marked items.
3. Unlike the marking algorithms of [6], it is not true that immediately after

maxDi all marks of the ith phase are erased. Only the marked items of types
t ∈ T(Pi) will have their markings erased immediately after maxDi.

For a specific algorithm, at any point in time during the request sequence,
a type t that has more than k items in the cache is called represented in the
companion cache. Note that for marking algorithms, a type is in T(Pi) if and
only if it is represented in the companion cache at maxDi or it is the type of
the item that ended phase i.

Proposition 3. The number of faults of any marking algorithm on requests
whose indices are in Pi is at most n(k + 1) + k = (n+ 1)(k + 1)− 1.

Proof. Each item e of type t requested in request index � ∈ Pi, is marked and
is not evicted until after maxDi. We note that |T(Pi)| ≤ n+ 1 since at most n
types are represented in the companion cache, and the type of the item whose
request ends the phase may also be in T(Pi). Thus, |I(Pi)| ≤ (n+ 1)k + n. ��

Online Companion Caching 505

We conclude from Proposition 3 and Proposition 2:

Theorem 2. Any marking algorithm is (n+ 1)(k + 1)− 1 competitive.

Since the marking property can be realized by deterministic algorithms, we
conclude that the deterministic competitive ratio of the (n, k)-companion caching
problem is (n+ 1)(k + 1)− 1.

5 Randomized Marking Algorithms

In this section we present an O(log n log k) competitive randomized marking
algorithm. The building blocks of our randomized algorithms are the following
three eviction strategies:

On a fault on an item of type t:

Type Eviction. Evict an item chosen uniformly at random among all un-
marked items of type t in the cache.

Cache-Wide Eviction. Let T be the set of types represented in the companion
cache, let U be the set of all unmarked items in the cache whose type is in
T ∪ {t}. Evict an item chosen uniformly at random from U .

Skewed Cache-Wide Eviction. Let T be the set of types represented in the
companion cache, let T ′ ⊂ T ∪ {t} be the set of types with at least one
unmarked item in the cache. Choose t′ uniformly at random from T ′, let U
be the set of all unmarked items of type t′, and evict an item chosen uniformly
at random from U .

Remarks:

– Type eviction may not be possible as there may be no unmarked items of
type t in the cache.

– Cache-wide eviction and skewed cache-wide eviction are always possible, if
there are no unmarked pages of types represented in the companion cache
and no unmarked pages of type t in the cache then the fault would have
ended the phase.

The algorithms we use are:

Algorithm TP1. Given a request for item e of type t, not in the cache: Update
all phase related status variables (as in the algorithm of Figure 2).

– If t is not represented in the companion cache and there are unmarked items
of type t, use type-eviction.

– Otherwise — use cache-wide eviction.

506 Amos Fiat et al.

Algorithm TP2. Given a request for item e of type t, not in the cache: Update all
phase related status variables (as in the algorithm of Figure 2). Let the current
request index be j ∈ Di, i ≥ 1.

– If t is not represented in the companion cache and there are unmarked items
of type t, use type-eviction.

– If t is represented in the companion cache, e ∈ I(Pi−1), and there are un-
marked items of type t, use type eviction.

– Otherwise — use skewed cache-wide eviction.

Algorithm TP. If k < n use TP1, otherwise, use TP2.

Theorem 3. Algorithm TP is O(log n log k) competitive.

Due to lack of space we only give an overview of the proof in the next section.

5.1 Proof Overview

We give an analogue to the definitions of new and stale pages used in the analysis
of the randomized marking paging algorithm of [4].

Definition 2. For phase i and type t, denote by i−t the largest index j < i such
that t ∈ T(Pj). If no such j exists we denote i−t = 0, and use the convention
that P0 = ∅. Similarly, i+t is the smallest index j > i such that t ∈ T(Pj). If no
such index exists, we set i+t = “∞”, and use the convention that P∞ = ∅.
Definition 3. An item e of type t is called new in Pi if e ∈ I(Pi) \ I(Pi−t). We
denote by gt,i the number of new items of type t in Pi. Note that if t /∈ T(Pi)
then gt,i = 0.

Let iend denote the index of the last completed phase.

Definition 4. For t ∈ T(Pi), let Lt,i = I(Pi) ∩ {items of type t}. Note that
|Lt,i| ≥ k. Define

�t,i =

{
|Lt,i| − k i < iend ∧ t ∈ T(Pi) \ T(Pi+1),
0 otherwise.

We use the above definitions to give an amortized lower bound on the cost
to Opt of dealing with the sequence σ:

Lemma 1. There exist C > 0 such that for any request sequence σ,

costOpt(σ) ≥ Cmax
{ ∑

i≤iend

∑
t∈Pi

gt,i,
∑

i≤iend

∑
t∈Pi

�t,i

}
. (1)

Online Companion Caching 507

Proof (sketch). Consider a phase Pj and the set T(Pj), for every t ∈ T(Pj) there
exist phases Pj−t and Pj+t , except for some constant number of phases and
types.

The number of new items gj+t,t, t ∈ T(Pj), can be associated with a cost
to opt, as follows: If an item of type t is not present in the adversary cache at
the end of phase Pj , then the adversary must have faulted on this item when it
was subsequently requested during phase Pj+t . If some � of these elements were
in the cache at the end of phase Pj (irrespective of their type), then we know
that (a) these elements were not requested in Pj — as they are new in Pj+t for
some t, and (b) under the assumption that opt is lazy — all of these � items have
been in opt’s cache since (at least) the end of (some) Pj−t (where t depends on
the specific item in question).

This means that the sequence of requests comprising Pj must have had �
items that were in the cache (at least immediately after being requested), yet
must have been subsequently evicted before the end of phase Pj .

We also need to avoid overcounting the same evictions multiple times. We
argue that we do not do so because these evictions are all accounted for before
the end of phase Pj . Now, although in general the requests associated with two
phases can be interleaved — requests to items of type t ∈ T(Pj) can only occur
after the end of phase Pj−t .

This (almost) proves the 1st lower bound in (1), with the caveat that the
proof above seemingly requires an additive constant. A more refined argument
shows that this additive constant is not really required.

The proof of the 2nd lower bound in (1) requires similar arguments and is
omitted. ��

We will give upper bounds (algorithms) that belong to a restricted family of
randomized algorithms, specifically uniform type preference algorithms defined
below. The main advantage of using such algorithms is that their analysis is
simplified as they have the property that while dealing with requests σj , j ∈ Di,
the companion cache contains only items of types in T(Pi) ∪ T(Pi−1).

Definition 5. A type preference algorithm is a marking algorithm such that
when a fault occurs on an item of a type that is not represented in the companion
cache, it evicts an item of the same type, if this is possible.

Definition 6. A uniform type preference algorithm is a randomized type pref-
erence algorithm maintaining the invariant that at any point in time between
request indices 1 + maxDi−t and maxDi, inclusive, and any type t ∈ T(Pi), all
unmarked items of type t in I(Pi−t) are equally likely to be in the cache.

Note that both TP1 and TP2 are uniform type preference algorithms.
We use a charge-based amortized analysis to compute the online cost of

dealing with a request sequence σ. We charge the expected cost of all but
a constant number of requests in σ to at least one of two “charge counts”,
charge(Di) and/or charge(Pj) for some 1 ≤ i ≤ j ≤ iend. The total cost
associated with the online algorithm is bounded above by a constant times

508 Amos Fiat et al.

∑
1≤i≤iend

charge(Di) +
∑

1≤i≤iend
charge(Pi), excluding a constant number of

requests.
Other than a constant number of requests, every request σ� ∈ σ has � ∈

Di1 ∪ Pi2 for some 1 ≤ i1 ≤ i2 ≤ iend.
We use the following strategy to charge the cost associated with this request

to one (or more) of the charge(Di), charge(Pj):

1. If � ∈ Pi and type(σ�) ∈ T(Pi) \T(Pi−1) then we charge the (expected) cost
of σ� to charge(Pi). These charges can be amortized against the cost of Opt

to deal with σ�. This amortization is summarized in Proposition 5 (for any
uniform type preference algorithm).

2. If � ∈ Di and type(σ�) ∈ T(Pi−1) then we charge the (expected) cost of σ�

to charge(Di). These charges will be amortized against the cost of Opt to
within a poly-logarithmic factor.

To compute the expected cost of a request σ�, � ∈ Di, type(σ�) ∈ T(Pi−1),
we introduce an analogue to the concept of “holes” used in [4]. In [4] holes were
defined to be stale pages that were evicted from the cache.

Definition 7. We define the number of holes during Di, hi, to be the maximum
over the indices j ∈ Di of the total number of items of types in T(Pi−1) that
were requested in Pt,i−1 but are not cached when the jth request is issued.

Proposition 4. Consider a marking algorithm, a phase i, a type t ∈ T(Pi) \
T(Pi−1), and a request index maxDi−t < j ≤ maxDi. Let H be the set of items
of type t that were requested in Pi−t and evicted afterward without being requested
again, up to request index j (inclusive). Then |H | ≤ ĝt,i+ �t,i−t , where ĝt,i ≤ gt,i

is the number of new items of type t requested after maxDi−t and up to time j
(inclusive). ��
Proposition 5. For a uniform type preference algorithm, the expected number
of faults on request indices in Pi for items of type t ∈ T(Pi) \T(Pi−1) is at most
(1 +Hn+k)(gt,i + �t,i−t). I.e., charge(Pi) ≤ (1 +Hn+k)(gt,i + �t,i−t).

Proof. Fix a type t ∈ T(Pi) \ T(Pi−1). There are gt,i faults on new items of
type t, the rest of the faults are on items in Lt,i−t that were evicted before being
requested again. By Proposition 4, the number of items in Lt,i−t that are not in
the cache at any point of time is at most ĝt,i + �t,i−t ≤ gt,i + �t,i−t . For any a, b
in Lt,i−t that have not been requested after maxDi−t , the probability that a
has been evicted since 1 + maxDi−t is equal to the probability that b has been
evicted since 1 + maxDi−t .

Let r denote the number of items in Lt,i−t that have been requested since
after maxDi−t . There are |Lt,i−t | − r unmarked items of Lt,i−t . The probability
that an item of Lt,i−t is cached is therefore (gt,i + �t,i−t)/(|Lt,i−t |− r). Thus, the
expected number of faults on requests indices in Pi for items in Lt,i−t is at most

|Lt,i−t |−1∑
r=0

gt,i + �t,i−t

|Lt,i−t | − r ≤ (gt,i + �t,i−t)H|Lt,i−t | ≤ (gt,i + �t,i−t)Hn+k. ��

Online Companion Caching 509

Proposition 6. A type preference algorithm has the following properties:

1. During Di, only types in T(Pi−1)∪T(Pi) may be represented in the compan-
ion cache.

2. During Di, when a type t ∈ T(Pi) \ T(Pi−1) becomes represented in the
companion cache, there are no unmarked cached items of type t, and t stays
represented in the companion cache until maxDi, inclusive. ��

Proposition 7. For a type preference algorithm,

hi ≤
∑

t∈T(Pi)\T(Pi−1)

(gt,i + �t,i−t) +
∑

t∈T(Pi−1)

gt,(i−1)+t . (2)

Definition 8. At any point during Di, call a type t ∈ T(Pi−1) that has un-
marked items in the cache and is represented in the companion cache an active
type. Call an unmarked item e ∈ I(Pi−1) of an active type an active item.

Proposition 8. The following properties hold for type preference algorithms:

1. During Di, the set of active types is monotone decreasing w.r.t. containment.
2. During Di, the set of active items is monotone decreasing w.r.t. containment.

Proposition 9. For TP1, charge(Di) — The expected number of faults on
request indices in Di to types in T(Pi−1) — is at most hi(1 + Hk+1(1 +
H(n+1)(k+1))).

Proof. First, we count the expected number of faults on items in ∪t∈T(Pi−1)Lt,i−1.
By Proposition 8, the set of active items is monotone decreasing, where an item
becomes inactive either by being marked, or because its type is no longer repre-
sented in the companion cache. Let 〈mj〉j=1,...,w, be a sequence, indexed by the
event index, of the number of active items. An event is either when an active
item is requested, or when an active type t becomes inactive by being no longer
represented in the companion cache (it is possible that one request generates
two events, one from each case).

If the jth event is a request for active item, then mj+1 = mj − 1. Otherwise,
if the jth event is the event of type t becoming inactive, and before that event
there were b active items of type t, then mj+1 = mj − b.

In the first case, the expected cost of the request, conditioned on mj, is at
most hi/mj . In the second case, there are b items of type t that became inactive,
each had probability of hi

mj
of not being in the cache at that moment. This

means that the expected number of items among the up-until now active items
of type t, that are not in the cache, at this point in time, is hib

mj
.

Let gt denote the number of new items of P(i−1)+t (Def. 3) requested dur-
ing Di (gt ≤ gt,(i−1)+t). After type t becomes inactive, the number of items
among Lt,i−1 that are not in the cache can increase only when a new item of
type t is requested. Therefore the expected number of items among Lt,i−1 that
are not in the cache, after the jth event (the event when t became inactive), is
at most hib

mj
+ gt.

510 Amos Fiat et al.

Because of the uniform type eviction property of TP1, the probability that an
item in Lt,i−1 is not in the cache is the expected number of items among Lt,i−1,
and not in the cache, divided by the number of unmarked items among Lt,i−1,
and therefore the expected number of faults on items of Lt,i−1 after the jth
event is at most

b∑
a=1

(
hib

mj
+ gt) · 1

a
= (

hib

mj
+ gt)Hb.

Note that b ≤ k+ 1, and
∑

t∈Pi−1
gt ≤ hi, and so the expected number of faults

on items e ∈ ∪t∈T(Pi−1)Lt,i−1, conditioned on the sequence 〈mj〉j is at most

hiHk+1 + hi

∑
j

(mj −mj−1)Hk+1

mj
(3)

The sequence 〈mj〉j is itself a random variable, but we can give an upper
bound on the expected number of faults on items e ∈ ∪t∈T(Pi−1)Lt,i−1 by bound-
ing the maximum of (3) over all feasible sequences 〈mj〉j . The worst case for (3)
will be when 〈mj〉j = 〈(n+ 1)(k + 1)− j〉(n+1)(k+1)−1

j=1 . Thus,

hiHk+1(1 +
∑

j

(mj −mj+1)
mj

) ≤ hiHk+1(1 +H(n+1)(k+1))

We are left to add faults on new items of types in T(Pi−1). There are at most∑
t∈T(Pi−1)

gt,(i−1)+t ≤ hi such faults. ��

Lemma 2. TP1 is O(log kmax{logn, log k}) competitive.
Proof. Each fault is counted by either charge(Pi) (Proposition 5) or charge(Di)
(Proposition 9) (faults on request indices inDi for items of type in T(Pi−1)\T(Pi)
are counted twice), and by Lemma 1, we have that the expected number of faults
of TP1 is at most O(Hk+1H(n+1)(k+1)) costOpt . ��
For algorithm TP2, we have the following result:

Lemma 3. TP2 is O(log nmax{logn, log k}) competitive. ��
The proof, which uses ideas similar to the proof of Lemma 2, has been omitted.

Proof (of Theorem 3). Follows immediately from Lemma 2 and Lemma 3. ��
Unfortunately, the competitive ratio of type preference algorithms is always

Ω(log n log k). The proof of this claim is omitted in this version for lack of space.

Online Companion Caching 511

References

[1] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized
paging algorithms. Theoretical Computer Science, 234:203–218, 2000. 500

[2] L.A. Belady. A study of replacement algorithms for virtual storage computers.
IBM Systems Journal, 5:78–101, 1966. 500

[3] M. Brehob, R. Enbody, E. Torng, and S. Wagner. On-line restricted caching. In
Proceedings of the 12th Symposium on Discrete Algorithms, pages 374–383, 2001.
499, 500, 501

[4] A. Fiat, R. Karp, M. Luby, L.A. McGeoch, D.D. Sleator, and N.E. Young. Com-
petitive paging algorithms. Journal of Algorithms, 12:685–699, 1991. 500, 501,
502, 506, 508

[5] N. Jouppi. Improving direct-mapped cache by the addition of small fully-
associative cache and prefetch buffer. Proc. of the 17th International Symposiuom
on Computer Architecture, 18(2):364–373, 1990.

[6] A. Karlin, M. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy
caching. Algorithmica, 3(1):79–119, 1988. 501, 502, 504

[7] L. McGeoch and D.D. Sleator. A strongly competitive randomized paging algo-
rithm. J. Algorithms, 6:816–825, 1991. 500

[8] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging
rules. Communication of the ACM, 28:202–208, 1985. 500

[9] A. Seznec. A case for two-way skewed-associative caches. In Proc. of the 20th
International Symposuim on Computer Architecture pages 169–178, 1993.

	Online Companion Caching
	Introduction
	The Problem
	Phase Partitioning of Request Sequences
	Deterministic Marking Algorithms
	Randomized Marking Algorithms
	Proof Overview

