MATLAB for Image Processing

CS638-1 TA: Tuo Wang
tuowang@cs.wisc.edu
Feb $12^{\text {th }}, 2010$

Outline

- Introduction to MATLAB
- Basics \& Examples
- Image Processing with MATLAB
- Basics \& Examples

What is MATLAB?

- MATLAB = Matrix Laboratory
- "MATLAB is a high-level language and interactive environment that enables you to perform computationally intensive tasks faster than with traditional programming languages such as C, C++ and Fortran." (www.mathworks.com)
- MATLAB is an interactive, interpreted language that is designed for fast numerical matrix calculations

The MATLAB Environment

- MATLAB window components:
Workspace
> Displays all the defined variables
Command Window
$>$ To execute commands in the MATLAB environment
Command History
> Displays record of the commands used
File Editor Window
> Define your functions

MATLAB Help

- MATLAB Help is an extremely powerful assistance to learning MATLAB
- Help not only contains the theoretical background, but also shows demos for implementation
- MATLAB Help can be opened by using the HELP pull-down menu

MATLAB Help (cont.)

- Any command description can be found by typing the command in the search field
- As shown above, the command to take square root (sqrt) is searched
- We can also utilize MATLAB Help from the command window as shown

More about the Workspace

- who, whos - current variables in the workspace
- save - save workspace variables to *.mat file
- load - load variables from *.mat file
- clear - clear workspace variables
- CODE

Matrices in MATLAB

- Matrix is the main MATLAB data type
- How to build a matrix?
-A=[1 2 3; 4 5 6; 7 8 9];
- Creates matrix A of size 3×3
- Special matrices:
- zeros (n, m), ones (n, m), eye (n, m), rand(), randn()

Basic Operations on Matrices

- All operators in MATLAB are defined on matrices: +, -, *, /, ^, sqrt, sin, cos, etc.
- Element-wise operators defined with a preceding dot: .*, ./, .^
- size(A) - size vector
- sum (A) - columns sums vector
- sum (sum (A)) - sum of all the elements

Variable Name in Matlab

- Variable naming rules
- must be unique in the first 63 characters
- must begin with a letter
- may not contain blank spaces or other types of punctuation
- may contain any combination of letters, digits, and underscores
- are case-sensitive
- should not use Matlab keyword
- Pre-defined variable names
- pi

Logical Operators

- ==, <, >, (not equal) $\sim=$, (not) ~
- find('condition') - Returns indexes of A's elements that satisfy the condition

Logical Operators (cont.)

- Example:

$$
\begin{aligned}
& \gg A=\left[\begin{array}{llllll}
7 & 3 & 5 ; & 6 & 2 & 1
\end{array}\right], \text { Idx=find }(A<4) \\
& A= \\
& 7
\end{aligned}
$$

Flow Control

- MATLAB has five flow control constructs:
-if statement
-switch statement
- for loop
-while loop
- break statement
- IF statement condition
- The general form of the IF statement is

IF expression
statements
ELSEIF expression
statements
ELSE

```
    statements
```

END

switch

- SWITCH - Switch among several cases based on expression
- The general form of SWITCH statement is:

SWITCH switch_expr
CASE case_expr,
statement, ..., statement
CASE \{case_expr1, case_expr2, case_expr3, ...\}

```
statement, ..., statement
```

OTHERWISE
statement, ..., statement
END

switch (cont.)

- Note:
- Only the statements between the matching CASE and the next CASE, OTHERWISE, or END are executed
- Unlike C, the SWITCh statement does not fall through (so BREAKs are unnecessary)

for

- FOR repeats statements a specific number of times
- The general form of a FOR statement is:

FOR variable=expr
statements
END

while

- WHILE repeats statements an indefinite number of times
- The general form of a WHILE statement is:

WHILE expression
statements
END

Scripts and Functions

- There are two kinds of M-files:
- Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace
- Functions, which can accept input arguments and return output arguments. Internal variables are local to the function

Functions in MATLAB (cont.)

- Example:
- A file called STAT.M:

```
function [mean, stdev]=stat(x)
%STAT Interesting statistics.
n=length(x);
mean=sum(x)/n;
stdev=sqrt(sum((x-mean).^2)/n);
```

- Defines a new function called STAT that calculates the mean and standard deviation of a vector. Function name and file name should be the SAME!

Visualization and Graphics

- plot (x, y), plot($x, \sin (x))$ - plot 1D function
- figure, figure(k) - open a new figure
- hold on, hold off - refreshing
- axis([xmin xmax ymin ymax]) - change axes
- title('figure titile') -add title to figure
- mesh (x_ax,y_ax,z_mat) - view surface
- contour (z_mat) - view z as topo map
- subplot $(3,1,2)$ - locate several plots in figure
- CODE and Debug CODE

Saving your Work

- save mysession
\% creates mysession.mat with all variables
- save mysession a b
\% save only variables a and b
- clear all \% clear all variables
- clear a b \% clear variables a and b
- load mysession
\% load session

Outline

- Introduction to MATLAB
- Basics \& Examples
- Image Processing with MATLAB
- Basics \& Examples

What is the Image Processing Toolbox?

- The Image Processing Toolbox is a collection of functions that extend the capabilities of the MATLAB's numeric computing environment. The toolbox supports a wide range of image processing operations, including:
- Geometric operations
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Image analysis and enhancement
- Binary image operations
- Region of interest operations

Images in MATLAB

- MATLAB can import/export several image formats:
- BMP (Microsoft Windows Bitmap)
- GIF (Graphics Interchange Files)
- HDF (Hierarchical Data Format)
- JPEG (Joint Photographic Experts Group)
- PCX (Paintbrush)
- PNG (Portable Network Graphics)
- TIFF (Tagged Image File Format)
- XWD (X Window Dump)
- raw-data and other types of image data
- Data types in MATLAB
- Double (64-bit double-precision floating point)
- Single (32-bit single-precision floating point)
- Int32 (32-bit signed integer)
- Int16 (16-bit signed integer)
- Int8 (8-bit signed integer)
- Uint32 (32-bit unsigned integer)
- Uint16 (16-bit unsigned integer)
- Uint8 (8-bit unsigned integer)

Images in MATLAB

- Binary images : $\{0,1\}$
- Intensity images : [0,1] or uint 8 , double etc.
- RGB images : $m \times n \times 3$
- Multidimensional images: $m \times n \times p$ (p is the number of layers)

Image Import and Export

- Read and write images in Matlab
img = imread('apple.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
- Alternatives to imshow
imagesc(I)
imtool(I)
image(I)

Images and Matrices

How to build a matrix (or image)? Intensity Image:

```
row = 256;
col = 256;
img = zeros(row, col);
img(100:105, :) = 0.5;
img(:, 100:105) = 1;
figure;
imshow(img);
```


Images and Matrices

Binary Image:

```
row = 256;
col = 256;
img = rand(row,
col);
img = round(img);
figure;
imshow(img);
```


Image Display

- image - create and display image object
- imagesc - scale and display as image
- imshow - display image
- colorbar - display colorbar
- getimage - get image data from axes
- truesize - adjust display size of image
- zoom-zoom in and zoom out of 2D plot

Image Conversion

- gray2ind - intensity image to index image
- im2bw - image to binary
- im2double - image to double precision
- im2uint8 - image to 8-bit unsigned integers
- im2uint16-image to 16-bit unsigned integers
- ind2gray - indexed image to intensity image
- mat2gray - matrix to intensity image
- rgb2gray - RGB image to grayscale
- rgb2ind - RGB image to indexed image

Image Operations

- RGB image to gray image
- Image resize
- Image crop
- Image rotate
- Image histogram
- Image histogram equalization
- Image DCT/IDCT
- Convolution

Outline

- Introduction to MATLAB
- Basics \& Examples
- Image Processing with MATLAB
- Basics \& Examples

Examples working with Images (11 different examples)

https://www.youtube.com/watch?v=Gn D4Z3JvyNk\&list=PL9ADE09052E08C C57

Performance Issues

- The idea: MATLAB is
- very fast on vector and matrix operations
- Correspondingly slow with loops
- Try to avoid loops
- Try to vectorize your code http://www.mathworks.com/support/technotes/1100/1109.html

Vectorize Loops

- Example
- Given image matrices, A and B, of the same size (540*380), blend these two images

```
apple = imread(`apple.jpg');
orange = imread(`orange.jpg');
```

- Poor Style

```
% measure performance using stopwatch timer
tic
for i = 1 : size(apple, 1)
    for j = 1 : size(apple, 2)
        for k = 1 : size(apple, 3)
            output(i, j, k) = (apple(i, j, k) + orange(i, j, k))/2;
        end
    end
end
toc
```

- Elapsed time is 0.138116 seconds

Vectorize Loops (cont.)

- Example
- Given image matrices, A and B, of the same size (600*400), blend these two images

```
apple = imread(`apple.jpg');
orange = imread(`orange.jpg');
```

- Better Style
tic \% measure performance using stopwatch timer
Output $=$ (apple + orange)/2;
toc
- Elapsed time is 0.099802 seconds
- Computation is faster!

THE END

- Thanks for your attention! ©
- Questions?

