
Computer Graphics - TAU
Moab Arar

Rendering

• The process of turning 3D virtual world into 2D images:
• Vidoe games
• Animation Movies

• What rendering algorithms do you know ?
• Ray Tracing and Ray Casting

• What are the advantages/disadvantages of Ray Tracing ?
• Today we are going to learn about Graphical Pipeline

Graphical Pipeline:

• Set of steps need to be taken in order to turn 3D scene into 2D
image

• The graphical pipeline is conceptual model
• Highly dependent on the underlying available Software and Hardware

accelerators
• The model of graphical pipeline is usually used in real-time

rendering
• Each step is backed with efficient algorithms that are usually hardware

accelerated (e.g., using GPUs)

Motivation

• How do you represent 3D surfaces ?
• Maybe: using Implicit representation ?

• Not tractable for complex shapes
• A 3D mesh (usually triangles):

• Simple objects can be composed of thousands of
triangles!

The Graphical Pipeline

• Step 1 - Modeling Transformation
• 3D models (assets) are usually created

spearatley.
• Each model is designed in its local

coordinate system – benefits:
• Symmetry
• Scale independent
• Reusability
• And more

• 3D scences on the other hand are
composed of many 3D objects:

• Objects are located in the world coordinate
system

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 1 - Modeling Transformation
• Each model is transformed from its local

coordinate system to the world coordinate
system:

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

world

Object

The Graphical Pipeline

• Step 1 - Modeling Transformation
• This step is implemented by multiplying

each vertex of the 3D model by a
(different) model transformation matrix
(GPUs allow parallel compute of the
matrix multiplication).

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 2 – Lighting
• Why lighting is important ? It is what helps us

perceive depth in images

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 2 – Lighting
• Why lighting is important ? It is what helps us

perceive depth in images

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 2 – Lighting
• What do we need to support lighting (aka

shading):
• Light Properties:

• What type of light sources exists (e.g. point
light, directional light, spotlight)

• Light entensity and color
• Light location/direction

• Material Properties
• How light interacts with the 3D object (diffuse

and specular reflection)

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 2 – Lighting
• Remember the Phong reflectance model from

Ray-Tracing ?

• How can we use this Formula to determine
the color of the triangle we want to draw
(remember, objects are usually represented
as triangle-meshes)

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

The Graphical Pipeline

• Step 2 – Lighting
• There are three type of shading

approcates:
• Flat shading – Fast and inaccurate
• Phong shading – Accurate but slow
• Gouraud shading – somehwere in the middle

in terms of speed and accuracy

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

https://adambadke.com/portfolio-single/ray-tracing-3d-renderer/

The Graphical Pipeline

• Step 2 – Lighting
• Flat Shading:

• Each “triangle” is given a normal (the normal can
be predefined or calculated using simple
geometry).

• The color of the triangle is determined using some
reflection model (e.g Phong reflection model)

• The color is uniform across each triangle (all points
on each triangle have the same color)

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 2 – Lighting
• Gourouad Shading:

• Each “triangle vertex” is given a normal.
• The vertex color is determined using a reflection

model (e.g phong reflection model)
• The color of a point inside the triangle is an

interpolation of the colors of the triangle vertices

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 2 – Lighting
• Phong Shading:

• We define a normal for each triangle vertex
• The normal of any point point inside the triangle is

an interpolation between the triangle vertices’
normal vectors.

• The point color is determined using Phong
reflection model with the interpolated normal.

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 2 – Lighting
• Flat Shading
• Gourouad Shading
• Phong Shading

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

Less expensive

More accurate

The Graphical Pipeline

• Step 3 – Viewing Transformation
• The final image is highly dependent on

the camera location and view direction:
• What we see is what we render

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 3 – Viewing Transformation
• The final image is highly dependent on

the camera location and view direction:
• What we see is what we render

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 3 – Viewing Transformation
• We therefore need to define the camera

parameters:
• Location
• View direction
• View volume (more later)

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 3 – Viewing Transformation
• In the graphical pipeline this is done

slightly different
• Instead of defining the camera

parameters, we always assume the
camera is in the origin and is looking in
the negative z-direction

• This is called the canonical camera
parameters

• This assumption is needed for efficient
implementation of different algorhtms

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 3 – Viewing Transformation
• But how can we still support different camera

views if the camera is always in the origin and
looking in –z direction ?

• Simple: transform the whole 3D scene to the
camera coordinate system

• Therefore, each vertex will be transformed by
(at least) two transformation

• The Model Transformation matrix (local -> world)
• The Viewing Transformation Matrix (world ->

camera)

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 3 – Viewing Transformation
• Example:

• We want the camera to be at (0,8,10)

• And looking in the 0 , 1
2

,− 1
2

direction:

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

X axis

-Z axis

(0,8,10)

Y axis

The Graphical Pipeline

• Step 3 – Viewing Transformation
• Example:

• First: translate every vertex in the scene by
(0,-8,-10)

• Next: Rotate the whole scene by 45 degrees CCW
in the x-direction

• This can be done using one matrix (e.g.
multiplication of the translation and rotation
matrix)

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 4 – Projection Transformation
• Until this stage – everything we work with is

in 3D space
• Images on the other hand are in 2D space
• But how can we move from 3D to 2D space?

• Use projection transformations:
• Perspective and Orthographic transformation ?

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 4 – Projection Transformation
• Remember the canonical camera

coordinates?
• It simplifies the projection transformation

matrix

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 4 – Projection Transformation
• Orthographic projection

• Everything inside the “view volume” will be
projected onto the XY plane

• Everything else will be clipped

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

X axis

-Z axis

(left, top, -near)

(Right, bottom, -far)

(0,0,0)

Y axis

The Graphical Pipeline

• Step 4 – Projection Transformation
• Perspective projection

• Everything inside the “view frustum volume” will
be projected onto the near frustum plane

• Everything else will be clipped

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

-Z axis

(Left, top, -near)

(Right, bottom, -near)

(0,0,0)

Y axis

-far

The Graphical Pipeline

• Step 5 – Clipping
• A 3D scene is composed of many objects

• Each object is composed of thousands of triangles
(even more)

• But not everything is visible – why bother and
render everything if not everything is visible ?

• Therefore we clip-out objects outside the
view-frustum:

• This is important process which is important for
real-time rendering

• Done for efficiency purposes

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 5 – Clipping
• Faded objects are not rendered:

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

https://techpubs.jurassic.nl/manuals/0640/developer/Optimizer_PG/sgi_html/ch05.html

The Graphical Pipeline

• Step 5 – Clipping
• Typically, triangles should not be rendered

when their front sides do not face the
viewpoint.

• Such pieces of a surface are called back faces.

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

https://techpubs.jurassic.nl/manuals/0640/developer/Optimizer_PG/sgi_html/ch05.
html

The Graphical Pipeline

• Step 5 – Clipping
• Back-face culling keeps these triangles from

being rendered (rasterized), thus saving on
pixel fill time (later on rasterization).

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

https://techpubs.jurassic.nl/manuals/0640/developer/Optimizer_PG/sgi_html/ch05.
html

The Graphical Pipeline

• Step 5 – Clipping
• Face orientation is determined by the

surface normal.
• If the surface normal points towards the

camera then the visible surface is the front
face.

• otherwise the backface

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

V0
V1

V2

V0
V2

V1

Front Back

The Graphical Pipeline
• Step 5 – Clipping

• This normal is not defined explicitly, but deduced
by the order in which the vertices are processed in
the pipeline (Counter-ClockWise or Clock-Wise)

• Use right-hand rule to determine the normal
direction

• Note below, we use the vertex index to represent
the order in which the vertices are processed in
the pipeline

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

V0
V1

V2

V0
V2

V1

Front Back

The Graphical Pipeline

• Step 6 – Scan Conversion
• aka Rasterization
• Images are represented in Discrete 2D

space:
• i.e., a grid of pixels

• Until this stage – everything was done in
continous 2D stage.

• In this stage we convert the vertex
information output by the geometry pipeline
into pixel information needed by the video
display

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 6 – Scan Conversion
• In this stage we also determine the fill colors

of each triangle
• Remember the lighting stage ?
• Everything we calculate in stage 2 will be used to

determine the fill color:

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

y

I1

I2

I3

x

IP

The Graphical Pipeline

• Step 6 – Scan Conversion
• Below there are two options for the same

triangle rasterization
• Aliasing: distortion artifacts produced when

representing a high-resolution signal at a
lower resolution.

• In this stage we handle aliasing artifacts using
anti-aliasing algorithms

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 6 – Scan Conversion
• What about hidden surfaces ?
• We use the Z-buffer algorithm:
• In addition to the frame buffer (keeping the pixel

values), keep a Z-buffer containing the depth value
of each pixel.

• Surfaces are scan-converted in an arbitrary order. For
each pixel (x,y), the Z-value is computed as well. The
(x,y) pixel is overwritten only if its Z-values is closer
to the viewing plane than the one already written at
this location.

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

The Graphical Pipeline

• Step 6 – Scan Conversion
• The Z-buffer algorithm – example:

3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Image

Clipping

Scan
Conversion

Graphical Pipeline - Summary
3D Geometric Primitives

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

Frame Buffer

Clipping

Scan
Conversion

#

#

The Objects are placed
in the Scene

The Object is
modeled locally

Define Lighting effects
for more realistic images.

Transform from world
coordinate system to
camera coordinate
system.

Project the scene onto
an image plane (3D ->
2D)

Clip objects that are not
part of the view volume

Rasterization: Moving
from continuous (math
repr.) to discrete (pixels
repr.)

Shadow Mapping in the Graphical Pipeline

• Assume a scene with one light source
• How shadows are casted in ray-tracing ?

• Shoot rays from the intersection point to the light source:
• If the ray intersect another object – the light is occluded by another object

• There should be no light
• Otherwise:

• There is light – calcuate the intersection point color using Phong reflectance model

• But how can we support shadows in the graphical pipeline ?
• Solution: shadow mapping

Shadow Mapping in the Graphical Pipeline

• If you looked out from a source of light:
• All of the visible objects - appear in light.
• Anything behind those objects, would be in shadow.

Shadow Mapping in the Graphical Pipeline
• Step (1) – Check which objects are closest to the light source

• For each vertex (x,y,z) in the scene – calculate the coordinates in the “light”
coordinate system

• Simply multiply by the View transformation matrix in which the camera is located in
the lightsource location

• Project the vertex into 2D:
• Perspective projection - if spotlight is used (point light)

• What is the center of projection ?
• Orthographic projection – if directional light is used

• Whatis the direction of projection ?
• Render the vertex*:

• The z-buffer is extracted and saved in memory as shadow mapping
• Avoid updating the color buffers and disable all lighting and texture calculations to save

computation

Shadow Mapping in the Graphical Pipeline

• Step (2) – Check whether a point (x,y,z) is shadowed ?
• Render the vertex (x,y,z) from the usual camera view
• In the shading stage:

• Transform the vertex (x,y,z) to the light coordinate system.
• (x,y,z) -> (x’,y’,z’)

• Calculate the pixel coordinate of the vertex as if rendered from the light-source view
• (x’,y’,z’) -> (x’’, y’’, z’’)

• Check the shadow mapping (z-buffer from previous step) at (x’’, y’’):
• The z-value stored in (x’’,y’’) is less than z’:

• The light source is occluded because the (x,y,z) is not closest to camera and
shouldn’t be included in the color calculation of (x,y,z)

• Otherwise:
• The light source is not occluded and can be considered in the color calculation of

(x,y,z)

Shadow Mapping in the Graphical Pipeline

• In which stage shadow mapping should be considered ?
• Lighting stage for Gouraud shading
• Lighting and Rasterization stage in phong shading

Question

• We are given a 3D scene that is composed of several objects built
from triangles.

• After we are done rendering it from the point of view of the camera
and get a final image, we find out that we forgot to render one object
in the scene.

• The naïve way to fix this would be to render all the scene from scratch, but we
want to fix the image in a more efficient way.

Question

• In each of the following algorithms explain if this is possible? If so, explain
what is needed and if not explain why?

a) We are using simple Ray Casting algorithm (without shadows) to create
the image.

• Ray Casting means no reflections or transparencies.
• Since we’re not using shadows, the new object can’t affect other objects.
• The pixel color is determined by the first intersection point of the ray that

goes through that pixel.
• Therefore, only pixels that object will appear on may be affected.

• Possible solution:
• find the axis-aligned bounding box of the object and project it onto the picture.
• These are the pixels that may change color.

Question

• In each of the following algorithms explain if this is possible? If so,
explain what is needed and if not explain why?

b) We are using Ray Tracing algorithm to create the image.
• In Ray Tracing the new object can:

• Project shadows on the other objects
• Can be seen through other (reflective) objects in the scene
• Can be reflected off any surface in the scene.

• This means there may be changes in all pixels.
• We must re-render it the scene completely.

Question

• In each of the following algorithms explain if this is possible? If so,
explain what is needed and if not explain why?

c) We are using the simple graphical pipeline algorithm (without
shadows and textures) that uses a z-buffer to create the image.

• In the graphical pipeline we can simply continue the rendering
process by sending the object triangles to the pipeline:

• Use the 𝑧𝑧-buffer (with values from the original rendering) to resolve any
object collision

	Computer Graphics - TAU
	Rendering
	Graphical Pipeline:
	Motivation
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	The Graphical Pipeline
	Graphical Pipeline - Summary
	Shadow Mapping in the Graphical Pipeline
	Shadow Mapping in the Graphical Pipeline
	Shadow Mapping in the Graphical Pipeline
	Shadow Mapping in the Graphical Pipeline
	Shadow Mapping in the Graphical Pipeline
	Question
	Question
	Question
	Question

