

- Motivation: Add interesting and/or realistic detail to surfaces of objects.
- Problem: Fine geometric detail is difficult to model and expensive to render.
- Idea: Modify various shading parameters of the surface by mapping a function (such as a 2D image) onto the surface.

Textures and Shading

Texture Mapping - Simple Example

\square

Simple parametrization

Mapping is not unique

Bump Mapping

Bump Mapping

-

Surface Parametrization

Triangle mesh

- Discrete surface representation
- Piecewise linear surface (made of triangles)

Triangle mesh

- Geometry:
\square Vertex coordinates
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$\left(\mathrm{X}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$
$\left(x_{n}, y_{n}, z_{n}\right)$
- Connectivity (the graph)
\square List of triangles
($\mathrm{i}_{1}, \mathrm{j}_{1}, \mathrm{k}_{1}$)
$\left(\mathrm{i}_{2}, \mathrm{j}_{2}, \mathrm{k}_{2}\right)$
(i_{m}, j_{m}, k_{m})

What is a parameterization?

$S \subseteq R^{3}$ - given surface
$D \subseteq R^{2}$ - parameter domain
$s: D \rightarrow S \quad$ 1-1 and onto

$$
\mathbf{s}(u, v)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right)
$$

Example - flattening the earth

Mesh Parameterization

World Atlas

Parameterizations are atlases

World Atlas

World Atlas

-

World Atlas

The true size of Africa

The True Size of Africa

Another view of the same idea

There are many possible maps

 - Is one of them "correct"?

Can't flatten without distorting

Another example:

Parameters: α, h

$$
\begin{aligned}
& \mathrm{D}=[0, \pi] \times[-1,1] \\
& x(\alpha, h)=\cos (\alpha) \\
& y(\alpha, h)=h \\
& z(\alpha, h)=\sin (\alpha)
\end{aligned}
$$

Triangular Mesh

Triangular Mesh

Mesh Parameterization

- Uniquely defined by mapping mesh vertices to the parameter domain:

$$
\begin{aligned}
& U:\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\} \rightarrow D \subseteq R^{2} \\
& U\left(\mathrm{v}_{\mathrm{i}}\right)=\left(u_{i}, v_{i}\right)
\end{aligned}
$$

- No two edges cross in the plane (in D)

Mesh parameterization \Leftrightarrow mesh embedding

Mesh parameterization

Parameter domain
$D \subseteq R^{2}$

Mesh surface
$S \subseteq R^{3}$

Application - Texture mapping

Requirements

- Bijective (1-1 and onto): No triangles fold over.
- Minimal "distortion"
\square Preserve 3D anglesPreserve 3D distancesPreserve 3D areas
\square No "stretch"

Distortion minimization

More texture mapping

Resampling problems

Resampling on regular grid

Remeshing examples

Remeshing

Remeshing

More remeshing examples

Non-simple domains

Cutting

.

Parameterization of closed genus-0 triangle meshes

Introducing seams (cuts)

Partition

Introducing seams (cuts)

Introducing seams (cuts)

-

Bad parameterization

Better...(free boundary)

Partition - problems

- Discontinuity of parameterization
- Visible artifacts in texture mapping
- Require special treatment
\square Vertices along seams have several (u,v) coordinates
\square Problems in mip-mapping

Make seams short and hide them

Summary

- "Good" parameterization = non-distorting
\square Angles and area preservation
\square Continuous param. of complex surfaces cannot avoid distortion.

■ "Good" partition/cut:
\square Large patches, minimize seam length
\square Align seams with features (=hide them)

Mesh parameterization

\boldsymbol{s} and \boldsymbol{U} are piecewise-linear
Linear inside each mesh triangle

A mapping between two triangles is a unique affine mapping

Barycentric coordinates

Mapping triangle to triangle

$$
\mathbf{s}(\mathbf{p})=\frac{\left\langle\mathbf{p}, p_{2}, p_{3}\right\rangle}{\left\langle p_{1}, p_{2}, p_{3}\right\rangle} q_{1}+\frac{\left\langle\mathbf{p}, p_{3}, p_{1}\right\rangle}{\left\langle p_{1}, p_{2}, p_{3}\right\rangle} q_{2}+\frac{\left\langle\mathbf{p}, p_{1}, p_{2}\right\rangle}{\left\langle p_{1}, p_{2}, p_{3}\right\rangle} q_{3}
$$

Some techniques

Convex mapping (Tutte, Floater)

- Works for meshes equivalent to a disk
- First, we map the boundary to a convex polygon
- Then we find the inner vertices positions

$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\mathrm{n}}$ - inner vertices; $\quad \boldsymbol{v}_{\mathrm{n}}, \boldsymbol{v}_{\mathrm{n}+1}, \ldots, \boldsymbol{v}_{\mathrm{N}}$ - boundary vertices

Inner vertices

- We constrain each inner vertex to be a weighted average of its neighbors:

$$
\begin{gathered}
v_{i}=\sum_{j \in N(i)} \lambda_{i, j} v_{j}, \quad i=1,2, \ldots, n \\
\lambda_{i, j}=\left\{\begin{array}{cc}
0 & i, j \text { are not neighbors } \\
>0 & (i, j) \in E \text { (neighbours) } \\
\sum_{j \in N(i)} \lambda_{i, j}=1
\end{array}\right.
\end{gathered}
$$

Linear system of equations

$$
\begin{aligned}
& \boldsymbol{v}_{i}-\sum_{j \in N(i)} \lambda_{i, j} \boldsymbol{v}_{j}=0, \quad i=1,2, \ldots, n \\
& \boldsymbol{v}_{i}-\sum_{j \in N(i) \backslash B} \lambda_{i, j} \boldsymbol{v}_{j}=\sum_{k \in N(i) \cap B} \lambda_{i, k} \boldsymbol{v}_{k}, \quad i=1,2, \ldots, n \\
& \left(\begin{array}{ccccc}
1 & & -\lambda_{1, j_{1}} & & -\lambda_{1, j_{d 1}} \\
& 1 & & & \\
& & 1 & & \\
& -\lambda_{4, j_{1}} & & \ddots & \\
& & -\lambda_{n, j_{5}} & & 1
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{v}_{1} \\
\boldsymbol{v}_{2} \\
\\
\end{array}\right.
\end{aligned}
$$

Shape preserving weights

To compute $\lambda_{1}, \ldots, \lambda_{5}$, a local embedding of the patch is found:

1) $\left\|\mathbf{p}_{i}-\mathbf{p}\right\|=\left\|\mathbf{x}_{i}-\mathbf{x}\right\|$
2) $\operatorname{angle}\left(\mathbf{p}_{i}, \mathbf{p}, \mathbf{p}_{i+1}\right)=\left(2 \pi / \Sigma \theta_{i}\right) \operatorname{angle}\left(\boldsymbol{v}_{i}, \boldsymbol{v}, \boldsymbol{v}_{i+1}\right)$

$$
\exists \lambda_{i},\left\{\begin{array}{l}
\mathbf{p}=\Sigma \lambda_{i} \mathbf{p}_{i} \\
\lambda_{i}>0 \\
\sum \lambda_{i}=1
\end{array} \Rightarrow \text { use these } \lambda\right. \text { as edge weights. }
$$

Linear system of equations

- A unique solution always exists
- Important: the solution is legal (bijective)
- The system is sparse, thus fast numerical solution is possible
- Numerical problems (because the vertices in the middle might get very dense...)

Harmonic mapping

- Another way to find inner vertices
- Strives to preserve angles (conformal)
- We treat the mesh as a system of springs.
- Define spring energy:

$$
E_{\text {harm }}=\frac{1}{2} \sum_{(i, j) \in E} k_{i, j}\left\|\boldsymbol{v}_{i}-\boldsymbol{v}_{j}\right\|^{2}
$$

where v_{i} are the flat position (remember that the boundary vertices $\boldsymbol{v}_{n}, \boldsymbol{v}_{n+1}, \ldots, \boldsymbol{v}_{N}$ are constrained).

Energy minimization - least squares

- We want to find such flat positions that the energy is as small as possible.
- Solve the linear least squares problem!

$$
\begin{aligned}
& \boldsymbol{v}_{i}=\left(x_{i}, y_{i}\right) \\
& E_{\text {harm }}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\frac{1}{2} \sum_{(i, j) \in E} k_{i, j}\left\|\boldsymbol{v}_{i}-\boldsymbol{v}_{j}\right\|^{2}= \\
& =\frac{1}{2} \sum_{(i, j) \in E} k_{i, j}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) . \\
& \quad E_{\text {harm }} \text { is function of } 2 n \text { variables }
\end{aligned}
$$

Energy minimization - least squares

- To find minimum: $\nabla E_{\text {harm }}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i}} E_{\text {harm }}=\frac{1}{2} \sum_{j \in N(i)} 2 k_{i, j}\left(x_{i}-x_{j}\right)=0 \\
& \frac{\partial}{\partial y_{i}} E_{\text {harm }}=\frac{1}{2} \sum_{j \in N(i)} 2 k_{i, j}\left(y_{i}-y_{j}\right)=0
\end{aligned}
$$

\square Again, x_{n+1}, \ldots, x_{N} and y_{n+1}, \ldots, y_{N} are constrained.

Energy minimization - least squares

- To find minimum: $\nabla E_{\text {harm }}=0$

$$
\begin{aligned}
& \sum_{j \in N(i)} k_{i, j}\left(x_{i}-x_{j}\right)=0, \quad i=1,2, \ldots, n \\
& \sum_{j \in N(i)} k_{i, j}\left(y_{i}-y_{j}\right)=0, \quad i=1,2, \ldots, n
\end{aligned}
$$

■ Again, x_{n+1}, \ldots, x_{N} and y_{n+1}, \ldots, y_{N} are constrained.

The spring constants $k_{i, j}$

- The weights $k_{i, j}$ are chosen to minimize angles distortion:
\square Look at the edge (i, j) in the 3D mesh
\square Set the weight $k_{i, j}=\cot \alpha+\cot \beta$

Discussion

- The results of harmonic mapping are better than those of convex mapping (local area and angles preservation).
- But: the mapping is not always legal (the weights can be negative for badly-shaped triangles...)
- Both mappings have the problem of fixed boundary it constrains the minimization and causes distortion.
- There are more advanced methods that do not require boundary conditions.

Convex weights for inner vertices

$$
\mathbf{v}_{i}=\sum_{(i, j) \in N(i)} w_{i j} \mathbf{v}_{j} \text { s.t. } \sum_{(i, j) \in N(i)} w_{i j}=1 \text { and } w_{i j} \geq 0
$$

- If the weights are convex, the solution is always valid (no selfintersections) [Floater 97]
- The cotangent weight in Harmonic Mapping can be negative \Rightarrow sometimes there are triangle flips
- In [Floater 2003] new convex weights are proposed that approximate harmonic mapping

Angle-based Flattening (ABF)
 [Sheffer and de Sturler 2001]

- Angle-preserving parameterization
- The energy functional is formulated using the flat mesh angles only!
- Allows free boundary

Angle-based Flattening (ABF)
 [Sheffer and de Sturler 2001]

- The goal: minimize the difference

$$
\sum_{i=1}^{N}\left(\alpha_{i}-\beta_{i}\right)^{2}
$$

where β_{i} are angles of original (3D) mesh and α_{i} are the unknowns (the flat mesh)

The angles equations (constraints)

All angles are positive:

$$
\begin{equation*}
\alpha_{i}>0 \tag{1}
\end{equation*}
$$

Angles around an inner vertex in 2D sum up to 2π

$$
\begin{equation*}
\sum \alpha_{j}=2 \pi \tag{2}
\end{equation*}
$$

Angles in a triangle sum up to π

$$
a_{i_{1}}+a_{i_{2}}+a_{i_{3}}=\pi
$$

The angles equations (constraints)

- Finally, something like the sine theorem must hold:

$$
\text { (4) } \frac{\prod_{j=1}^{N(i)} \sin \alpha_{j}}{\prod_{j=1}^{N(i)} \sin \tilde{\alpha}_{j}}=1
$$

The angles equations (constraints)

- Finally, something like the sine theorem must hold:

The final optimization:

- We minimize

$$
\sum_{i=1}^{N}\left(\alpha_{i}-\beta_{i}\right)^{2}
$$

under the 4 constraints

- It's enough to fix one triangle in the plane to define the whole flat mesh

Results

Results

. \square

Results

Results

Discussion

- Pros:
\square Angle preserving
\square Always valid (at least internally)
\square No rigid boundary constraints
- Cons:
\square Non-linear optimization
- Expensive (but now a multi-grid method exists)
\square Building the mesh from angles can be unstable

Solid Textures
 (Peachey 1985, Perlin 1985)

- Problem: mapping a 2D image/function onto the surface of a general 3D object is a difficult problem:
\square Distortion
\square Discontinuities
- Idea: use a texture function defined over a 3D domain - the 3D space containing the object
\square Texture function can be digitized or procedural

Solid Textures

Thanks

