3D Animation

0368-3236, Spring 2021
Tel-Aviv University
Guy Tevet

Classic Animation

Moving image:
$I \in \mathbb{R}^{H \times W \times C} \longrightarrow\left[I_{1}, \ldots, I_{T}\right] \in \mathbb{R}^{H \times W \times C \times T}$

Disney's Snow White (1937)

3D Animation

CG model:

$S \in \mathbb{R}^{d} \quad \longrightarrow \quad\left[S_{1}, \ldots, S_{T}\right] \in \mathbb{R}^{d \times T}$

Toy Story (1995)

Applications

- Animated films

Inside Out (2015)

Applications

- Animated films
- Gaming

Applications

- Animated films
- Gaming
- Visual Effects

Game of Thrones

Applications

- Animated films
- Gaming
- Visual Effects
- Modeling
- Mechanical engineering
- Medical
- Physical simulation

Today

Skeleton Rigging

2. Skinning

Define a skeleton

Forward Kinematics

Toy example - robotic arm

- Animator specifies joint angles: Θ_{1} and Θ_{2}
- Computer finds positions of end-effector: X

Forward Kinematics

Toy example - robotic arm

Forward Kinematics

Human leg - walking cycle

Forward Kinematics

Human leg - walking cycle

- Hip joint orientation

Forward Kinematics

Human leg - walking cycle

- Knee joint orientation

Forward Kinematics

Human leg - walking cycle

- Ankle joint orientation

Inverse Kinematics

Toy example - robotic arm

- Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_{1} and Θ_{2} :

Inverse Kinematics

Toy example - robotic arm

Two unknowns: Θ_{1}, Θ_{2} Two equations: x, y

Inverse Kinematics

Toy example - robotic arm

Three unknowns: $\Theta_{1}, \Theta_{2}, \Theta_{3}$ Two equations: x, y

Problem:

- System of equations is usually under-constrained
- Multiple solutions

Inverse Kinematics

Toy example - robotic arm

Solution:

- Find best solution (e.g., minimize energy in motion)

Zooming out - Skeleton Rigging

Skinning

- Deforming the mesh according to skeleton movement

Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
- Normalized weight vector $w^{(v)}$ gives influence of each bone transform
- When bones move, influenced vertices also move
- Computing a transformation T_{v} for a skinned vertex
- For each bone
- Compute global bone transformation T_{b} from transformation hierarchy
- For each vertex
- Take a linear combination of bone transforms
- Apply transformation to vertex in original pose

$$
T_{v}=\sum_{b \in B} w_{b}^{(v)} T_{b} \quad \longrightarrow \quad v_{\text {trans }}=\sum_{b \in B} w_{b}^{(v)}\left(T_{b} v\right)
$$

Linear Blend Skinning

$$
v_{t r a n s}=\sum_{b \in B} w_{b}^{(v)}\left(T_{b} v\right)
$$

Smoothness of skinned surface depends on smoothness of weights!

Define the blend

Weights matrix:

$$
W \in \mathbb{R}^{|B| \cdot|V|}
$$

Define the weights:

- Painted by hand

Define the blend

Weights matrix:

$$
W \in \mathbb{R}^{|B| \cdot|V|}
$$

Define the weights:

- Painted by hand
- Automatic
- Relative distances to nearest bones
- Machine learning based

Li et al. 2021

Zooming out - Skeleton Rigging

Zooming out - Today

Facial Blendshapes

How to apply motion on human face?

Facial Blendshapes

- Generalize:
- Span all facial expressions with linear combinations

Facial Blendshapes

Zooming out - Today

Result - full body rig

Zooming out - Today

Key-framing animation

1. Define key-frames
2. Interpolate rig between frames

In-betweening methods

- Interpolation
- Linear vs. non-linear

Linear

Non-inear

In-betweening methods

- Interpolation
- Linear vs. non-linear
- Machine learning based

Harvey et al. 2020

Zooming out - Today

- Model
- Skeleton Rigging
- Blendshapes
- Animation
- Key-Frames
$\Rightarrow 0$ Motion capture

Motion capture

- Record motion of real character
- Then "play it back" with kinematics

Captured Motion

Motion capture

Motion capture systems:

- Wearable motion sensors

Motion capture

Motion capture systems:

- Wearable motion sensors

WOHON GIPIURE

- Visual (cameras + body markers)

Motion retargeting

- Problem: Animate Shrek with a professional dancer moves
- Solutions:
- Artistic corrections (e.g. inverse kinematics)

Motion retargeting

- Problem: Animate Shrek with a professional dancer moves
- Solutions:
- Artistic corrections (e.g. inverse kinematics)
- Machine learning based

Aberman et al. 2020

Zooming out - Today

- Model
- Skeleton Rigging
- Blendshapes
- Animation
- Key-Frames
- Motion capture

Not Today - Physical simulation

Thanks!

