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Abstract

We propose simple and efficient CCA-secure public-key encryption schemes (i.e., schemes
secure against adaptive chosen-ciphertext attacks) based on any identity-based encryption (IBE)
scheme. Our constructions have ramifications of both theoretical and practical interest. First,
our schemes give a new paradigm for achieving CCA-security; this paradigm avoids “proofs of
well-formedness” that have been shown to underlie previous constructions. Second, instantiating
our construction using known IBE constructions we obtain CCA-secure encryption schemes
whose performance is competitive with the most efficient CCA-secure schemes to date.

Our techniques extend naturally to give an efficient method for securing also IBE schemes
(even hierarchical ones) against adaptive chosen-ciphertext attacks. Coupled with previous
work, this gives the first efficient constructions of CCA-secure IBE schemes.

1 Introduction

The notion of resistance to adaptive chosen ciphertext attacks is considered the de facto standard
security requirement for encryption schemes that are used to secure interaction over open networks.
However, only a handful of approaches are known for constructing encryption scheme that can be
proven to meet this notion of security. In this work we put forward a new approach for constructing
such schemes.

1.1 Background

Security for public-key encryption schemes was first defined formally by Goldwasser and Micali [36].
Their notion of semantic security means that seeing an encryption of a message does not let an
attacker compute anything about the message that it couldn’t compute without seeing the encryp-
tion (even if the attacker has some some a priori information about that message). Goldwasser and
Micali proved that semantic security is equivalent to the notion of indistinguishability that requires
(roughly) the following: for any two plaintexts, given a “challenge” ciphertext C that encrypts
one of these plaintexts it is infeasible to determine which one was encrypted (with any noticeable
advantage over a random guess.) (See also [44, 33, 34].) Because these definitions imply security
even when the adversary can mount a chosen-plaintext attack to obtain encryptions of plaintexts
of its choice, we will refer to these notions using the commonly-accepted term “CPA-security.”
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Semantic security, however, does not guarantee any security against an attacker that can make
use of a decryption device in the course of its attack on the scheme. (Note that attacks of this
sort may arise in practice [5, 50].) Indistinguishability-based definitions appropriate for this setting
were given by Naor and Yung [46] (for the non-adaptive case) and Rackoff and Simon [47] (for
the adaptive case). See also [27, 2, 34] for further discussion of these definitions. Extensions of
semantic security to the case of chosen-ciphertext attacks were considered in [34, 35, 52, 14], where
it is also shown that these definitions are equivalent to the indistinguishability-based ones.

The notion of security against adaptive chosen-ciphertext attacks (which we will refer to as
“CCA security”) was shown to be appropriate for encryption schemes used in the presence of
active adversaries who may potentially modify messages in transit (see [27, 2]). It was also shown
that schemes meeting this level of security can be securely “plugged in” to higher-level protocols
that were designed and analyzed under the idealized assumption of “secure channels” but deployed
in open networks (see, e.g., [14, 18]). The notion of CCA security thus became the de facto level
of security required of public-key encryption schemes used in practice.

Unfortunately, only a handful of public-key encryption schemes have been proven secure against
adaptive chosen-ciphertext attacks without resorting to heuristics such as the random oracle method-
ology [3, 15]. In fact, before this work only two approaches were known for constructing such cryp-
tosystems. The first follows the paradigm initially introduced by Naor and Yung [46] to achieve non-
adaptive chosen-ciphertext security, and later extended to the case of adaptive chosen-ciphertext
security by Dolev, Dwork, and Naor [27] and (in a different way) by Sahai [48]. This technique
uses as building blocks any CPA-secure public-key encryption scheme and any non-interactive zero-
knowledge (NIZK) proof system for all of NP [6, 30]. Consequently, this approach can be based on
general hardness assumptions [30]: specifically, the existence of enhanced trapdoor permutations
[34, Sect. C.4.1]. Encryption schemes resulting from this approach, however, are highly impractical
precisely because they employ generic NIZK proofs which in turn rely on generic reductions to some
NP-complete language. Thus, given current state of the art, this approach serves as a “feasibility
result” for the existence of CCA-secure cryptosystems based on general assumptions but does not
lead to any practical constructions.

The second technique is due to Cramer and Shoup [20, 21], and is based on algebraic constructs
with particular homomorphic properties (i.e., those admitting “smooth projective hash proof sys-
tems” in the terminology of [21]). Algebraic constructs of the appropriate type are known to exist
based on some specific number-theoretic assumptions: namely, the hardness of the decisional Diffie-
Hellman problem [20] or the hardness of deciding quadratic residuosity or N th residuosity in certain
groups [21]. Other schemes following the same basic technique have been given recently [31, 22, 40],
leading to a number of schemes efficient enough to be used in practice.

Interestingly, Elkind and Sahai observed that both these approaches for constructing CCA-
secure encryption schemes can be viewed as special cases of a single paradigm [28]. In this paradigm
one starts with a CPA-secure cryptosystem in which certain “ill-formed” ciphertexts are indistin-
guishable from honestly-generated ciphertexts. A CCA-secure cryptosystem is then obtained by
having the sender honestly generate a ciphertext using the underlying CPA-secure scheme, and
then append a “proof of well-formedness” (satisfying certain criteria) to this ciphertext. The NIZK
proofs used by Sahai [48] as well as the smooth hash proof systems used by Cramer and Shoup
[20, 21] are shown in [28] to satisfy the appropriate criteria.
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1.2 Summary of Our Results

We propose two related approaches for constructing CCA-secure public-key encryption schemes
based on any CPA-secure identity-based encryption (IBE) scheme, as described in Sections 2.1
and 3.1. (Our constructions use also other primitives, but those other primitives can be con-
structed from one-way functions, which in turn are implied by CPA-secure encryption.) A number
of IBE schemes based on specific number-theoretic assumptions are known [16, 7, 8, 53]; thus,
our techniques yield new constructions of CCA-secure encryption schemes based on these same
assumptions (see below).

From a theory perspective, this work offers new ways of constructing CCA-secure encryption
schemes that appear qualitatively different than previous work. In particular, the new constructions
do not fit into the Elkind-Sahai mold that suffices to describe all existing constructions.

From a practical perspective, specific instantiations of our constructions yield practical CCA-
secure encryption schemes with efficiency close to the best variants that are known from other
paradigms (cf. Section 7).

These efficient instantiations are based on specific number-theoretic assumptions (such as Bi-
linear Decisional Diffie-Hellman) that are described in Section 7.3. Comparing the hardness as-
sumptions that we need to those used in prior constructions of CCA-secure encryption schemes, we
note that:

• The concrete assumptions used here seem incomparable to the existence of “enhanced trap-
door permutations” that underlies the standard construction of generic NIZK. However, these
concrete assumptions are known to imply the existence of NIZK proof systems for all of NP
[16, Appendix B], and hence were already known to imply CCA-secure encryption (via the
techniques of [27, 48]). We stress again that the schemes shown here are orders of magnitude
more efficient than schemes constructed via generic NIZK.

• The assumptions required by our most efficient instantiations imply the hardness of the
decisional Diffie-Hellman problem that underlies the schemes of [20, 40]. Less efficient variants
of our schemes can also be proven secure with respect to assumptions that are incomparable
to the decisional Diffie-Hellman assumption; see footnote 5 in Section 7.3.

Further extensions and applications. Both our techniques extend to give a transformation
from any CPA-secure (`+1)-level hierarchical identity-based encryption (HIBE) scheme [39, 32] to
a CCA-secure `-level HIBE scheme (an informal discussion of HIBE, as well as formal definitions,
are given in Section 3.2). In particular, applying our technique to any 2-level HIBE scheme gives a
CCA-secure IBE scheme. Using this approach with known HIBE schemes [16, 7, 8, 53] yields the
first efficient constructions of CCA-secure IBE schemes.

Our first approach, when instantiated with an appropriate IBE scheme [7], serves as the basis
for the first CCA-secure threshold encryption scheme with non-interactive decryption [7, 9]. (In
a threshold encryption scheme [24] the secret key is shared among multiple servers, some fraction
of whom must cooperate in order to decrypt a given ciphertext.) Security in this case crucially
relies on specific properties of our construction, and in particular the feature that a certain class
of “valid” ciphertexts can be efficiently recognized without knowledge of the global secret key; the
reader is referred to [7, 9] for further discussion.

Our approaches are generic and can be used to construct a CCA-secure encryption scheme from
an arbitrary IBE scheme. Extending our work, Boyen et al. [13] show that for some concrete IBE
schemes (e.g., the one of Waters [53]) a more efficient and direct construction of a CCA-secure
encryption scheme is possible.
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1.3 Organization

In the following section, we provide an informal overview of identity-based encryption and hierar-
chical identity-based encryption, as well as some “high-level” intuition regarding our techniques.
Formal definitions of all relevant cryptographic notions (including IBE and CCA-secure public-key
encryption) appear in Section 3 and Appendix A. The first of our transformations is discussed in
Section 4, and our second construction is presented in Section 5. We briefly discuss the extension
to hierarchical IBE in Section 6. In Section 7 we recall some specific, number-theoretic assump-
tions under which IBE schemes are known to exist, describe some concrete instantiations of our
constructions based on these assumptions, and compare the efficiency of the resulting CCA-secure
encryption schemes to the most efficient such construction that was previously known (namely, the
Kurosawa-Desmedt variant [40] of the Cramer-Shoup encryption scheme [20]).

2 Overview of Our Techniques

2.1 Identity-Based Encryption

Before sketching our constructions, we first recall the notion of IBE as introduced by Shamir [49].
Informally, an IBE scheme is a public-key encryption scheme in which any string (i.e., identity) can
serve as a public key. In more detail, a trusted authority called a private-key generator (PKG) is
assumed to initialize the system by running a key-generation algorithm to generate “master” public
and secret keys. The master public key PK is published, while the PKG stores the master secret
key. Given the master secret key and an arbitrary string ID (viewed as the identity of a party
in the system), the PKG can derive a “personal secret key” SKID and give it to this party. Any
sender can encrypt a message for this party using only the master public key PK and the string
ID; we denote this by EPK(ID, ·). The resulting ciphertext can be decrypted using the personal
secret key SKID, but the following extension of CPA-security is required to hold:

For any two plaintexts and any identity ID, given a challenge ciphertext C which is an
encryption of one of these plaintexts (with respect to ID) it is infeasible to determine
(with probability significantly better than 1/2) whether C corresponds to an encryption
of the first plaintext or the second. This should hold even if the adversary is given SKID′

for multiple identities ID′ 6= ID chosen adaptively by the adversary.

The first formal definition of security for IBE was given by Boneh and Franklin [10]. In their
definition, the adversary may choose the “target identity” (ID in the above) in an adaptive manner,
based on the master public key PK and any keys {SKID′} the adversary has obtained thus far;
we call such schemes “fully secure.” A weaker notion, proposed by Canetti, et al. [16] and called
“selective-ID” security there, requires the adversary to specify the target identity in advance, before
the master public key is published. Fully-secure IBE schemes in the random oracle model were first
demonstrated by Boneh and Franklin [10] and Cocks [19]. Canetti, et al. [16], building on earlier
work of Gentry and Silverberg [32], constructed an IBE scheme satisfying selective-ID security in
the standard model; more efficient constructions were given by Boneh and Boyen [7]. More recently,
Boneh and Boyen [8] have shown a fully-secure IBE scheme in the standard model, and a more
efficient construction was subsequently given by Waters [53].

Both our constructions of CCA-secure encryption from IBE require an IBE scheme satisfying
only the weaker notion of selective-ID security. Our transformation from any CPA-secure (` + 1)-
level HIBE scheme to a CCA-secure `-level HIBE scheme preserves the level of security in the
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above sense: i.e., if the original scheme is fully-secure then so is the derived scheme, but selective-
ID security of the original scheme is sufficient for selective-ID security of the derived scheme.

2.2 Our Techniques

Our first construction. Given an IBE scheme, we construct a CCA-secure public-key encryption
scheme as follows: The public key of the new scheme is the master public key PK of the IBE scheme
and the secret key is the corresponding master secret key. To encrypt a message with respect to
public key PK, the sender first generates a key-pair (vk, sk) for a one-time, strong1 signature
scheme, and then encrypts the message with respect to the “identity” vk. The resulting ciphertext
C ← EPK(vk,m) is then signed using sk to obtain a signature σ. The final ciphertext consists of the
verification key vk, the IBE ciphertext C, and the signature σ. To decrypt a ciphertext 〈vk, C, σ〉,
the receiver first verifies the signature on C with respect to vk and outputs ⊥ if the verification
fails. Otherwise, the receiver derives the secret key SKvk corresponding to the “identity” vk, and
uses SKvk to decrypt the ciphertext C using the underlying IBE scheme.

Security of the above scheme against adaptive chosen-ciphertext attacks can be informally
understood as follows. Say a ciphertext 〈vk, C, σ〉 is valid if σ is a valid signature on C with respect
to vk. Now consider a “challenge” ciphertext c∗ = 〈vk∗, C∗, σ∗〉 given to the adversary. We may
first notice that any valid ciphertext c = 〈vk, C, σ〉 submitted by the adversary to its decryption
oracle (implying c 6= c∗) must have vk 6= vk∗ by the strong security of the one-time signature scheme
(except with negligible probability). The crux of the security proof is showing that (selective-ID)
security of the IBE scheme implies that obtaining the decryption of C does not help the adversary in
deciding which message the ciphertext C∗ corresponds to. Intuitively, this is because the adversary
cannot guess the message corresponding to C∗ with probability better than 1/2 even if it were given
the secret key SKvk. (This is so since vk 6= vk∗, and C∗ was encrypted for “identity” vk∗ using an
IBE scheme.) But giving SKvk to the adversary can only make the adversary more powerful, since
in that case it could decrypt C itself.

Our use of a strong one-time signature scheme to force the adversary’s decryption queries to
differ from the challenge ciphertext in a specific way is reminiscent of prior work in the context
of CCA-security [27, 48]. The key difference is that prior work used the verification key vk to
implement “unduplicatable set selection” (cf. [48]) which requires Θ(k) invocations of some under-
lying encryption scheme, where k is the security parameter. Furthermore, prior work also required
some sort of “proof of consistency” for the resulting ciphertext, leading (as described earlier) to
an impractical scheme. In contrast, our construction gives a CCA-secure encryption scheme with
relatively minimal overhead as compared to the original IBE scheme.

We note also independent work of MacKenzie, et al. [43], who introduced a weaker notion of
CCA-secure encryption and used essentially the same construction to convert any scheme satisfying
their weaker definition into a full-fledged CCA-secure encryption scheme. Their work, however, only
shows efficient realizations of schemes in the random oracle model.

We remark that if the signature scheme used is only unforgeable in the standard sense (rather
than strongly unforgeable) we obtain an encryption scheme satisfying the slightly weaker notion of
replayable CCA-security [18]. Also, a simple modification of the above construction gives an encryp-
tion scheme secure against non-adaptive chosen-ciphertext attacks [46, 27, 2] but with essentially
no overhead as compared to the underlying IBE scheme. Namely, replace the verification key vk
by a randomly-chosen string r ∈ {0, 1}ω(log k); the resulting ciphertext is simply 〈r, C〉, where C is

1A “strong” signature scheme has the property that it is infeasible to create a new, valid signature even for a
previously-signed message. A formal definition is given in Appendix A.
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encrypted with respect to the “identity” r. Since an adversary cannot guess in advance (with better
than negligible probability) which r will be used for the challenge ciphertext, an argument similar
to the above shows that this scheme is secure against non-adaptive chosen-ciphertext attacks.

Improving the efficiency. Focusing again on security against adaptive chosen-ciphertext attacks,
the previous construction — although conceptually simple and efficient — does add noticeable
overhead in practice to the underlying IBE scheme: encryption requires the sender to generate keys
and sign a message; the ciphertext length is increased by the size of a verification key plus the size
of a signature; and decryption requires the receiver to perform a signature verification. Although
one-time signatures are “easy” to construct in theory, and are more efficient than “full-blown”
signatures (i.e., those which are strongly unforgeable under adaptive chosen-message attack), they
still have their price. In particular:

• Known one-time signature schemes based on general one-way functions [41, 29] allow very
efficient signing ; key generation and signature verification, on the other hand, require Θ(k)
evaluations of the one-way function and are relatively expensive. More problematic, perhaps,
is that such schemes have very long public keys and/or signatures (with combined length
Θ(k2)), resulting in very long ciphertexts in our construction above.

• One-time signature schemes can of course be based on number-theoretic assumptions (say, by
adapting “full-blown” signature schemes); this yields schemes whose computational cost for
key generation, signing, and verifying is more expensive, but which (may) have the advantage
of short(er) public keys and signatures.

We thus modify the previous construction by replacing the signatures with message authenti-
cation codes. Namely, we replace the secret signing key by a secret MAC key, and the role of the
public verification key (which is used as the “identity” for the IBE) is now played by a commitment
to the secret key. In more details, encryption of a message m is performed by first committing to
a secret MAC key r, thus getting a commitment string com and the corresponding decommitment
string dec. The ciphertext is 〈com, C, tag〉, where C is an encryption of the “message” m ◦ dec with
respect to the “identity” com (i.e., C ← EPK(com, m ◦ dec)) and tag is a message authentication
code computed on C using key r. Decryption of ciphertext 〈com, C, tag〉 is done in the natural way:
the receiver first decrypts C with respect to “identity” com to obtain m ◦ dec, and then recovers r
using com and dec. The receiver then tries to verify tag using key r; outputting m if verification
succeeds and ⊥ otherwise.

The intuition for the security of this scheme is quite similar to the previous one: Consider
a “challenge” ciphertext c∗ = 〈com∗, C∗, tag∗〉 that hides message m∗ and MAC key r∗ (via the
decommitment string dec∗). As before, decryption queries with a different “identity” com 6= com∗

are useless to the attacker due to the security of the underlying identity-based encryption scheme.
For decryption queries with the same “identity” 〈com∗, C, tag〉 we note that either (i) C decrypts
to m ◦ dec where dec is a decommitment to r 6= r∗, which violates the binding condition of the
commitment, or (ii) the attacker was able to compute a valid tag on C with respect to the hidden r∗.
The second case can be shown to violate either the secrecy of the commitment (i.e., the adversary
learns something about r∗ by seeing com∗) or the secrecy of the encryption (i.e., the adversary
learns something about r∗ via dec∗ by seeing C∗) or the security of the MAC (i.e., the adversary
generates a valid tag without learning anything about r∗).

We note that the actual proof for this scheme is somewhat harder than for the previous scheme,
mainly due to the fact that here C must be decrypted before validity of the ciphertext as a whole
can be checked. We thus must be careful to avoid the seeming circularity which arises since the
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MAC key r is used to authenticate a string (namely, C) that depends on r (via dec). We also
note that the properties that we need from the commitment scheme are somewhat weaker than the
standard notion of security of commitments, and we term the weakened variant an “encapsulation
scheme” (cf. Section 5.1).

Using a message authentication code and a commitment to the key was suggested previously
in the context of non-malleable commitment (e.g., [25, 26]), but we stress that our application of
this technique is qualitatively different precisely due to the apparent circularity (and the resulting
complications to the proof) discussed above. In particular, in the context of non-malleable com-
mitment the MAC key can be revealed by the sender during the decommitment phase and hence
the key is not used to authenticate a message which depends on itself. (In contrast, here the MAC
key must be transmitted to the receiver as part of the ciphertext.)

3 Definitions

We use the standard definitions of public-key encryption schemes and their security against adap-
tive chosen-ciphertext attacks, and strong one-time signature schemes and message authentication
codes. For convenience and to fix notation, we recall these definitions in Appendix A. Our defini-
tions of IBE and HIBE schemes have also appeared previously; however, since these definitions are
less familiar yet are central to our work, we include the appropriate definitions here. The definition
of “encapsulation schemes” appears in Section 5.1. Our definitions and proofs are phrased with
respect to uniform adversaries but can be easily extended also to the non-uniform setting. We let
“ppt” stand for “probabilistic polynomial-time.”

If Σ is a set then Σn denotes the set of n-tuples of elements of Σ, with Σ0 denoting the set
containing only the empty tuple. Thus, using this notation, {0, 1}n denotes the set of binary strings
of length n. We also define Σ<n def=

⋃
0≤i<n Σi and Σ≤n def=

⋃
0≤i≤n Σi.

3.1 Identity-Based Encryption

We begin by reviewing the functional definition of an IBE scheme [10].

Definition 1 An identity-based encryption scheme for identities of length n (where n is a polynomially-
bounded function) is a tuple of ppt algorithms (Setup,Der, E ,D) such that:

• The randomized setup algorithm Setup takes as input a security parameter 1k. It outputs a
master public key PK and a master secret key msk. (We assume that k and n = n(k) are
implicit in PK.)

• The (possibly randomized) key-derivation algorithm Der takes as input the master secret key
msk and an identity ID ∈ {0, 1}n. It returns the corresponding decryption key SKID. We
write SKID ← Dermsk(ID).

• The randomized encryption algorithm E takes as input the master public key PK, an identity
ID ∈ {0, 1}n, and a message m in some implicit2 message space; it outputs a ciphertext C.
We write C ← EPK(ID,m).

• The (possibly randomized) decryption algorithm D takes as input an identity ID, an asso-
ciated decryption key SKID, and a ciphertext C. It outputs a message m or the symbol ⊥
(which is not in the message space). We write m← DSKID

(ID,C).
2For example, the message space may consist of all strings of length p(k), where p is polynomially-bounded.
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We require that for all (PK, msk) output by Setup, all ID ∈ {0, 1}n, all SKID output by Dermsk(ID),
all m in the message space, and all C output by EPK(ID,m) we have DSKID

(ID,C) = m. ♦
We now give a definition of security for IBE. As mentioned in the Introduction, the definition

we give is weaker than that considered by Boneh and Franklin [10] and conforms to “selective-
ID” security [16] where the “target” identity is selected by the adversary before the public key is
generated.

Definition 2 An identity-based encryption scheme Π for identities of length n is selective-ID secure
against chosen-plaintext attacks if the advantage of any ppt adversary A in the following game is
negligible in the security parameter k:

1. A(1k) outputs a “target” identity ID∗ ∈ {0, 1}n(k).

2. Setup(1k) outputs (PK, msk). The adversary is given PK.

3. The adversary A may make polynomially-many queries to an oracle Dermsk(·), except that it
may not request a secret key corresponding to the target identity ID∗.

We remark that the adversary is allowed to query this oracle repeatedly using the same
identity ; if Der is randomized, then possibly a different secret key is returned each time.

4. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly chosen
and the adversary is given a “challenge” ciphertext C∗ ← EPK(ID∗,mb).

5. A may continue to query its oracle Dermsk(·) as above. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by PrIBE
A,Π[Succ]. The

adversary’s advantage is defined as AdvIBE
A,Π(k) def=

∣∣PrIBE
A,Π[Succ]− 1/2

∣∣. ♦
The definition may be extended to take into account security against adaptive chosen-ciphertext

attacks. In this case, the adversary additionally has access to an oracle D̂(·) such that D̂(C) returns
DSKID∗ (C), where SKID∗ is the secret key associated with the target identity ID∗ (computed using
Dermsk(ID∗)).3 The adversary has access to this oracle throughout the entire game, but cannot
submit the challenge ciphertext C∗ to D̂.

Remark on deterministic key-derivation. For simplicity, when dealing with chosen-ciphertext
security for IBE schemes we will assume that Der is deterministic. If Der is not deterministic, a
definition of chosen-ciphertext security is complicated by the question of whether different invoca-
tions of the decryption oracle D̂ should use the same secret key SKID∗ (computed using Der the
first time D̂ is invoked) or a fresh secret key (computed by running Der using fresh random coins
each time). The resulting security definitions obtained in each case seem incomparable, and there
does not appear to be any reason to prefer one over the other. A related difficulty arises in the
case of hierarchical identity-based encryption (discussed next) even in the case of chosen-plaintext
attacks. These distinctions all become irrelevant when Der is deterministic.

Assuming deterministic key derivation is anyway without much loss of generality: given an
IBE scheme with randomized key-derivation algorithm Der we can construct an IBE scheme with
deterministic key derivation by (1) including a random key sk for a pseudorandom function F as
part of the master secret key msk; and (2) generating the decryption key for identity ID by running
Dermsk(ID) using “randomness” Fsk(ID). A similar idea applies to the case of hierarchical IBE,
discussed in the next section.

3Note that decryption queries for identities ID′ 6= ID∗ are superfluous, as A may make the corresponding Der
query itself and thereby obtain SKID′ .
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3.2 Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) is an extension of IBE suggested by Horwitz and
Lynn [39]. In an `-level HIBE scheme, there is again assumed to be a trusted authority who gener-
ates master public and secret keys. As in the case of IBE, it is possible to derive a personal secret
key SKID1 for any identity ID1 using the master secret key. The additional functionality provided
by an HIBE scheme is that this personal secret key SKID1 may now be used to derive a personal
secret key SKID1,ID2 for the “ID-vector” (ID1, ID2), and so on, with the scheme supporting the
derivation of keys in this way for ID-vectors of length at most `. As in the case of IBE, any sender
can encrypt a message for the ID-vector v = (ID1, . . . , IDL) using only the master public key
and v; the resulting ciphertext can be decrypted by anyone who knows SKID1,...,IDL

. Security is
defined as the natural analog of security in the case of IBE: informally, indistinguishability should
hold for ciphertexts encrypted with respect to a target ID-vector v = (ID1, . . . , IDL) as long as the
adversary does not know the secret keys of any identity of the form (ID1, . . . , IDL′) for L′ ≤ L.

Before formally defining an `-level HIBE scheme, we first introduce some notation to deal
with ID-vectors v ∈ ({0, 1}n)≤`. For an ID-vector v = (v1, . . . , vL) (with vi ∈ {0, 1}n), we define
the length of v as |v| = L and let v.v′ (for v′ ∈ {0, 1}n) denote the ID-vector (v1, . . . , vL, v′) of
length |v| + 1. We let ε denote the ID-vector of length 0. Given v as above and an ID-vector
v′ = (v′1, . . . , v

′
L′), we say that v is a prefix of v′ if |v| ≤ |v′| and vi = v′i for i ≤ |v|.

Re-phrased using the above notation, the functional property of an `-level HIBE scheme is
this: given the secret key SKv associated with the ID-vector v it is possible to derive a secret key
SKv′ associated with the ID-vector v′ (assuming |v′| ≤ `) whenever v is a prefix of v′. Similarly,
the security provided by an HIBE scheme is that indistinguishability should hold for ciphertexts
encrypted with respect to an ID-vector v even if the adversary has multiple keys {SKv′}v′∈V for
some set V as long as no v′ ∈ V is a prefix of v.

Formal definitions follow. The functional definition is essentially from [32], although we assume
for simplicity that the key derivation algorithm is deterministic (cf. the remark in the previous
section). As in the case of IBE, the definition of security we give is the one proposed by Canetti,
et al. [16], which is weaker than the one considered in [32].

Definition 3 An `-level HIBE scheme for identities of length n (where `, n are polynomially-
bounded functions) is a tuple of ppt algorithms (Setup,Der, E ,D) such that:

• The randomized setup algorithm Setup takes as input a security parameter 1k. It outputs a
master public key PK and a master secret key denoted SKε. (We assume that k, ` = `(k),
and n = n(k) are implicit in PK and all node secret keys.)

• The deterministic key-derivation algorithm Der takes as input an ID-vector v ∈ ({0, 1}n)<`,
its associated secret key SKv, and a string r ∈ {0, 1}n. It returns the secret key SKv.r

associated with the ID-vector v.r. We write this as SKv.r := DerSKv(v, r).

• The randomized encryption algorithm E takes as input the master public key PK, an ID-
vector v ∈ ({0, 1}n)≤`, and a message m in some implicit message space. It outputs a
ciphertext C. We write this as C ← EPK(v,m).

• The (possibly randomized) decryption algorithm D takes as input an ID-vector v ∈ ({0, 1}n)≤`,
its associated secret key SKv, and a ciphertext C. It returns a message m or the symbol ⊥
(which is not in the message space). We write m← DSKv(v, C).

We require that for all (PK, SKε) output by Setup, all v ∈ ({0, 1}n)≤`, any secret key SKv correctly
generated (in the obvious way) for v, and any message m we have m = DSKv(v, EPK(v,M)). ♦
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Definition 4 An `-level HIBE scheme Π for identities of length n is selective-ID secure against
chosen-plaintext attacks if the advantage of any ppt adversary A in the following game is negligible
in the security parameter k:

1. Let ` = `(k), n = n(k). Adversary A(1k) outputs a “target” ID-vector v∗ ∈ ({0, 1}n)≤`.

2. Algorithm Setup(1k) outputs (PK, SKε). The adversary is given PK.

3. The adversary may adaptively ask for the secret key(s) corresponding to any ID-vector(s) v,
as long as v is not a prefix of the target ID-vector v∗. The adversary is given the secret
key SKv correctly generated for v using SKε and (repeated applications of) Der.

4. At some point, the adversary outputs two messages m0,m1 with |m0| = |m1|. A bit b is
randomly chosen, and the adversary is given a “challenge” ciphertext C∗ ← EPK(v∗,mb).

5. The adversary can continue asking for secret keys as above. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by PrHIBE
A,Π [Succ]. The

adversary’s advantage is defined as AdvHIBE
A,Π

def=
∣∣PrHIBE

A,Π [Succ]− 1/2
∣∣. ♦

As in the case of IBE, it is easy to modify the above to take into account security against
adaptive chosen-ciphertext attacks. Here, the adversary may additionally query an oracle D̂(·, ·)
such that D̂(v, C) returns DSKv(v, C) using key SKv correctly generated for v. The only restriction
is that the adversary may not query D̂(v∗, C∗) after receiving the challenge ciphertext C∗.

4 Chosen-Ciphertext Security from Identity-Based Encryption

Given an IBE scheme Π′ = (Setup,Der, E ′,D′) for identities of length n which is selective-ID secure
against chosen-plaintext attacks, we construct a public-key encryption scheme Π = (Gen, E ,D)
secure against adaptive chosen-ciphertext attacks. In the construction, we use a one-time signature
scheme Sig = (G,Sign,Vrfy) in which the verification key output by G(1k) has length n = n(k). We
require that this signature scheme be secure in the sense of strong unforgeability, which means that
an adversary should be unable to forge a new signature even on a previously-signed message (cf.
Definition 11 in Appendix A). The construction of Π proceeds as follows:

Key generation Gen(1k) runs Setup(1k) to obtain (PK, msk). The public key is PK and the
secret key is msk.

Encryption To encrypt message m using public key PK, the sender first runs G(1k) to obtain
verification key vk and signing key sk (with |vk| = n). The sender then computes C ←
E ′PK(vk,m) (i.e., the sender encrypts m with respect to the “identity” vk) and σ ← Signsk(C).
The final ciphertext is 〈vk, C, σ〉.

Decryption To decrypt ciphertext 〈vk, C, σ〉 using secret key msk, the receiver first checks whether
Vrfyvk(C, σ) ?= 1. If not, the receiver simply outputs ⊥. Otherwise, the receiver computes
SKvk ← Dermsk(vk) and outputs m← D′

SKvk
(vk, C).

It is clear that the above scheme satisfies correctness. We give some intuition as to why Π is
secure against chosen-ciphertext attacks. Let 〈vk∗, C∗, σ∗〉 be the challenge ciphertext (cf. Defini-
tion 8). It should be clear that, without any decryption oracle queries, the plaintext corresponding
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to this ciphertext remains “hidden” to the adversary; this is so because C∗ is output by Π′ which
is CPA-secure (and the additional components of the ciphertext provide no additional help).

We claim that decryption oracle queries cannot further help the adversary in determining the
plaintext (i.e., guessing the value of b; cf. Definition 8). On one hand, if the adversary submits
to its decryption oracle a ciphertext 〈vk′, C ′, σ′〉 that is different from the challenge ciphertext but
with vk′ = vk∗ then (with all but negligible probability) the decryption oracle will reply with ⊥
since the adversary is unable to forge new, valid signatures with respect to vk. On the other hand,
if vk′ 6= vk∗ then (informally) the decryption query will not help the adversary since the eventual
decryption using D′ (in the underlying scheme Π′) will be done with respect to a different “identity”
vk′. In the proof below, we formalize these ideas.

Theorem 1 If Π′ is an identity-based encryption scheme which is selective-ID secure against
chosen-plaintext attacks and Sig is a strong, one-time signature scheme, then Π is a public-key
encryption scheme secure against adaptive chosen-ciphertext attacks.

Proof Assume we are given a ppt adversary A attacking Π in an adaptive chosen-ciphertext
attack. Say a ciphertext 〈vk, C, σ〉 is valid if Vrfyvk(C, σ) = 1. Let 〈vk∗, C∗, σ∗〉 denote the challenge
ciphertext received by A during a particular run of the experiment, and let Forge denote the event
that A submits a valid ciphertext 〈vk∗, C, σ〉 to the decryption oracle (we may assume that vk∗ is
chosen at the outset of the experiment, and so this event is well-defined even before A is given the
challenge ciphertext. Recall also that A is disallowed from submitting the challenge ciphertext to
the decryption oracle once the challenge ciphertext is given to A.) We prove the following claims:

Claim 1 PrPKE
A,Π [Forge] is negligible.

Claim 2
∣∣PrPKE

A,Π [Succ ∧ Forge] + 1
2 PrPKE

A,Π [Forge]− 1
2

∣∣ is negligible.

To see that these imply the theorem, note that∣∣PrPKE
A,Π [Succ]− 1

2

∣∣
≤

∣∣PrPKE
A,Π [Succ ∧ Forge]− 1

2 PrPKE
A,Π [Forge]

∣∣ +
∣∣PrPKE

A,Π [Succ ∧ Forge] + 1
2 PrPKE

A,Π [Forge]− 1
2

∣∣
≤ PrPKE

A,Π [Forge] +
∣∣PrPKE

A,Π [Succ ∧ Forge] + 1
2 PrPKE

A,Π [Forge]− 1
2

∣∣,
which is negligible given the stated claims. (A concrete security bound can be derived easily.)

Proof (of Claim 1) The proof is quite straightforward. We construct a ppt forger F who forges
a signature with respect to signature scheme Sig (in the sense of Definition 11) with probability
exactly PrPKE

A,Π [Forge]. Security of Sig implies the claim.
F is defined as follows: given input 1k and verification key vk∗ (output by G), F first runs

Setup(1k) to obtain (PK, msk), and then runs A(1k, PK). Note that F can answer any decryption
queries of A. If A happens to submit a valid ciphertext 〈vk∗, C, σ〉 to its decryption oracle before
requesting the challenge ciphertext, then F simply outputs the forgery (C, σ) and stops. Otherwise,
when A outputs messages m0,m1, forger F proceeds as follows: it chooses a random bit b, computes
C∗ ← E ′PK(vk∗,mb), and obtains (from its signing oracle) a signature σ∗ on the “message” C∗.
Finally, F hands the challenge ciphertext 〈vk∗, C∗, σ∗〉 to A. If A submits a valid ciphertext
〈vk∗, C, σ〉 to its decryption oracle, note that we must have (C, σ) 6= (C∗, σ∗). In this case, F
simply outputs (C, σ) as its forgery. It is easy to see that F ’s success probability (in the sense of
Definition 11) is exactly PrPKE

A,Π [Forge].
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Proof (of Claim 2) We use A to construct a ppt adversary A′ which attacks the IBE scheme Π′

in the sense of Definition 2. Relating the advantages of A and A′ gives the desired result.
Define adversary A′ as follows:

1. A′(1k) runs G(1k) to generate (vk∗, sk∗), and outputs the “target” identity ID∗ = vk∗.

2. A′ is given a master public key PK. Adversary A′, in turn, runs A(1k, PK).

3. When A makes decryption oracle query D(〈vk, C, σ〉), adversary A′ proceeds as follows:

(a) If vk = vk∗ then A′ checks whether Vrfyvk∗(C, σ) = 1. If so, A′ aborts and outputs a
random bit. Otherwise, it simply responds with ⊥.

(b) If vk 6= vk∗ and Vrfyvk(C, σ) = 0 then A′ responds with ⊥.
(c) If vk 6= vk∗ and Vrfyvk(C, σ) = 1, then A′ makes the oracle query Dermsk(vk) to obtain

SKvk. It then computes m← D′
SKvk

(vk, C) and responds with m.

4. At some point, A outputs two equal-length messages m0,m1. These messages are output
by A′ as well. In return, A′ is given a challenge ciphertext C∗; adversary A′ then computes
σ∗ ← Signvk∗(C∗) and returns 〈vk∗, C∗, σ∗〉 to A.

5. A may continue to make decryption oracle queries, and these are answered by A′ as before.

6. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal adversarial strategy for attacking Π′; in particular, A′ never requests
the secret key corresponding to the “target” identity vk∗. Furthermore, A′ provides a perfect
simulation for A until event Forge occurs. It is thus easy to see that:∣∣∣PrIBE

A′,Π′ [Succ]− 1
2

∣∣∣ =
∣∣PrPKE

A,Π [Succ ∧ Forge] + 1
2 PrPKE

A,Π [Forge]− 1
2

∣∣,
and the left-hand side of the above is negligible by the assumed security of Π′.

This concludes the proof of the theorem.

5 A More Efficient Construction

We show here how the idea from the previous section can be implemented using a message au-
thentication code along with a primitive we call an “encapsulation scheme” instead of a one-time
signature scheme. As argued in the Introduction, this results in more efficient constructions of
CCA-secure encryption schemes than the previous approach. However, using MACs rather than
signatures — which, in particular, will imply that ciphertext validity can no longer be determined
efficiently without an appropriate decryption key — complicates the security proof somewhat.

5.1 Encapsulation

We begin by defining a notion of “encapsulation” which may be viewed as a weak variant of
commitment. In terms of functionality, an encapsulation scheme commits the sender to a random
string as opposed to a string chosen by the sender as in the case of commitment. In terms of
security, encapsulation only requires binding to hold for honestly-generated encapsulations; this is
analogous to assuming an honest sender during the first phase of a commitment scheme.

Definition 5 An encapsulation scheme is a triple of ppt algorithms (Init,S,R) such that:

12



• Init takes as input the security parameter 1k and outputs a string pub.

• S takes as input 1k and pub, and outputs (r, com, dec) with r ∈ {0, 1}k. We refer to com as
the commitment string and dec as the de-commitment string.

• R takes as input (pub, com, dec) and outputs r ∈ {0, 1}k ∪ {⊥}.
We require that for all pub output by Init and for all (r, com, dec) output by S(1k, pub), we have
R(pub, com, dec) = r. We also assume for simplicity that com and dec have fixed lengths for any
given value of the security parameter. ♦

As in the case of commitment, an encapsulation scheme satisfies notions of both binding and
hiding. Informally, “hiding” requires that com should not reveal information about r; formally, r
should be indistinguishable from random even when given com (and pub). “Binding” requires that
an honestly-generated com can be “opened” to only a single (legal) value of r; see below.

Definition 6 An encapsulation scheme is secure if it satisfies both hiding and binding as follows:

Hiding: The following is negligible for all ppt A:∣∣∣∣Pr
[

pub← Init(1k); r0 ← {0, 1}k;
(r1, com, dec)← S(1k, pub); b← {0, 1} : A(1k, pub, com, rb) = b

]
− 1

2

∣∣∣∣ .

Binding: The following is negligible for all ppt A:

Pr

 pub← Init(1k);
(r, com, dec)← S(1k, pub);
dec′ ← A(1k, pub, com, dec)

: R(pub, com, dec′) 6∈ {⊥, r}

 .

♦
In the definition above, both hiding and binding are required to hold only computationally. We
remark, however, that the encapsulation scheme we will later construct achieves statistical hiding
(and computational binding).

Since encapsulation is a weaker primitive than commitment, we could use any commitment
scheme as an encapsulation scheme. We are interested, however, in optimizing the efficiency of the
construction (in particular, the lengths of com and dec for a fixed value of k) and therefore focus
on satisfying only the weaker requirements given above. See further discussion in Section 7.2.

5.2 The Construction

Let Π′ = (Setup,Der, E ′,D′) be an IBE scheme for identities of length n = n(k) which is selective-ID
secure against chosen-plaintext attacks, let (Init,S,R) be a secure encapsulation scheme in which
commitments com output by S have length n, and let (Mac,Vrfy) be a message authentication
code. We construct a public-key encryption scheme Π as follows:

Key generation Keys for our scheme are generated by running Setup(1k) to generate (PK, msk)
and Init(1k) to generate pub. The public key is (PK, pub), and the secret key is msk.

Encryption To encrypt a message m using public key (PK, pub), a sender first encapsulates
a random value by running S(1k, pub) to obtain (r, com, dec). The sender then encrypts
the “message” m ◦ dec with respect to the “identity” com; that is, the sender computes
C ← E ′PK(com,m ◦ dec). The resulting ciphertext C is then authenticated by using r as a
key for a message authentication code; i.e., the sender computes tag ← Macr(C). The final
ciphertext is 〈com, C, tag〉.
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Decryption To decrypt a ciphertext 〈com, C, tag〉, the receiver derives the secret key SKcom cor-
responding to the “identity” com, and uses this key to decrypt the ciphertext C as per the
underlying IBE scheme; this yields a “message” m ◦ dec (if decryption fails, the receiver
outputs ⊥). Next, the receiver runs R(pub, com, dec) to obtain a string r; if r 6=⊥ and
Vrfyr(C, tag) = 1, the receiver outputs m. Otherwise, the receiver outputs ⊥.

Theorem 2 If Π′ is an identity-based encryption scheme which is selective-ID secure against
chosen-plaintext attacks, the encapsulation scheme is secure (in the sense of Definition 6), and
(Mac,Vrfy) is a strong, one-time message authentication code, then Π a public-key encryption
scheme secure against adaptive chosen-ciphertext attacks.

Proof Let A be a ppt adversary attacking Π in an adaptive chosen-ciphertext attack. On an
intuitive level, the proof here is the same as the proof of Theorem 1 in the following sense: Say a
ciphertext 〈com, C, tag〉 is valid if decryption of this ciphertext (using msk) does not result in ⊥.
Let 〈com∗, C∗, tag∗〉 denote the challenge ciphertext received by A. One can then show that (1) A
submits to its decryption oracle a valid ciphertext 〈com∗, C, tag〉 (with 〈C, tag〉 6= 〈C∗, tag∗〉) only
with negligible probability; and (2) assuming that this does not occur, the decryption queries made
by A do not help A to “learn” the underlying plaintext. The second statement is relatively easy
to prove; the first, however, is now more challenging to prove since validity of a ciphertext cannot
be determined without knowledge of msk. Because of this, we structure the proof as a sequence
of games to make it easier to follow. We let Pri[·] denote the probability of a particular event
occurring in game i.

Game 0 is the original game in which A attacks Π in a chosen-ciphertext attack as described
in Definition 8. Let r∗, com∗, dec∗ denote the values that are used in computing the challenge
ciphertext, and notice that we may simply assume that these values are generated at the outset of
the experiment (since these values are generated independently of A’s actions). We are interested
in upper-bounding

∣∣Pr0[Succ]− 1
2

∣∣, where (recall) Succ denotes the event that A’s output bit b′ is
identical to the bit b used in constructing the challenge ciphertext.

In Game 1, we modify the experiment as follows: on input a ciphertext of the form 〈com∗, C, tag〉,
the decryption oracle simply outputs ⊥. Let Valid denote the event that A submits a ciphertext
〈com∗, C, tag〉 to its decryption oracle which is valid, and note that∣∣Pr1[Succ]− Pr0[Succ]

∣∣ ≤ Pr0[Valid] = Pr1[Valid].

The above holds since games 0 and 1 are identical until Valid occurs.
Let NoBind denote the event that A at some point submits a ciphertext 〈com∗, C, tag〉 to its

decryption oracle such that: (1) C decrypts to m ◦ dec (using the secret key SKcom∗ derived from
msk) and (2) R(pub, com∗, dec) = r with r 6∈ {r∗,⊥}. Let Forge denote the event that A at some
point submits a ciphertext 〈com∗, C, tag〉 to its decryption oracle such that Vrfyr∗(C, tag) = 1. We
clearly have Pr1[Valid] ≤ Pr1[NoBind] + Pr1[Forge].

It is relatively easy to see that Pr1[NoBind] is negligible assuming the binding property of
the encapsulation scheme. Formally, consider an adversary B acting as follows: given input
(1k, pub, com∗, dec∗), adversary B generates (PK, msk) by running Setup(1k) and then runs A on
inputs 1k and (PK, pub). Whenever A makes a query to its decryption oracle, B can respond to
this query as required by game 1; specifically, B simply responds with ⊥ to a decryption query of
the form 〈com∗, C, tag〉, and responds to other queries using msk. When A submits its two messages
m0,m1, adversary B simply chooses b ∈ {0, 1} at random and encrypts mb in the expected way to
generate a completely valid challenge ciphertext 〈com∗, C∗, tag∗〉. (Note that B can easily do this
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since it has dec∗ and can compute r∗.) At the end of the experiment, B can decrypt every query of
the form 〈com∗, C, tag〉 that A made to its decryption oracle to see whether NoBind occurred and, if
so, to learn a value dec such that R(pub, com∗, dec) 6∈ {r∗,⊥}. But this exactly violates the binding
property of encapsulation scheme (Init,S,R), implying that Pr1[NoBind] must be negligible.

Game 2 is derived by modifying the way the challenge ciphertext is computed. Specifically,
when A submits its two messages m0,m1 we now compute C∗ ← E ′PK(com∗, 0|m0| ◦ 0n) followed by
tag∗ ← Macr∗(C∗). The challenge ciphertext is 〈com∗, C∗, tag∗〉. (A random bit b is still chosen,
but is only used to define event Succ.) Since the challenge ciphertext is independent of b, it follows
immediately that Pr2[Succ] = 1

2 .
We claim that |Pr2[Succ]−Pr1[Succ]| is negligible. To see this, consider the following adversary

A′ attacking the IBE scheme Π′ via a chosen-plaintext attack:

• Algorithm A′(1k) first runs Init(1k) to generate pub and then runs S(1k, pub) to obtain
(r∗, com∗, dec∗). It outputs com∗ as the target identity and is then given the master pub-
lic key PK. Finally, A′ runs A on inputs 1k and (PK, pub).

• Decryption queries of A are answered in the natural way:

– Queries of the form 〈com∗, C, tag〉 are answered with ⊥.

– Queries of the form 〈com, C, tag〉 with com 6= com∗ are answered by first querying
Dermsk(com) to obtain SKcom, and then decrypting in the usual way.

• Eventually, A submits two equal-length messages m0,m1. A′ selects a bit b at random, and
sends mb ◦ dec∗ and 0|m0| ◦ 0n to its encryption oracle. It receives in return a challenge
ciphertext C∗, and uses this to generate a ciphertext 〈com∗, C∗, tag∗〉 in the natural way.

• Further decryption queries of A are answered as above.

• Finally, A outputs a bit b′. If b = b′, then A′ outputs 0; otherwise, A′ outputs 1.

Note that A′ is a valid adversary. Now, when the encryption query of A′ is answered with an
encryption of mb ◦ dec∗, then the view of A is exactly as in game 1; on the other hand, when the
encryption query of A′ is answered with an encryption of 0|m0| ◦ 0n then the view of A is exactly
as in game 2. Thus,

AdvIBE
A′,Π′ =

∣∣1
2 Pr1[Succ] + 1

2 Pr2[Succ]− 1
2

∣∣
= 1

2 ·
∣∣Pr1[Succ]− Pr2[Succ]

∣∣ .

Security of Π′ implies that AdvIBE
A′,Π′ is negligible, implying that |Pr2[Succ]−Pr1[Succ]| is negligible.

An exactly analogous argument shows that |Pr2[Forge]− Pr1[Forge]| is negligible as well. (The only
difference is that A′ now runs A to completion and then checks whether A has made any decryption
query of the form 〈com∗, C, tag〉 for which Vrfyr∗(C, tag) = 1. If so, then A′ outputs 1; otherwise,
it outputs 0.)

In game 3, we introduce one final change. The components com∗ and C∗ of the challenge
ciphertext are computed as in game 2; however, the component tag∗ is computed by choosing a
random key r ∈ {0, 1}k and setting tag∗ = Macr(C∗). Event Forge in this game is defined as before,
but using the key r; that is, Forge is now the event that A makes a decryption query of the form
〈com∗, C, tag〉 for which Vrfyr(C, tag) = 1.

We claim that |Pr3[Forge]− Pr2[Forge]| is negligible. To see this, consider the following algo-
rithm B breaking the hiding property of the encapsulation scheme:
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• B is given input 1k and (pub, com∗, r̃). It then runs Setup(1k) to generate (PK, msk), and
runs A on inputs 1k and (PK, pub).

• Decryption queries of A are answered in the natural way.

• Eventually, A submits messages m0,m1. B computes C∗ ← E ′PK(com∗, 0|m0| ◦ 0n), computes
tag∗ = Macr̃(C∗), and returns the challenge ciphertext 〈com∗, C∗, tag∗〉 to A.

• Further decryption queries of A are answered as above.

• When A halts, B checks whether A has made any decryption query of the form 〈com∗, C, tag〉
for which Vrfyr̃(C, tag) = 1. If so, B outputs 1; otherwise, it outputs 0.

Now, if r̃ is such that (r̃, com∗, dec∗) was output by S(1k, pub) then the view of A is exactly
as in game 2 and so B outputs 1 with probability Pr2[Forge]. On the other hand, if r̃ is chosen
at random independently of com∗ then the view of A is exactly as in game 3 and so B outputs 1
with probability Pr3[Forge]. The hiding property of the encapsulation scheme thus implies that
|Pr3[Forge]− Pr2[Forge]| is negligible.

To complete the proof, we show that Pr3[Forge] is negligible. This follows rather easily from
the security of the message authentication code, but we sketch the details here. Let q = q(k) be
an upper bound on the number of decryption oracle queries made by A, and consider the following
forging algorithm F : first, F chooses a random index j ← {1, . . . , q}. Next, F begins simulating
game 3 for A in the natural way. If the jth decryption query 〈comj , Cj , tagj〉 occurs before A
makes its encryption query, then F simply outputs (Cj , tagj) and halts. Otherwise, in response to
the encryption query (m0,m1) of A, forger F computes (r∗, com∗, dec∗) ← S(1k, pub) followed by
C∗ ← E ′PK(com∗, 0|m0| ◦ 0n). Next, F submits C∗ to its Mac oracle and receives in return tag∗.
Forger F then gives the challenge ciphertext 〈com∗, C∗, tag∗〉 to A and continues running A until
A submits its jth decryption query 〈comj , Cj , tagj〉. At this point, F outputs (Cj , tagj) and halts.

It is not difficult to see that the success probability of F in outputting a valid forgery is at
least Pr3[Forge]/q. Since (Mac,Vrfy) is a strong, one-time message authentication code and q is
polynomial, this shows that Pr3[Forge] is negligible.

Putting everything together, we have:∣∣Pr0[Succ]− 1
2

∣∣ ≤ ∣∣ Pr0[Succ]− Pr1[Succ]
∣∣ +

∣∣Pr1[Succ]− 1
2

∣∣
≤ Pr1[NoBind] + Pr1[Forge] +

∣∣Pr1[Succ]− Pr2[Succ]
∣∣ +

∣∣Pr2[Succ]− 1
2

∣∣
= Pr1[NoBind] + Pr1[Forge] +

∣∣Pr1[Succ]− Pr2[Succ]
∣∣

≤ Pr1[NoBind] + Pr3[Forge] +
∣∣Pr2[Forge]− Pr3[Forge]

∣∣
+

∣∣Pr1[Forge]− Pr2[Forge]
∣∣ +

∣∣Pr1[Succ]− Pr2[Succ]
∣∣ ,

and all terms in the final equation are negligible. (A concrete security analysis follows easily given
the above equation and the details of the preceding proof.)

6 Chosen-Ciphertext Security for IBE and HIBE Schemes

The techniques of the previous two sections extend relatively easily to enable construction of an
`-level HIBE scheme secure against chosen-ciphertext attacks based on any (` + 1)-level HIBE
scheme secure against chosen-plaintext attacks. (Recall that an IBE scheme is a 1-level HIBE
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scheme.) We give the details for the signature-based approach of Section 4. For arbitrary ` ≥ 1,
let Π′ = (Setup′,Der′, E ′,D′) be an (` + 1)-level HIBE scheme handling identities of length n + 1,
and let Sig = (G,Sign,Vrfy) be a signature scheme in which the verification key output by G(1k)
has length n = n(k). We construct an `-level HIBE scheme Π handling identities of length n. The
intuition behind the construction is simple: the ID-vector v = (v1, . . . , vL) ∈ ({0, 1}n)L in Π will
be mapped to the ID-vector

Encode(v) def= (0v1, . . . , 0vL) ∈ ({0, 1}n+1)L

in Π′. We will maintain the invariant that the secret key SKv for ID-vector v in Π will be the
secret key SK ′

v̂ for ID-vector v̂ = Encode(v) in Π′. When encrypting a message m to ID-vector v
in Π, the sender will generate a verification key vk and then encrypt m to the ID-vector v̂.(1vk)
using Π′. (The resulting ciphertext will then be signed as in Section 4.) The extra 0 and 1 bits
used as “padding” ensure that any decryption queries asked by an adversary (in Π) correspond (in
Π′) to nodes which are not ancestors of the target ID-vector.

In more detail, Π is constructed as follows:

Setup The Setup algorithm is the same as in Π′. (Note that Encode(ε) = ε so the master secret
key SKε = SK ′

ε satisfies the desired invariant.)

Key derivation DerSKv(v, r) runs as follows: let v̂ = Encode(v) and r̂ = Encode(r). Run
Der′SKv

(v̂, r̂) and output the result as SKv.r. (To see that key derivation maintains the
desired invariant given that SKv = SK ′

v̂, note that Encode(v.r) = Encode(v).Encode(r).)

Encryption EPK(v,m) first runs G(1k) to obtain (vk, sk). Let v̂ = Encode(v).(1vk). The algo-
rithm then computes C ← E ′PK(v̂,m) and σ ← Signsk(C). The final ciphertext is 〈vk, C, σ〉.

Decryption DSKv(v, 〈vk, C, σ〉) proceeds as follows: first check whether Vrfyvk(C, σ) ?= 1. If
not, output ⊥. Otherwise, let v̂ = Encode(v) and run Der′SKv

(v̂, (1vk)) to generate the key
SK∗ = SK ′

v̂.(1vk). Then output m := D′
SK∗(v̂, C).

It can be verified easily that the above scheme is correct. An analogous construction can be given
using the MAC-based construction of Section 5. We now state the main result of this section:

Theorem 3 If Π′ is selective-ID secure against chosen-plaintext attacks and Sig is a strong, one-
time signature scheme, then Π is selective-ID secure against chosen-ciphertext attacks.

Proof The proof is similar to that of Theorem 1. Given any ppt adversary A attacking Π in
a selective-ID, chosen-ciphertext attack, we define an event Forge and then prove the analogs of
Claims 1 and 2 in our setting. For visual comfort, we use Pr[·] instead of PrHIBE

A,Π [·].
Let v∗ denote the “target” ID-vector initially output by A, and let 〈vk∗, C∗, σ∗〉 be the challenge

ciphertext received by A. Let Forge be the event that A makes a decryption query D̂(v∗, 〈vk∗, C, σ〉)
with Vrfyvk∗(C, σ) = 1. (As in previous proofs, we may assume vk∗ is chosen at the beginning of
the experiment, and so this event is defined even before A receives the challenge ciphertext. Recall
also that A is disallowed from submitting the challenge ciphertext to its decryption oracle once this
ciphertext has been given to A.) A proof exactly as in the case of Claim 1, relying again on the
fact that Sig is a strong, one-time signature scheme, shows that Pr[Forge] is negligible.

We next show that |Pr[Succ∧Forge]+ 1
2 Pr[Forge]− 1

2 | is negligible. To do so, we define adversary
A′ attacking Π′ in a selective-ID chosen-plaintext attack. A′ is defined as follows:
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1. A′(1k) runs A(1k) who, in turn, outputs an ID-vector v∗ ∈ ({0, 1}n)≤`. Adversary A′ runs
G(1k) to generate (vk∗, sk∗) and outputs the target ID-vector V ∗ = Encode(v∗).(1vk∗).

2. A′ is given PK, which it gives to A.

3. When A requests the secret key for ID-vector v, A′ requests the secret key SK ′
v̂ for ID-vector

v̂ = Encode(v) and returns this secret key to A. Note that since v is not a prefix of the target
ID-vector v∗ of A, it follows that v̂ is not a prefix of the target ID-vector V ∗ of A′.

4. When A makes a decryption query D̂(v, 〈vk, C, σ〉), adversary A′ proceeds as follows:

(a) If v = v∗ then A′ checks whether Vrfyvk(C, σ) = 1. If so, then A′ aborts and outputs a
random bit. Otherwise, it simply responds with ⊥.

(b) If v 6= v∗, or if v = v∗ and vk 6= vk∗, then A′ sets v̂ = Encode(v) and requests the secret
key SK ′

v̂.(1vk). (Note that v̂.(1vk) is not a prefix of the target ID-vector V ∗ of A′, so A′

is allowed to submit this request.) It then honestly decrypts the submitted ciphertext
and returns the result to A.

5. When A outputs its two messages m0,m1, these same messages are output by A′. In return,
A′ receives a challenge ciphertext C∗. Adversary A′ computes σ∗ ← Signsk∗(C∗) and returns
challenge ciphertext 〈vk∗, C∗, σ∗〉 to A.

6. Any of A’s subsequent decryption queries, or requests for secret keys, are answered as before.

7. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal adversarial strategy for attacking Π′. As in the proof of Claim 2,
it follows from the security of Π′ that |Pr[Succ∧ Forge] + 1

2 Pr[Forge]− 1
2 | must be negligible. This

completes the proof.

We remark that when Π′ is secure (against chosen-plaintext attacks) in the stronger attack
model [10, 32] in which the adversary may choose the target ID-vector adaptively, then Π is secure
against chosen-ciphertext attacks in the same model. A proof for this case is easily derived from
the proof above.

Canetti, et al. [16] define a slightly stronger notion of HIBE which requires the HIBE scheme to
support an arbitrary (polynomial) number of levels ` and identities of arbitrary (polynomial) length
n (where `, n are provided as input to the initial Setup algorithm). We refer to HIBE schemes of
this type as unbounded. Security is defined as in Definition 4, except that the adversary’s advantage
must be negligible for all adversaries A as well as for all polynomially-bounded functions `, n. Since
the above construction requires only a strong, one-time signature scheme, which can be constructed
based on any one-way function (and hence from any secure HIBE scheme), we have the following:

Corollary 1 If there exists an unbounded HIBE scheme which is selective-ID secure against chosen-
plaintext attacks, then there exists an unbounded HIBE scheme which is selective-ID secure against
adaptive chosen-ciphertext attacks.

A similar result holds for unbounded HIBE schemes secure in the stronger sense of [10, 32] (cf. the
remark following Theorem 3). The analogous result for the case of (standard) public-key encryption
is not known.
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7 Efficient Instantiations

Here, we describe one particular instantiation of our generic construction of CCA-secure cryptosys-
tems from Section 5. We then compare the efficiency of this construction with the most efficient
previously-known CCA-secure scheme. To instantiate our construction, we need to specify a mes-
sage authentication code, an encapsulation scheme, and an IBE scheme which is selective-ID secure
against chosen-plaintext attacks. We consider each of these in turn.

7.1 Message Authentication Code

A number of efficient (one-time) message authentication codes are known. Since the computational
cost of these schemes will be dominated by the computational cost of the IBE scheme, we focus
instead on minimizing the lengths of the key and the tag. For concreteness, we suggest using CBC-
MAC with 128-bit AES as the underlying block cipher. (In this scheme, both the secret key and
the tag are 128 bits long.) We remark, however, that one-time MACs with information-theoretic
security [54, 51] could also be used.

7.2 Encapsulation Scheme

Adapting earlier work of Damg̊ard, et al. [23] and Halevi and Micali [37], we propose an encapsu-
lation scheme based on any universal one-way hash function (UOWHF) family {Hs : {0, 1}k1 →
{0, 1}k} (where k1 ≥ 3k is a function of the security parameter k). Our scheme works as follows:

• Setup chooses a hash function h from a family of pairwise-independent hash functions mapping
k1-bit strings to k-bit strings, and also chooses a key s defining UOWHF Hs. It outputs
pub = (h, s).

• The encapsulation algorithm S takes pub as input, chooses a random x ∈ {0, 1}k1 , and then
outputs (r = h(x), com = Hs(x), dec = x).

• The recovery algorithm R takes as input ((h, s), com, dec) and outputs h(dec) if Hs(dec) =
com, and ⊥ otherwise.

We prove the following regarding the above scheme:

Theorem 4 The scheme above is a secure encapsulation scheme. Specifically, the scheme is com-
putationally binding under the assumption that {Hs} is a UOWHF family, and statistically hiding
(without any assumptions).

Proof The binding property is easy to see. In particular, violation of the binding property implies
that an adversary finds dec′ 6= dec for which Hs(dec′) = Hs(dec). Since dec is chosen independently
of the key s in an honest execution of S, security of the UOWHF family implies that binding can
be violated with only negligible probability. We omit the straightforward details. (Note, however,
that a UOWHF rather than a collision-resistant hash function is sufficient here since the binding
property we require is weaker than that required by a standard commitment scheme.)

We next prove the following claim, which immediately implies statistical hiding:

Claim 3 For the encapsulation scheme described above, the statistical difference between the fol-
lowing distributions is at most 2 · 2

2k−k1
3 ≤ 2 · 2−k/3:

(1) {pub← Setup; (r, com, dec)← S(pub) : (pub, com, r)}
(2) {pub← Setup; (r, com, dec)← S(pub); r′ ← {0, 1}k : (pub, com, r′)}.
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The proof of this claim is loosely based on [23, 37], but our proof is much simpler. Let α
def= 2k1−k

3 ,
and assume for simplicity that k1, k are multiples of 3. Fix an arbitrary s for the remainder of the
discussion. For any fixed x ∈ {0, 1}k1 , let Nx

def= {x′ | Hs(x′) = Hs(x)}; this is simply the set of
elements hashing to Hs(x). Call x good if |Nx| ≥ 2α, and bad otherwise. Since the output length
of Hs is k bits, there are at most 2α · 2k = 2α+k bad x’s; thus, the probability that an x chosen
uniformly at random from {0, 1}k1 is bad is at most

2α+k−k1 = 2
2k−k1

3 ≤ 2−k/3

(using the fact that k1 ≥ 3k).
When x is good, the min-entropy of x — given (h, s) and Hs(x) — is at least α since every

x̃ ∈ Nx is equally likely. Let Uk represent the uniform distribution over {0, 1}k. Viewing h as a
strong extractor (or, equivalently, applying the leftover-hash lemma [38]) we see that the statistical
difference between {h, s, Hs(x), h(x)} and {h, s, Hs(x), Uk} is at most

2−(α−k)/2 = 2
2k−k1

3 ≤ 2−k/3.

The claim, and hence the theorem, follows.

A practical setting of the above parameters (and one that we will use when discussing the
efficiency of our scheme, below) is k1 = 448, k = 128 which yields a 128-bit r with statistical
difference at most 2 · 2

256−448
3 = 2−63 from uniform.4 Also, in practice one would likely replace the

UOWHF by a suitable modification of a cryptographic hash function such as SHA-1.

7.3 IBE Schemes

Boneh and Boyen [7] recently proposed two efficient IBE schemes satisfying the definition of security
needed for our purposes. In the interests of space, we will instantiate our construction using their
first scheme only. (Of course, their second scheme could also be used. Doing so yields a mild
efficiency improvement at the expense of requiring a stronger cryptographic assumption.)

We briefly discuss the cryptographic assumption on which the Boneh-Boyen IBE scheme is
based. Let IG denote an efficient algorithm which, on input 1k, outputs descriptions of two cyclic
groups G, G1 of prime order q (with |q| = k), a generator g ∈ G, and an efficiently computable
function ê : G×G→ G1 which is a non-trivial bilinear map; namely, for all µ, ν ∈ G and a, b ∈ Zq

we have ê(µa, νb) = ê(µ, ν)ab and ê(g, g) is a generator of G1. (See [10] for a discussion about
realizing an algorithm IG with these properties.)

The computational bilinear Diffie-Hellman (BDH) problem with respect to IG is the following:
given (G, G1, g, ê) as output by IG along with gα, gβ , and gγ (for random α, β, γ ∈ Zq), com-
pute ê(g, g)αβγ . Informally, we say that IG satisfies the computational BDH assumption if the
computational BDH assumption with respect to IG is hard for any ppt algorithm.

The decisional BDH problem (BDDH) with respect to IG is to distinguish between tuples of the
form (gα, gβ, gγ , ê(g, g)αβγ) and (gα, gβ , gγ , ê(g, g)µ) for random α, β, γ, µ ∈ Zq (note that ê(g, g)µ

is simply a random element of G1). Informally, we say IG satisfies the decisional BDH assumption
if no ppt algorithm can solve the decisional BDH problem with respect to IG with probability
significantly better than 1

2 . We refer to [10] for formal definitions and further discussion.

4Note that since only second-preimage resistance is needed to achieve the binding property, a 128-bit output length
provides sufficient security.
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Concrete IBE schemes. We refer to [7] for the full details and content ourselves with giving
only a high-level description of their first IBE scheme here, modified slightly for our eventual
application. We assume for simplicity that system parameters (G, G1, g, ê) have already been
established by running IG(1k) (of course, it is also possible for IG to be run during key generation).
Let G : G1 → {0, 1}k be a function whose output is indistinguishable from uniform when its input
is uniformly distributed in G1 (thus, G is essentially a pseudorandom generator although it need
not expand its input). The IBE scheme is defined as follows:

Setup Pick random generators g1, g2 ∈ G and a random x ∈ Zq. Set g3 = gx and Z = ê(g1, g3).
The master public key is PK = (g, g1, g2, g3, Z) and the master secret key is msk = x.

Derive To derive the secret key for “identity” ID ∈ Zq using msk = x, choose a random t ∈ Zq

and return the key SKID = (gx
1gt

2g
t·ID
3 , gt).

Encrypt To encrypt a message M ∈ {0, 1}k with respect to “identity” ID ∈ Zq, choose a random
s ∈ Zq and output the ciphertext (gs, gs

2g
s·ID
3 , G(Zs)⊕M).

Decrypt To decrypt ciphertext (A,B, C) using private key (K1,K2), output:

C ⊕G(ê(A,K1)/ê(B,K2)). (1)

Correctness can be easily verified. Security of the above scheme is based on the decisional5 BDH
assumption. For efficiency, the master secret key msk may also contain the discrete logarithms of
g1, g2 (with respect to g), in which case the key-derivation algorithm requires only two exponenti-
ations with respect to the fixed base g.

7.4 Putting it all Together

Given the above, we now fully describe a CCA-secure encryption scheme. In describing the scheme,
we focus on the case of encrypting “long” messages (say, 104 bits or longer). Focusing on this case
allows for a more accurate comparison with the scheme of [40] (which also focuses on this case).

Let (Mac,Vrfy) denote the CBC-MAC using 128-bit AES as the underlying block cipher. Let
H : {0, 1}448 → {0, 1}128 represent a hash function assumed to be second-preimage resistant (con-
structed, e.g., via a suitable modification of SHA-1). Let G : G1 → {0, 1}∗ denote a pseudorandom
generator with sufficiently-long output length (constructed, e.g., via a suitable modification of a
block/stream cipher). We assume that |q| > 128 so that strings in {0, 1}128 may be mapped to Zq

in a one-to-one manner. Using the IBE scheme outlined above, we obtain the following (we assume
that G, H, q, G, G1, ê, g, and ê(g, g) are provided as universal parameters):

Key generation Choose α1, α2, x ← Zq and set g1 = gα1 , g2 = gα2 , and g3 = gx. Also set
Z = ê(g, g)α1x. Finally, choose hash function h from a family of pairwise-independent hash
functions. The public key is PK = (g1, g2, g3, Z, h) and the secret key is SK = (α1, α2, x).

Encryption To encrypt message M using public key (g1, g2, g3, Z, h), first choose random r ∈
{0, 1}448 and set k1 = h(r) and ID = H(r). Choose random s ∈ Zq and then set C =
(gs, gs

2g
s·ID
3 , G(Zs)⊕ (M ◦ r)). Output the ciphertext

〈ID,C,Mack1(C)〉.
5Note that if G instead represents a hard-core predicate for the computational BDH assumption, we obtain a

scheme (encrypting a single bit) secure under this, possibly weaker, assumption. Running the scheme in parallel we
obtain a scheme encrypting longer messages, as needed by our construction.
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Encryption Decryption Key generation Ciphertext overhead
Our scheme 3.5 f-exps. 1.5 exp. + 1 pairing 4 f-exps. 2 · LBG + 704
KD-CS [40] 3.5 f-exps. 1.5 exps. 3 f-exps. 2 · LDDH + 128

Table 1: Efficiency comparison for CCA-secure encryption schemes. See text for discussion.

Decryption To decrypt ciphertext 〈ID,C, tag〉, first parse C as (A,B, Ĉ). Then pick a random
t ∈ Zq and compute the values (M ◦ r) = Ĉ ⊕G(ê(Aα1x+t(α2+x·ID)B−t, g)). Set k1 = h(r). If

Vrfyk1
(C, tag) ?= 1 and H(r) ?= ID output M ; otherwise, output ⊥.

We have changed the steps used in decryption for efficiency purposes, but it is easily checked that
decryption yields the same result as deriving a secret key for identity ID and then using this key
to decrypt C.

We tabulate the efficiency of our scheme, and compare it to the Kurosawa-Desmedt variant of
Cramer-Shoup encryption [40, 20] (which we refer to as KD-CS), in Table 1. In tabulating compu-
tational efficiency, “private-key” operations (hash function/PRG evaluations) and group multipli-
cations are ignored; “exp” stands for exponentiation; “f-exp” refers to exponentiation relative to a
fixed base (where efficiency can be improved using pre-computation); and one multi-exponentiation
is counted as 1.5 exponentiations. Ciphertext overhead is the difference (in bits) between the lengths
of the ciphertext and the message. LBG is the bit-length of an element in a group suitable for our
scheme, and LDDH is the bit-length of an element in a group suitable for the KD-CS scheme.

Although performance of the two systems looks similar, efficiency of the KD-CS scheme scales
better with the security parameter, mainly because it is easier to find groups that are believed to
satisfy the DDH assumption needed for KD-CS than to find groups that are believed to satisfy
the BDDH assumption that we need. As an example, consider two concrete settings. (The follow-
ing illustration assumes that the best way to solve either DDH or BDDH is to compute discrete
logarithms):

80-bit security. Suppose we wish to use groups in which solving the discrete logarithm problem
(using the best currently-known algorithms) is roughly equivalent to the security attained by 80-bit
symmetric-key cryptography.

• Our scheme can use groups based on so-called MNT elliptic curves [45]. In this case, the
discrete logarithm problem in a group G in which elements can be written using LBG = log q
bits (q prime) can be reduced to a discrete logarithm problem in F∗

q6 . (See [12, Section 4.3].)
80-bit security for the latter is obtained by setting q6 ≈ 21024 [42, 1] (specifically, our numbers
throughout this discussion are taken from [1, Table 2]). We thus need LBG ≈ 1024/6 ≈ 171.

• The KD-CS scheme can use standard elliptic curve groups, for which the best-known algorithm
for computing discrete logarithms is Pollard’s rho algorithm that runs in time proportional
to ≈ √q for groups of order q. This gives LDDH = log q ≈ 160 [1].

We see that for this level of security, both schemes have ciphertexts of roughly the same length and
group operations take roughly the same amount of time.

256-bit security. In this case the KD-CS scheme performs better than our scheme.

• For our scheme, we can use groups based on a certain class of elliptic curves suggested by
Barreto and Naehrig [4]. (Note that such curves will give worse performance for the case
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of 80-bit security considered above.) Now, the discrete logarithm problem in a group G in
which elements can be written using LBG = log q bits (q prime) can be reduced to a discrete
logarithm problem in F∗

q12 . 256-bit security for the latter is obtained by setting q12 ≈ 215360.
We thus need LBG ≈ 15386/12 ≈ 1280.

• Following the analysis as in the case of 80-bit security, the KD-CS scheme can use LDDH =
log q ≈ 512.

We conclude that at the present state-of-the-art, the best scheme constructed under the paradigm
of Cramer and Shoup is more efficient than the best schemes constructed under the paradigm pre-
sented here. (Still, schemes that are constructed under the paradigm from this paper have other
advantages, such as being more amenable to distributed implementation, and being able to handle
also hierarchical identity based encryption.)

8 Conclusions

We presented in this paper new paradigms for constructing CCA-secure public-key encryption
schemes using IBE as a building block. Our paradigms extend to enable constructions of CCA-
secure (hierarchical) identity-based encryption schemes as well. Instantiating our constructions
with existing IBE systems yields a CCA-secure encryption scheme whose performance, for standard
settings of the security parameter, is competitive with the best CCA-secure schemes known to date.
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A Review of Standard Definitions

We provide the standard definitions of public-key encryption schemes and their security against
adaptive chosen-ciphertext attacks (following [2]), as well as appropriate definitions for strong one-
time signature schemes and message authentication codes.

A.1 Public-Key Encryption

Definition 7 A public-key encryption scheme PKE is a triple of ppt algorithms (Gen, E ,D) such
that:

• The randomized key generation algorithm Gen takes as input a security parameter 1k and
outputs a public key PK and a secret key SK.

• The randomized encryption algorithm E takes as input a public key PK and a message m
(in some implicit message space), and outputs a ciphertext C. We write C ← EPK(m).

• The (possibly randomized) decryption algorithm D takes as input a ciphertext C and a secret
key SK. It returns a message m or the symbol ⊥ (which is not in the message space). We
write m← DSK(C).

We require that for all (PK, SK) output by Gen, all m in the message space, and all C output by
EPK(m) we have DSK(C) = m. ♦
We recall the standard definition of security against adaptive chosen-ciphertext attacks (cf. [2]).

Definition 8 A public-key encryption scheme Π is secure against adaptive chosen-ciphertext attacks
(i.e., “CCA-secure”) if the advantage of any ppt adversary A in the following game is negligible in
the security parameter k:

1. Gen(1k) outputs (PK, SK). Adversary A is given 1k and PK.

2. The adversary may make polynomially-many queries to a decryption oracle DSK(·).

3. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly chosen
and the adversary is given a “challenge ciphertext” C∗ ← EPK(mb).

4. A may continue to query its decryption oracle DSK(·) except that it may not request the
decryption of C∗.

5. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by PrPKE
A,Π [Succ]. The

adversary’s advantage is defined as AdvPKE
A,Π

def=
∣∣PrPKE

A,Π [Succ]− 1/2
∣∣. ♦
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A.2 Signatures and MACs

We remind the reader of the standard functional definitions for signature schemes and message
authentication codes, followed by a definition of strong, one-time security appropriate for each.

Definition 9 A signature scheme Sig is a triple of ppt algorithms (G,Sign,Vrfy) such that:

• The randomized key generation algorithm G takes as input the security parameter 1k and
outputs a verification key vk and a signing key sk. We make the simplifying assumption that,
for any k, all vk output by G(1k) have the same length.

• The signing algorithm Sign takes as input a signing key sk and a message m (in some implicit
message space), and outputs a signature σ. We write σ ← Signsk(m).

• The verification algorithm Vrfy takes as input a verification key vk, a message m, and a
signature σ, and outputs a bit b ∈ {0, 1} (where b = 1 signifies “acceptance” and b = 0
signifies “rejection”). We write this as b := Vrfyvk(m,σ).

We require that for all (vk, sk) output by G, all m in the message space, and all σ output by
Signsk(m), we have Vrfyvk(m,σ) = 1. ♦

A message authentication code is similar in spirit to a signature scheme, except that here the
signing key and verification key are identical. We review the definition for convenience:

Definition 10 A message authentication code is a pair of ppt algorithms (Mac,Vrfy) such that:

• The tagging algorithm Mac takes as input a key sk ∈ {0, 1}k (where k is the security parame-
ter), and a message m (in some implicit message space). It outputs a tag tag, and we denote
this by tag← Macsk(m).

• The verification algorithm Vrfy takes as input a key sk, a message m, and a tag tag; it outputs
a bit b ∈ {0, 1} (where b = 1 signifies “acceptance” and b = 0 signifies “rejection”). We write
this as b := Vrfysk(m, tag).

We require that for all sk, all m in the message space, and all tag output by Macsk(m), we have
Vrfysk(m, tag) = 1. ♦

We next turn to definitions of security for signature schemes and message authentication codes.
The definition of security is analogous in each case: the adversary should be unable to forge a valid
message/signature (resp., message/tag) pair, after receiving a signature (resp., tag) on any single
message m of the adversary’s choice. Note that we require so-called strong security in each case,
so that it should be infeasible for the adversary to generate even a different signature (resp., tag)
on the same message m. Again, we provide formal definitions for convenience.

Definition 11 A signature scheme Sig is a strong, one-time signature scheme if the success prob-
ability of any ppt adversary A in the following game is negligible in the security parameter k:

1. G(1k) outputs (vk, sk) and the adversary is given 1k and vk.

2. A(1k, vk) may do one of the following:

(a) A may output a pair (m∗, σ∗) and halt. In this case (m,σ) are undefined.

(b) A may output a message m, and is then given in return σ ← Signsk(·). Following this,
A outputs (m∗, σ∗).
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We say the adversary succeeds if Vrfyvk(m∗, σ∗) = 1 but (m∗, σ∗) 6= (m,σ) (assuming (m,σ) are
defined). We stress that the adversary may succeed even if m∗ = m. ♦

Definition 12 A message authentication code (Mac,Vrfy) is a strong, one-time message authenti-
cation code if the success probability of any ppt adversary A in the following game is negligible in
the security parameter k:

1. A random key sk ∈ {0, 1}k is chosen.

2. A(1k) may do one of the following:

(a) A may output (m∗, tag∗). In this case, (m, tag) are undefined.

(b) A may output a message m and is then given in return tag← Macsk(m). Following this,
A outputs (m∗, tag∗).

We say the adversary succeeds if Vrfysk(m∗, tag∗) = 1 but (m∗, tag∗) 6= (m, tag) (assuming (m, tag)
are defined). We stress that the adversary may succeed even if m∗ = m. ♦
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