
Boosting SimRank with Semantics
Tova Milo, Amit Somech and Brit Youngmann

Tel Aviv University

{milo,amitsome,brity}@post.tau.ac.il

ABSTRACT
The problem of estimating the similarity of a pair of nodes in an

information network draws extensive interest in numerous fields,

e.g., social networks and recommender systems. In this work we

revisit SimRank, a popular andwell studied similarity measure for

information networks, that quantifies the similarity of two nodes

based on the similarity of their neighbors. SimRank’s popularity

stems from its simple, declarative definition and its efficient,

scalable computation. However, despite its wide adaptation, it

has been observed that for many applications SimRank may yield

inaccurate similarity estimations, due to the fact that it focuses

on the network structure and ignores the semantics conveyed
in the node/edge labels. Therefore, the question that we ask

is can SimRank be enriched with semantics while preserving its
advantages?

We answer the question positively and present SemSim, a mod-

ular variant of SimRank that allows to inject into the computation

any semantic similarly measure, which satisfies three natural con-

ditions. The probabilistic framework that we develop for SemSim

is anchored in a careful modification of SimRank’s underlying

random surfer model. It employs Importance Sampling along

with a novel pruning technique, based on unique properties of

SemSim. Our framework yields execution times essentially on par

with the (semantic-less) SimRank, while maintaining negligible

error rate, and facilitates direct adaptation of existing SimRank

optimizations. Our experiments demonstrate the robustness of

SemSim, even compared to task-dedicated measures.

1 INTRODUCTION
Estimating node similarity in information networks is the corner-

stone of many applications, e.g., retrieving similar users in social

networks, and a fundamental component in numerous network

analysis algorithms, such as link prediction and clustering.

In this work we consider SimRank [13], a well-studied simi-

larity measure for information networks. The intuition behind

SimRank is that similar objects are referenced by similar objects,

and thus it quantifies node similarity based on the compound

similarity of their neighbors. SimRank’s popularity stems from

its simple declarative definition and its efficient computation,

incorporating a broad range of optimizations [15, 39]. However,

despite its wide adaptation, it has been observed that for many

applications SimRank may yield inaccurate estimations [37, 40],

as it focuses solely on the network structure and ignores the se-
mantic information conveyed in the node/edge labels. Thus, the

question we address is the following:

Can SimRank be enriched with semantics while preserving its
intuitive, declarative definition and efficient computation?

We answer the question positively, and present SemSim, a

refined variant of SimRank, that weights nodes’ structural simi-

larity with their semantic similarity and edge weights, yielding an
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Figure 1: Example information network.

effective, comprehensive measure. SemSim’s probabilistic frame-

work, anchored in a careful modification of SimRank’s underlying

random surfer model, together with dedicated optimizations, al-

lows for execution times essentially on par with the semantic-less

SimRank, while maintaining similar negligible error rates. Direct

adaptation of existing SimRank optimizations is also enabled.

We demonstrate the problem that we tackle with an illustrative

example.

Example 1.1. The simple information network depicted in

Figure 1 represents a bibliographic database. It includes nodes

describing authors, countries and research fields, with edges link-

ing authors to their co-authors, country of origin and fields of

interest. A semantic taxonomy is also reflected in this network

(pink nodes) where entities are linked to their hypernyms, as indi-

cated by the “is-a" edges. Edge weights reflect the strength of the

relations (for conciseness, some weights are omitted but should

be assumed to have an identical arbitrary default value). To visu-

ally represent the prevalence of a concept in the dataset, we use

the width of the borders surrounding the nodes (an explanation

of this quantification is provided in the sequel).

We wish to determine which of the authors, Bo or John, is

more similar to Aditi. Observe that: (1) all three collaborated with

Paul twice (as indicated by the edge weights); (2) their origin

countries are all highly prevalent (as indicated by the borders’

width), compared to the authors’ fields of interest, thus the lat-

ter is more informative and should have a greater effect on the

similarity
1
; (3) Crowdsourcing, the common field of John and

Aditi, is more particular (less prevalent) than Data Mining, the

field shared by Bo and Aditi. Hence, intuitively, Crowd Mining is

semantically closer to Spatial Crowdsourcing than to Web Data

Mining. Consequently, John is more similar to Aditi than Bo, even

though they reside in different continents. Note, however, that

ignoring semantics and considering the network structure alone
(even including edge weights), Bo and Aditi seem more similar,

1
Following standard argumentation, an estimation of similarity increases

more drastically when indicated by a less frequent event [32].



and indeed, SimRank (like other measures [37, 43]) erroneously

derive a higher similarity score for them.

Several refinements for SimRank have been proposed in the lit-

erature (see Related Work). For instance, SimRank++ [2] is a vari-

ant of SimRank that also considers edge weights, yet semantics

is ignored, and, importantly, scalability is not addressed. Other

works (e.g. [37]) partially account for semantics by considering

only meaningfulmeta-paths (i.e. paths of a specific label patterns)
between objects. But as can be seen in the above example (and in

our experiments) this does not always suffice to accurately dif-

ferentiate objects. Alternatively, several semantic measures have

been proposed [23, 32], but they typically gauge the similarity

based on ontological information and the Information Content
(IC) of nodes, while the rest of the network structure is ignored.

In an attempt to fully account for both structure and semantics,

recent works abandon SimRank and rely instead on representa-

tion learning, using techniques such as node embedding [4, 30].

While this approach often outperforms a naive combination of

structural and semantic similarity measures, a key drawback is

that results are hard to explain and interpret, as is often the case

with machine learning. Interestingly, we show that our SimRank

variant not only retains its intuitive, declarative flavor but also

yields more accurate estimations compared to these works.

Next, we provide a brief overview of our results.

The SemSim similarity measure. We refine SimRank by weight-

ing nodes’ neighbors similarity with their semantic similarity

and edge weights. Our definition is modular and allows to inject

into the computation any semantic measure, as long as it satisfies

three intuitive conditions that are typically satisfied by existing

measures. We present SemSim iterative formulation, analogous

to SimRank iterative formulation [13]. We prove that SemSim’s

solution always exists (as was shown for SimRank), and show

that its iterative formula converges to its fix-point at least as fast

as SimRank, and possibly faster, due to an additional semantic

factor (Section 2).

Random-surfer model. SimRank’s underlying random-surfer

model serves as the basis for many of its optimizations. We es-

tablish a corresponding model for SemSim. First, we define the

notion of a Semantic-Aware RandomWalk (SARW), which refines

the traditional random walk definition, and prove that SemSim

can be computed using SARWs. This interpretation considers

the node-pair graph G2
, in which a node represents an ordered

pair of nodes from the original graphG. Interestingly, we prove
that given a threshold s.t. only similarity scores above it are of

interest, the semantics can effectively be used to reduce the size

of G2
, with the computation of SemSim over the reduced graph

yielding the same results as those computed via the full graph

G2
. Our experiments demonstrate that a significant reduction of

up to three orders of magnitude is achieved in multiple datasets

(Section 3).

Approximated similarity scores. Exact computation may still

be expensive for large graphs, despite the speed-up gained by

the graph reduction. For SimRank, the excessive size of G2
moti-

vated a battery of optimizations based on a Monte-Carlo (MC)

procedure [15, 34, 39]. SimRank basic MC framework returns an

approximated SimRank score in O(nw · t) time, where nw is the

number of walks sampled from each node and t is a bound on

their length. To efficiently approximate SemSim we develop an

analogous MC framework, thereby enabling a direct application

of SimRank optimizations. First, we show that a naïve solution

of simply replacing SimRank’s underlying uniform distribution

with the semantic-aware distribution leads to a quadratic increase

of the sample size. To overcome this, we employ Importance Sam-
pling, and devise an unbiased estimator for SemSim, which avoids

this increase and returns the estimated SemSim score in aver-

age time of O(nw · t · d2), where d is the average in-degree in

the graph G. To further reduce computation cost, we devise a

dedicated pruning technique that avoids the computations of un-

promising node-pairs and irrelevant (low probability) walks, at

the cost of a controlled additive error to the approximated scores.

While the worst-case time complexity remains the same, our

experiments show pruning to be extremely effective in practice,

yielding running times on par with SimRank (Section 4).

Experimental study. We conduct an experimental study over

real data, demonstrating the effectiveness of SemSim in multiple

practical scenarios. Our results demonstrate the robust quality of

SemSim, even compared to task-dedicated measures. The results

further exhibit the efficiency and accuracy of our framework and

its ability to boost SimRank with semantics while preserving its

performance (Section 5).

Finally, related work and conclusions are presented in sections

6 and 7, respectively. For space constraints, proofs are deferred

to a technical report [27].

2 PRELIMINARIES
We first explain the data model used in our setting, then present

our novel measure, SemSim.

2.1 Data Model
Following [36], we refer to the objects graph as a Heterogeneous
Information Network (HIN), a flexible graph model that can cap-

ture and integrate various types of data. Let V be the domain

of vertices, L the domain of labels, and R+ the domain of real

positive numbers > 0.

Definition 2.1 (Heterogeneous Information Network). A HIN is

a directed weighted graph G = (V ,E,φ,ψ,W ), where: V ⊆ V is

a finite set of vertices; E ⊆ V ×V is a set of edges; φ : V → L

and ψ : E → L are vertex and edge labeling functions, resp., and

W : E → R+ is an edge weight function.

The edge weight functionW associates each edge with a real

positive number indicating the strength of the relation. When no

knowledge about this strength is available, the weight is set to a

default value. For example, in Figure 1, weights are available only

for edges with the label co-author, where the weights reflect the
number of collaborations between authors. Since no information

about other weights is available, all other weights were set to

1. For a node v , we denote by I (v),O(v) the set of in and out

neighbors of v , resp. An individual in-neighbor is denoted as

Ii (v), for 1 ≤ i ≤ |I (v)|, if I (v) , ∅ (Oi (v), resp). Throughout
the paper we use the variables u,v,u ′,v ′

to denote nodes in V .
Here we consider directed graphs, but stress that all results can

be adapted to the undirected model with minor modifications.

In many cases, the HIN is composed of two subgraphs that are

aligned together: one consists of individual objects and their rela-

tions, e.g. authors/countries, and their collaboration/residence re-

lationships. The second, ontological-style subgraph is comprises

of semantic categories and relationships, e.g. the pink nodes and

their “is-a" relations. Objects of the former can be connected to

their corresponding categories. For example, in Figure 1 all au-

thor nodes are connected to the category Author. When semantic



information is not included, one can enrich the graph by aligning

it with publicly available ontology [5, 26] by applying existing

entity alignment tools [28]. Ontologies typically contain a hier-

archical taxonomy of concepts, e.g., that USA “is-a" a Country in
America and Country in America “is-a" Country. Such taxonomies

are often leveraged to define semantic similarity measures.

2.2 Similarity Notions
As described above, our semantic-rich graph model contains

various types of linked entities, as well as additional knowledge

that is captured by the edge weights. Next, we devise a refined

version of SimRank [13] that effectively considers all information.

We start with a short background on SimRank, then provide the

formal definition for SemSim.

SimRank follows the intuitive assumption that: “two nodes

are similar if they are related to similar nodes". Formally, given

two nodes u,v ∈ V , their SimRank score is defined as follows. If

u = v then simrank(u,v) = 1, else: simrank(u,v) is given by the

following recursive formula without the red colored parts.
sim(u,v) = (1)

sem(u,v) · c

Nu,v

|I (u) |∑
i

|I (v) |∑
j

sim(Ii (u), Ij (v))· W (Ii (u),u) ·W (Ij (v),v)

where c is a decay factor in (0, 1), Nu,v = |I (u)| · |I (v)| and
sim(·, ·) is the SimRank score of the neighboring pair-nodes. If

I (u) or I (v) are ∅, then the score is defined to be zero.

In SimRank, the assumed graph model is an unweighted ho-

mogeneous graph, where all edges and nodes belong to a single

type, thus it ignores the labels’ semantics and edge weights. We

enrich SimRank by weighting, at each step of the computation,

the neighbors’ similarity with the edge weights and the nodes’

semantic similarity. Formally, given a semantic similarity mea-

sure sem(·, ·), the red parts indicate our refinements to SimRank

standard formula: (i) an additional semantic factor is added; (ii)

the edge weights are taken into consideration. Correspondingly,

the normalization factor is set to:

Nu,v =

|I (u) |∑
i

|I (v) |∑
j

W (Ii (u),u) ·W (Ij (v),v) · sem(Ii (u), Ij (v))

where sim(·, ·) in the refined formula denotes the refined similar-

ity of the neighbors. Here too, if I (u) or I (v) are the ∅, then the

similarity score is defined to be zero.

Note that according to our definition of similarity, the semantic

similarity of the neighboring pairs of nodes appears as well (as

the definition is recursive), and therefore, the similarity of two

nodes u,v is, in fact, proportional to the semantic similarity of

their neighbors.

Importantly, our definition of SemSim considers all neighbor-

pairs. An alternative could be to take edge labels into considera-

tion and restrict attention to neighbor-pairs that are pointed by

edges having the same label. However, while such formulation re-

quires only minimal technical changes and all our results remain

unchanged, our experiments showed it to be less accurate, as

this definition may overlook possibly important relations among

the objects. Moreover, both definitions yield essentially the same

running times and we thus omit this restriction.

Semantic Similarity. Multiple semantic measures have been

proposed in the literature [16, 20]. In general, any similarly func-

tion sem(·, ·) can be employed in SemSim, as long as it satisfies

the following constraints. For all u,v ∈ V :

(1) Symmetry. sem(u,v) = sem(v,u).
(2) Maximum self similarity. sem(u,u) = 1.

(3) Fixed value range. sem(u,v) ∈ (0, 1].

Those requirements are used to prove the soundness of Sem-

Sim (Theorem 2.3). The first two are typically satisfied by com-

mon semantic measures (e.g., [16, 23, 32]). For the third constraint,

scores can be normalized into a [0 + ϵ, 1] range, for a small ϵ > 0

value [29].

We next briefly overview a simple and effective semantic mea-

sure that we have used in our experiments (see Section 6 for a

discussion on alternatives). Lin [23] is an Information Content
(IC)-based measure that is defined over concept taxonomies. The

IC of a node v is quantify as the negative of its log likelihood:

IC(v) = − log(P[v]), where P[v] denotes the frequency of v . I.e.,
the more prevalent a concept is, the lower its IC value. Intuitively,

the similarity between concepts measures the ratio of the amount

of information needed to state their commonality to the infor-

mation needed to describe them. Given two nodes u and v in a

taxonomy, their Lin score is defined as:

Lin(u,v) =
2 · IC(LCA(u,v))

IC(u) + IC(v)
where LCA(u,v) is the lowest common ancestor of u andv in the

taxonomy.

Note that Lin satisfies the constraints, only if the IC values

are in (0, 1] (proof omitted). To estimate the IC of a concept, we

adapted the Seco formula [33] in our implementation, providing

a simple linear-time (in the size of the taxonomy) algorithm and

extended it to our setting. This adaptation ensures the IC values

lie within (0, 1] (see [27] for more details).

Entity IC value
Thing 0.001

Author, Country 0.01

Country in Asia, Country in America 0.015

China, India, US 0.02

Data Management 0.2

Data Mining 0.3

Crowdsourcing 0.85

Web data mining 0.7

Crowd Mining, Spatial Crowdsourcing 0.9

Bo, John, Aditit, Paul 1.0

Table 1: IC values for Figure 1 entities.

We next provide the full computation of SimRank and SemSim

for the example introduced in the Introduction (Example 1.1),

while using Lin as the integrated semantic measure.

Example 2.2. We computed the IC values (depicted in Table

1) on the same domain ontology used for the AMiner dataset

(which includes a taxonomy of CS terms as well as a geographic

taxonomy, see experimental results), and set absent edge weights

to 1. For both SimRank and SemSim, we set the decay factor c to
0.8 and the number of iterations k was set to 3.

We first review the relevant Lin scores: since all author-nodes

are leafs in the taxonomy, their corresponding IC values are all 1,

thus Lin(Bo,Aditi) = Lin(John,Aditi)= 0.01 (which also serves as

the upper bound on their SemSim scores). Using the IC values

above, we get: Lin(Spatial Crowdsourcing,Crowd Mining)= 0.94

and Lin(Web Data Mining,Crowd Mining)= 0.37. Next, we briefly

overview SemSim and SimRank computation. At the first itera-

tion, for both measures, R0 = 0 for all authors pairs. Iteratively,

at the next step, since all three authors share two common neigh-

bors, Author and Paul, yet the common field-of-interest of Aditi



and John is more semantically similar than the common field of

Aditi and Bo, we get for SemSim that: R1(John,Aditi) = 0.0073,

while R1(Bo,Aditi)= 0.066. Note that in this step the semantic

similarity of common neighbors propagates into the computa-

tion. On the other hand, according to SimRank, in this step both

pairs similarity scores are equal to 0.1. At the last step, according

to SemSim R2(John,Aditi) = 0.0076, while R2(Bo,Aditi)= 0.0073,

thus, SemSim obtains the desire result that while all authors are

fairly similar, John’s similarity to Aditi is a bit greater than Bo’s.

In contrast, according to SimRank, R2(John,Aditi) = 0.12, while

R2(Bo,Aditi)= 0.16. These results are due to the fact that both

Aditi and Bo reside in the same continent.

We also computed the SimRank scores solely over the col-

laboration network (i.e., ignoring the semantic relations). Not

surprisingly, since the resulted network is symmetric, the ob-

tained similarity scores for both pairs were exactly the same.

2.3 Basic Properties of SemSim
We next show a few of SemSim’s properties which will then be

used to present a naïve algorithm for computing SemSim, that

serves as a baseline which we improve in the following sections.

Following SimRank’s iterative form [13], a solution to Equa-

tion (1) can be reached by iterating to a fix-point. For the k-th
iteration, an iterative function Rk (u,v) denotes the similarity

score of u and v in the k-th iteration. Initially, R0(u,v) is defined
as 0 if u , v and 1 otherwise. Iteratively, Rk+1(u,v) is computed

from Rk (·, ·) as follows:

R0(u,v) =

{
0,u , v
1,u = v

(2)

Rk+1(u,v) = (3)

sem(u,v) · c

Nu,v

|I (u) |∑
i

|I (v) |∑
j

Rk (Ii (u), Ij (v)) ·W (Ii (u),u) ·W (Ij (v),v)

We can prove that the iterative SemSim form has the following

properties:

Theorem 2.3. ∀u,v ∈ V and for every 0 ≤ k ∈ N:
(1) Symmetry. Rk (u,v) = Rk (v,u).
(2) Maximum self similarity.Rk (u,u) = 1.
(3) Monotonicity. 0 ≤ Rk (u,v) ≤ Rk+1(u,v) ≤ 1.
(4) Existence. The solution always exists.
0 ≤ c < min(arдminNu,v (Nu,v ), 1), the solution is unique.

First, note that the decay factor’s upper bound can be found in

average time ofO(n2 ·d2), where d is the average in-degree in the

graph, by simply iterating over all node-pairs. Second, we observe

that the uniqueness property here is a weaker version than the

one that was proven for SimRank, where the solution is unique

for every 0 ≤ c < 1. Yet, our experiments show that for real-

life networks, the upper bound is high enough to comfortably

accommodate typical c values chosen for SimRank (e.g., 0.6, as

used in [24, 39]).

We can also show (following similar proof for SimRank [46])

that not only the scores are monotone (i.e, Rk (u,v) ≤ Rk+1(u,v)),
their differences in consecutive iterations are bounded.

Proposition 2.4. For everyu,v ∈ V andk > 0: 0 ≤ Rk+1(u,v)−

Rk (u,v) ≤ sem(u,v) · ck+1

This suggests that the iterative form of SemSim converges as

fast as SimRank (where the convergence was shown to be ck+1

[46]), and possibly faster due to the additional semantic factor.

Another useful property is that sem(·, ·), the semantic similarity

of two nodes, provides a natural upper bound on their SemSim

score. This property is highly effective since, as we will show, it

can be used to prune un-promising node-pairs.

Proposition 2.5. For every two nodes u,v ∈ V : sim(u,v) ≤

sem(u,v).

To conclude, Theorem 2.3 provides a simple algorithm for

computing SemSim, that computes its iterative form to its fix-

point (or up to a required precision bound). We assume that the

computation of a single-pair semantic similarity score can be

done in constant time (possibly after pre-processing), without

materializing the n×nmatrix of scores. Indeed, this is the case for

numerous semantic measures [16, 32], Lin’s measure included.

Given this, the complexity of the iterative algorithm is equivalent

to SimRank’s complexity [13]: The time complexity isO(k ·d2 ·n2),
wheren = |V |,d is the average in-degree inG andk is the number

of iterations. The worst case complexity for a given k is O(n4).

3 RANDOM SURFER-PAIRS MODEL
The iterative algorithm provided in the previous section has two

main disadvantages: (i) it computes all pair-wise scores, even if

one is interested only in a single-pair, and (ii) its complexity is pro-

hibitive for large graphs. To address these issues, we provide an

alternative interpretation to SemSim, based on the random surfer
model for SimRank, then, explain how SemSim can be computed

efficiently. In essence, we show that with careful adjustments,

an analogous random surfer model can be establish for SemSim.

The key challenge is to incorporate semantics. We show that

SemSim measures how soon two random surfers are expected to

meet, if they start in two nodes and randomly walk on the graph

backward, while being aware of both edge weights and semantics.

We define Semantic-Aware Random Walks (SARW), then prove

that SemSim can be computed using them. Interestingly, we will

see that semantics can be leveraged to speed up the computation.

3.1 Semantic-Aware RandomWalks (SARW)
Following [13], we use the definition of a node-pair graph G2

, in

which each node represents an ordered pair of nodes fromG . An
edge e = ((u,u ′), (v,v ′)) ∈ G2

iff both (u,v) and (u ′,v ′) are ∈ G.
We extend the definition with an assignment of weights: The

weight of an edge e = ((u,u ′), (v,v ′)) is defined as:WG2 (e) :=
W (u,v) ·W (u ′,v ′). For simplicity, we use the notation ofW (e) to
indicate an weight in both G and G2

, when the context is clear.

Let us assume that all edges in G have been reversed. For

example, Figures 2a and 2b display a graph G and all out-edges

from (A,B) (after reversal). For simplicity, all edge weights are

set to 1. We call a node (u,v) ∈ V 2
a singleton node if u = v . In

SimRank, a surfer chooses the next node uniformly at random out

of all out-neighbors of the current node. To incorporate semantics

and weights, we devise the following distribution.

Definition 3.1 (Semantic-Aware Probability Distribution). The
probability a random surfer travelingG2

in a current node (u,u ′)
would next move to its out-neighbor (v,v ′) is:

P[(u,u ′) → (v,v ′)] :=
W ((u,u ′), (v,v ′)) · sem(v,v ′)

|O ((u,u′)) |∑
i=1

W ((u,u ′),Oi (u,u ′)) · sem(Oi (u,u ′))

Using the distribution above, we define SARWs as follows. A

walk in G2
represents a pair of walks in G. Letw = ⟨w1, ...,wk ⟩

denote a walk in G2
, wherew1, ...,wk ∈ V 2

, and l(w) = |w |. The

walk w has the probability P[w] of traveling within it, where

P[w] :=
k−1∏
i=1

P[wi → wi+1].



Importantly, this distribution defines a positive probability to

all paths in G2
. However, as the choice of the next step relies on

the semantic similarity of node-pairs, pairs of higher semantic

similarity are preferred over pairs of low similarity (typically,

pairs whose nodes belong to different categories). Namely, paths

that share the same edge label in each step, are likely to get higher

probabilities. Nonetheless, even paths that do not share the same

labels are considered, as they may also provide relevant informa-

tion
2
. We provide here an illustrative example for a computation

of SARWs.

Example 3.2. Consider again Figure 2b. Observe that author

A’s current country is Canada, and author B’s origin country is

the USA. Noticeably, even though the two edges do not share the

same label, this information may be important when assessing

similarity. According to our definition we get that since the enti-

tiesCanada andUSA are semantically similar (Lin(Canada,USA) =
0.8), the probability that a random surfer in the node (A,B) will
move next to its neighbor (Canada, USA) is:

P[(A,B)→(Canada,USA)]=
0.8

0.8+0.2+0.2+1.0
= 0.36

On the other hand, as the two entities Author and the USA are not

semantically similar (Lin(Author ,USA) = 0.2), the corresponding

probability is lower:

P[(A,B)→(Author ,USA)]=
0.2

0.8+0.2+0.2+1.0
= 0.09

The SimRank score of a node (u,v) ∈ V 2
can be computed

using all walks from it leading to a singleton node in G2
. Analo-

gously, we prove that SemSim can be computed using all semantic-

aware walks from (u,v) leading to singleton nodes inG2
. LetW =

{(u,v) (x ,x)} be the set of all walks in G2
form (u,v) to any

singleton node (x ,x). If no such paths exist, thenW = ∅. By defini-

tion, (x ,x) is the only singleton node inw (after the first meeting,

the two surfers halt). Let: s ′(u,v) = sem(u,v)
∑
w ∈W P[w] · cl (w )

.

Theorem 3.3 provides an alternative way to compute the SemSim

score of a single pair.

Theorem 3.3. ∀u,v , given c which ensures the uniqueness of
sim(·, ·): s ′(u,v) = sim(u,v)

Using our refined model, one may compute (single pair or all

pairs) SemSim scores overG2
. However, for large graphs, its size

may be too large. We next explain how the semantics can be

effectively employed to reduce the size of G2
.

3.2 Reducing the Size ofG2

In many practical applications one is interested only in node-

pairs whose similarity scores are above a given threshold. Se-

mantics provides an efficient tool to prune G2
in such situations.

Intuitively, Prop. 2.5 provides a semantic-based upper bound on

the similarity scores, which can be used to avoid materializing

un-promising node-pairs. We devise a reduced version of G2
on

which the computation of SemSim (for node-pairs with similarity

scores are above a given threshold) yields the same result as that

computed via the full graphG2
. Indeed, our experimental results

demonstrate a significant reduction in the size of G2
.

Given a threshold 0 < θ < 1, we define the graph G2

θ , which

includes only pairs s.t. their semantic scores are > θ . However,
simply omitting nodes from G2

directly affects the similarity

scores, thus, may lead to inaccurate scores. We therefore incor-

porate omitted paths by refining the edge weights and possibly

2
In contrast to the meta-path approach [37] that restricts attention only to same-

labels paths.

adding new edges. Intuitively, each omitted path is replaced by

a corresponding edge, whose weight reflects its probability. If

such an edge already exists in G2
, the omitted edge’s weight

is added to the existing edge weight. Moreover, the weight of

omitted path is further weighted by the decay factor c , to ensure

the similarity scores would not be affected. Last, to ensure that

the probability of choosing a neighbor remains the same as in the

original graph G2
, the graph G2

θ includes a new vertex D, that

has only in-neighbors, and serves as a “drain".

Definition 3.4. [G2

θ ] Given a node-pair graph G2
and a thresh-

old 0 < θ < 1, G2

θ = (Vθ ∪ {D},Eθ ,Wθ ), where: Vθ ⊆ V 2
is a set

of nodes and D is a new node, Eθ ⊆ (Vθ ∪ {D} ×Vθ ∪ {D}) is the
edges set andWθ is a weight function, defined as follows.

• Nodes: A node (u,v) ∈ Vθ iff sem(u,v) > θ .
• Edges: An edge e = ((u,u ′), (v,v ′)) ∈ Eθ iff at least one

of the following conditions holds

(1) The nodes (u,u ′), (v,v ′) are adjacent in G2
.

(2) There exists awalk inG2
, wherew = ⟨(u,u ′),w1, . . . ,wk , (v,v

′)⟩

and the node-pairsw1 . . . ,wk < Vθ .
• Weights: The weight of an edge e = ((u,u ′), (v,v ′)) is

defined asWθ (e) =W1(e) +W2(e) where:W1(e) =WG2 (e)
if e ∈ G2

and (u,u ′), (v,v ′) ∈ Vθ and 0 otherwise, and

W2(e) =
∑
w :(u,u′) (v,v ′) P[w] · cl (w )−1

, where

t = ⟨(u,u ′),w1, ...,wk , (v,v
′)⟩ is a path in G2

and the

node-pairsw1, ...,wk < Vθ .
• Edges to D: Edges to the vertex D are added as follows:

∀(u,u ′) ∈ Vθ if the sum of all out-edges of (u,u ′) in the

graphG2

θ is different then the sum of all out-edges of (u,u ′)

in the graph G2
, then ((u,u ′),D) ∈ Eθ andWθ ((u,u

′),D)
is set to be the difference.

In the last point, to ensure that all weights are strictly positive,

we can prove that for every node in G2

θ , the sum of out-edges in

the original graph G2
is always ≥ than the sum of out-edges in

the reduced graph G2

θ . Additional edge pruning can be done by

the removal of all out-edges from singleton nodes. Since only the

first meeting point of the surfers affects similarity scores, such

edges can be omitted without changing scores (proof omitted).

For example, Figures 2b and 2c depict a partial graph G2
and its

reduced version G2

θ (faded nodes are dropped).

The similarity scores over G2

θ , denoted as sθ (·, ·), are defined
as the result of the random surfing computation on the reduced

graph. I.e., if (u,v) < Vθ then sθ (u,v) = 0, else: sθ (u,v) =

sem(u,v)
∑
w :(u,v) (x,x ) P[w] · cl (w )

, where w is a path in G2

θ
and l(w) is its length. We can now provide an alternative way to

compute SemSim scores over the graph G2

θ .

Theorem 3.5. ∀(u,v) ∈ Vθ : sθ (u,v) = sim(u,v)

In conclusion, as we show in our experiments, the size of

the graph G2

θ is considerably smaller than that of G2
and con-

sequently, computing SemSim over G2

θ requires exploring far

less and shorter paths, hence it is more efficient. However, when

considering very large graphs, even this compact representation

might still be excessively large. To that end, in the next section,

we present an alternative approach that simulates two random

surfers directly over G.

4 APPROXIMATED SEMSIM
We next present an alternative approach for an efficient compu-

tation of SemSim, based on a solution originally proposed for



(a) Sample graph G . (b) All paths from (A,B) in G2. (c) All paths from (A,B) in G2

θ .

Figure 2: Example graph G, its reversed graph G2 and its reduced version G2

θ (θ = 0.3, c = 0.8).

SimRank [9]. First, we prove that a naïve solution of simply replac-

ing the underlying uniform distribution with the semantic aware

distribution leads to a quadratic increase in the sample size. To

overcome this, we employ Importance Sampling. As employing it

still entails a computational overhead, we provide a complemen-

tary pruning technique that significantly speeds up computation

while maintaining low error rates. We first recall SimRank op-

timizations while addressing the emerging challenges of their

implementation in SemSim, then present our refined framework.

4.1 SimRank’s Basic MC Framework
Suppose that we have two reverse walks w1 and w2 from the

nodes u,v ∈ V , resp., and they first meet at the τ -th step. I.e.,

the τ -th steps of w1 and w2 are identical, but for any l < τ
their l-th steps are different. If the walks do not meet, then τ →

∞. Given two random walks of length k − 1, w1 = ⟨u1, ...,uk ⟩
and w2 = ⟨v1, ...,vk ⟩, let w denote their coupled random walk,
wherew = ⟨(u1,v1), ..., (uk ,vk )⟩. It has been shown in [13] that

simrank(u,v) = E[cτ ]. The authors of [9] suggested a Monte
Carlo (MC) approximation framework, utilizing this equality,

by sampling separated random walks, and approximating the

similarity score using the average meeting distance. Specifically,

to approximate SimRank, the framework precomputes a set of

reversed random walks from each node in G, s.t (i) each set has

nw walks, and (ii) each walk is truncated at step t . Then the

estimated SimRank score of u and v is defined as:

1

nw

nw∑
l=1

cτl

where τl denotes the step at which the two walks, sampled from

u and v resp., first met, and ∞ otherwise. The space and pre-

processing time complexities of this framework are both O(n ·

nw ·t), and the method takesO(nw ·t) time to answer a single-pair

SimRank query.

An important observation underlying SimRank’s MC frame-

work is the fact that the probability of a coupled random walk

sampled from G2
, can be computed by simply multiplying the

two marginal probabilities of the separate walks, sampled from

G. Formally, given a coupled walkw = ⟨(u1,v1), ..., (uk ,vk )⟩, its
probability is:

Pr [w] =

k−1∏
i=1

1

|O(ui ,vi )|

Considering its probability using the separated walks sampled

from G, we get:
k−1∏
i=1

1

|O(ui )|

k−1∏
i=1

1

|O(vi )|
=

k−1∏
i=1

1

|O(ui )| |O(vi )|
=

k−1∏
i=1

1

|O(ui ,vi )|

That is, in SimRank, one can simply sample walks from each

node separately, directly from G, without materializing G2
. We

will next show that this is not the case for SemSim, and present

a refined sampling method for the SARWs.

4.2 Naïve MC framework for SemSim
Analogously, for SemSim we have: sim(u,v) = sem(u,v) ·EP [c

τ ],

where P is the semantic-aware probability. Note that when using

the semantic-aware probability, one can no longer sample the

walks separately. To account for the semantic similarity during

the sampling process, one must consider a pair of nodes in each

step. A naïve solution would be to generate a set of SARWs

from every node-pair, then directly apply the MC framework.

Namely, we can get an adjusted framework for SemSim with the

same time complexity and error rate as in SimRank (because the

time complexity depends on the number of walks from each pair

of nodes, and this solution has the same number, nw , of walks
from each pair). However, in SimRank, the sampling set is of

size O(nw · t · n), whereas this solution requires a much larger

sampling set, i.e. O(nw · t · n2) walks, as it samples nw walks for

each pair. To avoid this quadratic increase of data storage, we

use importance sampling [10].

4.3 IS-based MC framework for SemSim
The core idea of our solution is to sample separate walks directly

from G, using a different distribution than the “unknown" dis-

tribution P , then, apply importance sampling to estimate the

desired similarity scores [10]. For completeness of this paper, we

provide a short overview on the importance sampling technique,

then present our adjusted framework.

Importance sampling is a general technique for estimating

properties of a distribution while only having samples generated

from a different one. For a single pair u,v ∈ V , we wish to

estimate the expected value of sem(u,v) · cl (w )
, where w is a

coupled random walk drawn from P , i.e.,

EP [sem(u,v) · cl (x )] = sem(u,v) ·
∑

P(w) · cl (w )

Given nw samplesw1, ...,wnw of coupled random walks drawn

from P , an empirical estimate of EP [sem(u,v) · cl (w )] is:

EP [sem(u,v) · cl (w )] ≈ sem(u,v) ·
1

nw

nw∑
i=1

cl (wi )

Using a simple manipulation we get:

EP [c
l (w )] =

∑ P(w) ·Q(w) · cl (w )

Q(w)
≈

1

nw

nw∑
i=1

cl (wi )
P(wi )

Q(wi )

where Q is a distribution s.t ∀w if Q(w) = 0 then P(w) = 0.

Namely, we get an unbiased estimator of the function cl (w )
under

the distribution P , using samples drawn from Q . In our case, we

can only sample separated walks from G (to avoid materializing

G2
), while the desired distribution is defined over walks fromG2

.

Indeed, the expected value of the new estimator is equal to the

desired one, that is, for every node-pair u,v we have:

sem(u,v) · EQ [
P(w) · cl (w )

Q(w)
] = (4)

sem(u,v) · EP [c
l (w )] = sim(u,v)



where w is a coupled random walk from u and v , P is the

semantic-aware distribution and Q is the proposal distribution.

Note that this equality holds for any choice of Q and sem(·, ·).

Let ŝQ (u,v) denote the score obtained using the MC simulation

with a distribution Q . We can prove the following proposition,

that ensures the approximation method has a bounded error (as

was proven for SimRank [9]).

Proposition 4.1. For a node-pairu,v , with at least 1−2e−nw · ϵ2
2·(1+ϵ/3)

probability: |E[ŝQ (u,v)] − ŝQ (u,v)| ≤ ϵ , where nw is the number
of walks from each node and ϵ is the error rate.

However, we note that E[ŝQ (u,v)] , sim(u,v), due to the

truncation imposed on the sampled walks. To address this issue,

following the analysis provided in [39] we get:

|E[sim(u,v)] − ŝQ (u,v)| =

|E[sem(u,v) · cτ ] − sem(u,v) · Pr [τ ≤ t]E[cτ |τ ≤ t]| =

sem(u,v)· |Pr [τ > t]· E[cτ |τ > t]| ≤ sem(u,v) · ct+1 ≤ ct+1

By Prop. 4.1 and the inequality above, using union bound, we

can prove the following.

Proposition 4.2. For any node-pair u,v and 0 < ϵ,δ < 1, if
t > loдc (

ϵ
2
) and nw ≥ 14

3ϵ 2 (loд(
2

δ ) + 2loд(n)), with at least 1 − δ

probability: |ŝQ (u,v) − sim(u,v)| ≤ ϵ

Furthermore, we can prove that the probability of interchang-

ing two nodes in the similarity ranking of a node u converges to

zero exponentially in the number of sampled walks nw .

Proposition 4.3. For every nodes u,v and v ′, such that δ =
sim(u,v) − sim(u,v ′) > 0 we have:

Pr [ŝQ (u,v) < ŝQ (u,v
′)] ≤ 2e

−
nw ·δ 2

2+2 δ
3

Note, however, that the accuracy of estimation depends on the

variance of the estimator, Var (ŝQ (u,v)), which in turn depends

on the distributionQ . In general,Var (ŝQ (·, ·)) is bounded in [0, 1],
since the similarity scores are bounded in [0, 1]. Therefore, we

wish to find a distributionQ s.t. (i) the sampling process and prob-

abilities computation can be done efficiently and (ii)Var (ŝQ (·, ·))
is minimal. Here, since we do not have a-priori knowledge on

either the semantic similarity or the meeting points of coupled

walks, we choose Q to be the uniform distribution. See [27] for a

discussion of other possible choices.

We are now ready to present Algorithm 1, an MC framework

for computing single-pair SemSim scores, assuming, w.l.o.g., that

Q is the uniform distribution. Ignore, for now, the lines high-

lighted in red. At preprocessing, we generate nw random walks

from each node, drawn from Q . Then, when a single-pair query

arrives, sim(u,v), we consider the set of coupled random walks

starting from u and v . For each coupled walk, if the two walks in-

deed meet, the probability of their prefix until the meeting point

is computed according to the distributions P andQ (lines 10−16).

Then, the obtained score is added to the total similarity score

(line 19). Finally, the estimated score is divided by the number of

samples nw (line 20).

Proposition 4.4. For every u,v ∈ V , the expected output of
Algorithm 1 is sim(u,v), and the average time complexity isO(nw ·

d2 · t), where nw is the number of sampled walks from each node,
t is their length and d is the average in-degree in the graph G.

That is, an additional factor of d2 is added to our framework’s

running-time. However, as wewill show next, we can compensate

for this by employing a pruning-based optimization.

Algorithm 1: IS-based MC framework for SemSim.

Input :nw walks of length t from each node, a decay

factor c , and a threshold θ .

1 sim = 0

2 if sem(u, v) ≤ θ then
3 return 0
4 for i = 1,...,nw do
5 Letwi denote the coupled walk of the i-th walks from u and

v
6 Let k be the samllest offset s.t the i-th walk from u and from

v meet

7 if such k exists then
8 Let τ (wi ) denote the prefix of wi up to offset k
9 Denote τ (wi ) = ⟨(u1, v1), ..., (uk , vk )⟩, Pw = 1,

QW = 1, simw = 1.

10 for i = 1, ..., k − 1 do
11 Pw · = sem(ui+1, vi+1) ·W (ui+1, ui ) ·W (vi+1, vi ),

SO = 0

12 for Ij (ui ) in I (ui ) do
13 for Iz (vi ) in I (vi ) do
14 SO+ =W (Ij (ui ), ui ) ·W (Iz (vi ), vi ) ·

sem(Ij (ui ), Iz (vi ))
15 Pw/= SO , QW · = |I (ui ) | · |I (vi ) |
16 simw = simw · Pw

QW
· c

17 if simw ≤ θ then
18 break

19 sim = sim + simw

20 return sem(u,v )·sim
nw

4.4 Pruning
Similarly to the idea presented for G2

, we provide a pruning

technique for the MC framework, avoiding the similarity compu-

tation of low probability walks. Recall that for G2

θ the suggested

technique ensures that scores above a given threshold would not

be effected. Here, the approximation error may increase up to a

controlled threshold. While in G2
it is good pruning-wise to use

high thresholds, here, if we use too high value the error grows

and the scores may become meaningless, thus lower values are

advisable. As opposed to the unbiased estimator we devised in

the previous section, our pruning technique adds a one-sided

additive error to scores. However, as we demonstrate in our ex-

periments, it accelerates the performance significantly, while

successfully distinguishing highly similar pairs from the rest.

For a coupled random walkw , let s(w) denote the contribution

ofw to the similarity score. Since in every estimation we consider

nw coupled walks, it follows that:

s(w) =
1

nw
·
P[w] · c(l (w ))

Q[w]

Instead of computing the exact score of s(w), our idea is to upper

bound it. Concretely, given a coupled walkw = ⟨w1, ..,wk ⟩, with

a closer look on s(w) we get:

s(w) =

k−1∏
i=1

P[wi → wi+1] · c

Q[wi → wi+1]
≤

l∏
i=1

P[wi → wi+1] · c

Q[wi → wi+1]

where 0 < l < k −1. Namely, s(w) can be bounded in each step in

the chain. Therefore, given a threshold θ , we can avoid computing

the exact score, if in a certain step, the obtained score is smaller

than the bound θ , as from this step on the score can only decrease.

Formally, given a threshold θ ∈ [0, 1] and a coupled walkw , we

define ŝ(w) as follows:



Table 2: Datasets.

Dataset Size Tasks
AMiner |V| = 0.35M |E| =3M Entity Resolution

Amazon |V| = 0.6M |E| =6M Link Prediction

Wikipedia |V| = 4.7K |E| =101K Relatedness

WorNet |V| = 82K |E| =128K Relatedness

Definition 4.5 (Approximated coupled walk score). The approxi-
mated score of a coupled walkw is defined as:

ŝ(w) :=

l∏
i=1

P[wi → wi+1] · c

Q[wi → wi+1]
≤ θ

where l is the smallest index this equation holds. If no such l
exists, then ŝ(w) = s(w).

As in the pruning done forG2

θ , we can avoid computing scores

of all pairs u,v s.t. sem(u,v) < θ (and again, obtain an error

bounded by θ ). In such cases, the result score is set to 0.

Consider again Algorithm 1. The highlighted red lines indicate

our pruning refinements. In particular, in lines 2 − 3, similarity

scores of node-pairs with low semantic scores are set to 0, and in

lines 17 − 18 we ensure that scores of coupled walks are above θ ,
and otherwise, are bounded. We can prove that given θ ∈ [0, 1],

the additional additive error is bounded by θ .

Proposition 4.6. Given θ ∈ [0, 1], the additional additive error
of the IS-based MC framework with pruning is bounded by θ .

To ensure the estimated scores lies in [0, 1], we add the follow-

ing constraint on θ .

Lemma 4.7. For every θ ∈ [0, 1 − c] and u,v ∈ V , the ap-
proximated similarity score ŝQ (u,v) obtained by Algorithm 1 with
pruning lies in [0, 1], where c ∈ [0, 1).

This lemma implies that the MC framework with pruning can

efficiently capture big differences among similarity scores. But

when it comes to small differences, the error of approximation

obscures the actual similarity ranking, and an almost arbitrary

reordering is possible. However, for many similarity search appli-

cations it is sufficient to distinguish between very similar, mod-

estly similar, and dissimilar nodes. In terms of run-time, while

the worst-case time complexity remains the same (no pruning is

done), our experiments show pruning to be extremely effective

in practice, yielding running times on par with SimRank.

Concluding, as mentioned in the Introduction, multiple opti-

mizations techniques have been developed for SimRank based

on SimRank’s MC framework. Our framework extends for them

as well. We discuss this in more details in our technical report

[27], providing several examples, and also demonstrate this in

our experimental study.

5 EXPERIMENTAL RESULTS
We complement our work with an experimental study, conducted

to examine the performance of our measure as well as its use-

fulness in capturing objects’ similarity, compared to measures

proposed in previous work.

5.1 Experimental setup
We implemented SemSim in Java 7, and demonstrate its perfor-

mance using Lin as the integrated semantic measure. All experi-

ments were conducted on a Linux machine with 96GB of memory.

We next describe the graph datasets we examined, then detail

the parameters setting.

Datasets. We used several graph datasets, commonly used in

the literature, which suitably include objects possessing both

structural information and semantic meaning, as depicted in

Table 2. Unless stated otherwise, all edge weights were set to 1.

AMiner. This graph was extracted from [1], and contains data

on 1.5M academic papers. We extracted a weighted co-author

graph focused on 30 database conferences. From each paper, we

extracted its authors and relevant terms. In addition, we incor-

porated a domain taxonomy, built by aligning the terms with

concepts from DBpedia [5]. The graph includes edges of three

types: (1) collaboration edges (with weights reflecting the num-

ber of collaborations between two authors); (2) terms-authors

edges (where weights correspond to the prevalence of the term

in a given author’s papers) and (3) taxonomy edges.

Amazon. This dataset was obtained from [18]. It contains

0.5M items from different categories, a domain taxonomy (ob-

tained from Amazon product categorization), and information

about co-purchased items. The edge types are: (1) edges between

co-purchase items (with weights reflecting the number of times

two items were bought together) and (2) taxonomy edges, linking

between products to their categories, as well as categories to their

super-categories.

Wikipedia. This dataset, obtained from [18], contains 4.7K

Wikipedia articles, each is represented by a node. The domain

taxonomy was built from Wikipedia categories. The edge types

are: (1) links between articles and (2) taxonomy edges.

WordNet. This dataset is the noun sub-part of the lexical

base WordNet [26]. The edge types are:(1) part-of relations, the

non-hierarchical relations in WordNet and (2) taxonomy edges.

For both AMiner and Amazon datasets, we extracted a smaller

versions to be used in the execution of the costly iterative forms

of SemSim and SimRank. In AMiner, the small version includes

the top 7K authors by number of publications, and in Amazon it

includes the top 5K most bought items.

Parameter setting. For all datasets, we found the upper bound

on the decay factor c by iterating on all node-pairsu,v computing

Nu,v . We report that in all cases this value was > 0.6, a com-

monly used value for the decay factor in SimRank [24, 39]. Unless

mentioned otherwise, for both SemSim and SimRank we used the

following system parameters: The decay factor (c) was set to 0.6,

and for the probabilistic framework, a set of 150 random walks

of length 15 was sampled from each node. As for the threshold

parameter θ used for pruning, we set θ = 0.05. According to

our experiments, this choice of the parameters allows for fast

execution times, while maintaining negligible error rate.

5.2 Performance Evaluation
We review the performance of SemSim from five aspects: The

convergence rate of its iterative form, the size of the reduced

graph G2

θ compared to the full graph G2
, the performance of

Algorithm 1, in terms of execution times and error rate and the

preprocessing phase.

Convergence. Our experiments validate empirically Prop. 2.4,

showing that SemSim converges as fast as, and even faster than

SimRank. We measured the average relative and absolute dif-

ferences between similarity scores at consecutive iterations, for

both SemSim and SimRank iterative forms, on different datasets.

Results are depicted in Figure 3. Indeed, SemSim converged faster
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Figure 3: Scores differences in consecutive iterations.

Dataset G 2 G 2
θ
, θ = 0.90 G 2

θ
, θ = 0.95

AMiner

# nodes 60M 14K 9K

#edges 2.2B 39M 7.8M

Avg. # of paths

to singletons

17 10 5

Avg. paths’ length 4 3 3

Wikipedia

# nodes 22M 10K 6K

#edges 10.2B 23.5M 4.7M

Avg. # of paths

to singletons

19 10 6

Avg. paths’ length 5 4 3

Table 3: The size of G2 and G2

θ for θ = 0.9 (top ≈ 5K) or
θ = 0.95 (top ≈ 1K).

than SimRank, and in all experiments it converged after 5 itera-

tion, i.e., the average (relative and absolute) difference between

similarity scores was smaller than 10
−
3.

Size of G2

θ . We analyze the effectiveness of the G2
pruning,

demonstrating that when only highly similar objects are of inter-

est (e.g., top-k queries), pruning with high θ values (e.g., 0.9, 0.95)

is highly effective, and reduces the size of G2
significantly. We

refer the reader to Table 3, depicting a detailed comparison be-

tween the reduced graphG2

θ (while setting θ = 0.9 and θ = 0.95),

and the original graph G2
, constructed from the Amazon and

Wikipedia datasets. In addition to the significant reduction in the

number of nodes and edges, one can see that the average length

of a path and the number of paths leading to singleton nodes

(i.e., the number of paths that are considered while computing

SemSim) were greatly reduced as well. However, while the mea-

sured size of G2

θ is smaller than G2
in approximately 3 orders of

magnitude, this approach does not trivially scale for immense

networks, in which the approximated framework is preferable.

Execution Times. We examine the running time of our MC

framework (with and without pruning) as a function of the num-

ber of walks, nw , and the truncation point t , compared to Sim-

Rank MC framework. Figure 4 depicts the average measured

running times on the Amazon dataset (the results obtained over

the other dataset demonstrated similar trends, and thus omitted

from presentation). Not surprisingly, without pruning, the aver-

age time of SemSim is indeed slower than of SimRank: 0.217 ms

and 0.0035 ms for SemSim and SimRank, resp. However, the run-

ning times with pruning are significantly faster, becoming close

to those of SimRank (in average 0.0038 ms, where θ = 0.05).

Additionally, we examined the performance of both measures,

using SLING optimization [39] recently suggested for SimRank

(described in our technical report [27]), while storing probabili-

ties only for node-pairs with semantic similarity scores >= 0.1.

For both measures we achieved a significant improvement in
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Figure 4: Average running times for single-pair
similarity query.

Dataset
SemSim

with pruning
θ = 0.05

SemSim SimRank

AMiner

Pearson’s r

Mean var

Max var

Mean rel. err

Max rel. err

Mean abs. err

Max abs. err

0.89

0.001

0.025

0.405

0.478

0.063

0.080

0.91

0.001

0.027

0.397

0.468

0.019

0.035

0.92

0.0004

0.004

0.274

0.364

0.018

0.029

Amazon

Pearson’s r

Mean var

Max var

Mean rel. err

Max rel. err

Mean abs. err

Max abs. err

0.92

0.001

0.022

0.366

0.428

0.056

0.075

0.93

0.001

0.021

0.320

0.399

0.020

0.027

0.93

0.0005

0.006

0.298

0.389

0.020

0.025

Table 4: Accuracy of approximation.

times - 0.00021 ms and 0.00023 ms for SimRank and SemSim

resp., with a memory consumption induced by the SLING index

of size 1.1GB and 3.2GB, resp.

Approximation Error. We compared SemSim and SimRank ap-

proximated scores to scores computed by their iterative forms, to

asses the cost of incorporating semantics. We then evaluated the

error of approximation in terms of Pearson’s r -correlation (by

comparing approximated scores to the ground truth), variance,

and error size. We report the error of approximation as measured

for the (larger versions of) Amazon and AMiner dataset. In each

experiment, we randomly selected 1K node-pairs, and computed

the approximated similarity scores in 100 runs (rebuilding the

random walks index before each run). The results, provided in

Table 4, depict the Pearson’s r -correlation values (achieved by

comparing the approximated scores to the ground truth ones, ob-

tained by the iterative forms), the (mean and maximal) variance

of the estimators, and the (mean and maximal, relative and ab-

solute) errors, as obtained by SemSim (with or without pruning)

and SimRank.

As expected, SemSim’s mean error is slightly higher than

that of SimRank, yet both are in the same order of magnitude

(0.366, 0.32, 0.298 for SemSimwith pruning, without pruning, and

SimRank, resp.). As discussed in Section 5.2, while the error of

approximation for SemSim (with and without pruning) is slightly

higher than for SimRank, the number of interchanges between

the approximated scores and ground truth ones, as measured by

the Pearson r -correlation3, is significantly low and essentially

equivalent to SimRank’s (with or without pruning). This positive

3
The Pearson r -correlation measures the “strength" of the linear association be-

tween ground truth scores and approximated ones.



result indicates that applying IS does not cause far apart scores

to interchange, while maintaining execution times essentially

on-par with SimRank.

Preprocessing. We complement the running times experiments

by providing details regarding preprocessing time and the space

costs of our framework. The offline processing, in which random

walks are sampled, took approximately 2.5 minutes (in average

over all datasets). While the sampling procedure performed as

in SimRank, SemSim requires an additional work due to the

semantic similarity measure. Following [11], we processed the

taxonomical subpart of the graphs to facilitate constant-time

Lin semantic similarity computations at run time. In all cases,

the processing time took less 10 minutes. For example: In the

Amazon dataset, where the taxonomy contains 2.5M edges, this

phase took approximately 7 minutes.

The memory consumption of SemSim’s MC framework is

prominently due to the random walk index
4
. Additional memory

costs for SemSim were due to the Lin semantic measure: storing

the IC values and the data structure that allows for a constant time

similarity computation (as described in [11]). Overall, the storage

size was varied between 5 − 9MB, for all datasets, depending on

the size of the taxonomical subpart of the particular graph.

5.3 Quality Evaluation
We examine the usefulness of SemSim compared to an exten-

sive set of alternative measures for assessing node similarity,

demonstrating the utility of SemSim when used in typical tasks,

in which a similarity measure is required.

We used the following baselines from three common approaches

for similarity assessment:

I. Structural-based measures: SimRank [13], SimRank++ [2],

a weighted variant of SimRank which ignores semantic infor-

mation, and Panther [43], a random-walks based measure which

considers edge weights as well.

II. Semantic similarity measures: Lin measure [23], as de-

scribed in Section 2.2.

III. Measures combining structural and semantic informa-
tion:. First, we employed LINE [38], an ML, node embedding-

based similarity measure which accounts for latent semantic

relations among the graph nodes. This serves a representative

example for the state-of-the-art approach for assessing node sim-

ilarity. Additionally, we tested PathSim [37], a HIN-dedicated

similarity measure, which considers edge labels, and Related-
ness [25] a semantic-aware measure which considers the prop-

erties’ relating concepts. Last, we employed the Multiplication
and Average competitors, returning the product (resp., average)

of independent structural and semantic scores obtained by Sim-

Rank and Lin. These measures serve as baselines to our approach

that interweaves structure and semantics throughout a recursive

computation.

These baselines were examined in typical tasks in which a sim-

ilarity measure is required: Term Relatedness, a problem requiring

a measure aware of both semantic and structural knowledge,

(tested on Wikipedia and WordNet datasets); Link Prediction, in
which we used the measures to predict co-purchases in Amazon

dataset, and Entity Resolution was tested on AMiner dataset, to

detect duplication of entities. A ground truth was defined for

4
Storage optimization techniques previously developed for SimRank can be directly

applied in our settings as well (e.g. [14, 34]).

Method r (Wiki) p (Wiki) r (WN) p (WN)
Panther 0.323 0.0376 0.206 10

−3

PathSim 0.293 0.0662 0.332 10
−3

Simrank 0.295 0.0641 0.397 10
−4

Simrank++ 0.296 0.0644 0.395 10
−4

Average 0.36 0.0514 0.401 10
−4

Multiplication 0.37 0.0508 0.409 10
−4

Lin 0.485 0.0015 0.449 10
−4

LINE 0.493 0.0001 0.470 10
−4

Relatedness 0.510 0.0007 0.488 10
−4

SemSim 0.585 0.0001 0.501 10
−4

Table 5: Pearson’s r and p-value in the WordsSim-test on
Wikipedia (Wiki) and WordNet (WN).

each task, used to quantitatively evaluate the effectiveness of

each competitor.

Term Relatedness. Relatedness between terms is a well studied

problem that requires a measure aware of both semantic and

structural knowledge. To examine the adequacy of SemSim for

capturing relatedness, we used two datasets that contain relations

between terms: Wikipedia and WordNet. The ground truth was

defined by the WordsSim-353 test [8], a public and commonly

used benchmark containing pairs of words alongside their relat-
edness scores, as computed by people (e.g. “computer-keyboard”

has the score of 0.76). We then compared the scores obtained

by each competitor, using the Pearson correlation measure (a

commonly used measure to evaluate the accuracy result for this

benchmark [25]).We removed pairs of words that weremissing in

the graph from the benchmark, retaining 40 pairs for Wikipedia

and 342 for WordNet. Table 5 depicts the results for all baselines.

We note that other corpus-based designated methods were sug-

gested for this task (e.g., [42]), but they require external sources

besides the input graph, thus we did not include them in our

benchmark. Observe that the structural based measures (e.g.,

SimRank, SimRank++ and Panther) demonstrate inferior results,

as this task greatly relies on the semantic relations among the

concepts. Furthermore, naïve semantic measures such as Lin,

that perform a rather simplistic similarity comparison (i.e., rely

only on the taxonomy “is-a" edges), surpassed both the structural

measures, and the the Average and Multiplication competitors,

yet were outperformed by LINE and the Relatedness measure,

which better combine the structural and semantic aspects, and

consider all edges in the graph. The Relatedness measure, desig-

nated specifically for this task, exceeded the ML-based measure

LINE, yet interestingly, it was surpassed by SemSim.

Link Prediction. We next demonstrate how SemSim may be

used to predict co-purchases in the Amazon dataset. To com-

pare between different baselines, we omitted 7.5K edges between

items from the original dataset, and examined how well the mea-

sures can be used to predict those missing links as follows: Given

an endpoint of a removed link, we performed a top-k search to

find similar nodes to the given endpoint. If, for a given measure,

the returned k nodes include the pair endpoint, we counted a

“hit", and otherwise a “miss". A similar idea was employed to

evaluate similarity search in [43]. The results are depicted in

Figure 5(a). For compactness, we omitted measures with partic-

ularly low scores. As opposed to the Relatedness task, this task
relies mostly on structural knowledge, hence structural-based

measures (e.g., SimRank++, Panther) outperformed the semantic-

based ones (e.g., Lin). Here, LINE was able to outperform most

competitors, yet SemSim managed to obtain a slight advantage,
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due to the additional semantic information it accounts for which

LINE ignores (i.e., the IC values and the taxonomy relations).

Entity Resolution. Last, we used the similarity measures to

identify multiple distinct entries representing the same author

(e.g, Susan B. Davidson and Susan Davidson), or the same term (e.g,

Data structures and Data structure). Using the Levenshtein string

distance, we identified 30 pairs representing the same entry (24

term-pairs and 6 author-pairs), and used the baselines to predict

duplicate nodes following similar lines to the link-prediction task

(i.e., a top-k similarity search). The results are depicted in Fig-

ure 5(b), reporting for each baseline the precision in top k , for
various values of k , (here again, measures with particularly low

were omitted). First, note that the results for all baselines are not

particularly high, since information commonly used for entity

resolution (such asmail addresses, affiliations, string edit distance,

etc.) was not included in the graph. As in the link-prediction task,

the structural based measures outperformed the semantic based

one (omitted from presentation). This stems from the particular

characteristics of the AMiner graph, in which the semantic simi-

larity of all authors nodes is identical (i.e., all authors nodes “is-a”

Author). Hence, the semantic similarity between authors in this

setting is not informative. Here again, the Multiplication/Average

baselines demonstrate inferior results. It should be pointed out

that PathSim outperforms most competitors, as it is a structural

measure that also considers the edge labels, thus accounts for

some semantics. However, SemSim managed to get an advantage,

even if sometimes marginal, for all tested values of k .

In summery, as demonstrated, SemSim outperformed the com-

petitors in all tasks mentioned above. In some tasks the advantage

was marginal compared to the second-best for a specific task, yet

we note that the second-best competitor was different in each

task, illustrating the robustness of SemSim. For the rest of the

baselines, results varied depending on the amount of semantics

conveyed in the dataset, and of the degree to which the task is

semantically complex. To conclude, the experiments indicate that

even in cases where only partial semantics is available, SemSim

serves as a robust measure and exploits this information to get

an edge over the competitors.

6 RELATEDWORK
SimRank is a popular measure and its potency was demonstrated

in various scenarios [2, 6]. Several extensions that enrich it with

more information (e.g. edge weights [2], particular paths [6] or

second order walks [41]) were suggested, but they do not make

full use of semantics available and thus, as illustrated in our

experiments, yield less accurate estimations in semantic-sensitive

tasks. Moreover, the optimization technique used in SimRank++

was build on matrix multiplication rather than random walks,

and consequently, scalability issues were ignored. One of the

contributions of this work is an efficient computation scheme,

applicable also to several of these variants (e.g. [2, 45]).

As mentioned, a prominent body of work has focused on

SimRank approximation techniques. These works are categorized

into (a) matrix-based approaches [19], and (b) randomwalk-based

approaches [14, 39]. A recent survey [44] advocates that the latter

approach is more scalable, compatible with updates in the graph,

and can be trivially parallelized. Therefore, we chose to extend it

in accordance with our setting. As mentioned in Section ??, the
contributions of these works are applicable for SemSim, requiring

only minor adaptations.

In our experiments we use Lin [23], a simple and effective

Information Content (IC)-based semantic measure. However, as

explained in Section 2, any other measure can be incorporated,

given that it satisfies three intuitive constraints. Examples of

other applicable semantic measures include: (i) IC-based mea-

sures [32], (ii) Edge-counting measures, which use the length

of the shortest path between nodes in the estimation of similar-

ity [31], and (iii) Feature-based measures [20, 42]. The former

two regard a domain ontology, while the latter usually involves

additional sources (e.g. textual corpus [20]).

Heterogeneous Information Network (HIN) is a ubiquitous

model for real-world data, as it enables enriching simple graphs

with additional useful information [36]. This, however, makes the

assessment of node similarity challenging, as HIN paths convey

latent semantic information. The majority of existing similarity

measures for general networks do not consider all available infor-

mation in theHIN. Specifically, measures such as [13, 43, 45] focus

solely on the network structure, while measures suggested in

[23, 32] concern only with the semantic information as implied by

hierarchical relations. More recent works propose HIN-dedicated

measures [35, 37], advocate considering only meaningful meta-

paths between objects. But the choice of appropriate paths is

made a-priori, and requires intimate knowledge of the dataset

and the specific information needs
5
[22]. In contrast, SemSim is

a generic measure that encompasses all available information,

and automatically prioritizes meaningful paths.

As opposed to the declarative approach, recent work in the

field of representation learning [4, 30] suggests embedding tech-

niques that discover low-dimensional representations of graph

nodes in a vector space. While this approach often outperforms

5
Otherwise, an average of all paths can be taken, resulting in inferior results.



dedicated similarity measures for HINs (as demonstrated), a key

disadvantage is that the results are hard to explain and interpret.

Moreover, as we showed, SemSim not only retains its declarative

definition but also yields more accurate similarity estimations in

multiple tasks.

Incorporating semantic and structural information when de-

termining relations between graph objects has also been proven

useful in several related domains. Works in ontology matching
and entity resolution suggest using both taxonomy edges and

structural properties of nodes to properly align entities [12, 28].

However, their goal is different, as they aim to identify equiv-

alent representations of the same entity, thus some of the core

techniques employed (e.g., string matching) cannot be directly ap-

plied for measuring similarity between different objects. It would

be interesting to investigate in future work whether SemSim can

be employed in such contexts. An example domain where such

incorporation has been proved successful is similarity estima-

tion for images that convey semantics [7]. This demonstration

paper provides only a brief, high-level description of SemSim

and a usage scenario of it, whereas the present work details the

underlying theoretical foundation and algorithms.

7 CONCLUSION AND FUTUREWORK
In this paper we present SemSim, a similarity measure that refines

SimRank with semantics, while preserving its intuitive defini-

tion and scalable computation. We introduce Semantic-Aware

Random Walks, an extension of the traditional notion of random

walks, that preserves properties necessary for applying existing

SimRank’s optimizations. Our probabilistic framework employs

Importance Sampling along with an effective pruning technique,

and maintains a negligible error rate. Our experiments further

demonstrate the quality and robustness of SemSim in multiple

practical scenarios, as well as the efficiency of our algorithms.

Several interesting directions are left for future research. First,

in practice, information networks are often dynamic and may in-

duce uncertainty, hence it would be important to extend SemSim

to such settings. The use of parallelism and compact indexing

mechanisms [3, 21], to achieve further computation speedup,

are also an interesting direction for future work. Last, we have

focused here only on single-pair queries. We intend on develop-

ing optimizations facilitating single-source and top-k similarity

queries, inspired by [17, 46].
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