
Finite Automata
Question: What is a computer?

real computers too complex for any theory

need manageable mathematical abstraction

idealized models: accurate in some ways, but not
in all details
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Finite Automata – Important ideas

formal definition of finite automata

deterministic vs. non-deterministic finite
automata

regular languages

operations on regular languages

regular expressions

pumping lemma
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Example: An Automatic Door

front
pad

rear
pad

door

open when person approaches

hold open until person clears

don’t open when someone standing behind door
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The Automatic Door as DFA

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

States:

OPEN
CLOSED

Sensor:
FRONT: someone on rear pad
REAR: someone on rear pad
BOTH: someone on both pads
NEITHER no one on either pad.
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The Automatic Door as DFA

DFA is Deterministic Finite Automata

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

neither front rear both
closed closed open closed closed
open closed open open open
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DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1

The machine � :

states: � ���

��� , and ��� .

start state: (arrow from “outside”).

accept state: (double circle).

state transitions: arrows.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6



DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1

The machine � :

states: � ���

��� , and ��� .

start state: � � (arrow from “outside”).

accept state: (double circle).

state transitions: arrows.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6



DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1

The machine � :

states: � ���

��� , and ��� .

start state: � � (arrow from “outside”).

accept state: �� (double circle).

state transitions: arrows.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6



DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1

The machine � :

states: � ���

��� , and ��� .

start state: � � (arrow from “outside”).

accept state: �� (double circle).

state transitions: arrows.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6



DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string

DFA begins in start state
after reading each symbol, DFA makes
state transition with matching label.

After reading last symbol, DFA produces output:
accept if DFA is an accepting state.
reject otherwise.
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Informal Definition - Example

q1

0

q
2 3q

1
1 0

0,1

What happens on input strings

� � � �
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Informal Definition

q1

0

q
2 3q

1
1 0

0,1

This DFA accepts

all input strings that end with a 1

all input strings that contain at least one 1, and
end with an even number of 0’s

no other strings
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Languages and Alphabets

An alphabet is a finite set of letters.

� ���
�

�
�

�
�� � � �

� �

– the English alphabet.

� ��	
� �



� � � � �

� �

– the Greek alphabet.

� � �
�

� �

– the binary alphabet.

� � �
�

�
�� � � �

� �

– the digital alphabet.

The collection of all strings over is denoted by .

For the binary alphabet, , , , ,

are all members of .
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Languages and Examples

A language over is a subset

� �

. For example

Modern English.

Ancient Greek.

All prime numbers, writen using digits.

has at most seventeen 0’s

has an equal number of 0’s and 1’s

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11



Languages and Examples

A language over is a subset

� �

. For example

Modern English.

Ancient Greek.

All prime numbers, writen using digits.

has at most seventeen 0’s

has an equal number of 0’s and 1’s

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11



Languages and Examples

A language over is a subset

� �

. For example

Modern English.

Ancient Greek.

All prime numbers, writen using digits.

has at most seventeen 0’s

has an equal number of 0’s and 1’s

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11



Languages and Examples

A language over is a subset

� �

. For example

Modern English.

Ancient Greek.

All prime numbers, writen using digits.

� � � � � has at most seventeen 0’s

�

has an equal number of 0’s and 1’s

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11



Languages and Examples

A language over is a subset

� �

. For example

Modern English.

Ancient Greek.

All prime numbers, writen using digits.

� � � � � has at most seventeen 0’s

�

� � � � � � �
� � �

has an equal number of 0’s and 1’s

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11



Languages and Examples

A language over is a subset

� �

. For example

Modern English.

Ancient Greek.

All prime numbers, writen using digits.

� � � � � has at most seventeen 0’s

�

� � � � � � �
� � �

� � � � � has an equal number of 0’s and 1’s

�

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11



Languages and DFA

Definition:

� � �

, the language of a DFA , is the
set of strings

�

that accepts,

� � � � �
.

Note that

may accept many strings, but

accepts only one language

What language does accept if it accepts no strings?

A language is called regular if some deterministic finite

automaton accepts it.
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Formal Definitions
A deterministic finite automaton (DFA) is a 5-tuple

�

� �

�
�

��� �

�

, where

is a finite set called the states,

is a finite set called the alphabet,

��� � is the transition function,

�� � is the start state, and

is the set of accept states.
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