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an proess only one job at a time. If job j is ompleted at time j then wede�ne its ow time as fj = j � rj (whih is at least wj).In the mahine sheduling problem there are two major models. The �rstis the ost model, where the goal is to minimize the total (weighted) ow time.The seond is the bene�t model, where eah job has its own deadline, and thegoal is to maximize the bene�t of jobs that meet their deadline. Both modelshave their disadvantages and the performane measurement is often misleading.In the ost model, a small delay in a loaded system keeps interfering with newjobs. Every new job has to wait a short while before the system is free. Theresult is a very large inrease in total ost. This might suggest that the bene�tmodel is favorable. However, it still laks an important property: in many realases, jobs are delayed by some small onstant and should therefore redue theoverall system performane, but only by some small fator. In the standardbene�t model, jobs that are delayed beyond their deadline ease to ontributeto the total bene�t. Thus, the property we are looking for is the possibility ofdelaying jobs without drastially harming the overall system performane.We present a bene�t model where the bene�t is a funtion of its ow time:the longer the proessing of a job takes, the lower its bene�t is. More spei�-ally, eah job j has an arbitrary monotone non-inreasing non-negative bene�tdensity funtion Bj(t) for t � wj , and the bene�t gained is wjBj(fj), where fjis its ow time. Note that the bene�t density funtion may be di�erent for eahjob. The goal of the sheduler is to shedule the jobs so as to maximize thetotal bene�t, i.e., Pj wjBj(fj), where fj is the ow time of job j. Note thatthe bene�t density funtion of di�erent jobs an be unorrelated and the ratiobetween their values an be arbitrarily large. However, we restrit eah Bj(t)to satisfy Bj(t)Bj(t+ wj) � Cfor some �xed onstant C. That is, if we delay a job by its length then we loseonly a onstant fator in its bene�t.An on-line algorithm is measured by its ompetitive ratio, de�ned asmaxI OPT (I)A(I) ;where A(I) denotes the bene�t gained by the on-line algorithm A on input I ,and OPT (I) denotes the bene�t gained by the optimal shedule.As with many other sheduling problems, the uniproessor model presentedabove an be extended to a multiproessor model where instead of just onemahine, we are given m idential mahines. A job an be proessed by atmost one mahine at a time. The only de�nition that needs further explanationis the de�nition of preemption. In the multiproessor model we usually allowthe sheduler to preempt a job and later ontinue running it on a di�erentmahine. That operation, known as migration, an be ostly in many realisti2



multiproessor systems. A desirable property for a multiproessor sheduler isthat it does not use migration, i.e., one a job starts running on a mahine, itontinues running there up to its ompletion. Our multiproessor algorithm hasthat property with no signi�ant degradation in performane.1.2 The results in this paperThe main ontribution of this paper is in de�ning a general bene�t model andproviding a onstant ompetitive algorithm for this model. We begin by de-sribing and analyzing the uniproessor sheduling algorithm. Later, we extendthe result to the multiproessor ase. Our multiproessor algorithm does notuse migration. Nevertheless, there is no suh restrition on the optimal algo-rithm. In other words, the ompetitiveness result is against a possibly migrativeoptimal algorithm.1.3 Previous workThe bene�t model of the real-time sheduling presented above is a well-studiedone. An equivalent way of looking at deadlines is to onsider bene�t densityfuntions of the following `stair' form: the bene�t density for ow times whihare less than or equal to a ertain value, is �xed. Beyond that point, the bene�tdensity is zero. The point of time in whih the ow time of a job passes thatpoint is the job's deadline. Suh bene�t density funtions do not math ourrequirements beause of their sharp derease.As a result of the �rm deadline, the real-time sheduling model is hard toapproximate. The optimal deterministi ompetitive ratio for the uniproessorase is �(�), where � is the ratio between the maximum and minimum bene�tdensities [3, 4, 7℄. For the speial ase where � = 1, there is a 4-ompetitivealgorithm. The optimal randomized ompetitive ratio for the uniproessor aseis O(min(log�; log�)), where � is the ratio between the longest and shortestjob [6℄.For the multiproessor ase, Koren and Shasha [8℄ showed that when thenumber of mahines is very large, a O(log �) ompetitive algorithm is possible.That result is shown to be optimal. Their algorithm ahieves that ompetitiveratio without using migration.Another related problem is the problem of minimizing the total ow time.Reall that in this problem individual bene�ts do not exist and the goal funtionis minimizing the sum (or equivalently, average) of ow times over all jobs.Unlike real-time sheduling, the uniproessor ase is solvable in polynomial timeusing the shortest remaining proessing time �rst rule [2℄. Using this rule,also known as SRPT, the algorithm assigns the jobs with the least remainingproessing time to the available mahines.Minimizing the total ow time with more than one mahine beomes NP �hard [5℄. In [9℄, Leonardi and Raz analyzed the performane of the SRPT algo-3



rithm. They showed that it ahieves a ompetitive ratio of O(log(minf�; nmg))where � is the ratio between the longest and shortest proessing time. Theyalso showed that SRPT is optimal with two lower bounds for on-line algo-rithms, 
(log nm ) and 
(log�). A fundamental property of SRPT is the use ofmigration. In a reent paper [1℄, an algorithm whih ahieves almost the sameompetitive ratio is shown. This algorithm however does not use migration.2 The algorithmThe basi idea of the algorithm is to shedule a job whose urrent bene�t densityis as high as possible. The problem with suh an algorithm is that it maypreempt jobs in order to gain a small improvement in the bene�t density andhene delay a large number of jobs. To overome this problem we shedule anew job only if its bene�t density is signi�antly higher than that of the urrentjob. In addition, we prefer partially proessed jobs to non-proessed jobs ofsimilar bene�t density. The algorithm ombines the above ideas and is formallydesribed below.We begin by de�ning three `storage' loations for jobs. The �rst is the poolwhere new jobs arrive and stay until their proessing begins. One the shedulerdeides a job should begin running, the job is removed from the pool and pushedinto the stak where its proessing begins. Two di�erent possibilities exist atthe end of a job's life yle. The �rst is a job that is ompleted and an bepopped from the stak. The seond is a job that after remaining too long in thestak got thrown into the garbage olletion. The garbage olletion holds jobswhose proessing we prefer to defer. The atual proessing an our when thesystem reahes an idle state. Throwing a job in the garbage olletion meanswe gain nothing from it and we prefer to throw it away in order to make roomfor other jobs.The job at the top of the stak is the job that is urrently running. Theother jobs in the stak are preempted jobs. For eah job j, denote by sj the timeit enters the stak. We de�ne its breakpoint as the time sj+2wj . If a job is stillrunning when it reahes its breakpoint, it is thrown into the garbage olletion.We also de�ne priorities for eah job in the pool and in the stak. The priorityof job j at time t is denoted by dj(t). For t � sj , it is Bj(t + wj � rj) and fortime t > sj , it is d̂j = Bj(sj +wj � rj). In other words, the priority of a job inthe pool is its bene�t density if it would have run to ompletion starting at theurrent time t. One it enters the stak its priority beomes �xed, i.e. remainsthe priority at time sj .We desribe Algorithm ALG1 as an event-driven algorithm. The algorithmtakes ation at time t when a new job is released, when the urrently runningjob is ompleted or when the urrently running job reahes its breakpoint. Ifsome events happen at the same time we handle the ompletion of jobs �rst.� A new job l arrives. If dl(t) > 4d̂k, where k is the job at the top of4



the stak or if the stak is empty, push job l into that stak and run it.Otherwise, just add job l to the pool.� The job at the top of the stak is ompleted or reahes its breakpoint.Then, pop jobs from the top of the stak and insert them into the garbageolletion as long as their breakpoints have been reahed. Unless the stakis empty, let k be the index of the new job at the top of the stak. Continuerunning job k only if dj(t) � 4d̂k for all j in the pool. Otherwise, get thejob from the pool with maximum dj(t), push it into the stak, and run it.� Whenever the mahine is idle (i.e., no jobs in the stak or in the pool) runany unompleted job from the garbage olletion until a new job arrives.We note several fats about this algorithm:Observation 2.1 Every job enters the stak at some point in time. Then, bytime sj + 2wj , it is either ompleted or reahes its breakpoint and gets throwninto the garbage olletion.Observation 2.2 The priority of a job is monotone non-inreasing over time.One the job enters a stak, its priority remains �xed until it is ompleted orthrown away. At any time the priority of eah job in a stak is at least 4 timeshigher than the priority of the job below it.Observation 2.3 Whenever the pool is not empty, the mahine is not idle, thatis, the stak is not empty. Moreover, the priority of jobs in the pool is alwaysat most 4 times higher than the priority of the urrently running job.3 The analysisWe begin by �xing an input sequene and hene the behavior of the optimalalgorithm and the on-line algorithm. We denote by fOPTj the ow time of jobj by the optimal algorithm. As for the on-line algorithm, we only onsider thebene�t of jobs whih were not thrown into the garbage olletion. Denote theset of these jobs by A. So, for j 2 A, let fONj be the ow time of job j by theon-line algorithm. By de�nition,V OPT =Xj wjBj(fOPTj )and V ON �Xj2AwjBj(fONj ) :We also de�ne the pseudo-bene�t of a job j by wj d̂j . That is, eah job donates abene�t of wj d̂j as if it runs to ompletion without interruption from the moment5



it enters the stak. De�ne the pseudo-bene�t of the online algorithm asV PSEUDO =Xj wj d̂j :For 0 � t < wj , we de�ne Bj(t) = Bj(wj). In addition, we partition the setof jobs J into two sets, J1 and J2. The �rst is the set of jobs whih are stillproessed by the optimal sheduler at time sj , when they enter the stak. Theseond is the set of jobs whih have been ompleted by the optimal shedulerbefore they enter the stak.Lemma 3.1 For j 2 J1, Pj2J1 wjBj(fOPTj ) � C � VPSEUDO .Proof: We note the following:wjBj(fOPTj ) � C � wjBj(fOPTj + wj) � C � wjBj(sj � rj + wj) = C � wj d̂jwhere the �rst inequality is by our assumptions on Bj and the seond is by ourde�nition of J1. Summing over jobs in J1, we haveXj2J1 wjBj(fOPTj ) � CXj2J1 wj d̂j � C � VPSEUDO :Lemma 3.2 For j 2 J2, Pj2J2 wjBj(fOPTj ) � 4C � V PSEUDOProof: For eah j 2 J2, we de�ne its `optimal proessing time' as�j = ftjjob j is proessed by OPT at time tg:Xj2J2 wjBj(fOPTj ) = Xj2J2 Zt2�j Bj(fOPTj )dt� Xj2J2 Zt2�j Bj(t� rj)dt� C �Xj2J2 Zt2�j dj(t)dt:Aording to the de�nition of J2, during the proessing of job j 2 J2 by theoptimal algorithm, the on-line algorithm still keeps the job in its pool. ByObservation 2.3 we know that the job's priority is not too high; it is at most 4times the priority of the urrently running job and, spei�ally, at time t 2 �j ,6



its priority is at most 4 times the priority of the job at the top of the stak inthe on-line algorithm. Denote that job by j(t). So,C �Xj2J2 Zt2�j dj(t)dt � 4C �Xj2J2 Zt2�j d̂j(t)dt� 4C � Zt2[�j d̂j(t)dt� 4C � Zt d̂j(t)dt� 4C �Xj2J wj d̂j = 4C � V PSEUDO :Corollary 3.3 V OPT � 5CV PSEUDO.Proof: Combining the two lemmas we get,V OPT = Xj2J1 wjBj(fOPTj ) +Xj2J2 wjBj(fOPTj )� C � VPSEUDO + 4C � V PSEUDO= 5CV PSEUDO :Lemma 3.4 V PSEUDO � 2C � V ONProof: We show a way to divide a bene�t of C � V ON between all the jobs suhthat the ratio between the gain alloated to eah job and its pseudo-gain is atmost 2.We begin by ordering the jobs so that jobs are preempted only by jobsappearing earlier in the order. This is done by looking at the preemption graph:eah node represents a job and the direted edge (j; k) indiates that job jpreempts job k at some time in the on-line algorithm. This graph is aylisine the edge (j; k) exists only if d̂j > d̂k. We use a topologial order of thisgraph in our onstrution. Jobs an only be preempted by jobs appearing earlierin this order.We begin by assigning a bene�t of wj d̂j to any job j in A, the set of jobsnot thrown into the garbage olletion. At the end of the proess the bene�talloated to eah job, not neessarily in A, will be at least 12wj d̂j .Aording to the order de�ned above, we onsider one job at a time. Assumewe arrive at job j. When j 2 A, it already has a bene�t of wj d̂j assigned to it.Otherwise, job j gets thrown into the garbage olletion. This job enters thestak at time sj and leaves it at time sj + 2wj . During that time the sheduler7



atually proesses the job for less than wj time. So, job j is preempted for morethan wj time. For any job k running while job j is preempted, we denote byUk;j the set of times when job j is preempted by job k. Then, we move a bene�tof jUk;j j � d̂j from k to j. Therefore, one we �nish with job j, its alloatedbene�t is at least wj d̂j .How muh bene�t is alloated to eah job j at the end of the proess? Wehave seen that before moving on to the next job, the bene�t alloated to job jis at least wj d̂j (whether or not j 2 A). When job j enters the stak at timesj it preempts several jobs; these jobs appear later in the order. Sine jobs areadded and removed only from the top of the stak, as long as job j is in thestak, the set of jobs preempted by it remains unhanged. Eah job k of thisset gets a bene�t of at most wj d̂k from j. However, sine all of these jobs existtogether with j in the stak at time sj , the sum of their priorities is at most12 d̂j (aording to Observation 2.2). So, after moving all the required bene�t,job j is left with at least 12wj d̂j , as needed.In order to omplete the proof,V PSEUDO = Xj wj d̂j = 2Xj 12wj d̂j� 2Xj2Awj d̂j� 2CXj2AwjBj(sj � rj + 2wj)� 2CXj2AwjBj(fONj )� 2C � V ON :Theorem 3.5 Algorithm ALG1 is 10C2 ompetitive.Proof: By ombining the previous lemmas, we onlude thatV ON � V PSEUDO2C � V OPT10C2 :4 Multiproessor shedulingWe extend Algorithm ALG1 to the multiproessor model. In this model, thealgorithm holds m staks, one for eah mahine, as well as m garbage olle-tions. Jobs not ompleted by their deadline get thrown into the orresponding8



garbage olletion. Their proessing an ontinue later when the mahine is idle.As before, we assume we get no bene�t from these jobs. The multiproessorAlgorithm ALG2 is as follows:� A new job l arrives. If there is a mahine suh that dl(t) > 4d̂k where kis the job at the top of its stak or its stak is empty, push job l into thatstak and run it. Otherwise, just add job l to the pool.� The job at the top of a stak is ompleted or reahes its breakpoint. Then,pop jobs from the top of that stak as long as their breakpoints have beenreahed. Unless the stak is empty, let k be the index of the new job atthe top of the stak. Continue running job k only if dj(t) � 4d̂k for all jin the pool. Otherwise, get the job from the pool with maximum dj(t),push it into that stak, and run it.� Whenever a mahine is idle (i.e., no jobs in its stak or in the pool) runany unompleted job from its garbage olletion until a new job arrives.We de�ne J1 and J2 in exatly the same way as in the uniproessor ase.Lemma 4.1 For j 2 J1, Pj2J1 wjBj(fOPTj ) � C � VPSEUDO .Proof: Sine the proof of Lemma 3.1 used the de�nition of J1 separately foreah job, it remains true in the multiproessor ase as well.The following lemma extends Lemma 3.2 to the multiproessor ase:Lemma 4.2 For j 2 J2, Pj2J2 wjBj(fOPTj ) � 4C � V PSEUDO :Proof: For eah j 2 J2, we de�ne its `optimal proessing time' by mahine i as�j;i = ftjjob j is proessed by OPT on mahine i at time tg:Xj2J2 wjBj(fOPTj ) = Xj2J2 X1�i�m Zt2�j;i Bj(fOPTj )dt� Xj2J2 X1�i�m Zt2�j;i Bj(t� rj)dt� C �Xj2J2 X1�i�m Zt2�j;i dj(t)dt:Aording to the de�nition of J2, during the proessing of job j 2 J2 by theoptimal algorithm, the on-line algorithm still keeps the job in its pool. ByObservation 2.3 we know that the job's priority is not too high; it is at most 4times the priority of the urrently running jobs and, spei�ally, at time t for9
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