
Maximizing Throughput in Multi-Queue Switches

Yossi Azar ∗ Arik Litichevskey †

Abstract

We study a basic problem in Multi-Queue switches. A switch connects m input ports to a
single output port. Each input port is equipped with an incoming FIFO queue with bounded
capacity B. A switch serves its input queues by transmitting packets arriving at these queues,
one packet per time unit. Since the arrival rate can be higher than the transmission rate and
each queue has limited capacity, packet loss may occur as a result of insufficient queue space.
The goal is to maximize the number of transmitted packets. This general scenario models most
current networks (e.g., IP networks) which only support a “best effort” service in which all
packet streams are treated equally. A 2-competitive algorithm for this problem was designed
in [5] for arbitrary B. Recently, a 17

9 ≈ 1.89-competitive algorithm was presented for B > 1 in
[3]. Our main result in this paper shows that for B which is not too small our algorithm can do
better than 1.89, and approach a competitive ratio of e

e−1 ≈ 1.58.

1 Introduction

Overview: Switches are a fundamental part of most networks. Networks use switches to route
packets arriving at input ports to an appropriate output port, so that the packets will reach their
desired destination. Since the arrival rate of packets can be much higher than the transmission
rate, each input port is equipped with an incoming queue with bounded capacity. Considering
that on the one hand, traffic in networks, which has increased steadily during recent years, tends
to fluctuate, and on the other hand, incoming queues have limited space, packet loss is becoming
more of a problem. As a result, over the recent years, considerable research has been carried out
in the design and analysis of various queue management policies.

We model the problem of maximizing switch throughput as follows. A switch has m incoming
FIFO queues and one output port. At each time unit, new packets may arrive at the queues, each
packet belonging to a specific input queue. A packet can only be stored in its input queue if there
is enough space. Since the m queues have bounded capacity, packet loss may occur. All packets
have the same value, i.e. all packets are equally important. At each time unit, the switch can select
a non-empty queue and transmit a packet from the head of that queue. The goal is to maximize
the number of transmitted packets.

This model is worth studying, since the majority of current networks (most notably, IP net-
works) do not yet integrate full QoS capabilities. More specifically, the majority of current net-
works provide a “best effort” service, where packets belonging to different traffic streams are treated
equally within intermediate switches. Traditionally, similar problems were analyzed while assuming

∗azar@tau.ac.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. Research supported
in part by the Israeli Ministry of industry and trade and by the Israel Science Foundation.

†litiche@tau.ac.il. School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.

1

either some constant structure of the sequence of arriving packets, or a specific distribution of the
arrival rates (see e.g. [8, 16]).

Recently, the above switching problem was studied while avoiding any a priori assumption on
the input. In other words, at any point in time, packets arrive at an arbitrary subset of the input
channels. We therefore use competitive analysis to evaluate the performance of online algorithms to
the optimal off-line solution that knows the entire sequence in advance. Specifically, the competitive
ratio of an online algorithm is the supermom, taken over all finite sequences, of the ratio between
the online throughput and optimal throughput on the same input.

In [5] Azar and Richter showed that any deterministic work-conserving algorithm, i.e. transmits
a packet in each unit of time if not all queues are empty, is 2-competitive. They also showed an

e
e−1 -competitive randomized algorithm. Recently, Albers and Schmidt [3] introduced a 17

9 ≈ 1.89-
competitive algorithm for B > 1. In this paper we show that for the case where B is larger than
log m our algorithm approaches a competitive ratio of e

e−1 ≈ 1.58, which is significantly better than
1.89.

Our results:

• Our main contribution is an e
e−1 ≈ 1.58-competitive algorithm for the switch throughput

problem, for any large enough B. Specifically, we show a fractional algorithm for the switch
throughput problem, i.e. one that can insert fractions of packets into each queue if there is
sufficient space and transmit a fraction from each queue of total of at most 1, with compet-
itiveness of e

e−1 . Then we transform our fractional algorithm into a discrete algorithm, i.e.

one that can insert and transmit integral packets, with competitiveness of e
e−1(1 + bHmc+1

B),
where Hm =

∑m
i=1

1
i ≈ lnm is the mth harmonic number.

• We use two tools which are of their own interest :

– We consider the online unweighted fractional matching problem in a bipartite graph. In
this problem we have a bipartite graph G = (R,S,E) where S and R are the disjoint
vertex sets and E is the edge set. At step i, vertex ri ∈ R together with all of its incident
edges, arrives online. The online algorithm can match fractions of ri to various adjacent
vertices sj ∈ S. We prove an upper bound of e

e−1 on the competitive ratio of a natural
online “water level” matching algorithm.

– We present a generic technique to transform any fractional algorithm for the switch
throughput problem into a discrete algorithm. Specifically, we show that given a c-
competitive online fractional algorithm for the switch throughput problem, we can con-
struct an online discrete algorithm with competitiveness of c(1+ bHmc+1

B), for the switch
throughput problem.

Side results:

• We show a lower bound of e
e−1 − Θ(1

m) on the competitive ratio of any online unweighted
fractional matching algorithm in a bipartite graph. Thus, we prove that our “water level”
matching algorithm is optimal, up to an additive smaller than 2 for the size of the matching.
In addition, this lower bound yields a lower bound of e

e−1 −Θ(1
m) on the competitive ratio of

any randomized discrete algorithm for the online unweighted matching problem in a bipartite
graph. Therefore, we slightly improve the asymptotic lower bound of Karp et al. [11] with a
non-asymptotic lower bound.

2

• We consider the online b-matching problem. In the online b-matching problem we have a
bipartite graph G = (R,S,E), where ri ∈ R can be matched to a single adjacent vertex sj ∈ S
such that every sj can be matched up to b times. We introduce a more compact analysis for
the upper bound of the competitive ratio obtained by algorithm Balance for the b-matching
problem that was studied by Kalyanasundaram and Pruhs [10], using a similar technique to
the one which was used in our analysis of the “water level” algorithm.

Our techniques: We start by studying the online fractional unweighted matching problem in a
bipartite graph. We introduce a natural “water level” algorithm and obtain the competitiveness of

e
e−1 . We next construct an online reduction from the fractional switch throughput problem to the
problem of finding a maximum fractional matching in a bipartite graph. Thus, we obtain a e

e−1 -
competitive algorithm, for the fractional switch problem, which emulates the fractional matching
constructed in the bipartite graph. Next, we present a generic technique to transform any fractional
algorithm for the switch throughput problem into a discrete algorithm. Specifically, we present an
algorithm with queues larger than B that maintains a running simulation of the fractional algorithm
in a relaxed fractional model and transmits from the queue with the largest overload with respect
to the simulation. We then transform this algorithm into an algorithm with queues of size B.

Related results for the switch throughput problem with unit value: The online problem
of maximizing switch throughput has been studied extensively during recent years. For the unit
value scheduling, Azar and Richter [5] showed that any deterministic work-conserving algorithm,
i.e. one that transmits a packet in each unit of time if not all queues are empty, is 2-competitive.
In addition they showed a lower bound of 2 − 1

m for the case where B = 1. For arbitrary B they
showed a lower bound of 1.366 − Θ(1

m). They also considered randomized online algorithms and
presented an e

e−1 -competitive randomized algorithm. For B = 1, they showed a lower bound of
1.46 − Θ(1

m) on the performance of every randomized online algorithm. Recently, a 17
9 ≈ 1.89-

competitive deterministic algorithm was presented by Albers and Schmidt [3], for B ≥ 2. For
the case B = 2 they showed that their algorithm is optimal. They also showed that any greedy
algorithm is at least 2 − 1

B -competitive for any B and large enough m. In addition, they showed
a lower bound of e

e−1 on the competitive ratio of any deterministic online algorithm and a lower
bound of 1.4659 on the performance of every randomized online algorithm, for any B and large
enough m. We note that the lower bound obtained by Albers and Schmidt does not apply to
B > log m considered in our paper.

Related results for the switch throughput problem with values: Additional results are
known when packets have values and the goal is to maximize the total value of the transmitted
packets; such a model corresponds to switches supporting QoS. Most of the previous work focused
on a single queue problem, i.e. m = 1. Aiello et al. [2] initiated the study of different queuing
policies for the 2-value non-preemptive model in which the switch has a single queue, preemption
is not allowed and each packet has a value of either 1 or α. Recently, Andelman et al. [4] showed
tight bounds for this case. The preemptive 2-value single-queue model was initially studied by
Kesselman and Mansour [13], followed by Lotker and Patt-Shamir [15] who showed almost tight
bounds. The general preemptive single-queue model, where packets can take arbitrary values,
was investigated by Kesselman et al. [12], who proved that the natural greedy algorithm is 2-
competitive (specifically 2α/(1 + α)-competitive, where α ≥ 1 is the ratio between the largest value
and the smallest one). Azar and Richter [5] presented a general technique which transforms any
admission control c-competitive strategy for a single queue (both preemptive and non-preemptive)
into a 2c-competitive algorithm (preemptive or non-preemptive, respectively) for m queues. Thus,
applying the result of Kesselman et al. [12], they derived a 4-competitive algorithm for the general
preemptive model, and by applying the result of Andelman et al. [4], they derived a (2edlnαe)-

3

competitive algorithm for the general non-preemptive model. Recently, a 3-competitive algorithm
was given for the preemptive case in [6].

Related results for the cost version: Koga [14] and Bar-Noy et al. [7] investigated the online
problem of minimizing the length of the longest queue in a switch. In their model, queues are
unbounded in size, and hence packets are not lost. Koga [14] proved that the natural greedy
algorithm that always empties the longest queue is Θ(log m)-competitive. Bar-Noy et al. [7]
suggested a different algorithm that simulates the greedy algorithm in the continuous model and is
also Θ(log m)-competitive. Chrobak et al. [9] studied the more general problem of minimizing the
length of the longest queue in a continuous model where queues can be emptied subject to conflict
constraints.

Related results for the online unweighted matching problem in a bipartite graph: In
the online unweighted matching problem we have a bipartite graph G = (R,S,E) where S and R
are the disjoint vertex sets and E is the edge set. At step i, vertex ri ∈ R together with all of its
incident edges, arrives online. The online algorithm can match vertex ri ∈ R to an adjacent vertex
si ∈ S, and the goal is to maximize the number of matched vertices. Karp et al. [11] observed
that in the integral unweighted matching problem in a bipartite graph any deterministic algorithm,
which never refuses to match if possible, is 2-competitive and no deterministic algorithm can be
better than 2-competitive. In addition, they introduced a randomized algorithm RANKING with
a competitive ratio of e

e−1 − o(1) and proved a lower bound of e−1
e − o(1), thus obtaining the opti-

mality of RANKING, up to lower order terms. We improve the lower order terms in their lower
bound. The online unweighted matching problem was generalized by Kalyanasundaram and Pruhs
in [10] to the b-matching problem. In this model each vertex ri ∈ R can be matched to a single
adjacent vertex sj ∈ S such that every sj can be matched up to b times. They showed an online

algorithm Balance with competitiveness of (1+ 1
b
)b

(1+ 1
b
)b−1

. They also proved that any deterministic al-

gorithm is at least (1+ 1
b
)b

(1+ 1
b
)b−1

-competitive, thus proving the optimality of Balance .1

Paper structure: Section 2 includes formal definitions and notation. In Section 3 we consider the
online unweighted fractional matching and obtain an upper bound for a natural online algorithm.
We address the fractional version of the switch throughput problem in Section 4 and obtain an
upper bound for this problem. In Section 5 we present our general technique for the discretization
of any fractional algorithm for the switch throughput problem and obtain an upper bound for the
outcome algorithm. Open problems are presented in Section 6.

2 Problem Definition and Notations

We model the switch throughput maximization problem as follows. We are given a switch with m
FIFO input queues, where queue i has size Bi, and one output port. Packets arrive online at the
queues, every packet belonging to a specific input queue. All packets are of equal size and value.
We denote the online finite packet sequence by σ. Initially, all m queues are empty. Each time unit
is divided into two phases: in the arrival phase a set of packets arrives at specific input queues and
may be inserted into the queues if there is sufficient place. Remaining packets must be discarded.
In the transmission phase the switching algorithm may select one of the non-empty queues, if such
exists, and transmit the packet at the head of that queue. The goal is to maximize the number

1In [10] and [11] the authors used, for defining the competitive ratio, the inverse ratio, which is at most 1.
Specifically, they define the competitive ratio as the supremum over all finite sequences σ, of the ratio of the cardinality
of the matching constructed by the online algorithm divided by the max cardinality of σ.

4

of transmitted packets. We consider the non-preemptive model, in which stored packets cannot be
discarded from the queues. We note that in the unit value model the admission control question,
i.e which packet to accept, is simple, since there is no reason to prefer one packet over the other.
Therefore, it is enough to focus on the scheduling problem.

For a given time t, we use the term load of queue i to refer to the number of packets residing
in that queue, at that time. For a given time t, the term space of queue i is used to refer to its
size minus its load, i.e. how many additional packets can be assigned to queue i, at that time.
Given an online switching algorithm A we denote by A(σ) the value of A given the sequence σ. We
denote the optimal (offline) algorithm by OPT , and use similar notation for it. A deterministic
online algorithm A is c-competitive for all maximization problems described in this paper (the
online unweighted fractional matching problem in a bipartite graph, online b-matching problem in
a bipartite graph, and switch throughput maximization problem fractional version as well as discrete
version) iff for every instance of the problem and every packet sequence σ we have: OPT (σ) ≤
c ·A(σ).

We prove our upper bound by assuming that all queues in the switch are of equal size B. We
note that this is done for simplicity of notation only. The algorithms we present remain the same
when queues have different sizes, where in our upper bound, B will be replaced by mini{Bi}.

3 Online Unweighted Fractional Matching in a Bipartite Graph

Our switching algorithm is based on an online fractional matching algorithm. Thus we start by
considering the online unweighted matching problem in a bipartite graph, which is defined as
follows. Consider an online version of the maximum bipartite matching on a graph G = (R,S,E),
where S and R are the disjoint vertex sets and E is the edge set. We refer to set R as the requests
and refer to set S as the servers. The objective is to match a request to a server. At step i, vertex
ri ∈ R together with all of its incident edges, arrives online. The response of A can be either to
reject ri, or to irreversibly match it to an unmatched vertex sj ∈ S adjacent to ri. The goal of the
online algorithm is to maximize the size of the matching.

The fractional version of the online unweighted matching is as follows: Each request ri has a
size xi which is the amount of work needed to service request ri. Algorithm A can match a fraction
of size ki

j ∈ [0, xi] to each vertex sj ∈ S adjacent to ri. If request i is matched partially to some
server j with weight ki

j then
∑m

j=1 ki
j ≤ xi and we have to maintain that the load of each server

j, which is
∑n

i=1 ki
j where n is the length of σ, is at most 1. We use the terms match and assign

interchangeably. The goal of the online algorithm is to maximize the sum of fractions matched.
More formally, the goal is to maximize

∑
i,j ki

j .

Definition 3.1 We use the term load of server j to refer to the sum of fractions that was matched
to a server sj and denote it by lj =

∑n
i=1 ki

j, where n is the length of σ.

Definition 3.2 The size of the fractional matching M , denoted by |M |, is the total sum of the
fractions that were matched, i.e.

∑m
j=1 li.

We show that a natural “water level” algorithm WL for the fractional matching problem is e
e−1 ≈

1.58-competitive, even against a fractional OPT . Intuitively, given a request ri ∈ R, algorithm WL
flattens the load on the minimum loaded servers adjacent to ri.

5

Algorithm WL: For each request ri, match a fraction of size ki
j for each adjacent sj , where

ki
j = (h − lj)+ and h ≤ 1 is the maximum number such that

∑m
j=1 ki

j ≤ xi. By (f)+ we mean
max{f, 0}.

Theorem 3.1 Algorithm WL is e
e−1 ≈ 1.58-competitive.

Proof: We start by defining the following terms:

1. For any given algorithm let v(h) be the total load up to height h, i.e.
∑m

j=1 min{h, lj}.

2. Let LOPT be the size of the fractional matching obtained by OPT .

3. Let SOPT be the set of the requests fractions that were assigned by OPT .

4. For any given algorithm A let Xh ⊆ SOPT be the set of the requests fractions that were
assigned by OPT , and assigned by A above height h.

5. For any given algorithm A let Yh ⊆ SOPT be the set of the requests fractions that were
assigned by OPT , and rejected by algorithm A.

Consider the total load assigned to the servers by WL. We divide the load assigned to the servers
over some height h. Let k be the total size of fractions in Yh ∪ Xh, i.e. the total size of requests
fractions that were assigned by OPT , and assigned by WL above height h or rejected. Clearly,
k ≥ LOPT −v(h). From volume preservation, this load was assigned to at least dke different servers
by OPT . Hence, the size of the load assigned by WL to these k servers is at least h. Since OPT
used these k servers, WL could also have used them, and thus part of the load assigned above
height h could have been assigned below height h. Therefore we get :

dv

dh
≥ LOPT − v(h)

which is the same as
− dv

LOPT − v(h)
≤ −dh.

By integrating both sides

−
∫ h′

0

dv

LOPT − v(h)
≤ −

∫ h′

0
dh

which implies

ln(LOPT − v(h′))− lnLOPT = ln(LOPT − v(h))|h′
0 ≤ −h|h′

0 = −h′.

Hence,
LOPT − v(h′)

LOPT
≤ e−h′

and we get

v(h′) ≥ LOPT (1− e−h′
). (1)

Since LOPT = OPT (σ) and v(1) = WL(σ) we achieve OPT (σ) ≤ e
e−1 ·A(σ).

6

We note that algorithm WL is optimally competitive, up to an additive smaller than 2 for the
size of the matching. The proof is given in Appendix A.

Theorem 3.2 Algorithm WL is eα

eα−1 -competitive in a resource augmentation model, where the
online algorithm can match α times more than the optimum algorithm on a single server.

Proof: The proof follows immediately from the fact that Equation (1) holds in the resource aug-
mentation model.

Remark 1 Our technique can be extended for analyzing the b-matching problem that was studied
in [10]. Specifically, we simplify the proof of the competitiveness of algorithm Balance for the
b-matching problem which was studied by Kalyanasundaram and Pruhs [10]. See Appendix B for
details.

4 The Maximizing Switch Throughput Problem - The Fractional
Version

In this section we consider a fractional model, which is a relaxation of the discrete model which was
presented in Section 2. In the fractional model we allow the online algorithm to transmit fractional
packets as well as to accept fractional packets into the queues. More formally, each time unit t
is divided into two phases: in the arrival phase a set of packets arrives at the queues. Fractions
of packets can be inserted into each queue if there is sufficient space. The remaining fractions of
packets must be discarded. In the transmission phase of time t, the switching algorithm may select
a set of non-empty queues, if such exists, and transmit fractional packets from the head of each
queue s.t. the sum of transmitted fractions is at most 1. We assume that sequence σ consists
of integral packets. However, this restriction is not obligatory for this section. The restriction is
relevant for the transformation of a fractional algorithm for the switch throughput problem into
a discrete scheduling algorithm. We focus on algorithms that accept packets or fractional packets
if sufficient place exists; since all packets have unit values there is no reason to prefer one packet
over another. We refer to such algorithms as greedy admission control algorithms, and therefore
focus on the scheduling problem alone. We show that a fractional algorithm for the scheduling
problem is e

e−1 ≈ 1.58-competitive, even against a fractional adversary. We begin by introducing a
translation of our problem (the fractional model) into the problem of online unweighted fractional
matching in a bipartite graph.2

Given a sequence σ, we translate it into the bipartite graph Gσ = (R,S,E), which is defined as
follows:

• Let T denote the latest time unit in σ in which a packet arrives. We define the set of time
nodes as R = {r1, . . . , rT+mB}. Each ri ∈ R has unit size, i.e. xi = 1 for each 1 ≤ i ≤ T +mB

• Let P be the total number of packets specified in σ. We define the set of packet nodes as
S = {s1, . . . , sP }.

• Let P t
i denote the set of the last B packets that arrive at queue qi until time t (inclusive).

Define P t =
⋃m

i=1 P t
i . We define the set of edges in Gσ as follows: E = {(rt, sp)|p ∈ P t}.

2A similar translation was presented in [5] for integral scheduling.

7

Note that in Gσ, time and packets nodes arrive in an online fashion. Thus the problem is how
to divide the time among the packets, where edges connect each of the time nodes to the packet
nodes which correspond to packets that can be resident in some queue in time t. For consistency
with Section 3 we denote the time nodes by requests and the packet nodes by servers.

Remark 2 We note that in contrast to the matching model that was presented in Section 3, here
the servers as well as the requests arrive online. We emphasize that this does not change the results
obtained in Section 3 since in Gσ the servers which arrive at time t only connect to request rt′≥t

and thus can be viewed as servers which were present but not yet adjacent to requests rt′<t.

Before we proceed we introduce some new definitions.

Definition 4.1 A schedule SC for a sequence of arriving packets σ, for the switch throughput
problem, is a set of triplets of the form (t, qi, k

t
i) for each 1 ≤ i ≤ m, where queue qi is scheduled

for the transmission of a fraction of size kt
i ≥ 0 at time t. The size of the schedule, denoted by

|SC|, is the total amount of fractions scheduled for transmission, i.e.
∑

t,i k
t
i .

Definition 4.2 A schedule SC for a sequence σ is called legal if for every triplet (t, qi, k
t
i), queue

qi has a load of at least kt
i at time t and

∑m
i=1 kt

i ≤ 1.

The following lemmas connect bipartite fractional matching to our problem.

Lemma 4.1 Every legal fractional schedule SC for the sequence σ can be mapped, in an online
fashion, to a fractional matching M in Gσ such that |SC| = |M |.

Proof: Let SC be a legal schedule for σ. We construct the desired matching M incrementally while
moving ahead in time. Given a time t, for each 1 ≤ i ≤ m we have (t, qi, k

t
i) ∈ SC. We match a

fraction of size min{kt
i , 1− lj} from request rt to server sj , where j = min{1 ≤ k ≤ P | sk ∈ P t

i , lk <
1} and lj is the load on server j. If kt

i is not matched completely on sj we match the rest of kt
i to

a new server s′j , where j′ = min{1 ≤ k ≤ P | sk ∈ P t
i , lk < 1}. Note that j′ 6= j since lj = 1. Simple

induction proves that for each time t and queue qi the sum of unmatched fractions of servers in P t
i

is equal to the total load of queue qi at time t according to SC. Hence, every fraction transmitted
can be mapped to a fraction matched in M . Clearly, by the construction, |SC| = |M |.

Lemma 4.2 Every matching M in Gσ can be translated, in an online fashion in polynomial time,
to a legal schedule SC for σ such that |SC| = |M |, while performing greedy admission control.

Proof: Let M be a matching in Gσ. We construct a legal schedule SC for σ incrementally, while
going over the requests in R, starting from r1. Let request rt be fractionally matched in M to
subset St of servers belonging to P t. We define a set I = {i|P t

i ∩ St 6= φ}. For each i ∈ I we define
kt

i to be the total sum of fractions matched from request rt to sj ∈ P t
i , and for each 1 ≤ i ≤ m such

that i /∈ I we define kt
i = 0. We add the triplets (t, qi, k

t
i) to the schedule SC. Simple induction

shows that for every i and t, the total load of servers in P t
i is at most the load of queue i at

time t according to SC. Therefore, we can always translate matched fractions in M to a fraction
transmission in SC, and our obtained schedule is legal. Clearly, this translation takes polynomial
time and, by the construction, |SC| = |M |.

8

The following corollaries directly result from Lemmas 4.1 and 4.2.

Corollary 4.3 For any sequence σ, an optimal fractional schedule can be found (offline) in poly-
nomial time.

Corollary 4.4 For any sequence σ, the size of the optimal fractional schedule for σ is equal to the
size of a maximum fractional matching in Gσ.

Remark 3 Actually, maximum fractional matching is equal to integral maximum matching, since
matching corresponds to a totally unimodular matrix.

Now, we present a fractional scheduling algorithm EP for maximizing switch throughput in the
relaxed model. Since the bipartite unweighted fractional matching problem is connected to the
maximizing switch throughput problem, algorithm EP intuitively bases its scheduling decisions
on the matching constructed by algorithm WL, which was presented in Section 3, in the online
constructed graph Gσ.

Algorithm EP :

• Maintain a running simulation of WL in the online constructed graph Gσ.

• Admission control: perform greedy admission control.

• Scheduling: transmit the total size of the fractions that were matched from rt to servers in
P t

i from the head of queue i.

Remark 4 We note that algorithm EP actually constructs a legal schedule for σ incrementally as
shown by Lemma 4.2.

Theorem 4.5 For every sequence σ, OPT (σ) ≤ e
e−1EP (σ).

Proof: The theorem follows immediately from Corollary 4.4, Remark 4 and Theorem 3.1.

5 The Maximizing Switch Throughput Problem

In this section we consider the maximizing switch throughput problem. Given a sequence σ which
consists of integral packets, we present a generic technique to transform any c-competitive online
fractional algorithm for the switch throughput problem into a discrete algorithm with a competitive
ratio of c(1 + bHmc+1

B), where Hm =
∑m

i=1
1
i ≈ lnm is the mth harmonic number. In particular, we

take the fractional scheduling algorithm EP , which was presented in Section 4, with a competitive
ratio of e

e−1 and transform it into an online discrete scheduling algorithm with a competitive ratio of
e

e−1(1 + bHmc+1
B). Thus, the competitive ratio of the discrete algorithm asymptotically approaches

e
e−1 ≈ 1.58 for large size queues B. We start by defining the cost scheduling problem in the next
subsection.

9

5.1 The cost scheduling problem

In this subsection we introduce a general technique for the discretization of the scheduling of any
fractional algorithm A, for the cost version. We will use this technique later for the discretization
of the scheduling of any fractional algorithm A, for the throughput problem. Specifically, we will
use this technique for the discretization of algorithm EP , which was presented in Section 4.

Consider the switch throughput problem, but assume that queues are unbounded. Hence all
packets are accepted into a queue. Evidently, the maximum throughput problem is degenerate in
this scenario, since no packet loss may occur. In this case, one can consider the minimization of
the maximum queue size. More formally, we are given a switch with m FIFO queues, where queues
have unbounded size, and one output port. Packets arrive online; each packet is destined for one
of the queues. Initially, all m queues are empty. We denote the online finite packet sequence by
σ. Each time unit is divided into two phases: in the arrival phase a set of packets arrives at the
queues. Packets must be inserted by the switching algorithm into each queue. In the transmission
phase, the switching algorithm may select one of the non-empty queues, if it exists, and transmit
the packet at the head of that queue. We define the cost of the online algorithm A given a finite
sequence of packets σ, as the maximum length of a queue taken over all queues and times. The
goal is to minimize the maximum cost, i.e. minimize the maximum queue size over time.

We now turn to consider a relaxation of the model and allow an online algorithm to transmit
fractional packets waiting at the head of different non-empty queues, if they exist, provided that
the total size of the transmitted fractions in one unit of time does not exceed 1. We denote by A
the online fractional algorithm. We now introduce a general technique for the discretization of the
scheduling of algorithm A given a finite sequence of integral packets σ while adding an additive
factor of at most Hm to the cost of A. We start with the following definition and lemmas.

Definition 5.1 An online fractional algorithm A is work-conserving if in each unit of time it
transmits a total size of 1 if it exists, and transmits the total load if not.

Observation 5.1 Clearly, given a finite sequence of integral packets σ, any online work-conserving
algorithm will transmit a total size of 1 in each unit of time if not all queues are empty.

Lemma 5.1 Every algorithm A can be transformed into a work-conserving algorithm A′ while
not worsening the performance of any sequence (in particular, cA′ ≤ cA, where cA′, cA are the
competitive ratios of A′ and A, respectively).

Proof: Consider the following transformation of algorithm A into A′.

Algorithm A′: Maintain a running simulation of algorithm A. At each time unit t for each queue
1 ≤ i ≤ m transmit a fraction of size kt

i as A if possible. If the total size of the fractions transmitted
by A′, at time unit t, is smaller than 1, i.e.

∑m
i=1 kt

i < 1, choose some subset of queues with a total
load of at least k = 1−

∑m
i=1 kt

i and transmit total size of k in some arbitrary fashion.

By a simple induction on time, it is straightforward to prove the following claim:

Claim 5.2 Given a time unit t for each 1 ≤ i ≤ m, let lAi and lA
′

i be the loads of queue i as seen
by algorithms A and A′ at that time, respectively. Then for each time unit t, lAi ≥ lA

′
i .

The proof of Lemma 5.1 follows directly from Claim 5.2

10

Henceforth we will deal exclusively with work-conserving algorithms, even when we neglect to say
so explicitly. Now, we define algorithm M which gets an algorithm A as a parameter and denote
it by MA. At each time unit, in order to decide which queue to serve, MA computes the load
seen by A and uses this information to make its decision. Given a time unit t, let lAi and li be the
simulated load of A and the actual load of MA on queue i at that time, respectively. The residual
load of queue i at time unit t is defined as lres

i = li − lAi . Intuitively, algorithm MA transmits at
each time unit from a queue with maximum residual load. Before we present the exact definition
of algorithm MA we define the following:

Definition 5.2 The mid-state of each time unit is the state of the queues after algorithm A trans-
mits its fractional packets from some queues, and just before algorithm MA transmits its packet
from some queue.

Algorithm MA: Maintain a running simulation of algorithm A. At each time unit transmit a
packet from a queue which has the maximum residual load at the mid-state (breaking ties arbitrar-
ily), unless all queues are empty.

Theorem 5.3 The cost of MA is at most the cost of A plus Hm.

Before we prove Theorem 5.3 we start with some definitions, observations and lemmas.

Observation 5.2 After the arrival phase as well as after the transmission phase,∑m
i=1 lres

i = 0.

Proof: The proof follows immediately from the fact that σ consists of integral packets, and thus
both simulation A and algorithm MA transmit the same total volume and receive the same amount
of packets.

Lemma 5.4 At the beginning of each time unit, lres
i > −1 for each queue.

Proof: The proof is by induction on time t. For t = 0 the claim is trivial. Suppose the claim is true
for t − 1 and consider t. From Observation 5.2 after the arrival phase,

∑m
i=1 lres

i = 0. Since A is
work-conserving, from Observation 5.1 at the mid-state

∑m
i=1 lres

i = 1. Thus, there is a queue with
a positive residual load. Hence, MA will transmit from some queue with positive residual load.
The fact that the residual load may decrease by at most 1 for each queue, implies that lres

i > −1
for each queue.

Corollary 5.5 At the mid-state there is always a queue with a positive residual load, provided that
not all queues are empty.

Remark 5 Note that we actually proved Lemma 5.4 for any algorithm which transmits packets
from any queue with a positive residual load. From Corollary 5.5 such a queue always exists, unless
all queues are empty.

We first show a weaker bound of Theorem 5.3.

Lemma 5.6 The cost of MA is at most the cost of A plus m− 1.

11

Proof: Let t denote the time unit by which the maximum additive factor is achieved. Let j be the
queue which is maximizing li − lAi . Consider the arrival phase of t. As noted by Observation 5.2

0 = lj − lAj +
∑
i6=j

(li − lAi).

Since by Lemma 5.4, lres
i > −1, we conclude that lj − lAj ≤ m− 1.

We now want to tighten the bound on the cost of MA and prove Theorem 5.3. This is done by
using a theorem for the leaky-bucket problem which turns out to be the complement of our cost
problem. We address the leaky-bucket problem as presented in [1]. The setting is a collection of
m unbounded buckets initially filled with the same amount of material. By unbounded we mean
that there is neither a finite bottom nor a finite end. During each time unit, an amount ki ∈ R
of material leaks from bucket i. The total volume leaking at each time unit is p. This amount of
material is replaced by adding p refills of unit size into the buckets. More formally, let B1, B2 . . . Bm

be a set of m buckets, having associated variables L1, L2 . . . Lm, where Li ∈ R denotes the amount
of material held in Bi. Initially all Li = Z. At each time unit an amount of ki ≥ 0 is reduced from
Li. The total amount of depletion is p, i.e.

∑n
i=1 ki = p. The online algorithm can try to restore

the amount of material of the buckets by adding p refills of size 1. From now on we consider the
case p = 1.

In [1] Adler et al. have considered the natural scheduler S0 which refills the emptiest bucket.

Scheduler S0: Fill the emptiest bucket with an amount of 1.

We now present some of the results as presented in [1] for the case where p = 1.

Theorem 5.7 Scheduler S0 achieves an upper bound of Z +1 on the maximum load of any bucket
and an outcome of at least Z −Hm, against every adversary.

We next want to relate the problem of the leaky bucket to the cost scheduling minimization
problem. To do so, we define the term negative-residual load. The negative-residual load of queue
i is defined as Nlres

i = −lres
i . Clearly, unless all queues are empty, algorithm MA transmits a

packet from the queue with the minimum negative residual load at the mid-state (breaking ties
arbitrarily). We now return to the proof of Theorem 5.3.

Proof: We show a translation of our problem to the leaky-bucket problem. We put Z = 0 and
allow bucket loads to become negative. We note that in [1] Adler et al. considered the case Z = 0
in the proof of the lower and upper bound. When algorithm A transmits a fraction of size ki from
queue i, the negative residual load decreases, and we interpret this as a depletion of ki. When MA

transmits a packet from queue j, the residual load increases, and we interpret this as filling bucket
j with one unit size. Note that the arrival of packets do not change the residual load, since both A
and MA accept the same load, as σ consists of integral packets. Thus, if we restrict our attention
to the negative residual loads, clearly algorithm MA acts on them exactly as scheduler S0. From
Theorem 5.7, scheduler S0 achieves an outcome of at least Z −Hm against every adversary. Thus,
the negative residual load is at least −Hm. Since Nlres = −lres, the residual load of MA is at most
Hm.

Remark 6 An alternative proof of a slightly weaker bound of blog2 mc plus the cost of A can be
obtained using [7]. Specifically, Bar-Noy et al. [7] showed that for a fractional version of algorithm
Longest Queue First(LQF), denoted by ContinuousLQF , the cost of MContinuousLQF is at most
the cost of ContinuousLQF plus blog2 mc. A close examination of their proof indicates that the
proof holds for every work-conserving algorithm.

12

5.2 Discretization of the fractional scheduling

Given a finite sequence of integral packets σ we present a general technique to transform any c-
competitive fractional algorithm for the switch throughput problem into a discrete algorithm with a
competitive ratio of c(1+ bHmc+1

B). In particular, we will apply this technique for the discretization
of algorithm EP , which was presented in Section 4. It can easily be shown that any algorithm A can
be transformed into a greedy admission control algorithm A′ while not worsening the performance
of any sequence (in particular, cA′ ≤ cA , where cA′ , cA are the competitive ratios of A′ and A,
respectively); we focus on greedy admission control algorithms.

For our discretization process we rely on the results of the cost problem, which were presented in
Subsection 5.1. We want to address the packets which were accepted by EP as the input sequence
σ for the cost problem studied in Subsection 5.1, in a manner which is yet to be seen. Recall that
algorithm EP is a greedy admission control algorithm. Thus, EP might accept a fractional packets
due to insufficient queue space. Since in the model of the cost problem we study the case where
σ consists of integral packets we want EP to only accept packets integrally. Hence, we continue
by considering the following problem: assume we are given an online c-competitive algorithm A
with greedy admission control. We want to produce a competitive algorithm Â which assigns only
integral packets. We start by assuming that algorithm Â has queues of size B + 1 (algorithm A
maintains queues of size B); we shall get rid of this assumption later on. Intuitively, Â emulates the
scheduling of A and accepts only integral packets. We start with a definition and an observation
before we define algorithm Â formally.

Definition 5.3 We denote algorithms that accept integral packets if there is sufficient space, as
discrete greedy admission control algorithms.

Observation 5.3 Every greedy admission control algorithm assigns fractions on a queue only when
the load on that queue is strictly above B − 1.

We now define the transformation of a given greedy admission control algorithm A with queues
of size B into algorithm Â with queues of size B + 1 which only accepts integral packets.

Algorithm Â:

• Maintain a running simulation of A. Let kt
i be the fraction size which was transmitted by

algorithm A at time t from queue i.

• Admission control: Perform discrete greedy admission control.

• Scheduling: For each queue i transmit a fraction of size kt
i .

Let lti and l̂ti be the loads of queue i in a given time unit t in A and Â, respectively. For the
algorithm to be well defined, i.e. l̂ti ≥ kt

i after the arrival phase, we must prove the next lemma.

Lemma 5.8 For each queue i and time unit t, after the arrival phase l̂ti ≥ lti.

Proof: The proof is by induction on time unit t for each queue i. For t = 0 the claim is trivial.
Suppose the claim is true for t, and consider t + 1. We consider the two phases of t. At the
arrival phase of t no transmission occurs and packets may arrive. Therefore, we consider any
integral packet or fractional packet p arriving in time t at some queue i. If p is an integral packet

13

which A accepts, if Â does not accept p then l̂ti > B ≥ lti (since Â is a discrete greedy admission
control algorithm). If p is a fractional packet which A accepts, if Â does not accept the integral
packet which the fraction belongs to, we obtain that l̂ti > B = lti (where the equality derives from
Observation 5.3). If both algorithms accept p (if p is a fractional packet Â may accept the integral
packet which the fraction belongs to) then l̂ti ≥ lti by the induction hypothesis. Since in any case,
after the arrival phase l̂ti ≥ lti both algorithms transmit kt

i , and the inequality holds.

Corollary 5.9 Algorithm Â can always transmit kt
i as defined.

Theorem 5.10 For a given algorithm A with queues of size B, algorithm Â with queues of size
B + 1 has the same throughput given the same sequence σ.

Proof: From Corollary 5.9, at each time unit t, Â transmits the same total size as algorithm A.

Recall that EP is not a work-conserving algorithm. Therefore ÊP which emulates the schedul-
ing of EP is also not a work-conserving algorithm. Since we want to use some of the results from
the cost problem in Subsection 5.1, we first need to transform algorithm ÊP into a work-conserving
algorithm ˆEP ′. We use the transformation presented by Lemma 5.1 in Subsection 5.1.

Lemma 5.11 Every non work-conserving algorithm A can be transformed into a work-conserving
algorithm A′ which accepts only packets which are accepted by A, while not worsening the perfor-
mance of any sequence (in particular, cA′ ≤ cA , where cA′, cA are the competitive ratios of A′ and
A, respectively).

Proof: Clearly, Claim 5.2 which states that lAi ≥ lA
′

i , can easily be modified for the maximizing
switch throughput problem when A′ accepts only packets which are accepted by A. Thus it is not
possible for algorithm A′ to reject some packet p which was accepted by A on some queue i.

Corollary 5.12 Algorithm ÊP can be transformed into ˆEP ′ which is a work-conserving algorithm,
and maintain its competitiveness.

Now, we consider Algorithm M which was presented in Section 5.1. We assume that M has
queues of size B + 1 + bHmc. Recall that the precondition of M was that the parameter algorithm
is work-conserving. Hence, we apply algorithm M on algorithm ˆEP ′ and denote the resulting
algorithm as M

ˆEP ′ . The sequence of packets which is given to M
ˆEP ′ will consist solely of the

packets which were accepted by ˆEP ′. Note that this is a sequence which consists exclusively of
integral packets. We emphasize that M

ˆEP ′ is a discrete algorithm, since it only transmits integral
packets. We now present the following lemma:

Lemma 5.13 Algorithm M
ˆEP ′ with queues of size B + 1 + bHmc has the same throughput as

algorithm ˆEP ′ with queues of size B + 1, given the same sequence σ.

Proof: Consider the sequence of packets which was accepted by ˆEP ′ as a sequence for the cost
scheduling problem. In addition, recall that ˆEP ′ is a work-conserving algorithm. Since the sequence
of packets which is given to M

ˆEP ′ consists solely of the packets which were accepted by ˆEP ′, from
Theorem 5.3, it follows that if the queues were of size B + Hm + 1 no packet loss may occur for
M

ˆEP ′ . Since M
ˆEP ′ transmits only integral packets and assigns only integral packets, queues of size

B + bHmc+ 1 for M
ˆEP ′ will suffice.

14

We now return to our original model where queues are of size B. By Lemma 5.13, if M
ˆEP ′

had queues of size B + bHmc+ 1, then algorithms M
ˆEP ′ and algorithm ˆEP ′ would have had equal

throughput. Unfortunately, this is not the case, so we continue by emulating an algorithm with large
queues with an algorithm of small queues. Specifically, assume we are given an online competitive
discrete algorithm A with queues of size y and we want to produce a competitive algorithm EA

with queues y′ < y. Intuitively, EA tries to emulate the schedule of algorithm A and accept only
packets which A accepts as long as the queue is not full. We emphasize that if algorithm A was
a fractional algorithm this problem could easily be solved by scaling the accepted volume and the
transmitted volume of A by y′/y. Thus we continue by considering only discrete algorithms.

Algorithm EA:

• Maintain a running simulation of algorithm A.

• Admission control: accept a packet if A accepts it and the queue is not full.

• Scheduling: transmit packets as A if the queue is not empty.

We show that the competitiveness of EA is the competitive ratio of A times the ratio y/y′ > 1.
We start with the following remarks, definitions and lemmas.

Remark 7 Let OPT and OPT ′ be the offline optimal algorithm with large queues and small
queues, respectively. Note that the competitiveness of algorithm A is against OPT with large
queues. Clearly, for each input sequence σ, OPT (σ) ≥ OPT ′(σ). Thus, EA-competitiveness is
even against OPT .

Definition 5.4 We define the term non-empty period for a queue i as the maximum number of
consequent units of time for which queue i is not empty. If a non-empty period for a queue i consists
of time units t up to t′, then the non-empty period starts at the arrival phase of time unit t and
ends after the transmission phase of unit unit t′.

Remark 8 For each queue i, time is partitioned into disjoint non-empty periods and periods where
queue i is empty.

Lemma 5.14 Let algorithm A maintain queues of size y and let EA maintain queues of size y′

such that y′ < y. Let X be the number of packets which are accepted by A during a non-empty
period for queue i of algorithm EA. For each non-empty period for queue i of algorithm EA, EA

rejects at most min{(X − y′)+, y − y′}, where (f)+ is max{0, f}.

Proof: We consider some queue i. For every non-empty period of EA where X < y the claim
is easy, and follows from the fact that at least y′ packets can be accepted sequentially, since the
load on queue i at the beginning of every non-empty period is equal to 0. Assume that X > y
and assume by contradiction that EA rejected more than y − y′ packets (this is the minimum).
Consider the first packet p among those packets. When p is rejected by queue i, queue i holds
exactly y′ packets. Observe that algorithm EA imitates the schedule of A, and that queue i is not
empty during a non-empty period of queue i. Hence, during this non-empty period EA transmits
the same number of packets as algorithm A does. Therefore, from volume preservation, when p
arrives the load of queue i in the scenario of algorithm A is at least y′ + y− y′ = y. Thus, A cannot
accept packet p, which contradicts our assumption.

15

Theorem 5.15 Let A maintain queues of size y and let EA maintain queues of size y′ such that
y′ < y. Then A(σ) ≤ y

y′E
A(σ).

Proof: The proof follows immediately from Lemma 5.14, by summing up the number of packets
accepted in all of the non-empty periods for each queue i of EA (all accepted packets will eventually
be transmitted). We emphasize that when we are not in a non-empty period no packets arrive.

We prove the main result of this paper with the next theorem.

Theorem 5.16 Algorithm EM
ˆEP ′

for the maximizing switch throughput problem is
e

e−1(1 + bHmc+1
B)-competitive.

Proof: Let AX denote an online algorithm A which works on queues of size X, where X ≥ 0. Then:

OPTB(σ) ≤ e

e− 1
EPB(σ)

≤ e

e− 1
ÊPB+1(σ)

≤ e

e− 1
ˆEP ′

B+1(σ)

≤ e

e− 1
M

ˆEP ′
B+1+bHmc(σ)

≤ e

e− 1
(1 +

bHmc+ 1
B

)EM
ˆEP ′

B

where the first inequality is obtained from Theorem 4.5, the second from Theorem 5.10, the third
from Lemma 5.11, the fourth from Lemma 5.13, and the last inequality from Theorem 5.15. Note
that EM

ˆEP ′

B is a discrete algorithm.

Corollary 5.17 For B � Hm the competitive ratio of EM
ˆEP ′

approaches e
e−1 ≈ 1.58.

6 Discussion and open problems

• Albers and Schmidt [3] show a lower bound of e
e−1 , for m � B. They also show an algorithm

with competitiveness 17
9 ≈ 1.89 for every B > 1. Our main result in this paper shows that

for the case were B > log m our algorithm can do much better than 1.89. Our algorithm
approaches a competitive ratio of e

e−1 , which interestingly is the lower bound for m � B.
Azar and Richter [5] show a lower bound of 1.366−Θ(1

m) for any B and m, which is smaller
than the lower bound of e

e−1 . Therefore, there is still work to be done to determine the
optimal competitive ratio for arbitrary B and m.

• It is an interesting question whether greedy algorithms such as LQF (transmit from the
longest queue first) has a competitive ratio smaller than 2, for B � m. For m � B this is
not true as is seen in [3].

• For B � log m our general technique shows that the competitive ratio of the discrete version
algorithm approaches the performance of a fractional algorithm. Hence, it is interesting to
determine the best fractional algorithm for large sized queues.

16

References

[1] M. Adler, P. Berenbrink, T. Friedetzky, L. Goldberg, and M. Paterson. A proportionate fair
scheduling rule with good worst-case performance. In Proceedings of the 15th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 101–108, 2003.

[2] W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue policies for
differentiated services. In Proceedings of the IEEE INFOCOM ’2000, pages 431–440, 2000.

[3] S. Albers and M. Schmidt. On the performance of greedy algorithms in packet buffering. In
Proc. 36th ACM Symp. on Theory of Computing, 2004.

[4] N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS switches. In
Proc. 13rd ACM-SIAM Symp. on Discrete Algorithms, pages 761–770, 2003.

[5] Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. In Proc. 35th
ACM Symp. on Theory of Computing, pages 82–89, 2003.

[6] Y. Azar and Y. Richter. The zero-one principle for switching networks. In Proc. 36th ACM
Symp. on Theory of Computing, 2004.

[7] A. Bar-Noy, A. Freund, S. Landa, and J. Naor. Competitive on-line switching policies. In
Proc. 13rd ACM-SIAM Symp. on Discrete Algorithms, pages 525–534, 2002.

[8] A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal service policy
for buffer systems. Journal of the Association Computing Machinery (JACM), 42(3):641–657,
1995.

[9] M. Chrobak, J. Csirik, C. Imreh, J. Noga, J. Sgall, and G. J. Woeginger. The buffer min-
imization problem for multiprocessor scheduling with conflicts. In Proc. 28th International
Colloquium on Automata, Languages, and Programming, pages 862–874, 2001.

[10] B. Kalyanasundaram and K. R. Pruhs. An optimal deterministic algorithm for online b-
matching. Theoretical Computer Science, 233:319–325, 2000.

[11] R. Karp, U. Vazirani, and V. Vazirani. An optimal algorithm for on-line bipartite matching. In
Proceedings of 22nd Annual ACM Symposium on Theory of Computing, pages 352–358, may
1990.

[12] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer
overflow management in QoS switches. In Proc. 33rd ACM Symp. on Theory of Computing,
pages 520–529, 2001.

[13] A. Kesselman and Y. Mansour. Loss-bounded analysis for differentiated services. In Proc.
12nd ACM-SIAM Symp. on Discrete Algorithms, pages 591–600, 2001.

[14] H. Koga. Balanced scheduling toward loss-free packet queuing and delay fairness. In Proc.
12th Annual International Symposium on Algorithms and Computation, pages 61–73, 2001.

[15] Z. Lotker and B. Patt-Shamir. Nearly optimal fifo buffer management for diffserv. In Proc.
21st ACM Symp. on Principles of Distrib. Computing, pages 134–143, 2002.

[16] M. May, J. C. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differentiated
services for the internet. In Proceedings of the IEEE INFOCOM ’1999, pages 1385–1394, 1999.

17

A Appendix A

Lower bound for the fractional version of the online unweighted matching. In this
appendix we show that the matching algorithm WL, which was presented in Section 3, has an
optimal competitive ratio of up to an additive smaller than 2 for the size of the matching. We
show this by obtaining that the size of the match constructed by any fractional algorithm on a
specific sequence σ is < m(1− 1

e) + 2. Note that it can be easily shown that any algorithm A can
be transformed into a work-conserving algorithm A′, i.e. a fractional algorithm which matches as
much as possible, while not worsening the performance of any sequence (in particular, cA′ ≤ cA

, where cA′ , cA are the competitive ratios of A′ and A, respectively). Thus, we focus only on
work-conserving fractional algorithms.

Theorem A.1 The competitive ratio of every online deterministic fractional algorithm for the
fractional unweighted matching problem in a bipartite graph is at least e

e−1 −Θ(1
m), where m is the

number of servers in the bipartite graph.

Remark 9 Note that this result slightly improves the lower bound of e
e−1 − o(1) of Karp et al.[11]

for randomized discrete algorithms, since a fractional algorithm can match fractions equal to the
probabilities of the any randomized discrete algorithm and obtain its expectancy deterministically.
We also note that contrary to the proof of Karp et al. in [11], our proof is not asymptotic.

Proof: We prove the theorem by showing that for every fractional algorithm there exists an input
sequence σ with optimal offline match of size m and online match of size at most

⌊
m(1− 1

e)
⌋
+2− 1

e .
Consider a bipartite graph with m servers and fix any online algorithm A. The construction of the
sequence by the adversary is as follows:
Let Ij be the set of m− j online servers with maximum load (breaking ties arbitrarily) before the
arrival of request rj . Then for j = 0, 1, 2 . . .m− 1 generate request rj such that it is adjacent only
to servers s ∈ Ij .

Note that in each step j, OPT will match the entire request on the server which will be excluded
from Ij in the next iteration and hence OPT (σ) = m. We start the analysis of algorithm A on σ
by defining the term Lj(X) for a given set of servers X. Let Lj(X) be the average online load of
the servers s ∈ X before the arrival of request rj . Now, we prove some claims and lemmas.

Claim A.2 For all 0 ≤ j ≤ m − 1 as long as algorithm A matches the entire request we have
Lj(Ij) ≥ Hm −Hm−j.

Proof: The proof is by induction on j. For j = 0, the claim is clearly true. Suppose the claim is
true for j, i.e. Lj(Ij) ≥ Hm−Hm−j , and consider j +1. When request rj arrives it can be matched
solely on servers s ∈ Ij ; thus we obtain that

Lj+1(Ij) ≥ Hm −Hm−j +
1

m− j
= Hm −Hm−(j+1).

Since there must be a server in Ij with load of at most Hm −Hm−(j+1), then

Lj+1(Ij+1) ≥ Lj+1(Ij) = Hm −Hm−(j+1).

18

Observation A.1 Algorithm A can match a request partially only once (assuming is a work-
conserving algorithm).

Lemma A.3 The size of the fractional matching constructed by A is at most
⌊
m(1− 1

e)
⌋

+ 2− 1
e .

Proof: Algorithm A cannot match a request rj on Ij if Lj(Ij) is equal to 1 (since in that case all
servers in Ij have a load equal to 1). By Claim A.2, Lj(Ij) ≥ Hm − Hm−j . Hence, the number
of requests which A can match, prior to the last matched request rj , is obtained by solving the
following inequality:

m∑
i=m−j+1

1
i

= Hm −Hm−j ≤ 1.

Since
m∑

i=m−j+1

1
i
≥

∫ m+1

m−j+1

1
i

= ln(m + 1)− ln(m− j + 1),

it suffices to find the maximum j:

ln(m + 1)− ln(m− j + 1) ≤ 1.

Hence,

j ≤
⌊
(m + 1)(1− 1

e
)
⌋

.

Consequently, when request j arrives, A can match a total size smaller than 1. Therefore, by
Observation A.1, the online fractional matching size is at most

⌊
m(1− 1

e)
⌋

+ 2− 1
e .

Corollary A.4 Note that our proof yields that the size of the matching constructed by any ran-
domized discrete algorithm is at most m(1 − 1

e) + 2 − 1
e . This slightly improves the current result

which was presented by Karp et al. [11].

Remark 10 A tighter analysis shows that the size of the fractional matching constructed by A is
at most m(1− 1

e) + 1− 1
e .

Theorem A.1 follows immediately from Lemma A.3.

Corollary A.5 Algorithm WL is optimally competitive, up to an additive smaller than 2 for the
size of the matching.

B Appendix B

The online b-matching problem. We show a simplified proof for the online b-matching problem
that was studied in [10]. We start by defining an online version to the unweighted b-matching
problem. In the online b-matching problem we have a bipartite graph G = (R,S,E), where S and
R are the disjoint vertex sets and E is the edge set. We refer to set R as the requests and to set S
as the servers. The objective is to match a request to a server. At step i vertex ri ∈ R, together
with all of its incident edges, arrives online. The response of algorithm A can be either to reject
request ri, or to irreversibly match the request to one adjacent vertex sj ∈ S such that the number
of the requests that were matched to sj is at most b. Thus, every sj ∈ S can be used up to b times
by OPT and by A. The b-matching problem can be viewed as a restriction of the fractional model
presented in Section 3 in which:

19

1. All the request sizes xi are equal to 1/b.

2. A request ri is assigned integrally on an adjacent server sj , i.e. ∀i,jk
i
j = 1/b.

Under these constraints algorithm WL which was presented in Section 3 is in fact algorithm
Balance that was studied in [10]. In [10] it was proved that algorithm Balance has a competitive

ratio of (1+ 1
b
)b

(1+ 1
b
)b−1

. We now show a more compact proof for the competitive ratio of Balance under
constraints 1-2.

Algorithm Balance: Match each request ri to the least loaded adjacent server sj , unless each
adjacent server was matched b times.

Theorem B.1 Algorithm Balance is (1+ 1
b
)b

(1+ 1
b
)b−1

-competitive in the restricted model.

Proof: We use the same terms that were suggested in Theorem 3.1. Consider the total load assigned
to the servers by Balance above some height h, where h = i/b such that i ∈ N and 0 ≤ i ≤ b.
Let k be the total size of fraction in Yh ∪ Xh, i.e. the total size of fraction that were assigned by
OPT and assigned by WL above height h or rejected. Clearly, k ≥ LOPT − v(h). From volume
preservation this load was assigned to at least dke different servers by OPT . Hence, the amount
of load assigned by Balance to those dke servers is at least h. Since OPT used those dke servers
WL could have used them as well. Thus some of the load assigned above height h could have been
assigned below height h. Therefore for height h = i/b we obtain:

v(h)− v(h− 1/b) ≥ LOPT − v(h)
b

which is the same as
v(h) ≥ LOPT

b + 1
+

b

b + 1
v(h− 1

b
).

Thus by developing the right side of the equation recursively,

v(i/b) ≥ LOPT

b + 1
(1 +

b

b + 1
+ · · ·+ (

b

b + 1
)i−1)

=
LOPT

b + 1
(b

b+1)i − 1
b

b+1 − 1

= LOPT (1− (
b

b + 1
)i).

Hence,

LOPT ≤ v(i/b)
(1 + 1

b)
i

(1 + 1
b)

i − 1
. (2)

Since LOPT = OPT (σ) and v(b) = Balance(σ), algorithm Balance is (1+ 1
b
)b

(1+ 1
b
)b−1

-competitive.

Theorem B.2 Algorithm Balance is (1+ 1
b
)α

(1+ 1
b
)α−1

-competitive in the restricted model with resource

augmentation, where the online algorithm can match α requests on a single server and OPT can
match b requests on a single server (all requests are of size 1

b).

Proof: The proof follows immediately from the fact that Equation (2) holds in the restricted model
with resource augmentation.

20

