
Truthful Approximation Mechanisms for Scheduling

Selfish Related Machines ∗

Nir Andelman † Yossi Azar ‡ Motti Sorani §

March 22, 2005

Abstract

We consider the problem of scheduling jobs on related machines owned by selfish agents. Pre-
viously, Archer and Tardos showed a 2-approximation randomized mechanism which is truthful
in expectation only (a weaker notion of truthfulness). We provide a 5-approximation determin-
istic truthful mechanism, the first deterministic truthful result for the problem.

In case the number of machines is constant, we provide a deterministic Fully Polynomial
Time Approximation Scheme (FPTAS) algorithm, and a suitable payment scheme that yields a
truthful mechanism for the problem. This result, which is based on converting FPTAS to mono-
tone FPTAS, improves a previous result of Auletta et al, who showed a (4 + ε)-approximation
truthful mechanism.

1 Introduction

The emergence of the Internet as the platform for distributed computation changed the point of
view of the algorithm designer [14, 15]. The old implicit assumption that the participating machines
(agents) act as instructed can no longer be taken for granted. As the machines over the Internet are
controlled by different users, they are likely to do what is most beneficial to their owners, manipulate
the system and lie when it is possible to maximize their own profit. Where optimization problems
are concerned, results can be severe and unexpected when false information is introduced to the
classic optimization algorithms, due to the selfish behavior of the agents.

In this paper we deal with the problem Minimum Makespan for scheduling jobs on related
machines, (also known as Q||Cmax). The system allocates jobs with arbitrary sizes to the machines,
where each machine is owned by an agent. The machines have different speeds, known to their
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owner only. At first phase, the agents declare their speeds, then given these bids the system allocates
the jobs to the machines. The objective of the system is to minimize the makespan. The classic
scheduling problem (when information is complete and accurate) is known to be NP-Complete.
Hence research focused on obtaining a polynomial time approximation algorithms for this problem.

The field of Mechanism Design provides a scheme to overcome the selfishness of the agents,
mainly by paying the agents in order to force them to declare their true properties, thus helping
the system to solve the optimization problem correctly. The most famous result in this area is
the Vickrey-Clarke-Groves (VCG) Mechanism [6, 16, 9] which applies to utilitarian objective only
(the sum of the agent’s valuations). The Minimum Makespan problem is not utilitarian as we are
seeking to minimize the maximum load, not the sum of the loads.

Several optimization problems were re-considered in the context of selfish agents [12]. Even
in cases where truthful tools such as VCG are at hand, it turned out that applying them to
combinatorial optimization problems is computationally intractable. Ronen and Nisan [13] showed
that if the optimal outcome is replaced by the result of a computationally tractable approximation
algorithm then the resulting mechanism is no longer necessarily truthful. New attitudes are required
to achieve approximation which still retain truthfulness.

Archer and Tardos introduced a framework for designing a truthful mechanism for one-parameter
agents [3]. In particular they considered the fundamental problem of scheduling on related ma-
chines, and showed a randomized 3-approximation truthful mechanism, later improved to a 2-
approximation [4]. Their mechanism utilizes a weaker notion of truthfulness, as it is truthful in
expectation only.

1.1 Results in this paper

Our main results are the following

• We show a deterministic 5-approximation truthful mechanism for scheduling jobs on arbitrary
number of related machines.

• We show a deterministic truthful FPTAS for scheduling jobs on a fixed number of machines.

All results follow the framework of Archer and Tardos, introducing monotone algorithms to-
gether with a payments scheme computable in polynomial time.

Our truthful mechanisms are deterministic. Hence truth-telling is a dominant strategy over all
possible strategies of an agent. This truthfulness, analogous to universal truthfulness for randomized
mechanisms, is stronger than the one use in the 3-approximation randomized mechanism in [3], as
the latter is truthful in expectation only.

We also show the existence of truthful deterministic PTAS and FPTAS mechanisms for any
fixed number of related machines. Our mechanisms improve the result of the (4+ε)-approximation
truthful mechanism for constant number of machines introduced in [5, 2]. We present both mecha-
nisms since our PTAS is fairly simple to implement and may be more efficient than the FPTAS if
the required approximation ratio 1 + ε is moderate.
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1.2 Previous Work

The classic problem of scheduling jobs on parallel related machines was dealt by several approx-
imation approaches. The known basic result of an LPT algorithm which sorts the jobs in non-
increasing order of job size, then allocates a job to the machine which will be least busy afterwards
is 2-approximation [8]. An FPTAS was first introduced by Horowitz and Sahni for the case where
the number of machines is constant. Their approach was based on rounding an exact solution by
dynamic programming [11]. Finally, in the late 80’s Hochbaum and Shmoys introduced a PTAS
for the general case of an arbitrary number of machines [10, 7]. Since the problem is strongly NP-
Complete, no FPTAS is possible for the general case, and their result remains the best possible,
unless P=NP.

Scheduling with selfish agents was first analyzed by Ronen and Nisan. Their results mainly
concern scheduling on unrelated machines, known also as R||Cmax. Our problem was first tackled
by Archer and Tardos [3] who showed that the former known approximation algorithms for the
problem are not truthful. They introduced a truthful randomized mechanism which achieves a
3-approximation to the problem. This approach achieves truthfulness with respect to the expected
profit only. Thus it possible that even though the expected profit is maximized when telling the
truth, there might exist a better (untruthful) strategy.

The first deterministic result is due to Auletta et al [5]. They show a deterministic truthful
mechanism which is (4+ ε)-approximation for any fixed number of machines. The case of arbitrary
number of machines remained open previous to our paper.

A different approach by Nisan and Ronen introduces another model in which the mechanism is
allowed to observe the machines process their jobs and compute the payments afterwards. Using
these mechanisms with verification [12] allows application of penalty on lying agents, and was shown
to cope well with the existing known approximation algorithms.

2 Preliminaries

We consider the problem of scheduling jobs on related machines. We are given a number of ma-
chines, m, and a job sequence with sizes σ = (p1, p2, ..., pn). Each machine, owned by an agent,
has a speed si known only to its agent. Alternatively, the secret (sometimes called type) of each
agent is ti = 1/si which is the number of time units required to process one unit of work (or the
cost per unit of work). Thus the processing time of job pj on machine i is pjtj . The work of
machine i, denoted by wi is given by the sum of the processing time of jobs assigned to it (the total
work assigned to it). We assume a machine incurs a cost proportional to the total processing time
spent. The output is an assignment of jobs to machines. The mechanism’s goal is to minimize the
maximum completion time over all machines.

A mechanism for this problem is a pair M = (A,P ), where A is an algorithm to allocate jobs
to the machines (agents) and P is a payment scheme. The mechanism asks each agent to report its
bid (their cost per unit of work). Based on these reports, the mechanism uses A to construct an
allocation, and pays according to P.

A strategy for agent i is to declare a value bi as its cost per unit of work (which in principle can
be larger or smaller than ti). Let b to be the vector of bids, and b−i denote the vector of bids not
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including bi, i.e. (b1, b2, .., bi−1, bi+1, ..., bm). Denote by (b−i, α) the vector generated by inserting
the value α to the vector b−i. Notice that if we view b as a sorted vector, then (b−i, α) corresponds
also to a sorted vector (thus the index of α might be different than i).

The output of the algorithm o(b) is an allocation of the jobs to the agents, and the profit of
agent i is defined as profiti(ti, b) = Pi(b)− tiwi(o(b)). A strategy bi is (weakly) dominant for agent
i if bidding bi always maximizes his profit, i.e. profiti(ti, (b−i, bi)) ≥ profiti(ti, (b−i, b

′
i)) for all

b−i, b
′
i. A mechanism is truthful if truth-telling is a dominant strategy for each agent (i.e. ti is a

dominant strategy for all i)

We assume w.l.o.g that the vector of bids b is sorted in non-increasing order of speed (non-
decreasing order of cost per unit of work), breaking ties by the original index.

An algorithm A is a c-approximation algorithm if for every instance (σ, t) , cost(A,σ, t) ≤ c ·
opt(σ, t). For our problem the cost is the maximum completion time. A c-approximation mechanism
is one whose output algorithm is an c-approximation. A PTAS (Polynomial-time approximation
scheme) is a family of algorithms such that for every ε > 0 there exists a (1 + ε)-approximation
algorithm. If the running time is also polynomial in 1/ε, the family of algorithms is an FPTAS.

A vector (v1, v2, .., vn) is lexicographically smaller than (u1, u2, .., un) if for some i, vi < ui and
vk = uk for all 1 ≤ k < i.

2.1 Monotone Algorithms

Archer and Tardos showed necessary and sufficient conditions to obtain a truthful mechanism [3].

Definition 2.1 Fixing the other agents bids b−i, we define the work-curve for agent i as wi(b−i, bi),
namely a single-variable function of bi. A work-curve is decreasing if wi(b−i, bi) is a decreasing
function of bi for all b−i.

A decreasing work-curve means that when an agent bids lower (saying he is faster) more or
equal amount of work should be allocated to his machine, given that the other agents’ bids are
fixed. A monotone algorithm is an algorithm that produces an assignment which preserves the
decreasing work-curve property for all agents. Several classic approximation algorithms fail to keep
this monotonicity, among them the LPT algorithm, and the classic PTAS of Horowitz and Sahni
[3, 5].

Definition 2.2 A mechanism satisfies the voluntary participation condition if agents who bid truth-
fully never incur a net loss, i.e. profiti(ti, (b−i, ti)) ≥ 0 for all agents i, true values ti and other
agents’ bids b−i.

Theorem 2.1 [3] A mechanism is truthful and admits a voluntary participation if and only if the
work-curve of each agent is decreasing,

∫ ∞

0
wi(b−i, u)du < ∞ for all i, b−i and the payments in this

case should be

Pi(b−i,bi) = biwi(b−i, bi) +

∫ ∞

bi

wi(b−i, u)du (1)
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Input: a job sequence σ , and a non-decreasing sorted bids vector b = (b1, b2, .., bm)

Output: An allocation of jobs to the m machines

1. Set d1 = 5

8
b1

2. For j ≥ 2, round up the bids to the closest value of b1 · 2.5
i, which is larger than the original

bid, i.e. dj = b1 · 2.5
i, where i =

⌊

log2.5
bj

b1

⌋

+ 1

3. Sort the job sequence in non-increasing order

4. Calculate the valid fractional assignment for the job sequence σ given the new bids-vector d.
Let T f be the value of the fractional solution.

5. For each machine j = 1 . . . m, assign jobs in non-increasing order of job-size to machine j
(using bid dj), until machine j exceeds threshold T f (or equals it)

6. Return the assignment

Figure 1: Monotone-RF

Therefore in order to achieve a truthful mechanism we need to design a monotone algorithm,
and use the payment scheme as in (1). Since truthfulness is reduced to designing a monotone
algorithm, we may assume, for the sake of the monotonicity proof, that the bids are equal to the
real speeds.

3 Truthful Approximation for arbitrary number of machines

A classic approximation algorithm for the problem, forms a “valid” fractional allocation of the jobs
to the machines, and then uses a simple rounding to get a 2-approximation for the problem. In [3]
it has been shown that this simple algorithm is not monotone, thus not truthful.

The main result of this section is a deterministic monotone algorithm which is based on the
fractional assignment. Algorithm Monotone-RF (Monotone Rounded Fractional), shown in figure
1, is shown to be a 5-approximation algorithm.

Given a threshold T , we can treat the machines as bins of size T/bi. A fractional assignment
of the jobs to the machines, is a partition of each job j into pieces whose sizes sum to pj and an
assignment of these pieces to the machines (bins). A fractional assignment is valid if each bin is
large enough to contain the sum of all pieces assigned to it, and for every piece assigned to it,
it is capable of containing the entire job the piece belongs to. The smallest threshold for which
there exist a valid fractional assignment, T f is a lower bound to the optimal solution, and can be
calculated exactly in the following manner (see [3]):

T f = max
j

min
i

max {bipj,

∑j
k=1

pk
∑i

l=1
1

bl

} (2)
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This valid fractional assignment with respect to this threshold is obtained by sorting the jobs
in non-increasing order, and allocating them to the machines (ordered in non-increasing order of
their speeds). Some jobs are sliced between two machines when the threshold is exceeded in the
middle of a job.

An important property of the valid fractional assignment is the monotonicity of T f : as we
increase the speed of a machine, T f is not increased. Let T f (b−i, bi) be the the smallest threshold
for which there exist a valid fractional assignment, given the bids vector (b−i, bi).

Observation 3.1 [3] T f (b−i, αbi) ≤ αT f (b−i, bi) for all α > 1 and i.

Lemma 3.1 For any machine i which is not the fastest (i > 1), and for any rounded bids vector
d:

T f (d−i, di) ≤ T f (d−i, β) ≤
5

4
T f (d−i, di)

for all β ≥ di

Proof: The first inequality is straight-forward as the allocation for (d−i, β) is also a valid fractional
assignment for (d−i, di), given any fixed threshold T.

As for the second inequality, we generate a valid fractional assignment which allocates zero work
to machine i. This allocation would use a threshold at most 5

4
T f (d−i, di). Since this allocation is

a valid fractional assignment for (d−i, β), the minimal threshold for (d−i, β) might only be smaller
than the generated one.

To form an allocation which does not use machine i, for every 2 ≤ j ≤ i take all the pieces
previously assigned to machine j and assign them to machine (j − 1). The first machine is now
allocated the pieces originally assigned to the second machine, along with its original assignment.
Since the algorithm assures that 4d1 ≤ d2, the assignment is clearly valid, with a threshold which
is at most 5

4
T f (d−i, di).

We note that Lemma 3.1 holds for rounded bids vectors created by Monotone-RF, but does not
hold in general. The following lemmata consider several scenarios in which machine i slows down.
We denote by d′ the rounded bid vector obtained after the machine’s slowdown. Let i′ be the index
of the slowing-down machine in d′; Notice that i′ might be different than i. We denote by w′

j the
total work allocated to machine j given the new bids vector d′. We denote by vi the rounded speed
of machine i, i.e. vi = 1/di.

Lemma 3.2 Using Algorithm Monotone-RF, when machine i which is not the fastest slows down,
the total amount of work assigned to the machines faster than it can not decrease. i.e.

i−1
∑

k=1

wk ≤

i−1
∑

k=1

w′
k ≤

i′−1
∑

k=1

w′
k

Proof: If the rounded bid of machine i is the same as before the slowdown, the assignment is not
changed. Thus we consider the case where the new rounded bid is different than the one before
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the slowdown. Let β be the rounded bid of machine i where β > di. Let i′ be the new index of the
slowing machine in d′. Clearly i ≤ i′.

By Lemma 3.1, T f (d−i, β) ≥ T f (d−i, di), i.e. the new threshold used by algorithm Monotone-
RF can only increase due to the slowdown. By induction the index of the last job assigned to each
of the first i − 1 machines can be equal, or higher after the slowdown. Thus the total amount of
work assigned to the first i − 1 machines is the same or higher, and the amount of work assigned
to the first i′ − 1 machines can only be higher than that.

Lemma 3.3 If the fastest machine slows down yet remains the fastest, the amount of work assigned
to it can only decrease.

Proof: We observe how the bin size of the first machine changes as its speed decreases gradually.
As long as the value of ⌊log2.5

bj

b1
⌋ does not change for all j ≥ 2, all rounded speeds change pro-

portionally, i.e. there is some constant c > 1 such that d′ = c · d. Therefore, the same fractional
assignment is calculated (with a new threshold of cT f ) with the same sizes for bins. In the break-
points where the rounded bid of at least one machine is cut down by 2.5, by Observation 3.1 the
threshold cannot increase, and therefore the bin size of the first machine can only decrease.

Since the fastest machine is always assigned the first jobs, a decrease in its bin size can only
decrease the number of jobs assigned to it, and therefore the amount of work assigned to it in the
integral assignment also decreases.

Definition 3.1 Given an assignment of jobs by algorithm Monotone-RF, we classify the machines
in the following way:

Full machine a machine (bin) which the total processing time of the jobs assigned to it is at least
its threshold.

Empty machine a machine with no jobs allocated to it

Partially-full machine a non-empty machine (bin) which is not full. (There is at most one
partially-full machine)

Lemma 3.4 When machine i decreases its speed (increases its bid) the total work allocated to it
by algorithm Monotone-RF can not increase.

Proof: Lemma 3.3 proves the claim when machine i is the fastest machine and remains the fastest.
If machine i is not the fastest machine but its rounded bid di does not change, then the slowdown has
no effect since the same assignment is generated. It remains to prove the claim for the breakpoints,
which are when the fastest machine becomes the non-fastest, and when the rounded bid is multiplied
by 2.5. We prove the claim for each step, thus the claim holds for the entire slowdown.

Consider the following cases for the class of machine i before the slowdown:

1. Machine i is the fastest machine (i = 1), but after the slowdown another machine j becomes
the fastest - we observe the breakpoint where both machines have the same speed and add
an artificial stage to the slowdown where the title of the fastest machine passes from i to j
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(without having the speeds change). The same threshold is calculated in both cases, only
the order of the machines changes. The amount of work allocated to machine i when it is
considered the fastest is at least 8

5
· v1 · T

f , while after machine j becomes the fastest it is at
most 2 · v1

2.5
· T f = 4

5
· v1 · T

f , and therefore decreases.

2. Machine i is a full machine which is not the fastest - the threshold used for assigning jobs to
the machine is T f . Due to Lemma 3.1, T f (d) ≤ T f (d′) ≤ 5

4
T f (d) , where d is the rounded

bids vector, and d′ is the rounded vector after the slowdown. Before the slowdown the amount
of work allocated to it was at least T f · vi, whereas after slowing down it can become at most
2 · (5

4
· T f ) · vi

2.5
= T f · vi. If the machine became partially-full or empty after slowing down,

the amount of work allocated to it can only be smaller.

3. Machine i is partially-full - if it becomes empty then the claim is trivial, otherwise some jobs
are allocated to machine i. Let i′ ≥ i be the new index of the machine in the sorted order.
Due to Lemma 3.2 the amount of work allocated to machines with a lower index than i′ can
be no less than the amount before the slowdown (i.e.

∑i−1

k=1
wk ≤

∑i′−1

k=1
w′

k), thus leaving less
work to be allocated to machine i.

4. Machine i is empty - The machine stays empty due to Lemma 3.2.

Lemma 3.4 shows that the work-curve of agent i is non-increasing. Hence the following theorem
is immediate:

Theorem 3.5 Algorithm Monotone-RF provides monotone assignment. Hence A Mechanism De-
sign based on Algorithm Monotone-RF and payment scheme as in (1) is truthful.

We now analyze the approximation provided by algorithm Monotone-RF.

Denote by kf (i) the index of the last job (or a fraction of a job) assigned to machine i in the
fractional assignment. Respectively let k(i) be the index of the last job assigned to machine i by
Monotone-RF.

Lemma 3.6 for all i, kf (i) ≤ k(i)

Proof: By induction. The claim clearly holds for i = 1 since T1 ≥ T f . Assume the argument is
true for machine i. By induction hypothesis kf (i) ≤ k(i). Since allocation is done in non-increasing
order of job size, the first job to be allocated to i + 1 by our algorithm might be only smaller than
the one allocated by the fractional assignment. Moreover, since the allocation exceeds the fractional
threshold, at least the same number of jobs will be assigned to machine i. Thus kf (i+1) ≤ k(i+1).

Theorem 3.7 Algorithm Monotone-RF is a 5-approximation.
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Proof: Lemma 3.6 assures that at the end of the run of algorithm Monotone-RF all jobs are
allocated. Since the speeds were decreased by at most a factor of 2.5, the threshold T f (d) may be
at most 2.5 times the value of the optimal allocation using the unrounded speeds. Since the speed
of the fastest machine is increased by a factor of 1.6, the amount of work assigned to the fastest
machine in the fractional solution may be at most 1.6 · 2.5 = 4 times the value of the optimal
allocation.

In the integral solution, since the amount of work assigned to the first machine can exceed the
bin’s size by at most the size of the second bin, and since the first bin is at least 4 times larger
than the second bin, the load on the fastest machine can be at most 1.25 ·T f (d), and therefore the
load on this machine is at most 1.25 · 4 = 5 times the optimal. For any other machine, the last job
can exceed the threshold by at most T f (d), and therefore the load on any other machine is at most
2 · T f (d), which is at most 2 · 2.5 = 5 times the optimal. Therefore, a 5-approximation is achieved.

To conclude, we need to show that calculating the payments given by (1) can be done in polyno-
mial time. We analyze the number of breakpoints of the integral in that expression. According to
Lemma 3.6 the work curve for machine i is zeroed furthermost when the valid fractional assignment
does not use machine i. There is no use in assigning jobs to a machine when its bid β is too high
even for the smallest job, i.e. βpn > T f . Using the higher bound T f ≤ np1d1 < np1b1, we get
a zero assignment for β ≥ n p1

pn
b1. The only exception is when the integral is calculated for the

fastest machine, where we get a higher bound of β ≥ n p1

pn
b2. While β ≤ b2, there is a breakpoint

whenever bj = 2.5iβ, for some i and for any machine j > 1. Therefore, for each factor of 2.5, there
are at most m − 1 breakpoints (one for each of the other machines), while for β > b2, there is one
breakpoint for each step.

Thus the number of iterations will be O(log2.5 n p1

pn
+ m log2.5

b2
b1

) for the fastest machine,

O(m log2.5 n p1

pn
b2
b1

) in total, which is polynomial in the input size.

4 Truthful PTAS-Mechanism for any fixed number of machines

We now show a truthful mechanism for any fixed number of machines. Due to simplicity of pre-
sentation, we normalize the sizes of the jobs such that the total size of all jobs is one,

∑n
j=1

pj = 1
(as they are known to the mechanism).

Based on the payments scheme as in (1), it is enough to show a monotone PTAS algorithm.
The algorithm, Monotone-PTAS, is shown in figure 2. This algorithm shares similar ideas of the
PTAS variant of Alon et al [1].

Theorem 4.1 A Mechanism Design based on Algorithm Monotone-PTAS and payment scheme as
in (1) is truthful.

Proof: It is suffice to show that Algorithm Monotone-PTAS is monotone. Notice that the job sizes
in the instance σ♯ were generated independently from the bids of the agents. It was shown in [3]
that the optimal minimum-lexicographic solution is monotone.
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Theorem 4.2 The algorithm Monotone-PTAS achieves a Polynomial Time Approximation Scheme
(PTAS)

Proof: We first show that the algorithm is polynomial. The construction of σ♯ takes a linear time.
As for the rest - the construction of σ♯ ensures that the minimal job size is 1

2
· ε2

m2 . Thus the

total number of jobs is no more than 2m2

ε2 , a constant. Solving σ♯ exactly on m machines while
enumerating all the possible allocations takes a constant time.

We now analyze the quality of the approximation. First assume, for the purpose of analysis ,
that both Opt and our algorithm are not using “slow” machines, i.e. machines whose speed is less
than smax ·

ε
m

, where smax is the maximal speed. Let T ′
opt be the optimal solution for this instance,

and T ′ our solution. Since we solve for chunks whose size is no more than ε2

m2 , unlike Opt who solves

for the original sizes, we can suffer an addition in processing time of maximum
ε2

m2

smax·
ε
m

= ε
m·smax

(i.e. an additional chunk on the slowest machine used). A lower bound on the optimal solution is
T ′

opt ≥
1

m·smax
, Thus T ′ ≤ (1 + ε)T ′

opt.

We now compare T ′
opt to performance of Opt when the “slow” machines restriction is removed,

namely Topt. The total work done by the “slow” machines in opt is bounded above by smax · εTopt.
If we move this amount of work to the fastest machine we pay maximum extra processing time of
εTopt, thus T ′

opt ≤ (1+ε)Topt. Combining these two lower bounds we get that T ≤ T ′ ≤ (1+ε)T ′
opt ≤

(1 + ε)2·Topt ≤ (1 + 3ε)Topt for any ε < 1

2
, a PTAS.

To conclude, we need to show that calculating the payments given by (1) can be done in
polynomial time. Notice that the integral in this expression has a constant number of breakpoints

Input: a job sequence σ, a bids vector b = (b1, b2, .., bm) and parameter ε

Output: An allocation of jobs to the m machines that achieves a (1 + 3ǫ)-approximation

1. Construct a new instance σ♯ based on the original job instance, as follows:

(a) sort the job sequence in non-increasing order

(b) σ♯ = {pj ∈ σ|pj ≥
ε2

m2 }

(c) merge the rest of jobs in a greedy manner to chunks of size in the range [1
2
· ε2

m2 , ε2

m2 ] and
add them to σ♯

2. Solve Minimum Makespan exactly with the instance (σ♯, b) to obtain the optimal solution. If
several optimal allocations exist, choose the one with the lexicographically minimum schedule
(where the machines are ordered according to some external machine-id)

3. Return the same allocation achieved on σ♯. A small job is allocated to the same machine
which his chunk has been allocated.

Figure 2: Monotone PTAS
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(the number of all possible allocations to agent i) thus calculating the payments can be done in
constant time.

5 Truthful FPTAS-Mechanism for any fixed number of machines

We now show another truthful mechanism for any fixed number of machines. The mechanism
uses a c-approximation algorithm as a black box, to generate a c(1 + ǫ)-approximation monotone
algorithm. Using an FPTAS as the black box (for example, the FPTAS of Horowitz and Sahni [11])
outputs a monotone FPTAS. Adding a payments scheme as in (1), ensures truthful mechanism.
The algorithm, Monotone-Black-Box, is shown in figure 3.

Input: a non decreasing sorted job sequence σ, a bids vector b = (b1, b2, .., bm), a parameter ε and
a black box, which is a polynomial time c-approximation.

Output: An allocation of jobs to the m machines that achieves a c(1 + ǫ)-approximation

1. Construct a new bid vector d = (d1, d2, . . . , dm), in the following way:

(a) round up each bid to the closest value of (1 + ǫ)i

(b) normalize the bids such that d1 = 1

(c) for each bid dj = (1 + ǫ)i, if i > l + 1 where l = ⌈log1+ǫ cn · p1

pn
⌉ then set dj = (1 + ǫ)l+1

2. Enumerate over all possible vectors d′ = ((1 + ǫ)i1 , (1 + ǫ)i2, . . . , (1 + ǫ)im), where ij ∈
{0, 1, . . . , l + 1}. For each vector:

(a) apply the black box algorithm to d′

(b) sort the output assignment such that the i-th fastest machine in d′ will get the i-th
largest amount of work

3. Test all the sorted assignments on d, and return the one with the minimal makespan. In case
of a tie, choose the assignment with the lexicographically maximum schedule (i.e. allocating
more to the faster machines)

Figure 3: Monotone Black Box

Theorem 5.1 Algorithm Monotone Black Box is a c(1 + ǫ) approximation algorithm.

Proof: The output assignment is a c-approximation for the vector d, since d is tested in the enu-
meration, and since sorting the assignment can only improve the makespan. As for the original
bid vector b, rounding the bids adds a multiplicative factor of 1 + ǫ to the approximation ratio.
Normalizing the vector has no effect, as well as trimming the largest bids, since any non zero as-
signment to a machine with a bid of at least (1 + ǫ)l cannot be a c-approximation, since the load
on that machine will be more than c times the load of assigning all the jobs to the fastest machine.
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Theorem 5.2 If the black box in Algorithm Monotone Black Box is an FPTAS then the algorithm
itself is also an FPTAS.

Proof: By Theorem 5.1, the algorithm is a (1 + ǫ)2 approximation. It remains to prove that the
running time is polynomial in the input, including 1

ǫ
. In each iteration of the enumeration, applying

the black box, sorting the output assignment and testing it on the vector d can be completed in
polynomial time, by the assumption that the black box is an FPTAS. The size of the enumeration
is O(lm), where m is a constant and l is polynomial in the input.

Theorem 5.3 Algorithm Monotone Black Box is monotone.

Proof: We prove that if a machine j raises its bid (lowers its speed) then the amount of work
assigned to it cannot increase. We increment the bid in steps, such that in each step the power of
1 + ǫ that equals the rounded bid rises by one. We prove the claim for a single step, and therefore,
the claim also holds for the entire increment.

We first assume that dj is not the unique fastest machine (i.e., there is a machine k 6= j such that

dk = 1). If dj ≥ (1 + ǫ)l then by the proof of Theorem 5.1, the assignment to machine j must be
null, otherwise the approximation ratio is not achieved. Clearly, by raising the bid the assignment
will remain null, and the claim holds. Therefore, we assume that the normalized rounded bid rises
from dj to dj(1 + ǫ), the assignment changes from W to W ′, and the amount of work allocated to
machine j changes from wj to w′

j > wj.

We use T (W,d) to denote the makespan of assignment W on bid vector d. Since the algorithm
chooses the optimal assignment among a set that contains both W and W ′, we have that T (W,d) ≤
T (W ′, d) and T (W ′, d′) ≤ T (W,d′). Additionally, since the bids in d are smaller than the bids in
d′, we have that T (W,d) ≤ T (W,d′) and T (W ′, d) ≤ T (W ′, d′).

Suppose that machine j is the bottleneck in T (W,d′), meaning that the load on machine j is
the highest. Since w′

j > wj , we have T (W,d′) < T (W ′, d′), as the load on machine j increases
even more. This is a contradiction to T (W ′, d′) ≤ T (W,d′), and therefore machine j cannot be
the bottleneck in T (W,d′). Therefore, if machine j is not the bottleneck in T (W,d′), we have that
T (W,d) = T (W,d′). Since T (W,d) ≤ T (W ′, d) ≤ T (W ′, d′) ≤ T (W,d′), we actually have that
T (W,d) = T (W ′, d) and T (W,d′) = T (W ′, d′). Therefore, we have a tie between W and W ′ for
both d and d′. Since in each case the tie is broken differently, it must be that W = W ′. Since
the assignment is sorted (the faster machine is assigned more work), if a machine decreases its
speed then the amount of work assigned to it (by the same assignment) cannot increase, which is
a contradiction to w′

j > wj.

If machine j is the unique fastest, then due to the normalization of the rounded bids and
trimming of high bids, after it raises its bid by one step the new bid vector d′ will be as follows: dj

remains 1, bids between 1 + ǫ and (1 + ǫ)l decrease by one step, and bids equal to (1 + ǫ)l+1 can
either decrease to (1 + ǫ)l or remain (1 + ǫ)l+1.

Let d̂ be the same bid vector as d′, with all the bids of (1 + ǫ)l+1 replaced with (1 + ǫ)l. Since
machines that bid (1+ǫ)l or more must get a null assignment, then the optimal assignment (among
all assignments that are considered by the algorithm) for d̂ is the same as d′. The same assignment
remains the optimum for vector d̂(1 + ǫ), where all bids are incremented by one step. The bid
vector d̂(1 + ǫ) is exactly the bid vector d, with dj replaced with 1 + ǫ (instead of 1). By the same
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argument from the case where machine j is not the unique fastest, the work assigned to machine j
in d̂(1 + ǫ) is at most the same as the work assigned in d, and therefore the algorithm is monotone
for the unique fastest machine as well.

To conclude, we claim that the payments for each agent can be calculated in polynomial time,
since the number of breakpoints in the integral is bounded by the number of possible allocations
considered by the algorithm, which is polynomial in the input size (including 1

ǫ
) .

6 Conclusions and Open Problems

We have shown a deterministic constant-approximation truthful mechanism for assigning jobs on
uniformly related machines, and an FPTAS truthful mechanism for the special case where the
number of machines is fixed. The main open question left is whether a truthful PTAS mechanism
exists in the case of an arbitrary number of machines.
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