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ABSTRACT
One of the most intriguing facts about communication using
quantum states is that these states cannot be used to trans-
mit more classical bits than the number of qubits used, yet in
some scenarios there are ways of conveying information with
exponentially fewer qubits than possible classically [3, 26].
Moreover, these methods have a very simple structure—they
involve only few message exchanges between the communi-
cating parties.

We consider the question as to whether every classical
protocol may be transformed to a “simpler” quantum pro-
tocol—one that has similar efficiency, but uses fewer mes-
sage exchanges. We show that for any constant k, there is a
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problem such that its k+1 message classical communication
complexity is exponentially smaller than its k message quan-
tum communication complexity, thus answering the above
question in the negative. This in particular proves a round
hierarchy theorem for quantum communication complexity,
and implies via a simple reduction, an Ω(N1/k) lower bound
for k message protocols for Set Disjointness for constant k.

Our result builds on two primitives, local transitions in bi-
partite states (based on previous work) and average encoding
which may be of significance in other contexts as well.

1. INTRODUCTION
A recurring theme in quantum information processing has

been the idea of exploiting the exponential resources af-
forded by quantum states to encode information in very non-
obvious ways. One representative result of this kind is due
to Ambainis, Schulman, Ta-Shma, Vazirani, and Wigder-
son [3]. They show that it is possible to deal a random

set of
√
N cards each from a set of N by the exchange

of O(logN) quantum bits between two players. Another
example is given by Raz [26], who shows that a natural geo-
metric promise problem that has an efficient quantum pro-
tocol is hard to solve via classical communication. Both are
examples of problems for which exponentially fewer quan-
tum bits are required to accomplish a communication task,
as compared to classical bits.

The protocols presented by [3, 26] also share the feature
that they require minimal interaction between the commu-
nicating players. For example, in the protocol of [3], one
player prepares a set of qubits in a certain state and sends
half of them across as the message, after which both players
measure their qubits to obtain the result. In contrast, effi-
cient quantum protocols for computing total functions such
as checking Set Disjointness (DISJ) seem to require much
more interaction: Buhrman, Cleve, and Wigderson [6] give

an O(
√
N logN) qubit protocol for DISJ that has O(

√
N)

message exchanges. This represents quadratic savings in
communication cost, but also an unbounded increase in the
number of messages exchanged (from one message to

√
N),
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as compared to classical protocols. Are there simpler pro-
tocols for DISJ with similar efficiency? Can we exploit the
features of quantum communication and always reduce in-
teraction while maintaining the same communication cost?
In other words, do all efficient quantum protocols have the
simple structure shared by those of [3, 26]?

In this paper, we study the effect of interaction on the
quantum communication complexity of problems. We show
that for any constant k, allowing even one more message
may lead to an exponential decrease in the communication
complexity of a problem, thus answering the above question
in the negative. More formally,

Theorem 1.1. For any constant k, there is a problem
Sk+1 such that any quantum protocol with only k messages
and constant probability of error requires Ω(N1/(k+1)) com-
munication qubits, whereas it can be solved with k + 1 mes-
sages by a deterministic protocol with O(logN) bits.

A more precise version of this theorem is given in Section 4.5
and implies a round hierarchy even when the number of
messages k grows as a function of input size.

The role of interaction in classical communication is well-
studied, especially in the context of the Pointer Jumping
function [23, 10, 22, 13, 24]. In fact, the problem Sk in
Theorem 1.1 is the subproblem of Pointer Jumping singled
out in [19] (see Section 4.1 for a formal definition of Sk).
Our analysis follows the same intuition as that behind the
result of [19] (also explained in [16]), but relies on entirely
new ideas from quantum information theory. The resulting
lower bound is optimal for a constant number of rounds.

Next, we study the Pointer Jumping function itself. Let fk
denote the Pointer Jumping function with path length k+ 1
on graphs with 2n vertices, as defined in Section 4.6.

Theorem 1.2. For any constant k, there is a classical
deterministic protocol with k message exchanges, that com-
putes fk with O(log n) bits of communication, while any k−1
round quantum protocol with constant error for fk needs
Ω(n) qubits communication.

We also show an improved upper bound on the classical com-
plexity of Pointer Jumping, further closing the gap between
upper and lower bounds.

The input length for the Pointer Jumping function fk
is N = 2n log n, independent of k unlike in the subprob-
lem Sk, where the input length is exponential in k. The
function fk is thus usually more appropriate to study the
effect of rounds on communication when k grows rapidly as
a function of the input length. The lower bound of Theo-
rem 1.2 however decays doubly exponentially in k, and leads
to separation results for k = O(log logN). We believe it is
possible to improve this dependence on k, but leave it as an
open problem.

In the context of quantum communication, it was ob-
served by Buhrman and de Wolf [7] (based on a lower bound
of Nayak [20]) that any one message quantum protocol for
DISJ has linear communication complexity. Thus, allowing
more interaction leads to a quadratic improvement in com-
munication cost. The lower bound of [20] immediately im-
plies a much stronger separation: it shows that the two mes-
sage complexity of a problem may be exponentially smaller
than its one message complexity (see also [14], which in-
dependently raised the question of the role of rounds in
quantum communication). Our results subsume all these

previous results. In [14] it is also shown that any Las Vegas
quantum protocol achieving a non-constant speedup against
deterministic one-way communication for a total function
uses more than one round of communication.

We describe a simple reduction from Pointer Jumping in a
bounded number of rounds to DISJ. Our results above thus
imply new lower bounds for the problem.

Corollary 1.3. For any constant k, the communication
complexity of any k-message quantum protocol for Set Dis-
jointness is Ω(N1/k).

The problem of determining the quantum communication
complexity of DISJ has inspired much research in the last
few years, yet the best known lower bound is Ω(log n) [3, 7].
Our result provides new insight into the complexity of the
problem.

A model of quantum communication complexity that has
also been studied in the literature is that of communication
with prior entanglement (see, e.g., [8, 7]). In this model,
the communicating parties may hold an arbitrary input-
independent entangled state in the beginning. One can use
superdense coding [4] to transmit n classical bits of informa-
tion using only �n/2� qubits when entanglement is allowed.
The players may also use measurements on EPR-pairs to
create a shared classical random key. While the first idea
often decreases the communication complexity by a factor
of two, the second sometimes saves log n bits of communica-
tion. It is unknown if shared entanglement may sometimes
decrease the communication more than that. Currently no
general methods for proving superlogarithmic lower bounds
on the quantum communication complexity with prior en-
tanglement and unrestricted interaction are known. Our
results all hold in this model as well.

Our interest in the role of interaction in quantum commu-
nication also springs from the need to better understand the
ways in which we can access and manipulate information en-
coded in quantum states. We develop information-theoretic
techniques that expose some of the limitations of quantum
communication. More specifically, we present the following
new primitive in quantum encoding.

Theorem 1.4 (Average encoding theorem). Let
x �→ σx be a quantum encoding mapping m bit strings x ∈
{0, 1}m into mixed states σx. Let X be distributed uniformly
over {0, 1}m, let Q be the encoding of X according to this
map, and let σ = 1

2m

∑
x σx. Then,

1

2m

∑
x

‖σ − σx ‖t ≤ 4
√
I(Q : X).

In other words, if an encoding Q is only weakly correlated to
a random variable X, then the “average encoding” σ (corre-
sponding to a random string) is on average a good approx-
imation of any encoded state. Thus, in certain situations,
we may dispense with the encoding altogether, and use the
single state σ instead.

Actually we are able to give a more general theorem which
implies the average encoding theorem. Let S(ρ||σ) denote
the relative von Neumann entropy between density matrices
ρ and σ.

Theorem 1.5. For all density matrices ρ, σ:

S(ρ||σ) ≥ 1

2 ln 2
‖ ρ− σ ‖2

t .
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Since I(Q : X) = S(σQX ||σQ ⊗ σX) we get the average en-
coding theorem as a special case. This more general theorem
seems to be of independent interest. A classical version of
the theorem can be found in, e.g., [9].

We also use another primitive derived from the work of
Lo and Chau [17] and Mayers [18] which combines results
of Jozsa [12], and Fuchs and van de Graaf [11]. Consider
two bi-partite pure states such that one party sharing the
states cannot locally distinguish between the two states with
significant probability. Then the other party can locally
transform any of the states to a state that is close to the
other.

Theorem 1.6 (Local transition theorem). (based
on [17, 18, 12, 11]) Let ρ1, ρ2 be two mixed states with sup-
port in a Hilbert space H, K any Hilbert space of dimension
at least dim(H), and |φi〉 any purifications of ρi in H⊗K.
Then, there is a local unitary transformation U on K that
maps |φ2〉 to |φ′

2〉 = I ⊗ U |φ2〉 such that∥∥ |φ1〉〈φ1| −
∣∣φ′

2

〉〈
φ′

2

∣∣ ∥∥
t

≤ 2 ‖ ρ1 − ρ2 ‖
1
2
t .

These primitives may be of significance in other applica-
tions as well, especially in a cryptographic context. In fact,
the idea of local transitions has very recently been used by
Ambainis [2] to prove lower bounds for bias in quantum
coin-flipping protocols.

2. PRELIMINARIES
In this section we first describe the communication model

we study. Our lower bound results rely heavily on quan-
tum information theory. The necessary background is pro-
vided in Section 2.2, along with the associated notation. See
also [25] for a thorough introduction into the field.

2.1 The communication complexity model
In the quantum communication complexity model [28],

Alice and Bob hold qubits. When the game starts Alice
holds a superposition |x〉 and Bob holds |y〉 (representing
the input to the two players), and so the initial joint state
is simply |x〉⊗ |y〉. The two parties then play in turns. Sup-
pose it is Alice’s turn to play. Alice can do an arbitrary
unitary transformation on her qubits and then send one or
more qubits to Bob. Sending qubits does not change the
overall superposition, but rather changes the ownership of
the qubits, allowing Bob to apply his next unitary trans-
formation on the newly received qubits. At the end of the
protocol, one player makes a measurement and declares that
as the result of the protocol.

In general, each player may also (partially) measure her
qubits during her turn. However, we assume (by invoking
the principle of safe storage [5]) that all such measurements
are postponed to the end. We also assume that the two play-
ers do not modify the qubits holding the input superposition
during the protocol. Neither of these affects the aspect of
communication we focus on in this paper.

The complexity of a quantum (or classical) protocol is the
number of qubits (respectively, bits) exchanged between the
two players. We say a protocol computes a function f : X ×
Y �→ {0, 1} with ε ≥ 0 error if, for any input x ∈ X , y ∈ Y,
the probability that the two players compute f(x, y) is at
least 1−ε. Qε(f) (resp. Rε(f)) denotes the complexity of the
best quantum (resp. probabilistic) protocol that computes f
with at most ε error.

For a player P ∈ {Alice, Bob}, Qc,P
ε (f) denotes the com-

plexity of the best quantum protocol that computes f with
at most ε error with only c messages (called rounds in the
literature), where the first message is sent by P . If the name
of the player is omitted from the superscript, either player
is allowed to start the protocol.

We say a protocol P computes f with ε error with respect
to a distribution µ on X × Y, if

Prob(x,y)∈µ,P(P(x, y) = f(x, y)) ≥ 1 − ε.

Qc,P
µ,ε (f) is the complexity of computing f with at most ε

error with respect to µ, with only c messages where the first
message is sent by player P . The following is immediate.

Fact 2.1. For any distribution µ, number of messages c
and player P , Qc,P

µ,ε (f) ≤ Qc,P
ε (f).

2.2 Information theory background

Measures of distinguishability
The quantum mechanical analogue of a random variable is
a probability distribution over superpositions, also called a
mixed state. For the mixed state X = {pi, |φi〉}, where |φi〉
has probability pi, the density matrix is defined as ρX =∑

i pi |φi〉〈φi|.
The trace norm of a matrix A is defined as ‖A ‖t =

Tr
√
A†A, which is the sum of the magnitudes of the sin-

gular values of A. Note that

‖ |φ1〉〈φ1| − |φ2〉〈φ2| ‖t = 2

√
1 − |〈φ1 |φ2〉|2. (1)

A fundamental theorem about distinguishing mixed states
is the following.

Theorem 2.2. Let ρ1, ρ2 be two density matrices on the
same space H. Then for any measurement O,∥∥∥ ρO1 − ρO2

∥∥∥
1

≤ ‖ ρ1 − ρ2 ‖t ,

where ρO denotes the classical distribution on outcomes re-
sulting from the measurement of ρ, and ‖ · ‖1 is the �1 norm.

See [1] for more details.
A useful alternative to the trace metric as a measure of

closeness of density matrices is fidelity, which is defined in
terms of the pure states that can give rise to those density
matrices. A purification of a mixed state ρ with support
in a Hilbert space H is any pure state |φ〉 in an extended
Hilbert space H ⊗ K such that TrK |φ〉〈φ| = ρ. Given two
density matrices ρ1, ρ2 on the same Hilbert space H, their
fidelity is defined as

F (ρ1, ρ2) = sup |〈φ1 |φ2〉|2 ,
where the supremum is taken over all purifications |φi〉 of ρi
in the same Hilbert space [12].

Jozsa [12] gave a simple proof, for the finite dimensional
case, of the following remarkable equivalence first estab-
lished by Uhlmann [27].

Theorem 2.3 (Jozsa). For any two density matrices
ρ1, ρ2 on the same finite dimensional space H,

F (ρ1, ρ2) =
[
Tr (

√
ρ1 ρ2

√
ρ1)

1
2

]2

= ‖√ρ1
√
ρ2 ‖2

t
.
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Using this equivalence, Fuchs and van de Graaf [11] relate
fidelity to the trace distance.

Theorem 2.4 (Fuchs, van de Graaf). For any two
mixed states ρ1, ρ2,

1 −
√
F (ρ1, ρ2) ≤ 1

2
‖ ρ1 − ρ2 ‖t ≤

√
1 − F (ρ1, ρ2).

Entropy and mutual information
The Shannon entropy S(X) of a classical random variable X
and mutual information I(X : Y ) of a pair of random vari-
ables X,Y are defined as usual (see, e.g., [9]). H(·) denotes
the binary entropy function. We use a simple form of Fano’s
inequality.

Fact 2.5 (Fano’s inequality). Let X be a uniformly
distributed boolean random variable, and let Y be a boolean
random variable such that Prob(X = Y ) = p. Then I(X :
Y ) ≥ 1 −H(p).

We also need the following bound.

Fact 2.6. H( 1
2

+ δ) ≤ 1 − δ2, for δ ∈ [− 1
2
, 1

2
].

The von Neumann entropy S(ρ) of a density matrix ρ is
defined as S(ρ) = −Tr ρ log ρ = −∑

i λi log λi, where {λi}
is the multi-set of all the eigenvalues of ρ. We also consider
relative von Neumann entropy of two density matrices, de-
fined by S(ρ||σ) = Tr ρ log ρ − Tr ρ log σ. For properties of
these two functions see [25].

We define the “mutual information” I(X : Y ) of two dis-
joint quantum systems X,Y as I(X : Y ) = S(X) + S(Y ) −
S(XY ), where XY is density matrix of the system that in-
cludes the qubits of both systems. Then

I(X : Y Z) = I(X : Y ) + I(XY : Z) − I(Y : Z) (2)

I(X : Y Z) ≥ I(X : Y ). (3)

Equation (3) is in fact equivalent to the strong sub-additivity
property of von Neumann entropy.

In analogy with classical conditional entropy, we define
conditional von Neumann entropy S(Y |X) =

∑
x pxS(σx),

when X is a classical random variable and Y is a quan-
tum encoding of it given by x �→ σx. Thus, for exam-
ple, I(X : Y ) = S(Y ) − S(Y |X). We similarly define condi-
tional mutual information for quantum states.

3. THE TECHNICAL THEOREMS

3.1 Average encoding
The average encoding theorem asserts that if a quantum

encoding has little correlation with the encoded classical in-
formation then the encoded states are essentially indistin-
guishable. In particular, they are all “close” to the average
encoding. This theorem formalizes a very intuitive idea and
might seem to be immediate from Holevo’s theorem. How-
ever, there is a subtle difference: in Holevo’s theorem one
is interested in a single measurement that simultaneously
distinguishes all the states, whereas in our case we are in-
terested in their pairwise distinguishability. We first prove:

Theorem 3.1. Let x �→ σx be a quantum encoding map-
ping m bit strings x ∈ {0, 1}m into mixed states σx. Let X be
distributed uniformly over {0, 1}m and let Q be the encoding
of X according to this map. Then I(X : Q) ≥ 1−H( 1

2
+ ∆

4
),

where ∆ = 1
22m

∑
x1,x2∈{0,1}m ‖σx1 − σx2 ‖t.

Proof. We start with the special case of m = 1. It is
known [1] that there is a measurement O on Q that realizes
the trace norm distance t = ‖σ0 − σ1 ‖t between σ0 and σ1.
Using Bayes’ strategy (see, for example, [11]), the resulting
distributions can be identified with probability 1

2
+ t

4
. Let Y

denote the classical random variable holding the result of
this entire procedure. We have Prob(Y = X) = 1

2
+ t

4
.

Thus, by Fano’s Inequality, I(X : Y ) ≥ 1 − H( 1
2

+ t
4
). We

complete the proof for m = 1 by noticing that ∆ = t
2
,

and that measurements can only reduce mutual information,
so I(X : Q) ≥ I(X : Y ).

To prove the theorem for general m we reduce it to the
m = 1 case. We do this by partitioning the set of strings
into pairs with “easily” distinguishable encoding.

Lemma 3.2. There is a partition of {0, 1}m into a set
of 2m/2 disjoint pairs (x2i−1, x2i) such that

2

2m

∑
i

∥∥ σx2i−1 − σx2i

∥∥
t

≥ ∆.

Proof. The expectation of the LHS over a random pair-
ing is 2m

2m−1
∆, so there is a pairing that achieves average

distance ∆.

We now fix this pairing. Let Zi denote the set of ele-
ments in the i’th pair, i.e., Zi = {x2i−1, x2i} and ∆i =∥∥ σx2i−1 − σx2i

∥∥
t
. We know that 2

2m

∑
∆i ≥ ∆. Let us also

denote f(δ) = 1 − H( 1
2

+ δ
4
). From the base case m = 1,

we know that for any i = 1, . . . , 2m/2, I(X : Q |X ∈ Zi) ≥
f(∆i). Thus we get:

S(Q |X ∈ Zi) − 1

2
[S(σx2i ) + S(σx2i+1)] ≥ f(∆i).

Averaging all the 2m/2 equations yields:

2

2m

∑
i

S(Q |X ∈ Zi) − 1

2m

∑
x

S(σx) ≥ 2

2m

∑
i

f(∆i)

By the concavity of entropy, S(Q) ≥ 2
2m

∑
i S(Q |X ∈ Zi),

and by definition 1
2m

∑
x S(σx) = S(Q|X). Therefore,

I(X : Q) = S(Q) − S(Q|X) ≥ 2

2m

∑
i

f(∆i).

Since f is convex, 2
2m

∑
i f(∆i) ≥ f( 2

2m

∑
i ∆i). Also, f(δ)

is monotone increasing for 0 ≤ δ ≤ 2, so f( 2
2m

∑
i ∆i) ≥

f(∆). Together this yields I(X : Q) ≥ f(∆), as required.

Now, we can easily deduce Theorem 1.4.
Proof of Theorem 1.4. Let ∆′ = 1

2m

∑
x1

‖σx1 − σ ‖t.
We have:

∆′ =
1

2m

∑
x1

∥∥∥∥∥ 1

2m

∑
x2

(σx1 − σx2)

∥∥∥∥∥
t

≤ 1

22m

∑
x1,x2

‖σx1 − σx2 ‖t = ∆.

By Theorem 3.1, I(X : Q) ≥ 1−H( 1
2

+ ∆
4

), and by Fact 2.6

we have 1 −H( 1
2

+ ∆
4

) ≥ 1 − (1 − (∆
4

)2) = ∆2

16
. Thus, ∆′ ≤

∆ ≤ 4
√
I(X : Q).

As stated in the introduction we have a more general the-
orem that also implies the average encoding theorem. We
now describe its proof.
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Proof of Theorem 1.5. We show below that it suffices
to prove the theorem for 2×2 density matrices, and omit the
necessary computations for the 2×2 case from this extended
abstract. For details see [15].

All eigenvalues of ρ − σ are real, since the matrix is is
Hermitian. Let S be the multiset of all nonnegative eigen-
values of ρ− σ and R the multiset of all its negative eigen-
values. Now if the dimension of the space HS spanned by
the eigenvectors corresponding to S has dimension k and
the space HR spanned by the eigenvectors corresponding to
R has dimension n− k, we increase (if required) the size of
the underlying Hilbert space so that both spaces have the
same dimension n′ = max{k, n − k}. The density matrices
have zero entries at the corresponding positions. Now we
view the density matrices as density matrices over a prod-
uct space H2 ⊗ Hn′ , where the H2 space “indicates” the
space HS or HR.

We trace out the space Hn′ in ρ, σ, ρ − σ, to obtain the

2 × 2 matrices ρ̃, σ̃, ρ̃− σ. Note that the matrix ρ̃− σ is di-
agonalized and contains the sum of all nonnegative eigenval-
ues, and the sum of all negative eigenvalues on its diagonal.

Furthermore ρ̃− σ = ρ̃− σ̃.
Due to Lindblad-Uhlmann monotonicity of the relative

von Neumann entropy (see [25]) we get S(ρ||σ) ≥ S(ρ̃||σ̃).
Thus, it suffices to bound the latter by

1

2 ln 2
‖ ρ̃− σ̃ ‖2

t =
1

2 ln 2

∥∥∥ ρ̃− σ
∥∥∥2

t
,

and then conclude the theorem, since the trace norm of ρ̃− σ
is the sum of absolute values of its eigenvalues, which is the
sum of absolute values of eigenvalues of ρ−σ by construction,
i.e., ||ρ̃ − σ̃||t = ||ρ − σ||t.

3.2 Local transition between bipartite states
The idea of local transitions has been used by Lo and

Chau [17] and Mayers [18] in showing the impossibility of
ideal coin-tossing and bit-commitment. They show that if
two bi-partite states are indistinguishable by one party shar-
ing the states, then the other party can locally transform one
state to the other. This follows directly from a result due to
Jozsa [12], a part of which was stated as Theorem 2.3:

Theorem 3.3 (Jozsa). Suppose |φ1〉 , |φ2〉 ∈ H⊗K are
the purifications of two density matrices ρ1, ρ2 in H. Then,
there is a local unitary transformation U on K such that
F (ρ1, ρ2) = |〈φ1| (I ⊗ U) |φ2〉|2.

Thus, if ρ1 = ρ2, the transformation U may be chosen so
that (I ⊗ U) |φ2〉 = |φ1〉. A natural generalization of this is
to the case where the reduced density matrices are close to
each other but not quite the same, which is what appears in
Theorem 1.6. Lo and Chau [17] and Mayers [18] considered
this case as well. Theorem 1.6 formalizes their intuition by
using the newer results of [11] stated in Theorem 2.4.

Proof of Theorem 1.6. By Theorem 3.3, there is a (lo-
cal) unitary transformation U on K such that (I⊗U) |φ2〉 =

|φ′
2〉, a state which achieves fidelity: F (ρ1, ρ2) = |〈φ1 |φ′

2〉|2.
Moreover, by fact (1) we have∥∥ |φ1〉〈φ1| −

∣∣φ′
2

〉〈
φ′

2

∣∣ ∥∥
t

= 2

√
1 − |〈φ1 |φ′

2〉|2 = 2
√

1 − F (ρ1, ρ2).

By Theorem 2.4,
√
F (ρ1, ρ2) ≥ 1 − 1

2
‖ ρ1 − ρ2 ‖t, so

1−F (ρ1, ρ2) ≤ 1−
(

1 − 1

2
‖ ρ1 − ρ2 ‖t

)2

≤ ‖ ρ1 − ρ2 ‖t .

Combining these gives us the required result.

4. THE ROLE OF INTERACTION IN
QUANTUM COMMUNICATION

In this section, we prove that allowing more interaction
between two players in a quantum communication game
can substantially reduce the amount of communication re-
quired. We first define a communication problem and state
our results formally (giving an overview of the proof), and
then give the details of the proofs. For the most part, we
will concentrate on communication in a constant number of
rounds. Section 4.4 describes the application to the disjoint-
ness problem. Section 4.5 discusses our results in the case
where the number of messages grows as a function of the in-
put size. Section 4.6 analyzes the quantum communication
complexity of the Pointer Jumping function.

4.1 The communication problem and its com-
plexity

In this section, we give the main components of the proof
of Theorem 1.1. We define problems S1, S2, . . . , Sk, . . . by
induction. The problem S1 is the index function, i.e., Alice
has an n-bit string x ∈ X1 = {0, 1}n, Bob has an index i ∈
Y1 = [n] and the desired output is S1(x, i) = xi. Suppose
we have already defined the function Sk−1 : Xk−1 ×Yk−1 →
{0, 1}. In the problem Sk, Alice has as input her part of n
independent instances of Sk−1, i.e., x ∈ Xn

k−1, Bob has his
share of n independent instances of Sk−1, i.e., y ∈ Yn

k−1, and
in addition, there is an extra input a ∈ [n] which is given to
Alice if k is even and to Bob if k is odd. The output we seek
is the solution to the ath instance of Sk−1. In other words,
Sk(x1, . . . , xn, a, y1, . . . , yn) = Sk−1(xa, ya).

Note that the size of the input to the problem Sk is N =
Θ(nk). If we allow k message exchanges for solving the prob-
lem, it can be solved by exchanging Θ(logN) = Θ(k log n)
bits: for k = 1, Bob sends Alice the index i and Alice then
knows the answer; for k > 1, the player with the index a
sends it to the other player and then they recursively solve
for Sk−1(xa, ya). However, we show that if we allow one
less message, then no quantum protocol can compute Sk as
efficiently. In fact, no quantum protocol can compute the
function as efficiently even if we require small probability of
error only on average. (The ‘U ’ below stands for the uniform
distribution over the inputs.)

Theorem 4.1. For all constant k ≥ 1, 0 ≤ ε < 1
2
,

Qk
U,ε(Sk+1) ≥ Ω

(
N1/(k+1)

)
.

In fact, we prove a stronger intermediate claim. Let P1 be
Bob, and for k ≥ 2, let Pk denote the player that holds the
index a in an instance of Sk (a indicates which of the n in-
stances of Sk−1 to solve). Let P̄k denote the other player.
We refer to P̄k as the “wrong” player to start a protocol
for Sk. The stronger claim is that any k message protocol
for Sk in which the wrong player starts is exponentially in-
efficient as compared to the logN protocol described above.
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Theorem 4.2. For all constant k ≥ 1, 0 ≤ ε < 1
2
,

Qk,P̄k
U,ε (Sk) ≥ Ω(n) = Ω

(
N1/k

)
.

In fact, there is a classical k-message, O(n)-bit protocol in
which the wrong player starts, so our lower bound is optimal.

Theorem 4.1 now follows directly.
Proof of Theorem 4.1. It is enough to show the

lower bound for the two cases when the protocol starts either
with Pk+1 or with the other player.

Let Pk+1 be the player to start. Note that if we set a
to a fixed value, say 1, then we get an instance of Sk.

So Q
k,Pk+1
U,ε (Sk) ≤ Q

k,Pk+1
U,ε (Sk+1). But Pk+1 = P̄k, so the

bound of Theorem 4.2 applies.
Let player P̄k+1 be the one to start. Then, observe that if

we allow one more message (i.e., k + 1 messages in all), the

complexity of the problem only decreases: Q
k+1,P̄k+1
U,ε (Sk+1)

≤ Q
k,P̄k+1
U,ε (Sk+1). So we again get the bound from Theo-

rem 4.2.
We prove Theorem 4.2 by induction. First, we show that

the index function is hard to solve with one message if the
wrong player starts. This essentially follows from the lower
bound for random access codes in [20]. The only difference
is that we seek a lower bound for a protocol that has low
error probability on average rather than in the worst case,
so we need a refinement of the original argument. We give
this in the next section.

Lemma 4.3. For any 0 ≤ ε ≤ 1, Q1,A
U,ε (S1) ≥ (1−H(ε))n.

Next, we show that if we can solve Sk with k messages
with the wrong player starting, then we can also solve Sk−1

with only k − 1 messages of almost the same total length,
again with the wrong player starting, at the cost of a slight
increase in the average probability of error.

Lemma 4.4. For all k ≥ 2, 0 ≤ ε < 1
2
, Q

k−1,P̄k−1
U,ε′ (Sk−1)

≤ �+ log n, where � = Qk,P̄k
U,ε (Sk), and ε′ = ε + 4(�/n)1/4.

We defer the proof of this lemma to a later section, but show
how it implies Theorem 4.2 above.

Proof of Theorem 4.2. We prove the theorem by
induction on k. The case k = 1 is handled by Lemma 4.3.
Suppose the theorem holds for k − 1. We prove by contra-
diction that it holds for k as well.

If Qk,P̄k
U,ε (Sk) = o(n), then by Lemma 4.4 there is a k − 1

message protocol for Sk−1 with the wrong player starting,
with error ε′ = ε + o(1) < 1

2
, and with the same commu-

nication complexity o(n). This contradicts the induction
hypothesis.

In the case of communication with prior entanglement,
the lower bound in Lemma 4.3 decreases by a factor of two.
Lemma 4.4, however, may be strengthened so that we get a
slightly better lower bound in Theorem 4.8. The details are
omitted.

4.2 The key lemmas
We now prove average case hardness of the index function.
Proof of Lemma 4.3. Consider any protocol for S1

with Alice sending the first (and only) message. Let εi be
the probability of error when the input to Alice is uniformly
random but the input to Bob is i. Note that ε =

∑
i εi/n.

Let X denote the random variable containing Alice’s input,

and Q the message qubits sent by Alice. From Properties (2)
and (3) in Section 2, and the concavity of binary entropy,

I(X : Q) ≥
∑
i

I(Xi : Q) ≥
∑
i

(1 −H(εi)) ≥ n(1 −H(ε)).

The second inequality follows from the fact that Bob has
a measurement that predicts Xi with error εi and Fact 2.5
(Fano’s inequality). On the other hand, I(X : Q) is bounded
above by the number of qubits in the message.

Next, we show how an efficient protocol for Sk gives rise
to an efficient protocol for Sk−1. The intuition behind the
argument is the same as in [19, 16]. However, we use en-
tirely new techniques from quantum information theory, as
developed in Sections 3.1 and 3.2 and also get better bounds.

Proof of Lemma 4.4. For concreteness, we assume
that k is even, so that P̄k is Bob. Let P be a protocol that
solves Sk with respect to the uniform distribution U with �
message qubits, error ε, and k messages starting with Bob.
We would like to concentrate on inputs where a is fixed to
a particular value in [n] (which is also known to Bob). This
would give rise to an instance of Sk−1 that is also solved
by P , but with k messages. An easy argument shows that if
it is much smaller than n qubits long, the first message M
carries almost no information about ya for a which is picked
at random. We would like to argue that it is therefore not
relevant for solving Sk−1. However, the correctness of the
protocol relies on the message, so we try to reconstruct the
message with Alice starting the protocol instead. We give
the details below.

We first derive a protocol P ′ which has low error on an
input for Sk generated as below (we call the resulting dis-
tribution Ua=j): x1, . . . , xn are chosen uniformly at random
from Xk−1, a is set to j, yj is chosen uniformly at random
from Yk−1, and for all i �= j, register Yi is initialized to the
state

∑
z∈Yk−1

|z〉 (normalized).

Let εj denote the error of P with respect to the distribu-
tion Ua=j . Note that 1

n

∑
i εi ≤ ε, since having the Yi in a

uniform superposition over all possible inputs has the same
effect on the result of the protocol as having it randomly
distributed over the inputs (recall that we require that the
input registers are not changed during a quantum proto-
col). Let µj be the mutual information I(M : Yj) in the
protocol P when run on the mixed state Ua=j with yj being
chosen randomly.

Lemma 4.5. There is a protocol P ′ which solves Sk with

respect to the distribution Ua=j with error δj = εj + 4µ
1/4
j

error, � message qubits and k rounds starting with Bob, such
that I(M : Yj) = 0.

The protocol P ′ is obtained by slightly modifying the first
message in protocol P so that it is completely independent
of Yj . This only affects the average probability of error. In-
tuitively this means that Alice does not need to get that
message at all, or equivalently that she can recreate it her-
self. This gives a protocol for solving Sk−1(xj , yj) with k−1
messages and with Alice starting.

Lemma 4.6. There is a protocol P ′′ that solves Sk−1 with
respect to U with ε′ error, �+ logn message qubits and k−1
messages starting with Alice.

Together we get Qk−1,A
U,ε′ (Sk−1) ≤ � + log n.
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4.3 Proof of lemmas 4.5 and 4.6
Proof of Lemma 4.5. First consider the case when Yj

is fixed to some z, but the rest of the inputs are as in Ua=j .
In protocol P Bob applies a unitary transformation V on
his qubits and computes |φ(z)〉 = V |0̄, Y1, . . . , Yn〉 in reg-
ister M (for the message) and B (for Bob’s ancilla and
input). In P ′ the message computation is slightly differ-
ent. Instead of computing |φ(z)〉, Bob computes |φ′〉 =
V |0̄, Y1, . . . , Yj−1〉 |ψ〉 |Yj+1, . . . , Yn〉, where |ψ〉 is the uni-
form superposition over Yk−1. Clearly, in P ′ the state |φ′〉
and hence the message M does not depend on yj = z,
hence I(M : Yj) = 0 when Yj is uniformly random.

Let us denote by ρM (z) the reduced density matrix of the
message register M in P when the input is drawn according
to Ua=j but yj = z, let the corresponding density matrix
for P ′ be ρM . Clearly, ρM = 1

|Yk−1|
∑

z∈Yk−1
ρM (z). Let

tz = ‖ ρM − ρM (z) ‖t, Theorem 1.4 implies Eztz ≤ 4
√
µj .

Protocol P ′ generates the pure state |φ′〉, while the de-
sired pure state is |φ(z)〉. Bob, who knows yj = z knows
both |φ(z)〉 and |φ′〉. By Theorem 1.6 there is a local uni-
tary transformation Tz acting on register B alone, such that∥∥ ∣∣Tzφ′〉〈Tzφ′∣∣ − |φ(z)〉〈φ(z)|∥∥

t
≤ 2

√
tz.

The next step in protocol P ′ is that Bob applies the transfor-
mation Tz to his register B. After that, protocol P ′ proceeds
exactly as in P . Therefore, for a given z, the probability
that P and P ′ disagree on the result is at most 2

√
tz, and

the error probability of P ′ on Ua=j is at most

δj = εj + 2Ez

√
tz ≤ εj + 2

√
Eztz ≤ εj + 4µ

1/4
j ,

where the second step follows from Jensen’s inequality.
Proof of Lemma 4.6. Protocol P ′′ solves an instance

of Sk−1. Alice is given an input x̂ ∈R Xk−1 and Bob is given
an input ŷ ∈R Yk−1. The protocol proceeds as follows. Alice
and Bob first reduce the problem to an Sk instance taken
from the distribution Ua=j for a random j. To do that, Alice
picks j ∈ [n] at random, sets a = j and sends it to Bob; Alice
sets xj = x̂ and Bob sets yj = ŷ; Alice picks xi ∈R Xk−1

for i �= j; and Bob initializes each register Yi for i �= j
with

∑
z∈Yk−1

|z〉 (normalized).

Notice that if Alice and Bob run the protocol P ′ over this
input, then they get the answer Sk−1(x, y) with probability
of error at most ε′ = 1

n

∑n
i=1 δi, which by Lemma 4.5 is

bounded by

1

n

n∑
i=1

εi + 4
1

n

n∑
i=1

µ
1/4
i ≤ ε + 4

[
1

n

n∑
i=1

µi

] 1
4

.

We claim that

Claim 4.7.
∑

i µi ≤ �1, where �1 is the length of the mes-
sage M .

Hence ε′ ≤ ε + 4(�/n)1/4.
Alice and Bob do not run the protocol P ′ itself, but a

modification of it in which Alice sends the first message in-
stead of Bob, thus reducing the number of rounds to k − 1.

Let ρM be the reduced density matrix of register M hold-
ing the first message that Bob sends to Alice in P ′, for the
input given above. By Lemma 4.5, we know that ρM does
not depend on yj = ŷ. So ρM is known in advance to Al-
ice. Alice starts the protocol P ′′ by purifying ρM . More
specifically, let {|ei〉} be an eigenvector basis for ρM with

real and positive eigenvalues λi. Alice constructs the super-
position

∑
i

√
λi |ei, i〉MB over two registers M (containing

the eigenvectors) and B (containing the label i), and sends
register B to Bob. She also sends the index a (chosen as
above). The state of the system after this message in P ′′ is

|ξ〉 = |x1, . . . , xn〉A ⊗
∑
i

√
λi |ei〉M |i〉B

whereas in P ′ it is |χ(ŷ)〉 = |x1, . . . , xn〉A ⊗ |Tŷφ′〉MB .
The reduced density matrix of |ξ〉 restricted to registers

AM is the same as the reduced density matrix of |χ(ŷ)〉 re-
stricted to registers AM . By Theorem 3.3, Bob has a local
unitary transformation Vŷ (operating on his register B) that
transforms |ξ〉 to |χ(ŷ)〉. Bob applies Vŷ, and Alice and Bob
then simulate the rest of the protocol P ′. From this stage
on, the runs of the protocols P ′ and P ′′ are identical have
the same communication complexity and success probabil-
ity.

Proof of Claim 4.7. Note that µj is the same as
the mutual information I(M : Yj) when P is run on the
uniform distribution on Xn

k−1 × Yn
k−1. In the latter case,

Properties (2) and (3) imply the claim, as in the proof of
Lemma 4.3.

4.4 The disjointness problem
We now investigate the bounded round complexity of the

disjointness problem. Here Alice and Bob each receive the
incidence vector of a subset of a size n universe. They reject
iff the sets are disjoint. It is known the Q1

ε(DISJ) ≥ (1 −
H(ε))n [14, 7]. Furthermore Q

O(
√
n)

1/3 (DISJ) = O(
√
n log n)

by an application of Grover search [6]. We now prove a lower
bound by reduction.

Proof of Corollary 1.3. Suppose we are given a k
round quantum protocol for the disjointness problem hav-
ing error 1/3 and using c qubits. W.l.o.g. we can assume
Bob starts the communication, because the problem is sym-
metrical, and that k is even. We reduce the communication
problem Sk from Section 4.1 to DISJ.

We visualize an instance of Sk as defining a subtree of
the n-ary tree with k + 1 levels and the edges at alternate
levels known to Alice and Bob, respectively. The leaves of
the tree are labelled by boolean values known to Alice (since
k is even). The only edge at the root connects it to the ath
child, where a ∈ [n] is the input that specifies which instance
of Sk−1 is to be solved. The subtrees at the second level are
defined recursively according to the n instances of Sk−1.

There are at most nk possible paths of length k that could
start at the root vertex. With each such path we associate an
element in the universe for the disjointness problem. Given
the edges originating from each of their levels, Alice and Bob
construct an instance of DISJ on a universe of size N = nk.
Alice checks for each possible path of length k whether the
path is consistent with her input and whether the paths
leads to a leaf which corresponds to the bit 1. In this case
she takes the corresponding element of the universe into her
subset. Bob similarly constructs his subset. Now, if the
two subsets intersect, then the (unique) element in the in-
tersection witnesses a length k path leading to 1-leaf. If the
subsets do not intersect, then the length k path from the
root leads to a 0-leaf.

We thus obtain a k round protocol for Sk in which Bob
starts. By Theorem 4.2, the communication c is Ω(n) for
any constant k. Since the input length for the constructed
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instance of DISJ is N = nk, we get Qk
1/3(DISJ) = Ω(N1/k)

for k = O(1).

4.5 Beyond a constant number of messages
So far, we have discussed the complexity of solving Sk

in the context of protocols with a constant number of mes-
sages. In fact, we may derive a meaningful lower bound even
when k grows as a function of the parameter n (hence as a
function of N = nk, the input size). We may state the result
as follows.

Theorem 4.8. For all k = k(n) ≥ 1, and constant ε < 1
2
,

Q
k,P̄k
U,ε (Sk) ≥ Ω

(
n
k4 − k log n

)
.

This theorem follows immediately from Lemmas 4.3 and 4.4
by keeping careful track of the probability of error and the
communication cost as a protocol for Sk is reduced to a
protocol for S1.

The above theorem implies a gap in communication com-
plexity between k and k + 1 message protocols for k up
to Θ((n/ log n)1/5) = Θ(logN/ log logN), and also lower
bounds for DISJ for such k.

4.6 The pointer jumping function
The Pointer Jumping function is considered in most re-

sults showing a round-hierarchy for classical communication
complexity [10, 22, 24, 13]. This problem is a particularly
natural candidate for such results.

Definition 4.1. Let VA and VB be disjoint sets of n ver-
tices each.

Let FA = {fA|fA : VA → VB}, and FB = {fB |fB : VB →
VA}.
f(v) = ffA,fB (v) =

{
fA(v) if v ∈ VA,
fB(v) if v ∈ VB .

Define f (0)(v) = v and f (k)(v) = f(f (k−1)(v)).
Then gk : FA×FB → (VA∪VB) is defined by gk(fA, fB) =

f
(k+1)
fA,fB

(v1), where v1 ∈ VA is fixed. The function fk : FA ×
FB → {0, 1} is the XOR of all bits in the binary code of the
output of gk.

Nisan and Wigderson proved in [22] that fk has a random-
ized k round communication complexity of Ω(n/k2−k log n)
if Bob starts communicating and a deterministic k round
communication complexity of k log n if Alice starts. The
lower bound can also be improved to Ω(n/k + k), see [14].
The advantage of the lower bounds for Pointer Jumping
compared to the bounds for the problem investigated in Sec-
tion 4.1 is that they are linear in the number n of vertices
(for constant k). The input length of Pointer Jumping is
2n log n. With techniques similar to the ones in this section

we can also show a lower bound of (1−2ε)2n
2k2 − k log n for

the randomized k round complexity of fk when Bob starts,
which is better than the above lower bounds for small con-
stant values of k.

Nisan and Wigderson describe a randomized protocol for
computing gk with communication O((n/k) log n+k log n) in
the situation where Bob starts and k rounds are allowed [22].
Ponzio et al. show that the deterministic communication
complexity of fk is O(n) then, assuming k = O(1) [24]. First
we give a new upper bound which combines ideas from [22]
and [24]. Its proof is given in [15].

Theorem 4.9. Rk,B
ε (gk) ≤ O( n

kε
· (log(k/2) n + log k) +

k log n).
If k ≥ 2 log∗(n) then Rk,B(gk) ≤ O((n

k
+ k) log k).

Previous lower bounds for Pointer Jumping [22, 24] take
the following approach. They consider the complexity of
deterministic protocols with error under the uniform dis-
tribution. Then they show that at a random leaf of the
protocol tree with high probability the entropy of vk+2 is
still large, where v1, v2, . . . , vk+2 denote the vertices of the
relevant path in the input graph.

One is tempted to think that a “simpler” approach is pos-
sible, and that the information between the messages of all
rounds and vk+2 is small. Or more generally that the in-
formation between the first t messages and vt+1 is small.
But this is not true, as the protocol for the Pointer Jumping
function gk resp. fk given in the proof of Theorem 4.9 shows.

So in our lower bound we replace the usual notion of in-
formation by another quantity called informational distance,
which is based on distinguishability.

Due to Theorem 1.5, the following holds for a bipartite
state ρAB :

I(A : B) = S(ρAB||ρA ⊗ ρB) ≥ 1

2 ln 2
||ρAB − ρA ⊗ ρB||21.

Thus the measurable distance between the tensor product
state and the “real” bipartite state can be bounded in terms
of the information. We will call the value D(A : B) =
||ρAB − ρA ⊗ ρB||t the informational distance. The next
lemma collects a few properties of informational distance.

Lemma 4.10. For all states ρABC the following holds:

1. D(A : B) = D(B : A).

2. D(AB : C) ≥ D(A : C).

3. 0 ≤ D(A : B) ≤ 2.

4. D(A : B) ≥ ||F (ρAB)−F (ρA⊗ρB)||t for all completely
positive and trace-preserving superoperators F .

5. D(A : B) ≤ √
2I(A : B).

Now we state our lower bound for Pointer Jumping. Note
that the lower bound is linear in n for constant k and leads
to Theorem 1.2.

Theorem 4.11. Qk,B
1/3 (fk) ≥ n/22O(k) − k log n.

Proof. We consider some quantum protocol for fk with
error 1/3, k rounds, Bob starting.

At any time in the protocol Alice has access to qubits
containing her input, some “work” qubits and some of the
qubits used in messages so far, the same holds for Bob. We
require the protocol to satisfy some properties. First we
require that in round t the vertex vt = f (t−1)(v1) is commu-
nicated by a classical message and stored by the receiving
player. This increases the communication by an additive
k log n term. Furthermore we demand the protocol be of
the form described in Section 2.

Usually a protocol gets some classical fA and fB as in-
puts, but we will investigate what happens if the protocol
is started on a superposition over all inputs, in which all in-
puts have the same amplitude. The superposition on inputs
is measured after the protocol has finished.
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The density matrix of the global state of the protocol is
ρMA,tMB,tFAFB . Here FA, FB are the qubits holding the in-
puts of Alice and Bob and MA,t resp. MB,t are the other
qubits in the possession of Alice and Bob before the com-
munication of round t.

We demand that before round t the t th vertex of the path
is measured. This vertex is stored in some qubits Vt. V1 has
the fixed value v1. Before some later round t the global
state is a probabilistic mixture over the possibilities to fix
the first t − 1 vertices of the path. For each pure state in
the mixture the first t− 1 vertices are fixed and Vt is either
FA(vt−1) or FB(vt−1) and may be measured in the standard
basis. Note that the fixed vertices are included in previous
messages. The measurements do not affect the correctness
of the protocol.

We assume that the communication complexity of the pro-

tocol is now δn and prove a lower bound δ ≥ 2−2O(k)
.

The general strategy of the proof is an induction over
the rounds. We show that D(MA,t+1FA : FB(Vt+1)) ≤
4
√
D(MB,tFB : FA(Vt))+

√
4δ (and the same with A and B

exchanged). Actually this is a slight abuse of terminology,
since Vt+1 is not fixed but determined by MA,t+1 and FA,
and so for different messages different pointers are consid-
ered. However, at the time, when we consider FB(Vt+1) we
have that Vt+1 is a classical random variable, whose value is
fixed in MA,t+1.

Bob sends the first message. Then obviously I(MB,1FB :
V2) = 0, because Bob has seen no message yet, and V2 is
determined by FA. This implies D(MB,1FB : V2) = 0. The
invariant of the induction will be that D(MA,tFA : Vt+1)
resp. D(MB,tFB : Vt+1) is small.

First we consider the information Alice has on Bob’s input
(for a proof see [15]).

Lemma 4.12. I(MA,tFA : FB) ≤ 2δn at all times t.

Now consider the situation that FB is uniformly random
instead of being in the Hadamard superposition. Then∑n

i=1
1
n
I(MA,tFA : FB(i)) ≤ 2δ, because the FB(i) are mu-

tually independent. The value of I(MA,tFA : FB(i)) stays
the same, if all FB(j) for j �= i are in superposition and
FB(i) is random, instead of all of FB being random.

By Lemma 4.10 we get:

n∑
i=1

1

n
D(MA,tFA : FB(i)) ≤

√
4δ, (4)

where (4) holds at all times in the protocol, if we consider
the situation that FB(i) is random instead of being in su-
perposition.

We use the induction hypothesis that D(MA/B,tFA/B :

Vt+1) ≤ γt and let γt = 4
√
γt−1 +

√
4δ and γ1 = 0. Then

γt+1 ≤ 3tδ1/2
t

for all t ≥ 0.
W.l.o.g. let Alice be the speaker in round t + 1. Be-

fore that round Vt+1 = FA(Vt) is measured. The result-
ing state is a probabilistic ensemble over the possibilities to
fix V1, . . . , Vt+1, which are then classically distributed. Any
reduced state containing at least all qubits of one player is
block diagonal with respect to the possible values of the ver-
tices V1, . . . , Vt, since they are either in a player’s input or
received messages.

We may assume by induction that D(MB,tFB : Vt+1) ≤ γt
and consequently D(MB,t+1FB : Vt+1) ≤ γt, because in
round t Bob has received no qubits. Let MA = MA,t+1 and

MB = MB,t+1. Consider some fixed path p which is a value
of V1, . . . , Vt. Let v be some value of Vt+1. For any p, v let
ρpMAMBFAFB

denote the state with the path V1, . . . , Vt fixed

to p and ρp,vMAMBFAFB
denote the state with V1, . . . , Vt+1

fixed to p, v.
We know that ρMBFBVt+1 and ρMBFB ⊗ ρVt+1 are close

in the trace distance: ||ρMBFBVt+1 − ρMBFB ⊗ ρVt+1 ||t =
EpEv||ρp,vMBFB

− ρpMBFB
||t ≤ γt.

Then Ep,vγp,v ≤ γt for

γp,v = ||ρp,vMBFB
− ρpMBFB

||t. (5)

Furthermore (4) implies

||ρpMAFAFB(i) − ρpMAFA
⊗ ρFB(i)||t = βp,i (6)

with Ep,iβp,i ≤
√

4δ, where i is uniformly distributed. Here
FB(i) is assumed to be uniformly random (i.e., measured).
Equation (6) also holds if Vt+1 is not yet measured.

Now we are interested in the value D(MAFA : FB(Vt+1))

= EpEv||ρp,vMAFAFB(v) − ρp,vMAFA
⊗ ρFB(v)||t

We now employ Theorem 1.6. ρp,vMAMBFAFBR is a purifica-

tion of ρp,vMBFB
and ρpMAMBFAFBR

a purification of ρpMBFB

for all p, v, where R is some additional space used to pu-
rify the random Vt+1 in ρpMAMBFAFB

and left blank in the
former.

Due to the Theorem 1.6 there is a unitary transforma-
tion U such that the application of U to FAMAR changes
ρpMAMBFAFBR to some state σpMAMBFAFBR that has by (5)

distance 2
√
γp,v from ρp,vMAMBFAFBR

.
Then since tracing out cannot increase the distance:

||ρp,vMAFAFB(v) − σpMAFAFB(v)||t ≤ 2
√
γp,v. (7)

This also holds, if FB(v) is measured. Since we have to
show the induction step only for a state with uniformly ran-
dom Vt+2, we consider FB(v) as uniformly random from now
on. Since U is unitary and acts on MAFAR only for all p, v:

||σpMAFAFB(v) − σpMAFA
⊗ ρFB(v)||t

≤ ||σpMAFARFB(v) − σpMAFAR
⊗ ρFB(v)||t

= ||ρpMAFARFB(v) − ρpMAFAR
⊗ ρFB(v)||t

∗
= ||ρpMAFAFB(v) − ρpMAFA

⊗ ρFB(v)||t
(6)
= βp,v . (8)

Here (*) holds for the states, when FB(v) is uniformly
random, but Vt+1 is not yet measured. For all p, v:

||ρp,vMAFAFB(v) − ρp,vMAFA
⊗ ρFB(v)||t

≤ ||ρp,vMAFAFB(v) − σpMAFAFB(v)||t
+ ||σpMAFAFB(v) − ρp,vMAFA

⊗ ρFB(v)||t
(7)

≤ 2
√
γp,v + ||σpMAFAFB(v) − ρp,vMAFA

⊗ ρFB(v)||t
≤ 2

√
γp,v + ||σpMAFAFB(v) − σpMAFA

⊗ ρFB(v)||t
+ ||σpMAFA

⊗ ρFB(v) − ρp,vMAFA
⊗ ρFB(v)||t

(7)

≤ 4
√
γp,v + ||σpMAFAFB(v) − σpMAFA

⊗ ρFB(v)||t
(8)

≤ 4
√
γp,v + βp,v .
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Thus, D(MAFA : FB(Vt+1))

= Ep,v||ρp,vMAFAFB(v) − ρp,vMAFA
⊗ ρFB(v)||t

≤ Ep,v[4
√
γp,v + βp,v] ≤ 4

√
Ep,vγp,v +

√
4δ ≤ γt+1.

After round round k one player, say Alice, announces
the result which is supposed to be the parity of vk+2 and
included in MA,k+1. But D(MA,k+1 : Vk+2) ≤ γk+1 ≤
3kδ1/2

k

. It is not hard to see that for error 1/3:

γk+1 ≥ D(MA,k+1 : Vk+2) ≥ D(MA,k+1 :
⊕

Vk+2) ≥ 1/3.

Thus 3kδ1/2
k ≥ 1/3 and δ ≥ 2−2O(k)

.
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