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Interaction in Quantum Communication
Hartmut Klauck, Ashwin Nayak, Amnon Ta-Shma, and David Zuckerman

Abstract—In some scenarios there are ways of conveying in-
formation with many fewer, even exponentially fewer, qubits
than possible classically. Moreover, some of these methods have a
very simple structure—they involve only few message exchanges
between the communicating parties. It is therefore natural to
ask whether every classical protocol may be transformed to a
“simpler” quantum protocol—one that has similar efficiency, but
uses fewer message exchanges.

We show that for any constant k, there is a problem such that its
k+1 message classical communication complexity is exponentially
smaller than its k message quantum communication complexity.
This, in particular, proves a round hierarchy theorem for quantum
communication complexity, and implies, via a simple reduction, an

(N1=k) lower bound for k message quantum protocols for Set
Disjointness for constant k. Enroute, we prove information-theo-
retic lemmas, and define a related measure of correlation, the in-
formational distance, that we believe may be of significance in other
contexts as well.

Index Terms—Average encoding theorem, entanglement-as-
sisted communication, Hellinger distance, informational distance,
pointer jumping, quantum communication complexity, quantum
information theory, round complexity, round reduction, set dis-
jointness.
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I. INTRODUCTION

ARECURRING theme in quantum information processing
has been the idea of exploiting the exponential resources

afforded by quantum states to encode information in very
nonobvious ways. One representative result of this kind is due
to Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson
[2]. They show that two players can deal a random set of

cards each, from a pack of cards, by the exchange of
quantum bits between them. Another example is

given by Raz [3] who shows that a natural geometric promise
problem that has an efficient quantum protocol, is hard to solve
via classical communication. Both are examples of problems
for which exponentially fewer quantum bits are required to
accomplish a communication task, as compared to classical
bits. A third example is the qubit protocol for
Set Disjointness due to Buhrman, Cleve, and Wigderson [1],
which represents quadratic savings in the communication cost
over classical protocols.

The protocols presented by Ambainis et al. [2] and Raz [3]
share the feature that they require minimal interaction between
the communicating players. For example, in the protocol of Am-
bainis et al. [2] one player prepares a set of qubits in a certain
state and sends half of the qubits across as the message, after
which both players measure their qubits to obtain the result. In
contrast, the protocol of Buhrman, Cleve, and Wigderson [1]
for checking set disjointness (DISJ) requires messages.
This raises a natural question: Can we exploit the features of
quantum communication and always reduce interaction while
maintaining the same communication cost? In particular, are
there efficient quantum protocols for DISJ that require only a
few messages?

Kitaev and Watrous [4] show that every efficient quantum
interactive proof can be transformed into a protocol with only
three messages of similar total length. This suggests that it
might be possible to reduce interaction in other protocols as
well. In this paper, we show that for any constant , there is a
problem such that its message classical communication
complexity is exponentially smaller than its message quantum
communication complexity, thus answering the above question
in the negative. This, in particular, proves a round hierarchy
theorem for quantum communication complexity, and implies,
via a simple reduction, polynomial lower bounds for constant
round quantum protocols for Set Disjointness.

A. Our Separation Results

The role of interaction in classical communication is well-
studied, especially in the context of the Pointer Jumping func-
tion [5]–[9]. Our first result is for a subproblem of Pointer
Jumping that is singled out in Miltersen et al. [10] (see Sec-
tion V-A for a formal definition of ). We show the following.
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Theorem I.1: For any constant , there is a problem
such that any quantum protocol with only messages and con-
stant probability of error requires communication
qubits, whereas it can be solved with messages by a de-
terministic protocol with bits.

A more precise version of this theorem is given in Sec-
tion V-D and implies a round hierarchy even when the number
of messages grows as a function of input size , up to

. Our analysis of follows the same
intuition as that behind the result of Miltersen et al. [10], but
relies on entirely new ideas from quantum information theory.
The resulting lower bound is optimal for a constant number of
rounds.

Next, we study the Pointer Jumping function itself. Let
denote the Pointer Jumping function with path length on
graphs with vertices, as defined in Section VI. The input
length for the Pointer Jumping function is ,
independent of , whereas the input length for is exponen-
tial in . The function is thus usually more appropriate for
studying the effect of rounds on communication when grows
rapidly as a function of the input length.

We first show an improved upper bound on the classical com-
plexity of Pointer Jumping, further closing the gap between
the known classical upper and lower bounds. We then turn to
proving a quantum lower bound. We prove the following.

Theorem I.2: For any constant , there is a classical deter-
ministic protocol with message exchanges, that computes
with bits of communication, while any round
quantum protocol with constant error for needs qubits
communication.

The lower bound of Theorem I.2 decays exponentially in ,
and leads only to separation results for . We be-
lieve it is possible to improve this dependence on , but leave it
as an open problem. Note that in the preliminary version of this
paper [11], this decay was even doubly exponential, and the im-
provement here is obtained by using a quantum version of the
Hellinger distance.

Our lower bounds for and Pointer Jumping also have im-
plications for Set Disjointness. The problem of determining the
quantum communication complexity of DISJ has inspired much
research in the last few years, yet the best known lower bound
prior to this work was [2], [12]. We mentioned ear-
lier the protocol of Buhrman et al. [1] which solves DISJ with

qubits and messages. Buhrman and de
Wolf [12] observed (based on a lower bound for random-ac-
cess codes [13], [14]) that any one message quantum protocol
for DISJ has linear communication complexity. We describe a
simple reduction from Pointer Jumping in a bounded number of
rounds to DISJ and prove the following.

Corollary I.3: For any constant , the communication com-
plexity of any -message quantum protocol for Set Disjointness
is .

A model of quantum communication complexity that has
also been studied in the literature is that of communication
with prior entanglement (see, e.g., [12], [15]). In this model,

the communicating parties may hold an arbitrary input-inde-
pendent entangled state in the beginning of a protocol. One
can use superdense coding [16] to transmit classical bits
of information using only qubits when entanglement
is allowed. The players may also use measurements on Ein-
stein–Podolsky–Rosen (EPR) pairs to create a shared classical
random key. While the first idea often decreases the commu-
nication complexity by a factor of two, the second sometimes
saves bits of communication. It is unknown if shared
entanglement may sometimes decrease the communication
more than that. Currently no general methods for proving
super-logarithmic lower bounds on the quantum communi-
cation complexity with prior entanglement and unrestricted
interaction are known. Our results all hold in this model as well.

Our interest in the role of interaction in quantum communi-
cation also springs from the need to better understand the ways
in which we can access and manipulate information encoded
in quantum states. We develop information-theoretic techniques
that expose some of the limitations of quantum communication.
We believe our information-theoretic results are of independent
interest.

The paper is organized as follows. In Section II, we give
some background on classical and quantum information theory.
We recommend Preskill’s lecture notes [17] or Nielsen and
Chuang’s book [18] as thorough introductions into the field.
In Section III, we present new lower bounds on the quantum
relative entropy function (Section III-A) and introduce the in-
formational distance (Section III-B). In Section IV, we explain
the communication complexity model, followed by Section V
where we prove our separation results and the reduction to
Set Disjointness (Section V-C). In Section VI, we give our
new upper bound (Section VI-B) and quantum lower bound
(Section VI-C) for the pointer-jumping problem.

B. Subsequent Results

Subsequent to the publication of the preliminary version
of this paper [11], several new related results have appeared.
First, Razborov proves in [19] that the quantum communication
complexity of the Set Disjointness problem is indeed ,
no matter how many rounds are allowed. An upper bound of

is given by Aaronson and Ambainis [20]. A result by
Jain, Radhakrishnan, and Sen in [21] shows that the complexity
of protocols solving this problem in rounds is at least .
The same authors show in [22] that quantum protocols with
rounds for the Pointer Jumping function have complexity

, but this result seems to hold only for the case of pro-
tocols without prior entanglement. The same authors [23] also
consider the complexity of quantum protocols for the version of
the Pointer Jumping function, in which not only one bit of the
last vertex has to be computed, but its full name. Several papers
([24], [25], [21], [22], [26]) have used the information-theoretic
techniques developed in the present paper.

In this paper, we improve the dependence of communication
complexity lower bounds on the number of rounds, as compared
to our results in [11]. To achieve this, we use a different informa-
tion-theoretic tool based on the quantum Hellinger distance. The
version of our Average Encoding Theorem based on Hellinger
distance was independently found by Jain et al. [21].
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II. INFORMATION THEORY BACKGROUND

The quantum-mechanical analogue of a random variable is a
probability distribution over superpositions, also called a mixed
state. For the mixed state , where has prob-
ability , the density matrix is defined as .
Density matrices are Hermitian, positive semidefinite, and have
trace , i.e., a density matrix has an eigenvector basis, all the
eigenvalues are real and between zero and one, and they sum up
to one.

A. Trace Norm and Fidelity

The trace norm of a matrix is defined as ,
which is the sum of the magnitudes of the singular values of .
Note that if is a density matrix, then it has trace norm one. If

are pure states then

We need the following consequence of Kraus representation
theorem (see, for example, Preskill’s lecture notes [17]).

Lemma II.1: For each Hermitian matrix and each trace-
preserving completely positive super-operator :

.

A useful alternative to the trace metric as a measure of close-
ness of density matrices is fidelity. Let be a mixed state with
support in a Hilbert space . A purification of is any pure state

in an extended Hilbert space such that
. Given two density matrices on the same Hilbert space
, their fidelity is defined as

where the supremum is taken over all purifications of
in the same Hilbert space. Jozsa [27] gave a simple proof, for
the finite-dimensional case, of the following remarkable equiv-
alence first established by Uhlmann [28].

Fact II.2 (Jozsa): For any two density matrices on the
same finite-dimensional space

Using this equivalence, Fuchs and van de Graaf [29] relate
fidelity to the trace distance.

Fact II.3 (Fuchs, van de Graaf): For any two mixed states

While the definition of fidelity uses purifications of the mixed
states and relates them via the inner product, fidelity can also be
characterized via measurements (see Nielsen and Chuang [18]).

Fact II.4: For two probability distributions on finite
sample spaces, let denote their fidelity.
Then, for any two mixed states

where the minimum is over all positive operator-valued mea-
sures (POVMs) , and ,
are the probability distributions created by the measurement on
the states.

A useful property of the trace distance as a mea-
sure of distinguishability is that it is a metric, and hence satisfies
the triangle inequality. This is not true for fidelity or
for . Fortunately, a variant of fidelity is actually a
metric. Denote by

the quantum Hellinger distance. Clearly, inherits
most of the desirable properties of fidelity, like unitary invari-
ance, definability as a maximum over all measurements of the
classical Hellinger distance of the resulting distributions, and
so on. To see that is actually a metric one can simply
use Fact II.4 to reduce this problem to showing that the classical
Hellinger distance is a metric, which is well known.

Analogously to Lemma II.1 , due to the monotonicity of fi-
delity [18], we have the following.

Lemma II.5: For all density matrices and each trace-
preserving completely positive superoperator

Let us also note the following relation between the Hellinger
distance and the trace norm that follows directly from Fact II.3 .

Lemma II.6: For any two mixed states

We sometimes work with instead of . This is
not a metric, but it is true that for all density matrices

B. Local Transition Between Bipartite States

Jozsa [27] proved the following.

Theorem II.7 (Jozsa): Suppose are the
purifications of two density matrices in . Then, there is
a local unitary transformation on such that

.

As noticed by Lo and Chau [30] and Mayers [31], The-
orem II.7 immediately implies that if two states have reduced
density matrices that are close to each other, than there exists
a local unitary transformation that maps one state close to the
other. Formally, we state this as follows.

Lemma II.8: (Local Transition Lemma, based on [30], [31],
[27], [29]) Let be two mixed states with support in a
Hilbert space . Let be any Hilbert space of dimension at
least , and any purifications of in .
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Then, there is a local unitary transformation on that maps
to such that

Furthermore

Proof: By Theorem II.7 , there is a (local) unitary trans-
formation on such that , a state which
achieves fidelity: . Hence, the state-
ment about the Hellinger distance holds.

By Lemma II.6

C. Entropy, Mutual Information, and Relative Entropy

denotes the binary entropy function

The Shannon entropy of a classical random variable on

a finite sample space is where is the prob-
ability the random variable takes value . The mutual infor-
mation of a pair of random variables is defined
to be . For other equiv-
alent definitions, and more background on the subject see, e.g.,
the book by Cover and Thomas [32].

We use a simple form of Fano’s inequality.

Fact II.9 (Fano’s Inequality): Let be a uniformly dis-
tributed Boolean random variable, and let be a Boolean
random variable such that . Then

.

The Shannon entropy and the mutual information functions
have natural generalizations to the quantum setting. The von
Neumann entropy of a density matrix is defined as

where is the multiset of all the eigenvalues of . Notice
that the eigenvalues of a density matrix form a probability dis-
tribution. In fact, we can think of the density matrix as a mixed
state that takes the th eigenvector with probability . The von
Neumann entropy of a density matrix is, thus, the entropy of
the classical distribution defines over its eigenstates.

The mutual information of two disjoint quantum
systems is defined to be

, where is the density matrix of the system that
includes the qubits of both systems. Then

(1)

(2)

Equation (2) is in fact equivalent to the strong subadditivity
property of von Neumann entropy.

We need the following slight generalization of Theorem 2 in
Cleve et al. [15].

Lemma II.10: Let Alice own a state of a register . As-
sume Alice and Bob communicate and apply local transforma-
tions, and at the end register is measured in the standard basis.
Assume Alice sends Bob at most qubits, and Bob sends Alice
arbitrarily many qubits. Further assume all these local transfor-
mations do not change the state of register , if is in a classical
state. Let be the final state of and Bob’s private qubits

. Then .
Proof: Considering the joint state of register and Bob’s

qubits, there cannot be any interference between basis states
differing on . Thus, we can assume that is measured in
the beginning, i.e., that is classical. In this case, the result
directly follows from [15, Theorem 2].

Note that in the preceding lemma Alice and Bob can use
Bob’s free communication to set up an arbitrarily large amount
of entanglement independent of .

The relative von Neumann entropy of two density matrices,
defined by . One useful fact to
know about the relative entropy function is that

. For more properties of this function see
[17], [18].

III. INFORMATIONAL DISTANCE AND NEW LOWER BOUNDS

ON RELATIVE ENTROPY

A. New Lower Bounds on Relative Entropy

We now prove that the relative entropy is lower-
bounded by and by . We believe
these results are of independent interest. A classical version of
the theorem can be found in, e.g., Cover and Thomas’ book [32].

Theorem III.1: For all density matrices

Although this relationship has appeared in the literature [33],
it was rediscovered by several authors, including us. Below, we
give a proof of this theorem for completeness. The earlier ver-
sion of our paper [11] contained a more complicated proof.

Proof: (Of Theorem III.1) The proof goes by reduction
to the classical case. Consider the classical distributions
obtained by measuring , in the basis diagonalizing their
difference . It is known [17], [18] that

Due to Lindblad–Uhlmann monotonicity of relative von Neu-
mann entropy [17], [18]

The classical version of the theorem [32] now gives

This completes the proof.
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Now we show an analogous result for the quantum Hellinger
distance.

Theorem III.2: For all density matrices ,

This theorem has also been shown independently by Jain et al.
[21].

Proof: We first show that the theorem holds when and
are classical distributions, and then generalize this to the

quantum case.
In the classical case, we first show

This was shown by Dacunha–Castelle in [34]

The first equation is by definition of , the second by definition
of the classical fidelity function, and the inequality follows from
an application of Jensen’s inequality.

Having that, using
for all and so the theorem holds in the classical case.

To show the quantum case recall that both and
can be defined as the maximum over all POVM measurements of
the classical versions of these functions on the distributions ob-
tained by the measurements. Fix a POVM that maximizes

for the distributions , obtained from , . Then
by Lindblad–Uhlmann monotonicity, and

because . The result follows.

B. Informational Distance

From Theorem III.2 follows that for a bipartite state

Thus, the distance between the tensor product state and the
“real” (possibly entangled) bipartite state can be bounded
in terms of the Hellinger distance. We call the quantity

the “informational distance.”
measures the amount of correlation between the

quantum registers and , and can be positive even when the
system is classical or not entangled. Later we state some of its
properties and use it for proving the quantum communication
lower bound on the pointer jumping problem.

The next lemma collects a few immediate properties of infor-
mational distance.

Lemma III.3: For all states the following hold:
1. ;
2. ;
3. for all com-

pletely positive, trace-preserving superoperators ;
4. ;
5. .

Proof: Equation in item 1 is true by definition, item 2 fol-
lows from the definition and the triangle inequality, items 3 and
4 follow from Lemma II.5, and item 5 from Theorem III.2.

We now examine informational distance in the special case
where is block diagonal, with classical . We denote by

the density matrix obtained by fixing to some classical
value and normalizing. is the probability of .

Lemma III.4: For all block diagonal , where cor-
responds to a classical distribution, we have the following
properties.

1.

2. Further assume is Boolean with
. Let there be a measurement acting on

the system only, yielding a Boolean random variable
with and . Then

.
The first item is true because is block diagonal with re-

spect to . In the second item, notice that the same measure-
ment applied to yields a distribution with

, because is independent of , and
is uniform. Observe that

and then apply Lemma II.6 . Note that this is a rather crude
estimate, since approaches when goes
to zero.

C. The Average Encoding Theorem

A corollary of Theorems III.1 and III.2 is the following “Av-
erage Encoding Theorem”:

Theorem III.5 (Average Encoding Theorem): Let be
a quantum encoding mapping an bit string into
a mixed state with density matrix . Let be distributed over

, where has probability , let be the
encoding of according to this map, and let .
Then

and

In other words, if an encoding is only weakly correlated to
a random variable , then the “average encoding” is in ex-
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pectation (over a random string) a good approximation of any
encoded state. Thus, in certain situations, we may dispense with
the encoding altogether, and use the single state instead. The
preliminary version of our paper [11] did not include the second
statement. The present stronger version was also observed inde-
pendently by Jain et al. [21].

Proof: (Of Theorem III.5) In the setting of the Average
Encoding Theorem we have a random variable that is distributed
over , and a quantum encoding mapping bit
strings into mixed states with density matrices .
Let be the register holding the input and be the register
holding the encoding. Let us also define the average encoding

.
Then, by Theorem III.1

The density matrix of the register alone is diagonal and
contains the values on the diagonal, the density matrix of
the register alone is , and the density matrix is block
diagonal and the th block is of the form . Also, the density
matrix of the whole system is block diagonal, with in
the th block. Thus, ,
and so .

The second statement follows analogously using The-
orem III.2 .

IV. THE COMMUNICATION COMPLEXITY MODEL

In the quantum communication complexity model [35], two
parties Alice and Bob hold qubits. When the game starts Alice
holds a classical input and Bob holds , and so the initial joint
state is simply . Furthermore, each player has an arbi-
trarily large supply of private qubits in some fixed basis state.
The two parties then play in turns. Suppose it is Alice’s turn
to play. Alice can do an arbitrary unitary transformation on her
qubits and then send one or more qubits to Bob. Sending qubits
does not change the overall superposition, but rather changes
the ownership of the qubits, allowing Bob to apply his next uni-
tary transformation on the newly received qubits. Alice may also
(partially) measure her qubits during her turn. At the end of
the protocol, one player makes a measurement and declares the
result of the protocol. In a classical probabilistic protocol the
players may only exchange classical messages.

In both the classical and quantum settings we can also de-
fine a public coin model. In the classical public coin model, the
players are also allowed to access a shared source of random
bits without any communication cost. The classical public and
private coin models are strongly related [36]. Similarly, in the
quantum public coin model, Alice and Bob initially share an ar-
bitrary number of quantum bits which are in some pure state that
is independent of the inputs. This is better known as communi-
cation with prior entanglement [15], [12].

The complexity of a quantum (or classical) protocol is the
number of qubits (respectively, bits) exchanged between the two
players. We say a protocol computes a function

with error if, for any input , the
probability that the two players compute is at least .

(respectively, ) denotes the complexity of the best

quantum (respectively, probabilistic) protocol that computes
with at most error. For a player ,
denotes the complexity of the best quantum protocol that com-
putes with at most errors with only messages (called rounds
in the literature), where the first message is sent by . If the
name of the player is omitted from the superscript, either player
is allowed to start the protocol. We say a protocol computes

with error with respect to a distribution on , if

is the complexity of computing with at most error
with respect to , with only messages where the first message
is sent by player . We will use the notation (rather than ,
as in the literature) for communication complexity in the public
coin model. In all the above definitions, we may replace with

when is the uniform distribution over the inputs.
The following is immediate.

Fact IV.1: For any distribution , number of messages and
player , .

We put two constraints on protocols in the above definitions.
• We assume that the two players do not modify the qubits

holding the classical input during the protocol. This does
not affect the aspect of communication we focus on in this
paper.

• We demand that the length of the th message sent in a pro-
tocol is known in advance. This restriction is also implicit
in Yao’s definition of quantum communication complexity
using interacting quantum circuits [35].

To illustrate this, think of a public coin classical protocol in
which Alice first looks at a public coin and if the coin is “head”
sends in the first round a message of qubits and in the second
round a message of one qubit; otherwise, she sends one qubit in
the first round and qubits in the second. In such a protocol, the
number of message bits sent in the first round is not known in
advance, and so such a protocol is not allowed in our model.

A round protocol with communication complexity in the
more general model, in which the restriction above is absent,
can be simulated in our model losing a factor of in the com-
munication complexity. To show this, one invokes the principle
of safe storage. The principle says that instead of a mixed state
depending on measurement results, we may have a superposi-
tion over the measurement results and the messages. Note that in
such a superposition there may be messages of different lengths
(augmented by some blanks). In the worst case, the length of a
single message is now , so the overall communication cost is
at most , and the number of rounds used is always the worst
case number of rounds. In the example above we get communi-
cation complexity .

V. THE ROLE OF INTERACTION IN QUANTUM COMMUNICATION

In this section, we prove that allowing more interaction be-
tween two players in a quantum communication game can sub-
stantially reduce the amount of communication required. In Sec-
tion V-A, we define a communication problem and formally state
our results (giving an overview of the proof), then in Section V-B,
we give the details of the proofs. For the most part, we concen-
trate on communication in a constant number of rounds. Sec-
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tion V-C describes the application to the disjointness problem.
Section V-D discusses our results in the case where the number
of messages grows as a function of the input size.

A. The Communication Problem and Its Complexity

We define a sequence of problems by in-
duction. The problem is the index function, i.e., Alice has an

-bit string , Bob has an index ,
and the desired output is . Suppose we have al-
ready defined the function . In
the problem , Alice has as input her part of independent
instances of , i.e., , Bob has his share of inde-
pendent instances of , i.e., , and in addition, there
is an extra input which is given to Alice if is even and
to Bob if is odd. The output we seek is the solution to the th
instance of . In other words

Note that the size of the input to the problem is
. If we allow message exchanges for solving the

problem, it can be solved by exchanging
bits: for , Bob sends Alice the index

and Alice then knows the answer; for , the player with the
index sends it to the other player and then they recursively
solve for . However, we show that if we allow
one less message, then no quantum protocol can compute
as efficiently. In fact, no quantum protocol can compute the
function as efficiently even if we allow error, and only require
small probability of error on average.

Theorem V.1: For all constant and we have

To prove this theorem we prove a stronger intermediate claim.
Let be Bob, and for , let denote the player that holds
the index in an instance of ( indicates which of the
instances of to solve). Let denote the other player. We
refer to as the “wrong” player to start a protocol for . The
stronger claim is that any message protocol for in which
the wrong player starts is exponentially inefficient as compared
to the protocol described above.

Lemma V.2: For all constant and we have

Indeed, there is a classical -message, -bit protocol in
which the wrong player starts, so our lower bound is optimal.

Theorem V.1 now follows directly.

Proof: (Of Theorem V.1) It is enough to show the lower
bound for the two cases when the protocol starts either with

or with the other player.
Let be the player to start. Note that if we set to a fixed

value, say , then we get an instance of . So

But , so the bound of Lemma V.2 applies.

Let player be the one to start. Then, observe that if we
allow one more message (i.e., messages in all), the com-
plexity of the problem only decreases:

So we again get the bound from Lemma V.2 .

We prove Lemma V.2 by induction. First, we show that the
index function is hard to solve with one message if the wrong
player starts. This essentially follows from the lower bound for
random-access codes [13], [14]. The only difference is that we
seek a lower bound for a protocol that has low error probability
on average rather than in the worst case, so we need a refinement
of the original argument. We give this in the next section.

Lemma V.3: For any we have
.

Next, we show that if we can solve with messages with
the wrong player starting, then we can also solve with only

messages of smaller total length, again with the wrong
player starting, at the cost of a slight increase in the average
probability of error.

Lemma V.4: For and , let be any protocol
that solves with respect to the uniform distribution with
error , and messages starting with . Let the communication
complexity of be with being the length of the
first message sent. Then, where

.

We defer the proof of this lemma to a later section, but show
how it implies Lemma V.2 above.

Proof: (Of Lemma V.2) We prove the lemma by induction
on . The case is handled by Lemma V.3 . Suppose the
statement holds for . We prove by contradiction that it holds
for as well. If , then by Lemma V.4
there is a message protocol for with the wrong player
starting, with error , and with communication
complexity at most . This contradicts the induction
hypothesis.

B. The Key Lemmas

We now prove average case hardness of the index function.

Proof: (Of Lemma V.3) Consider any protocol for with
Alice sending the first (and only) message. Let be the proba-
bility of error when the input to Alice is uniformly random but
the input to Bob is . Note that . Let denote the
random variable containing Alice’s input, and let denote
the qubits held by Bob after he has received Alice’s message,
including his part of the shared entangled state. From Properties
1 and 2 of mutual information in Section II-C, and the concavity
of binary entropy
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The second inequality follows from the fact that Bob has a
measurement that predicts with error and Fact II.9 (Fano’s
inequality). On the other hand, is bounded above
by twice the number of qubits in the message [15, Theorem2].
The lemma follows.

Note that for public-coin randomized protocols we do not
have the factor of , and obtain a lower bound of .

Next, we show how an efficient protocol for gives rise to an
efficient protocol for . The intuition behind the argument
is the same as in proofs for classical communication [10], [36].
However, we use entirely new techniques from quantum infor-
mation theory, as developed in Section III and also get better
bounds.

Proof: (Of Lemma V.4) For concreteness, we assume that
is even, so that is Bob. Let be a protocol that solves

with respect to the uniform distribution with error ,
messages starting with Bob. Let the communication complexity
of be with being the length of the first message
sent.

Given the protocol , we devise a protocol for solving
with respect to the uniform distribution, but with Alice

starting, and with only messages. The intuition behind the
protocol is the following. It first tries to recreate, from some
shared prior entanglement, the state after the first message in the
run of on a specially chosen instance, and then simulates
the remaining rounds of communication of the protocol

on the recreated state. The instance of is such that the
solution to that instance coincides with the solution to the given

instance. We thus get a protocol for with the desired
properties. The details follow.

We start by describing the joint pure state that Alice and Bob
share in prior to being given the inputs to the problem .
Consider the protocol computing . Let be the pri-
vate qubits (or “registers”) held by Alice and Bob, respectively.
Let denote the register containing the input
to Bob. Consider the state of the registers , after
Bob sends the first message in , when is initialized to a uni-
form superposition over . The prior entanglement
that Alice and Bob share in is then defined as

where the qubits in are given to Alice and to
Bob. It simplifies the description of the protocol if Alice and
Bob measure the first and the last register, respectively, of the
shared state to get a common random index . Since these
registers will not be modified during the course of the protocol,
the behavior of is not affected by this measurement.

We are ready to describe the steps of the protocol . Given
the inputs to , we have the following.

1. Alice, who gets the input , initializes a register to
, where is the uniform su-

perposition over .
Note that the state of the registers is now ex-
actly as after the first message in a run of the protocol

on an input for where , all input registers but
for are in uniform superposition over , ,
and all are in uniform superposition over .

2. Bob, who gets the input , applies a unitary transforma-
tion (to be defined below) to the registers .
This step is intended to bring the state of the registers

close to , the state after the first mes-
sage in a run of the protocol on an input for with

as above, except that
register is set to rather than the uniform superposition
over . Note that on an input as in , the result of
a protocol for is expected to be the same as .

3. Alice and Bob now simulate the protocol from the
second message onwards starting with the registers

, and declare the result of that procedure as
the output of the protocol .

The transformation is defined as follows. Consider the
state of the registers (analogous to ) ob-
tained by running till the first message is sent, when the reg-
ister is initialized to , where is the
uniform superposition over . Let , and

be the restriction of the two
states to Alice. The transformation is defined as the local
unitary operator on , given by Theorem II.7 , that achieves
the fidelity between and . This completes the description
of .

Observe that has messages starting with Alice, and
has complexity . We now analyze its probability of error, under
a uniform distribution on inputs.

Bob’s part of the input to in and differ only
in the register : in the first state, this is uniform over ,
whereas in the second state, this is set to . Thus, the state
when restricted to Alice is the average encoding, over all

, of the state restricted to her

The Average Encoding Theorem tells us that and are close
to each other on average, provided the mutual information

between Alice’s state and in a run of on the
uniform distribution on all inputs is small

(3)

As in the proof of Lemma V.3 , it is not hard to see that if the
length of the first message is small relative to , then for
a random , this mutual information is small.

Claim V.5: . Thus, .

By Lemma II.8 , the transformation maps to a state
close to , and by Lemma II.6

(4)
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For a random , and a random , then, the average
error in approximating the state is

From equation (4)

By Jensen's inequality

From equation (3)

By Jensen's inequality

From Claim V.5

Running the protocol on the input described in Step 2 of
finds with probability of error at most on average
when are chosen at random. Thus, running the protocol
on the state resulting from Step 2 of the protocol gives us
the answer to with average probability of error only
slightly higher than

as claimed.

For classical randomized protocols, it is possible to simplify
the reduction of to described above. This is accom-
plished as follows. Recall that Alice and Bob share public
random coins. They use this to sample a (common) message
from the distribution over classical messages in the first round
of the protocol for , where the inputs are chosen uniformly
at random. They also pick a common random index .
Alice now picks , uniformly at random from , and
sets and . Bob picks from the uniform
distribution over , conditioned on the first
message in the protocol on such a random input being equal
to . The distance between the joint state so constructed and
the joint state in the original protocol differs (in -distance)
by at most the distance between Alice’s marginal distributions.
Alice and Bob now simulate the protocol from the second
message onwards on the input . A straightforward analysis
using the Average encoding theorem shows that the initial
state (consisting of the message and the inputs) constructed
above differs from the corresponding state in the protocol by
only . This simpler argument was noted in [37] and
independently in [38].

C. The Disjointness Problem

We now investigate the bounded round complexity of the dis-
jointness problem. Here Alice and Bob each receive the inci-
dence vector of a subset of a size universe. They reject iff
the sets are disjoint. It is known [39], [12] that DISJ

and . Furthermore,
DISJ by an application of Grover

search [1]. This upper bound was later improved [20] to ,
although the number of rounds remained . We now prove
a lower bound by reduction.

Proof: (Of Corollary I.3) Suppose we are given a round
quantum protocol for the disjointness problem having error
and using qubits. Without loss of generality (w.l.o.g.) we can
assume Bob starts the communication, because the problem is
symmetrical, and that is even. We reduce the communication
problem from Section V-A to DISJ.

We visualize an instance of as defining a subtree of the
-ary tree with levels and the edges at alternate levels

known to Alice and Bob, respectively. The leaves of the tree
are labeled by Boolean values known to Alice (since is even).
The only edge at the root connects it to the th child, where

is the input that specifies which instance of is to be
solved. The subtrees at the second level are defined recursively
according to the instances of .

There are at most possible paths of length that could start
at the root vertex. With each such path, we associate an element
in the universe for the disjointness problem. Given the edges
originating from each of their levels, Alice and Bob construct an
instance of DISJ on a universe of size . Alice checks for
each possible path of length whether the path is consistent with
her input and whether the paths lead to a leaf which corresponds
to the bit . In this case, she takes the corresponding element of
the universe into her subset. Bob similarly constructs his subset.
Now, if the two subsets intersect, then the (unique) element in
the intersection witnesses a length path leading to -leaf. If
the subsets do not intersect, then the length path from the root
leads to a -leaf.

We thus obtain a round protocol for in which Bob starts.
By Lemma V.2 , the communication is for any constant

. Since the input length for the constructed instance of DISJ is
, we get DISJ for .

D. Beyond a Constant Number of Messages

So far, we have discussed the complexity of solving in
the context of protocols with a constant number of messages.
In fact, we may derive a meaningful lower bound even when
grows as a function of the parameter (hence as a function of

, the input length). We may state the result as follows.

Theorem V.6: For all and constant , we
have

Proof: Let . Then, there is a protocol that
achieves this communication complexity with
qubits of communication in the rounds, respectively. By
repeated application of Lemma V.4 there is a quantum protocol
that solves with one message, the wrong player starting,
communication qubits and error

By Jensen's inequality
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For a constant , if then and
by Lemma V.3 we have . This implies that

. For some close enough to we get
; a contradiction. This proves that . Also, every

round protocol has at least communication qubits and so
.

Note that this lower bound of also applies to
classical randomized protocols.

The above theorem implies a gap in communication com-
plexity between and message protocols for up to

, and also lower
bounds for DISJ for such .

VI. THE POINTER JUMPING FUNCTION

The Pointer Jumping function is considered in most results
showing a round hierarchy for classical communication com-
plexity [6]–[9]. This problem is a particularly natural candidate
for such results.

Definition VI.1 (Pointer Jumping): Let and be disjoint
sets of vertices each. Let and

, and

if
if

Define and .
Then is defined by

, where is fixed. The pointer jumping func-
tion is the XOR of all the bits in the
output of .

In the corresponding communication problem, Alice is given
a function , and Bob a function , and they are
required to compute .

A. Previous Work

If Alice starts, has a deterministic round communica-
tion complexity of . If Bob starts, Nisan and Wigderson
[7] proved that has a randomized round communication
complexity of . The lower bound can also be
improved to , see Klauck [39]. With techniques sim-
ilar to the ones in this section it is also possible to show a lower
bound of for the randomized round com-
plexity of when Bob starts. We omit the details.

The lower bounds are not far from the known upper bound.
Nisan and Wigderson [7] describe a randomized protocol for
computing with complexity in the sit-
uation where Bob starts and rounds are allowed. Ponzio et al.
[9] show that when , the deterministic communication
complexity of is .

B. A New Upper Bound

We first give a new classical upper bound which combines
ideas from Nisan and Wigderson [7] and Ponzio et al. [9]. For

, define and for , define

Furthermore let .

Theorem VI.1:

Proof: The claim is trivial for .
For greater , Bob starts and we have the following protocol.

At the first round, Bob guesses (with public random bits) a set
of random vertices from , we specify later. For each

chosen vertex , Bob communicates the first bits of ,
we specify later. Note that the names of the chosen vertices
are accessible to Alice without communication, by reading the
public random bits. The protocol then proceeds in two stages.

• Denote . For each round ,
the active player sends , i.e., at the first round Bob sends
nothing (as is known), at the second round Alice sends

, then Bob sends , and so on. Also, at
each round Alice checks whether . Let be the
first round in which this happens. If the two players
abort the protocol.

• The rounds take a special form. Let us start
with round . Alice knows and therefore knows the
first bits of . Alice defines a set that contains
all elements of with that prefix, i.e., and

. For each , Alice sends the
first bits of . In general, in the th round, the
active player knows bits of . The active player
then defines a set that contains all the elements of
his side with that prefix, i.e., and

. For each , the active player sends
the first bits of .

We now specify the parameters. First we choose .
W.l.o.g. we can assume the vertices are all distinct,
or Alice can easily save two rounds and the players finish on
time. For any choice of distinct vertices the prob-
ability, over the choice of , that during the first rounds Alice

will not visit is at most . So assume
indeed that .

We now choose

It follows that for some we have and
and the active player who holds also knows , so he
can save two rounds and the computation ends on time.

We now count the number of communication bits. We need
bits for communicating , . Also, we need

bits for communicating the first bits of each
element in . Notice, however, that and so

which completes the proof.
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Corollary VI.2: If then

C. A Lower Bound on the Quantum Communication
Complexity

In this subsection, we prove a lower bound on the quantum
communication complexity of the pointer jumping function ,
for the situation that rounds are allowed and Bob sends the first
message. The proof uses the same ingredients as the proof of the
lower bound for the function in Theorem V.1, namely the
Average Encoding Theorem and the Local Transition Lemma.
We consider a quantity capturing the information the active
player has in round on vertex of the path. This quantity
is the informational distance between the active player’s qubits
and vertex . Our goal is to bound in terms of (which
is the information gain so far) plus a term related to the average
information on pointers in the other player’s input (which is
low as long as the number of qubits sent is small). This leads
to a recursion imposing a lower bound on the communication
complexity, since in the end the protocol must have reasonably
large information to produce the output, and in the beginning
the corresponding information is .

Let Alice be active in the th round. The informational
distance measures the distance between the state of, say,
Alice’s qubits together with the next vertex of the
path, and the tensor product of the states of Alice’s qubits and

. In the product state Alice has no information about
, so if the two states are close, Alice’s powers to say

something about the vertex are very limited. We use the triangle
inequality to bound by the sum of three intermediate dis-
tances. In the first step, we move from the state given by the
protocol to a state in which the th vertex is replaced by
a uniformly random vertex, independent of previous communi-
cations. The penalty we have to pay for that is proportional to

which is a bound on the amount of information Bob gained
on . We use the local transition lemma to conceal Bob’s
ability to detect such a replacement. Once the th vertex
is random, we deal with the average information a player (Bob)
can get on a random pointer in the other player’s input, and this
term is small when the number of communicated qubits is small.
The last step is similar to the first and reverses the first one’s ef-
fect, i.e., replaces the “randomized” th vertex by its real
value again. We arrive at the desired product state.

Theorem VI.3:

Note that the lower bound is linear in for constant and
leads to Theorem I.2. It implies a separation between the
and round complexity of Pointer Jumping for up to

, where is the input size.

Proof: (of Theorem VI.3) Fix a quantum protocol for
with probability of error , rounds, and with Bob starting.
Usually, a protocol gets some classical and as inputs, but
we will investigate what happens if the protocol is started on a

superposition over all inputs, in which all inputs have the same
amplitude, i.e., on

Note that . The superposition over all
inputs is measured after the protocol has finished, so that a uni-
formly random input and the result of the protocol on that input
are produced.

We also require that before round , the active player com-
putes and measures the vertex , and includes
it in the message that is sent to the other player, who stores it
in some qubits . Thus, at the first round Bob sends (which
is known in advance) to Alice, at the second round Alice sends

to Bob, and so on. This increases the communi-
cation by an additive term. Notice that are in a
uniform superposition over all possible inputs, and so if we do
not measure and , the register is also in a uniform su-
perposition for every . The density matrix of the global
state of the protocol before the communication of round is

, where are the qubits holding the inputs
of Alice and Bob and , respectively, , are the other
qubits in the possession of Alice and Bob before the communi-
cation of round . The state of the latter two systems of qubits
may be entangled. In the beginning these qubits are independent
of the input. We also denote the density matrix
of the system in the case where we do not measure any of the .

Let us denote when is odd,
where the register has been measured. Notice that
at this stage is measured and is a subregister of

. The quantity is a measure of Bob’s information on
the value Alice is going to compute. We similarly let

when is even, where the register
has been measured.

We assume that the communication complexity of the pro-
tocol is and prove a lower bound . The general
strategy of the proof is induction over the rounds, to successively
bound . Bob sends the first message. As Bob
has seen no message yet, we have that
and hence . We show the following.

Lemma VI.4: .

We see that for all . After round one
player, say Alice, announces the result which is supposed to be
the parity of and included in . On the one
hand, . On the other
hand, by Lemma III.4, item 2,

. Together, , so .

We now turn to proving Lemma VI.4 .

Proof: (Of Lemma VI.4) W.l.o.g. let Alice be active in
round . Let and . Before the

round is measured. The resulting state is a
probabilistic ensemble over the possibilities to fix ,
which are then classically distributed. Alice’s reduced state is
block diagonal with respect to the possible values of the ver-
tices . For any value of let

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on January 25, 2010 at 04:16 from IEEE Xplore.  Restrictions apply. 



KLAUCK et al.: INTERACTION IN QUANTUM COMMUNICATION 1981

denote the pure state with vertex fixed to .
Our first goal is to bound the amount of information Bob has at
this stage about Alice’s value . We define

i.e., we look at Bob’s view before the message, and in par-
ticular before Alice sends to him, and we let measure
how much Bob’s view when differs from Bob’s av-
erage view. We show that these two are typically close to each
other, namely, we get the following.

Lemma VI.5: .

Loosely speaking this says that Bob does not know more than
units of information about .
The next step is to replace the actual state

where with the average case where
nothing is known about . As we saw, typically, Bob cannot
distinguish between the actual encoding and the average one, so
this should not matter much to Bob. We let be a
purification of where is some additional space
used to purify the random path , i.e.,
reflects a purification of Bob’s view, when . We
let be a purification of where

is some additional space used to purify the random path
. Now, due to Lemma II.8, there is a local unitary

transformation acting only on such that

and are close to each other. re-
flects a purification of Bob’s average view with Alice locally
adding to it . Notice that in , is ar-
bitrary and in particular can be different than . By Lemma
II.8, for all vertices

(5)

We are interested in the value

where is measured and the expectation is over the
uniform distribution on vertices . We now study this ex-
pression under the average case scenario, i.e., we look at

. We prove the following.

Lemma VI.6: For all vertices

where

(6)

where is assumed to have been measured.

Recall that in we let go unmeasured and that
is an arbitrary value not necessarily equal to . We then

prove the followig.

Lemma VI.7: .

Assuming the above lemma, we see that for all

From equation (5)

From Lemma (VI.6)

Squaring both sides

(7)

that is, we paid an penalty, and we switched to the scenario
where Bob has no information about . Now

By equation (7)

By Lemma VI.7

This completes the proof of Lemma VI.4 .

We finish the proof of Theorem VI.3 by proving the re-
maining lemmas.

Proof: (Of Lemma VI.5) By definition is

Now

because Bob sends the th message, and this only decreases the
informational distance.

Proof: (Of Lemma VI.6)

By unitarity

By definition (6) (8)

For (8), notice that holds the path , which
is determined by . We can apply a unitary transforma-
tion that “erases” this. We then get a pure state that is with

unmeasured, i.e., what we called

Proof: (Of Lemma VI.7) We first bound the informa-
tion Alice has on Bob’s input. For all , is
bounded above by twice the number of qubits in the messages
so far due to Lemma II.10, assuming that is measured, i.e.,

. Thus, considering the situation that
is distributed uniformly instead of being in the uniform

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on January 25, 2010 at 04:16 from IEEE Xplore.  Restrictions apply. 



1982 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

superposition we get (where is
uniformly random), using (1) and that the are mutually
independent. Now

where are as in the protocol without measure-
ments. Also, is invariant if is in su-
perposition or measured for . So

By Lemma III.3
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