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ABSTRACT
In this work we ask the following basic question: assume the ver-

tices of an expander graph are labelled by 0, 1. What “test” functions

𝑓 : {0, 1}𝑡 → {0, 1} cannot distinguish 𝑡 independent samples from

those obtained by a random walk? The expander hitting property

due to Ajtai, Komlos and Szemeredi (STOC 1987) is captured by the

AND test function, whereas the fundamental expander Chernoff

bound due to Gillman (SICOMP 1998), Heally (Computational Com-

plexity 2008) is about test functions indicating whether the weight

is close to the mean. In fact, it is known that all threshold functions

are fooled by a random walk (Kipnis and Varadhan, Communica-

tions in Mathematical Physics 1986). Recently, it was shown that

even the highly sensitive PARITY function is fooled by a random

walk Ta-Shma (STOC 2017).

We focus on balanced labels. Our first main result is proving

that all symmetric functions are fooled by a random walk. Put

differently, we prove a central limit theorem (CLT) for expander

random walks with respect to the total variation distance, signifi-
cantly strengthening the classic CLT for Markov Chains that is

established with respect to the Kolmogorov distance (Kipnis and

Varadhan, Communications in Mathematical Physics 1986). Our

approach significantly deviates from prior works. We first study

how well a Fourier character 𝜒𝑆 is fooled by a random walk as a

function of 𝑆 . Then, given a test function 𝑓 , we expand 𝑓 in the

Fourier basis and combine the above with known results on the

Fourier spectrum of 𝑓 .

We also proceed further and consider general test functions -

not necessarily symmetric. As our approach is Fourier analytic, it

is general enough to analyze such versatile test functions. For our

second result, we prove that random walks on sufficiently good

expander graphs fool tests functions computed by AC0
circuits,

read-once branching programs, and functions with bounded query

complexity.

∗
The research leading to these results has received funding from the Israel Science

Foundation (grant number 1569/18) and from the Azrieli Faculty Fellowship.

†
The research leading to these results has received funding from the Israel Science

Foundation (grant number 952/18).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00

https://doi.org/10.1145/3406325.3451049

CCS CONCEPTS
• Theory of computation → Random walks and Markov
chains; Expander graphs and randomness extractors.

KEYWORDS
Combinatorics and graph theory, Computational complexity, Ran-

domness in computing

ACM Reference Format:
Gil Cohen, Noam Peri, and Amnon Ta-Shma. 2021. Expander RandomWalks:

A Fourier-Analytic Approach. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC ’21), June 21–25, 2021, Virtual,
Italy. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3406325.

3451049

1 INTRODUCTION
Expander graphs are among the most useful combinatorial objects

in theoretical computer science. They are pivotal to fundamental

works in derandomization [22, 38], complexity theory [2, 15, 48] and

coding theory [26, 42, 43] to name a few. Informally, expanders are

sparse undirected graphs that have many desirable pseudorandom

properties. A formal definition can be given in several equivalent

ways,
1
and here we consider the algebraic definition. An undirected

graph 𝐺 = (𝑉 , 𝐸) is a 𝜆-spectral expander if the second largest

eigenvalue of its normalized adjacency matrix is bounded above by

𝜆. For simplicity, we only consider 𝑑-regular graphs. In this case,

𝑀 is also the random walk matrix of 𝐺 .

In their seminal works, [30, 33] proved the existence of Ramanu-

jan graphs, i.e., an infinite family of 𝑑-regular 𝜆-spectral expanders

with number of vertices 𝑛 going to infinity, and 𝜆 ≤ 2

√
𝑑−1
𝑑

. This

relation between the degree 𝑑 and 𝜆 is essentially tight as follows by

the Alon and Boppana bound (see [3, 35]). Explicit constructions of

expander graphs–Ramanujan or otherwise–attracted a significant

attention, e.g., [1, 6–8, 16, 40] and more recently [14] (extending

on [31, 32]) and [34]. Many works in the literature have studied and

utilized the pseudorandom properties of expanders, and we refer

the reader to excellent expositions on expander graphs [20, 46]

and to Chapter 4 of [47]. See also [29] for applications to pure

mathematics.

Expanders can be thought of as spectral sparsifiers of the clique.

Specifically, let J be the normalized adjacency matrix of the 𝑛-vertex

complete graph (with self-loops). That is, J is the 𝑛 × 𝑛 matrix with

all entries equal to
1

𝑛 . One can express the normalized adjacency

matrix𝑀 of𝐺 by𝑀 = (1−𝜆)J+𝜆𝐸 for some operator 𝐸 with spectral

norm at most 1. As such, one can hope to substitute a sample of two

independent vertices with the cheaper process of sampling an edge

from an expander and using its two (highly correlated) end-points.

1
In certain regime of parameters, the equivalence breaks.
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This is captured, e.g., by the expander mixing lemma [4]. This idea

also appears in many derandomization results, e.g., [5, 10, 22, 37,

38, 41], to name a few.

A natural and useful generalization of the above idea is to con-

sider not just an edge but rather a length 𝑡 − 1 random walk (where

the length is measured in edges) on the expander as a replacement

to 𝑡 independent samples of vertices. For concreteness, consider

a labelling val : 𝑉 → {0, 1} of the vertices by 0 and 1 with mean

𝜇 = E [val(𝑉 )]. Indeed, quite a lot is known:
• The basic hitting property of expanders [2, 23] states that

for every set 𝐴 ⊂ 𝑉 , with |𝐴| = 𝜇 |𝑉 |, a length 𝑡 − 1 random

walk is contained in 𝐴 with probability at most (𝜇 + 𝜆)𝑡 .
For 𝜆 ≪ 𝜇, this bound is close to 𝜇𝑡–the probability of the

event with respect to 𝑡 independent samples. Note that the

expander hitting property corresponds to a random walk

“fooling” the AND function, that is, for every 𝜆-spectral ex-

pander and every labelling val as above, the AND function

cannot distinguish with good probability labels obtained by 𝑡

independent samples from labels obtained by taking a length

𝑡 − 1 random walk.

• To give another example, the fundamental expander Cher-

noff bound [2, 17, 19] states that the number of vertices on

a random walk residing in 𝐴 is highly concentrated around

𝜇. Observe that the expander Chernoff bound corresponds

to fooling functions 𝑓𝜏 : {0, 1}𝑡 → {0, 1} indicating whether

the normalized Hamming weight of the input is concentrated

around 𝜇, more precisely, 𝑓𝜏 (𝑥1, . . . , 𝑥𝑡 ) = 1 if and only if

1

𝑡

∑𝑡
𝑖=1 𝑥𝑖 ∈ [𝜇 − 𝜏, 𝜇 + 𝜏].

• In fact, it is also known that all threshold functions are fooled

by a random walk [24, 25, 27] and we explain this in more

detail later.

• It was shown that the highly sensitive PARITY function is

fooled by a random walk on expanders (this was noted by

Alon in 1993, Wigderson and Rozenman in 2004 and [43]

where the result appears).

However, it is clear that sometimes a long random walk is not a
good replacement to independent samples. To see this, suppose𝐺

is a 𝜆-spectral expander for some constant 𝜆, that has a cut 𝐴 ⊂ 𝑉

with |𝐴| = |𝑉 |
2

and |𝐸 (𝐴,𝐴) | ≥ 𝜇 |𝐴| for 𝜇 ≥ 1

2
+ Ω̃(𝜆). Such graphs

exist, e.g., the graph constructed in [18, Section 7] is such. If we

sample 𝑡 independent vertices (𝑣1, . . . , 𝑣𝑡 ) from the graph, we expect

(𝑣𝑖 , 𝑣𝑖+1) to cross the cut about half the time, and by the Chernoff

bound the actual number of cut crossings is highly concentrated

around the mean. In contrast, when we take a random walk on

the graph we expect to cross the cut a 𝜇-fraction of the time, and

intuitively the number of cut crossings should be concentrated

around 𝜇.2 Thus, the simple test function that counts the number

of times we cross the cut and apply a threshold at
1

2
+ 𝜏 for some

𝜏 = Θ̃(𝜆) should distinguish with probability close to 1 between a

random walk and independent samples. This brings to the front a

natural and fundamental question:

What test functions does a random walk on an expander fool?

2
To show such a concentration one needs to prove a Chernoff bound for a walk on the

corresponding directed line graph.

1.1 Our Contribution
To give a formal description of our contribution, we set some nota-

tion. First, we are mainly concerned with balanced labelling func-

tions val : 𝑉 → {0, 1}, that is, 𝜇 = E[val(𝑉 )] = 1

2
, or equivalently,

with balanced cuts. The reason being is that we are trying to focus

our attention on the dependencies across the vertices of a random

walk. Setting 𝜇 = 1

2
(and working with regular graphs) allows us to

do so as the label of every vertex on a random walk is marginally

unbiased. Of course, the case 𝜇 ≠ 1

2
is very interesting as well

though we leave it for future research.

We compare two distributions on the set {0, 1}𝑡 . The first “ideal”
distribution is obtained by sampling independently and uniformly

at random 𝑡 vertices 𝑣1, . . . , 𝑣𝑡 and returning (val(𝑣1), . . . , val(𝑣𝑡 )).
As we assume val is balanced, this is simply the uniform distribution

over {0, 1}𝑡 which we denote by 𝑈𝑡 . The second distribution, de-

noted by RW𝐺,val, is obtained by taking a length 𝑡 − 1 random walk

on the graph, namely, we sample 𝑣1 uniformly at random from 𝑉 ,

and then for 𝑖 = 2, 3, . . . , 𝑡 , we sample 𝑣𝑖 uniformly at random from

the set of neighbors of 𝑣𝑖−1. We then return (val(𝑣1), . . . , val(𝑣𝑡 )).
Denote

E𝐺,val (𝑓 ) =
��E 𝑓 (RW𝐺,val) − E 𝑓 (𝑈𝑡 )

�� .
Informally, E𝐺,val (𝑓 )measures the distinguishability between these

two distributions as observed by the test function 𝑓 on the graph

𝐺 with respect to the labelling val.
We wish to have a result that holds uniformly on all 𝜆-spectral

expanders (on any number of vertices) and for every balanced

labelling. We denote by E𝜆 (𝑓 ) the supremum of E𝐺,val (𝑓 ) over all
𝜆-spectral expanders 𝐺 , on any number of vertices |𝑉 | = 𝑛, and

all balanced labelling functions val : 𝑉 → {0, 1}. We say that a

random walk on 𝜆-spectral expanders 𝜀-fools 𝑓 if E𝜆 (𝑓 ) ≤ 𝜀.

1.1.1 Random Walks Fool All Symmetric Functions. As discussed
above, it is known that several symmetric functions are fooled by a

random walk, and each teaches us a different aspect of the pseudo-

random nature of expander graphs. For example, 𝑓𝜏 is concerned

with concentration around the mean whereas the majority function

focuses on the symmetry around the mean (recall, val is a balanced
labelling). The fact that PARITY is fooled by a random walk is some-

what surprising as PARITY is as far as can be from being monotone,

put differently, it is highly sensitive.

Our first main result states that all symmetric functions are fooled
by a random walk.

Theorem 1.1. For every symmetric function 𝑓 : {0, 1}𝑡 → {0, 1},

E𝜆 (𝑓 ) = 𝑂 (𝜆 · log3/2 (1/𝜆)) .

We remark that the requirement that 𝑓 is symmetric is important

as we already saw before that the test that counts the number of

times we cross a cut distinguishes between independent samples

and the random walk samples. Indeed, the number of times we

cross a cut depends on the order of zeroes and ones in the sequence

and is not a symmetric function.

A different perspective one can take on Theorem 1.1 is that it

establishes a central limit theorem for random walks with respect

to the total variation distance. We turn to elaborate on this but

first introduce a convenient notation, specialized to symmetric

test functions. When focusing on symmetric functions it is more

1644
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natural to consider not RW𝐺,val and 𝑈𝑡 as above, but rather the

two distributions on {0, 1, . . . , 𝑡} obtained by taking the weights

of the two corresponding bit strings. More explicitly, we define

ΣInd𝑡 to be the distribution obtained by sampling 𝑡 independent

vertices 𝑣1, . . . , 𝑣𝑡 and returning val(𝑣1) + · · · + val(𝑣𝑡 ). The distri-
bution ΣRW𝑡 is defined as the sum of val(𝑣1) + · · · + val(𝑣𝑡 ) where
(𝑣1, . . . , 𝑣𝑡 ) ∼ RW𝐺,val. Note that we suppress the dependence on

𝐺, val from the notation as they will be clear from context. Instead,

we focus our attention on 𝑡 .

What is known about ΣInd𝑡 ? First, the Chernoff bound [13] tells

us that ΣInd𝑡 is highly concentrated around the mean, where the

probability to be 𝑐 standard deviations away from the mean is about

2
−Ω (𝑐2)

small. This implies that there is very low weight on the

tails, but does not tell us much about the center, where almost all

of the probability mass resides. In particular, the Chernoff bound

does not rule out the possibility that all the weight lies on the mean.

Further, it gives no information about, say, how symmetric is the

distribution around its mean.

The central limit theorem (CLT) guarantees that ΣInd𝑡 converges
to the normal distributionN𝑡 (with the same mean 𝑡/2 and variance
𝑡/4). The convergence of the CLT is with respect to the Kolmogorov

distance (see Definition 3.5). That means that the cumulative distri-

bution function (CDF) of ΣInd𝑡 converges point-wise to the CDF of
the normal distribution. Equivalently, it means that every thresh-

old test function cannot distinguish independent samples from

the normal distribution. The Berry-Esseen Theorem specifies the

rate of convergence, and when, e.g., we sum random variables

with bounded first three moments (as in our case where the values

are Boolean) the distance between 𝑡 independent samples and the

normal distribution is in the order of 𝑡−1/2 with respect to the Kol-

mogorov distance. To summarize, the Chernoff bound guarantees

tails have low-weight, the CLT tells us how the weight is distributed

around the mean, and the Berry-Esseen theorem bounds the rate

of convergence.

We next ask what is known about ΣRW𝑡 ? In particular, what can

we say about the weight of tails, and what can we say about the

distribution around its mean. The expander Chernoff bound [17]

states that when the spectral gap 1−𝜆 is non-trivial, the probability

to be 𝑐 standard deviations away from themean is still about 2
−Ω (𝑐2)

small. The proof was simplified in [19]. Possibly less known by the

CS community is that the CLT and the Berry-Esseen Theorem were

also shown to hold for random walks on expanders. The CLT was

first shown for expanders by Kipnis and Varadhan [24] and their

work was later vastly generalized (see, e.g., [25, 27]). That work

shows, e.g., that:

Theorem 1.2. (Based on, e.g., [25, Thm C]) Let 𝐺 = (𝑉 , 𝐸) be
a 𝜆-spectral expander, and assume 𝜆 is bounded away from 1. Let
val : 𝑉 → {0, 1} with E[val(𝑉 )] = 1

2
. Then,

∥ ΣRW𝑡 − ΣInd𝑡 ∥KOL = 𝑂

(
1

√
𝑡

)
. (1.1)

We remark that by the Berry-Esseen theorem for independent

random variables we know that

∥ ΣInd𝑡 − N𝑡 ∥KOL = 𝑂

(
1

√
𝑡

)
,

whereN𝑡 is the normal distribution with the appropriate mean and

variance (the mean and variance depend on 𝑡 ). It therefore follows

that Equation (1.1) is equivalent to ∥ ΣRW𝑡 − N𝑡 ∥KOL = 𝑂

(
1√
𝑡

)
.

A natural question is whether the convergence can be strength-

ened to the stronger total variation distance, and this question

applies both to the possible convergence of ΣInd𝑡 to N𝑡 and of

ΣRW𝑡 to ΣInd𝑡 .
The first question was heavily studied in Probability. A represen-

tative case is the question on the rate of point-wise convergence of

ΣInd𝑡 to N𝑡 , i.e., how well the appropriate normal distribution N𝑡

approximates the probability ΣInd𝑡 gets a specific outcome𝑚 ∈ [𝑡].
The bottom line is that when val is distributed over {0, 1} the rate
of convergence is 𝑜 ( 1√

𝑡
) (see, e.g., [45, Theorem 7]). The fact that

the error is 𝑜 ( 1√
𝑡
) rather than 𝑂 ( 1√

𝑡
) is crucial, and, in particular,

implies convergence in the TVD with error 𝑜 (1) (because the proba-
bility mass outside [−𝑐

√
𝑡, 𝑐

√
𝑡] is tiny 2−Ω (𝑐2)

and therefore almost

all of the action takes place on an interval of length 𝑂 (
√
𝑡)) .

The same question can be asked with respect to the random

variables ΣRW𝑡 and ΣInd𝑡 . The answer in this case is given by

Theorem 1.1 that can be equivalently stated as:

Theorem 1.3 (Theorem 1.1; equivalent statement). Let 𝐺 = (𝑉 , 𝐸)
be a 𝜆-spectral expander, and assume 𝜆 is bounded away from 1. Let
val : 𝑉 → {0, 1} with E[val(𝑉 )] = 1

2
. Then,

∥ ΣRW𝑡 − ΣInd𝑡 ∥TVD = 𝑂 (𝜆 · log3/2 (1/𝜆)) .

This is because the total variation distance between ΣRW𝑡 and

ΣInd𝑡 is the same as the best distinguishing probability a test on

ΣRW𝑡 and ΣInd𝑡 can achieve, which amounts to the best distin-

guishing probability a symmteric function can achieve on RW𝑡 and

Ind𝑡 . Thus, while the Kolmogorov distance amounts to fooling all

threshold functions, total variation distance amounts to fooling all

symmetric functions.
To conclude the section we remark that sometimes our results

give better bounds even for threshold functions. For example, from

Theorem 1.2 one can infer than E𝜆 (MAJ𝑡 ) ≤ 𝑂

(
1√
𝑡

)
with the

constant factor independent of 𝜆. However, in Theorem 4.6 we

show a similar result but with the constant going to zero together

with 𝜆, namely:

Theorem 1.4. For every 𝜆 ∈ [0, 1] and 𝑡 ∈ N,

E𝜆 (MAJ𝑡 ) ≤ 𝑂

(
𝜆2
√
𝑡

)
.

We do not know whether the bound should decay with 𝑡 for

general symmetric functions and leave this as an open problem.

1.1.2 Beyond Symmetric Functions. We proceed even further and

consider general test functions - not necessarily symmetric. We

take a complexity-oriented perspective and instead of analyzing

specific test functions, we consider natural complexity classes. In

particular, we analyze tests that are computable by AC0
circuits,

various types of read once branching programs, and functions with

bounded query complexity. As we discuss in Section 2, our approach

for proving Theorem 1.1 is Fourier-analytic. As such it is general

enough to allow us to analyze such versatile tests functions as well,

deviating significantly from prior works both in terms of techniques
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and results. Moreover, it allows us to utilize known results on the

Fourier spectrum of the above-mentioned classes [12, 39, 44]. Our

second main result is summarized in the following theorem.

Theorem 1.5. For every function 𝑓 : {0, 1}𝑡 → {0, 1} the following
holds.

(1) If 𝑓 is computable by a size-𝑠 depth-𝑑 circuit then E𝜆 (𝑓 ) =

𝑂 (
√
𝜆 · (log 𝑠)2(𝑑−1) ) .

(2) If 𝑓 is computable by (any order) width-𝑤 ROBP 𝑃 , then
E𝜆 (𝑓 ) = 𝑂 (

√
𝜆 · (log 𝑡)2𝑤) . Moreover, if 𝑃 is a permutation

ROBP, E𝜆 (𝑓 ) = 𝑂 (
√
𝜆 ·𝑤4).

(3) E𝜆 (𝑓 ) = 𝑂 (
√
𝜆 · DT(𝑓 )2), where DT(𝑓 ) denotes the decision

tree complexity of 𝑓 .

Theorem 1.5 implies that every test function in AC0
cannot

distinguish 𝑡 independent labels from labels obtained by a random

walk on a 𝜆-spectral expander provided 𝜆 is taken sufficiently small

poly-logarithmic in 𝑡 . This result can be thought of as an analog

of Braverman’s celebrated result [9] (see also [44]) that studies

the pseudorandomness of 𝑘-wise independent distributions with

respect to AC0
test functions. As an example, the Tribes function

is fooled by a random walk provided 𝜆 = 𝑂 ((log 𝑡)−8). It is well-
known that the decision tree complexity is polynomially-related to

other complexity measures such as the randomized and quantum

decision tree measures, the certificate query complexity, and the

approximate real degree of a function (see, e.g., [11] for further

details). Moreover, in a recent breakthrough, Huang resolved the

sensitivity conjecture to the affirmative, implying that the decision

tree complexity is polynomially-related to the sensitivity of the

function [21]. Thus, by Theorem 1.5, every test function 𝑓 with a

bound𝑏 on any of these measures cannot distinguish independently

sampled labels from labels obtained by a random walk on a 𝜆-

spectral expander provided that 𝜆 ≤ 𝑏−𝑐 , where 𝑐 is some universal

constant.

1.2 Related Work
Very recently, Guruswami and Kumar [18], in an independent

work, studied the following problem. We are given a distribution

𝑌1, . . . , 𝑌𝑡 , where 𝑌1 is uniform over {0, 1}, and 𝑌𝑖+1 equals 𝑌𝑖 with
probability

1+𝜆
2

and equals 1 − 𝑌𝑖 otherwise. They showed that the

number of times we see a 1 converge in total variation distance
to the independent case. They also showed this distribution can

emerge from a random walk over some 𝜆-expander 𝐺 = (𝑉 , 𝐸)
and some balanced coloring of the vertices. A major open problem

they raise is whether the same is true for any random walk on a

𝜆-expander, which is answered in the affirmative in this paper.

The techniques Guruswami and Kumar use have a lot in com-

mon with our techniques. They use the Krawchuck polynomials

(that also appear in our study) and analyze the probability the walk

hits the set exactly𝑤 times (which corresponds to the weight func-

tion 1𝑤 that we study in Section 4.4). The main difference between

their work and ours is that we study the problem for an arbitrary

𝜆-spectral expander, rather than the specific 𝜆-sticky walk they

analyze. Our approach for that is to use the Fourier representation,

and analyze the basis functions (i.e., characters, or equivalently,

parities) using the analysis of parity on random walks. This analy-

sis was first done in the unpublished works by Alon in 1993 and

Wigderson and Rozenman in 2004, and later in [43]. We explain

our technique in Section 2.

2 PROOF OVERVIEW
As mentioned, our approach for proving Theorem 1.1 and Theo-

rem 1.5 is Fourier analytic. That is, we first analyze E𝜆 on Fourier

characters (namely, parity functions). Then, we invoke known re-

sults on the Fourier expansion of the function under consideration.

This leads us to study a new Fourier tail we dub the Random Walk
Fourier tail, or the 𝜆-tail. To this end, it is more convenient to dis-

cuss test functions of the form 𝑓 : {±1}𝑡 → {±1}. Parity functions

are then given by 𝜒𝑆 (𝑥) =
∏

𝑖∈𝑆 𝑥𝑖 for 𝑆 ⊆ [𝑡]. Before giving the

formal definition and results, in Section 2.1 we consider some exam-

ples to gain intuition. In particular, we find it instructive to proceed

by analyzing parities according to their degree.

2.1 Toy Examples: The First Few Parities
Degree 1. To start with, consider degree 1, namely, a dictator

function Dict𝑖 (𝑥) = 𝑥𝑖 for some 𝑖 ∈ [𝑡]. As we assume 𝐺 is regular

and val balanced, the marginal distribution of the 𝑖th vertex on a

random walk is uniform over 𝑉 , and so E𝜆 (Dict𝑖 ) = 0.

Degree 2. Consider a function that is the parity of two of its input
bits 𝑓 (𝑥) = 𝑥𝑖1𝑥𝑖2 for some 𝑖1 < 𝑖2. We already know that the 𝑖st

1

vertex is uniformly distributed over 𝑉 . Intuitively, the larger the

distance Δ = 𝑖2−𝑖1 is, the less correlated is the 𝑖nd
2

vertex on the path

to the 𝑖st
1
vertex. Fully aligned with this intuition, it can be easily

shown that E𝜆 (𝑥𝑖1𝑥𝑖2 ) ≤ 𝜆Δ. Indeed, one can think of a length Δ
random walk on a 𝜆-spectral expander as picking a random edge

(i.e., a random walk of length 1) on a 𝜆Δ-spectral expander.

Degree 3. Moving on to degree 3, consider the test function

𝑓 (𝑥) = 𝑥𝑖1𝑥𝑖2𝑥𝑖3 with 𝑖1 < 𝑖2 < 𝑖3. Denote Δ1 = 𝑖2 − 𝑖1 and

Δ2 = 𝑖3 − 𝑖2. Here one may root for one of several (conflicting)

intuitive arguments. First, one might argue that if one of Δ1,Δ2

is small then two of the bits are highly correlated. Being cautious

regarding to how correlations behave on a random walk, one might

suspect that this results in an overall high correlation. By that logic,

E𝜆 (𝑓 ) ≈ 𝜆min(Δ1,Δ2) . On the other hand, one might argue that if

one of Δ1,Δ2 is large, regardless of the other, then the far away

vertex gained a “large amount of independence”, resulting in an

overall low distinguishability. Thus, E𝜆 (𝑓 ) ≈ 𝜆max(Δ1,Δ2) .
Perhaps surprisingly, we show that E𝜆 (𝑓 ) ≈ 𝜆Δ1+Δ2 = 𝜆𝑖3−𝑖1 .

That is to say, it is only the “effective” path’s length–the distance

between the first and last observed vertices on the path–that is

taken into account, independent of the location of the middle vertex.

To see why this is the case, recall that for a 𝜆-spectral expander

with a random walk matrix 𝑀 , it holds that 𝑀 = (1 − 𝜆)J + 𝜆𝐸.

Thus, one can intuitively think of a step on a 𝜆-spectral expander

as follows: With probability 1 − 𝜆 sample uniformly at random a

vertex, completely ignoring the current vertex we are at and the

edge structure of the graph, and with probability 𝜆 sample a vertex

adversarially. We stress that this intuition is not accurate as 𝐸 is

an operator that is not necessarily a random walk matrix of any

graph.

With this in mind, consider the random walk from the first to the

second vertex. With probability 1−𝜆Δ1
we completely decouple the
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first vertex from the second, and hence from the entire remaining

part of the path. As the first vertex is marginally uniform (recall

𝜇 = 0), the parity of the three bits is unbiased. Similarly, with

probability 1 − 𝜆Δ2
, the third vertex is independent from the first

two. As we think of these events as independent, it is only with

probability 𝜆Δ1+Δ2
that (adversarial) correlations may appear.

Degree 4. Generalizing the above notation in the natural way,

for a degree 4 parity test function, our analysis shows that E𝜆 (𝑓 ) ≤
𝜆Δ1+Δ3

. This might be somewhat counter-intuitive. Indeed, one

might expect that 𝜒{1,2,3,4} will be harder to fool than 𝜒{1,2,𝑡−1,𝑡 }
as in the latter case, the first pair of vertices is “far away” from the

second pair and so the two pairs should be less correlated compared

to the corresponding pairs in 𝜒{1,2,3,4} . This, however, is not how
correlations on a random walk behave.

To intuitively see why E𝜆 (𝑓 ) ≤ 𝜆Δ1+Δ3
note, as in the previous

example, that with probability 1 − 𝜆Δ1
the first vertex is “cut” from

the remaining part of the path. Similarly, with probability 1 − 𝜆Δ3

the fourth vertex is independent of the rest, and so it is only with

probability 𝜆Δ1+Δ3
that the first and fourth vertices are not inde-

pendent from the other vertices. We turn to give a formal proof of

this fact mainly served as a warm-up for the proof of the general

case (see Section 4.1).

Claim 2.1. Let 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} with 𝑠1 < 𝑠2 < 𝑠3 < 𝑠4. For
𝑖 = 1, 2, 3, denote Δ𝑖 = 𝑠𝑖+1 − 𝑠𝑖 . Then, E𝜆 (𝜒𝑆 (𝑥)) ≤ 𝜆Δ1+Δ3 where
𝜒𝑆 (𝑥) =

∏
𝑖∈𝑆 𝑥𝑖 .

Proof. Let 1 be the normalized length-𝑛 unit vector, that is,

every entry of 1 equals to
1√
𝑛
. Take 𝐺 to be any regular 𝜆-spectral

expander, and val : 𝑉 → {±1} balanced. We slightly abuse notation

and denote by𝐺 the random walk matrix for𝐺 . Let 𝑃 be the𝑉 ×𝑉

diagonal matrix with entry (𝑣, 𝑣) equals to val(𝑣). We first observe

that

E𝐺,val (𝜒𝑆 ) =
�� E[𝜒𝑆 (RW𝐺,val)]

��
=

��1𝑇 (𝑃𝐺Δ3 ) (𝑃𝐺Δ2 ) (𝑃𝐺Δ1 )𝑃1
��.

As mentioned, we can write 𝐺 = (1 − 𝜆)J + 𝜆𝐸 for some bounded

operator ∥𝐸∥ ≤ 1. More generally, for every 𝑖 = 1, 2, 3 we have that

𝐺Δ𝑖 = (1 − 𝜆Δ𝑖 )J + 𝜆Δ𝑖𝐸𝑖 with ∥𝐸𝑖 ∥ ≤ 1. Thus, we can express the

right hand side of the above equation as a summation of 8 terms

where in each term, we replace each of 𝐺Δ𝑖
by either (1 − 𝜆Δ𝑖 )J

or 𝜆Δ𝑖𝐸𝑖 . Not all 8 summands contribute to the sum. Indeed, if we

replace 𝐺Δ1
by (1 − 𝜆Δ1 )J then

1𝑇 (𝑃𝐺Δ3 ) (𝑃𝐺Δ2 ) (𝑃 (1 − 𝜆Δ1 )J)𝑃1

= 1𝑇 (𝑃𝐺Δ3 ) (𝑃𝐺Δ2 ) (𝑃 (1 − 𝜆Δ1 )11𝑇 )𝑃1

= 1𝑇 (𝑃𝐺Δ3 ) (𝑃𝐺Δ2 )𝑃 (1 − 𝜆Δ1 )1(1𝑇 𝑃1),

which equals 0 as 1𝑇 𝑃1 = E[val(𝑉 )] = 0. Similarly, to get a nonzero

contribution we must take 𝜆Δ3𝐸3 for𝐺
Δ3
. Thus, there are only two

contributing summands correspond to the sequences we denote by

EJE and EEE. As for the first sequence,��1𝑇 (𝑃𝜆Δ3𝐸3) (𝑃 (1 − 𝜆Δ2 )J) (𝑃𝜆Δ1𝐸1)𝑃1
��

≤ ∥(𝑃𝜆Δ3𝐸3) (𝑃 (1 − 𝜆Δ2 )J) (𝑃𝜆Δ1𝐸1)𝑃 ∥2
≤ (1 − 𝜆Δ2 )𝜆Δ1+Δ3 ,

where we used the fact that ∥𝑃 ∥2 ≤ 1. Similarly, for the EEE se-

quence we get a bound of 𝜆Δ1+Δ2+Δ3
. The proof follows by adding

the bounds corresponding to the two summands. □

For degrees higher than 4, another reason an E/J sequence does
not contribute is the existence of two consecutive J symbols. This is

the main “saving” one capitalize on in high degrees (see Section 4.1).

2.2 The General Framework
The general framework that we develop for bounding E𝜆 (𝑓 ) for
a given function 𝑓 (not necessarily symmetric) is as follows. First,

expand 𝑓 in the Fourier basis and note that

E𝐺,val (𝑓 ) ≤
��� ∑︁
𝑆⊆[𝑡 ]
𝑆≠∅

𝑓 (𝑆) E[𝜒𝑆 (RW𝐺,val)]
���.

We stress that we do not ignore the cancellations that may oc-

cur, namely, we work with the absolute value of the sum rather

than with the sum of absolute values. This is crucial for our proof

of Theorem 1.1 which, indeed, is very delicate. For each character

𝜒𝑆 we follow the steps of Claim 2.1 and express E[𝜒𝑆 (RW𝐺,val)]
algebraically. As in previous works (e.g., [40, 41, 43]), we replace

a step 𝐺 of the graph with (1 − 𝜆)J + 𝜆𝐸, and view 𝐸 as low-order

noise. In previous works one often argues about norms of short

sub-sequences, e.g., [40, 41] look at the norm of two steps while

[43] look at longer length (but still short) sub-sequences. Instead,

here we expand the whole product in full and take into account the

structure of the set 𝑆 in the parity 𝜒𝑆 under consideration.

This is the gist of our general Fourier-analytic framework for

analyzing expander random walks. We turn to give some more

details on the proof of Theorems 1.1 and 1.5 which falls into this

framework.

2.3 Analyzing Symmetric Functions
For the proof of Theorem 1.1 we consider all weight-indicating

test functions. For every 𝑤 ∈ {0, 1, . . . , 𝑡} let 𝑓𝑤 : {±1}𝑡 → {0, 1}
be defined by 𝑓𝑤 (𝑥) = 1 if and only if 𝑥 is of Hamming weight

𝑤 . To analyze all symmetric functions, it suffices to analyze the

weight-indicating functions. In fact, note that one is only interested

in𝑤 ∈ [ 𝑡
2
− 𝑐

√
𝑡, 𝑡

2
+ 𝑐

√
𝑡] for some parameter 𝑐 , as the remaining

weights can be handled via the expander Chernoff bound.

Fix 𝑤 in this range. For the proof of Theorem 1.1, for each

𝑆 ⊆ [𝑡] we collect the 2
|𝑆 |

summands obtained by expanding

E[𝜒𝑆 (RW𝐺,val)], namely, the summands that correspond to the

E/J sequences. We then “switch perspective” and for every fixed

such E/J sequence calculate contributions to it from all sets 𝑆 , tak-

ing into account the Fourier spectrum of 𝑓𝑤 . The analysis is very

delicate. Remarkably, all the pieces fall in place and give the result.

As a warm-up in Section 4.3 we prove that theMAJORITY function

is fooled by a random walk. Although this is a known result, our

proof is based on completely different techniques.

2.4 The 𝜆-tail
For sets of size |𝑆 | ≥ 5, the bound on E[𝜒𝑆 (RW𝐺,val)] is getting
more and more cumbersome. For symmetric functions, using a very

delicate argument, we are able to work with a very tight bound.

However, for the non-symmetric functions under consideration, it
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is possible and much cleaner to work with a looser bound that is

more amendable for analysis. In the following, for a set 𝐴, denote

by

( 𝐴
≥𝑘

)
the set of all subsets of 𝐴 of size at least 𝑘 .

Definition 2.2. For an integer 𝑡 ≥ 1 define the map ∆ :

( [𝑡 ]
≥2

)
→ N

as follows. Let 𝑆 ⊆ [𝑡], of size 𝑘 ≥ 2, and denote 𝑆 = {𝑠1, . . . , 𝑠𝑘 }
where 𝑠1 < · · · < 𝑠𝑘 . For 𝑖 ∈ [𝑘 − 1] write Δ𝑖 = 𝑠𝑖+1 − 𝑠𝑖 . For 𝑘 = 2

we define ∆(𝑆) = Δ1, for 𝑘 = 3 define ∆(𝑆) = Δ1 +Δ2, and for 𝑘 ≥ 4,

∆(𝑆) =
𝑘−2∑︁
𝑖=1

min(Δ𝑖 ,Δ𝑖+1). (2.1)

Using ideas similar to those in Claim 2.1, we prove.

Proposition 2.3. For every 𝜆 ∈ [0, 1], 𝑡 ∈ N and 𝑆 ⊆ [𝑡] a subset
of size |𝑆 | ≥ 2, it holds that

E𝜆 (𝜒𝑆 ) ≤ 2
|𝑆 | · 𝜆∆(𝑆)/2 .

We refer the reader to Proposition 4.2 for a stronger statement.

Proposition 2.3 naturally leads us to the study of what we call the

𝜆-tail.

Definition 2.4 (The 𝜆-tail). Let 𝑓 : {±1}𝑡 → {±1}. For 𝜆 ∈ [0, 1]
and 𝑘 ∈ {2, 3, . . . , 𝑡}, we define

Λ𝜆,𝑘 (𝑓 ) =
∑︁

𝑆⊆[𝑡 ]
|𝑆 |=𝑘

|𝑓 (𝑆) | · 𝜆∆(𝑆) . (2.2)

The 𝜆-tail of 𝑓 is defined by Λ𝜆 (𝑓 ) =
∑𝑡
𝑘=2

Λ𝜆,𝑘 (𝑓 ).
In Claim 5.2 we prove that E𝜆 (𝑓 ) ≤ 4Λ

2

√
𝜆
(𝑓 ), and so, to analyze

how well random walks fool a given function, it suffices to bound

its 𝜆-tail. In Claim 5.3 we bound the 𝜆-tail of functions with a

decaying L1 tail. This then allows us to invoke [12, 39, 44] and

deduce Theorem 1.5.

2.5 Remarks and Future Work
We conclude this section with several remarks and open problems

that follow from our work.

(1) It is an interesting problem that we leave for future work

to consider also unbalanced labelling. Namely, a labelling

val : 𝑉 → {±1} with E[val(𝑉 )] = 𝜇 ≠ 0.

(2) Can the poly log
1

𝜆
factor in Theorem 1.1 be improved?

(3) Can one obtain a bound as in Theorem 1.4, namely decaying

as 𝑡 → ∞ and 𝜆 → 0, for all threshold functions? For all

symmetric functions?

(4) Our results on non symmetric functions follow by applying

known bounds on the L1 Fourier tail of the function of inter-

est together with Claim 5.3 that relates the L1 decay to the

𝜆-tail. Typically, bounds on theL1 (andL2) tails are obtained

by using random restrictions. An interesting problem is to

prove stronger results than those obtained in Theorem 1.5

by directly analyzing (perhaps suitable variants of) random

restrictions with respect to the 𝜆-tail. Indeed, we note that

the L1 tail and the 𝜆-tail can behave very differently. To see

this, consider any function 𝑓 : {±1}𝑡 → {±1} that is deter-
mined by 𝑥𝑎, 𝑥2𝑎, 𝑥3𝑎, . . . for a parameter 𝑎 ≫ log 𝑡 . Then,

Λ𝜆,𝑘 (𝑓 ) ≤
(𝑡
𝑘

)
𝜆𝑎𝑘 ≪ 1

𝑡 for a sufficiently small constant 𝜆,

and soΛ𝜆 (𝑓 ) ≪ 1. On the other hand, a typical such function

does not have a nontrivial decaying L1 Fourier tail.

3 PRELIMINARIES
We let [𝑛] denote the set {1, . . . , 𝑛}. We let 1 ∈ R𝑛 denote the

normalized all 1s vector, i.e., 1 = 1√
𝑛
· (1, . . . , 1)𝑇 ∈ R𝑛 . We let

J = 11𝑇 .Throughout the paper, we make use of the following well

known inequalities about binomial coefficients.

Claim 3.1. Let 0 < 𝜆 < 1, and integers 𝑟 ≥ 0, 𝑎 ≥ 𝑏 ≥ 1. Then,

(1) ( 𝑎
𝑏
)𝑏 ⩽

(𝑎
𝑏

)
⩽ ( 𝑒𝑎

𝑏
)𝑏 ,

(2)
∑∞
𝑖=𝑟

(𝑖
𝑟

)
𝜆𝑖 = 𝜆𝑟

(1−𝜆)𝑟+1 .

3.1 Fourier Analysis
Consider the space of functions 𝑓 : {±1}𝑡 → R, along with the

inner product ⟨𝑓 , 𝑔⟩ = 2
−𝑡 ∑

𝑥 ∈{±1}𝑡
𝑓 (𝑥)𝑔(𝑥). It is a well-known fact

that the set {𝜒𝑆 | 𝑆 ⊆ [𝑡]}, where 𝜒𝑆 =
∏
𝑖∈𝑆

𝑥𝑖 , forms an orthonor-

mal basis with respect to this inner product, which is called the

Fourier basis. Thus every function 𝑓 : {±1}𝑡 → R can be uniquely

represented as 𝑓 (𝑥) = ∑
𝑆⊆[𝑡 ]

𝑓 (𝑆)𝜒𝑆 (𝑥), where 𝑓 (𝑆) ∈ R.

A technical tool that we use in our proof is the noise operator.

The definitions and following claims appear in [36].

Definition 3.2. Let 𝜌 ∈ [−1, 1]. For a fixed 𝑥 ∈ {±1}𝑡 we write
𝑦 ∼ 𝑁𝜌 (𝑥) to denote the random string 𝑦 that is drawn as follows:
for each 𝑖 ∈ [𝑡] independently,

𝑦𝑖 =

{
𝑥𝑖 with probability 1+𝜌

2
,

−𝑥𝑖 with probability 1−𝜌
2

.

Definition 3.3. Let 𝜌 ∈ [−1, 1]. The noise operator 𝑇𝜌 is the linear
operator on functions {±1}𝑡 → R, defined as:

𝑇𝜌 𝑓 (𝑥) = E
𝑦∼𝑁𝜌 (𝑥)

𝑓 (𝑦)

The fact that the operator is linear follows directly from the linearity
of the expectation.

Notice that 𝑇1 (𝑓 ) = 𝑓 whereas 𝑇0 (𝑓 ) is the constant function
𝑇0 (𝑓 ) = E 𝑓 . We make use of the following lemma.

Lemma 3.4. For every function 𝑓 : {±1}𝑡 → R it holds that:

𝑇𝜌 𝑓 (𝑥) =
∑︁
𝑆 ∈[𝑡 ]

𝑓 (𝑆)𝜌 |𝑆 | 𝜒𝑆 (𝑥).

3.2 Distances Between Probability Distributions
Definition 3.5. Let 𝑃,𝑄 be a pair of (not necessarily discrete) distri-
butions over R. Let B denote the class of Borel sets. We define

dTV (𝑃,𝑄) = sup𝐴∈B (𝑃 (𝐴) −𝑄 (𝐴)) ,
d
Kol

(𝑃,𝑄) = sup𝑥 ∈R,𝐼=(−∞,𝑥 ] (𝑃 (𝐼 ) −𝑄 (𝐼 )) .

We call dTV the total variation distance and d
Kol

the Kolmogorov-

Smirnov distance.

Definition 3.6. Let {𝑃𝑛}𝑛∈N , 𝑄 be distributions over R. Then,
• (Weak convergence) We write 𝑃𝑛 ⇒ 𝑄 if
for every 𝑥0 ∈ R, lim𝑛→∞ 𝑃𝑛 (𝑥0) = 𝑄 (𝑥0) .

• (Kolmogorov convergence) We write 𝑃𝑛 ⇒
Kol

𝑄 if
lim𝑛→∞ d

Kol
(𝑃𝑛, 𝑄) = 0.
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• (TV convergence) We write 𝑃𝑛 ⇒TV 𝑄 if
lim𝑛→∞ dTV (𝑃𝑛, 𝑄) = 0.

We note that the TV convergence implies Kolmogorov conver-

gence which, in turn, implies weak convergence. In this language,

the CLT and the Berry Esseen theorems state the following.

Theorem 3.7 (CLT for independent distributions). Suppose 𝑋𝑖
are i.i.d. and marginally uniform on {±1}. Let 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 . Then,

𝑆𝑛√
𝑛
⇒ N(0, 1). Furthermore, the Berry-Esseen Theorem states that

d
Kol

(
𝑆𝑛√
𝑛
,N(0, 1)

)
≤ 3

√
𝑛
.

4 RANDOMWALKS FOOL ALL SYMMETRIC
TEST FUNCTIONS

Let 𝐺 = (𝑉 , 𝐸) be a regular 𝜆-spectral expander, and let val : 𝑉 →
{±1} be a balanced labelling of the vertices of𝐺 , that is, E [val(𝑉 )] =
0. Let 𝑡 ≥ 1 be a natural number. We recall from the introduction

that we want to compare two distributions on {±1}𝑡 .
• Note that 𝑈𝑡–the uniform distribution over {±1}𝑡–is the
distribution obtained by sampling 𝑡 vertices

𝑣1, . . . , 𝑣𝑡 uniformly and independently at random from 𝑉

and outputting the ordered tuple (val(𝑣1), . . . , val(𝑣𝑡 )).
• RW𝐺,val is the distribution obtained by sampling a random

length 𝑡 − 1 path 𝑣1, . . . , 𝑣𝑡 over 𝐺 and outputting the or-

dered tuple (val(𝑣1), . . . , val(𝑣𝑡 )). Equivalently, sample 𝑣1
uniformly at random from𝑉 . Then, for 𝑖 = 2, 3, . . . , 𝑡 , sample

𝑣𝑖 uniformly at random from the neighbors of 𝑣𝑖−1.

Let 𝑓 : {±1}𝑡 → {±1} be any test function. Expand 𝑓 in the

Fourier basis,

𝑓 (𝑥) =
∑︁

𝑆⊆[𝑡 ]
𝑓 (𝑆)𝜒𝑆 (𝑥),

where 𝜒𝑆 (𝑥) =
∏

𝑖∈𝑆 𝑥𝑖 . We have the following easy lemma.

Lemma 4.1. Let 𝐺 = (𝑉 , 𝐸) be a regular 𝜆-spectral expander, and
let val : 𝑉 → {±1} be a balanced labelling of the vertices of𝐺 . Then,
for every function 𝑓 : {±1}𝑡 → R,

E𝐺,val (𝑓 ) ≤
∑︁
𝑆⊆𝑇
𝑆≠∅

|𝑓 (𝑆) |E𝐺,val (𝜒𝑆 )

Proof. As E[𝑓 (𝑈𝑡 )] = 𝑓 (∅),

E𝐺,val (𝑓 ) =
��E 𝑓 (RW𝐺,val) − E 𝑓 (𝑈𝑡 )

��
=

��� ∑︁
𝑆⊆𝑇
𝑆≠∅

𝑓 (𝑆) E[𝜒𝑆 (RW𝐺,val)]
���.

Since val is balanced, E[𝜒𝑆 (𝑈𝑡 )] = 0, and so

E𝐺,val (𝜒𝑆 ) = | E[𝜒𝑆 (RW𝐺,val)] |. The proof follows by the trian-

gle inequality. □

Lemma 4.1 motivates us to consider parity test functions. This is

the content of the following section.

4.1 Parities Test Functions
In this section we analyze to what extent expander random walks

fool parity tests functions. In particular, we prove Proposition 2.3.

In fact, we prove a stronger statement. We start by introducing

some notation. For an integer 𝑘 ≥ 2, we define the family F𝑘 of

subsets of [𝑘 − 1] that, informally, consists of all subsets for which

at least one of every two consecutive elements participate in the

set. We also require the “end points” 1, 𝑘 − 1 to participate in the

set. Formally, we define

F𝑘 = {𝐼 ⊆ [𝑘 − 1] | {1, 𝑘 − 1} ⊆ 𝐼 (4.1)

and ∀𝑗 ∈ [𝑘 − 2] { 𝑗, 𝑗 + 1} ∩ 𝐼 ≠ ∅}.

So, for example, F6 consists of the elements {1, 3, 5}, {1, 2, 4, 5}
as well as of all subsets of [5] that contain any one of these two

elements, namely, {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 2, 3, 4, 5}. We extend

the definition in the natural way to 𝑘 = 0, 1 by setting F0 = F1 = ∅.
Let 𝑆 ⊆ [𝑡] be a set of cardinality |𝑆 | = 𝑘 ≥ 1. Write 𝑆 =

{𝑠1, . . . , 𝑠𝑘 } with 𝑠1 < 𝑠2 < · · · < 𝑠𝑘 . Set 𝑠0 = 0 and 𝑠𝑘+1 = 𝑡 + 1. For

𝑖 = 0, 1, . . . , 𝑘 , we denote by Δ𝑖 (𝑆) = 𝑠𝑖+1 − 𝑠𝑖 . When the set 𝑆 is

clear from context, we write Δ𝑖 for short. With these notations, we

prove.

Proposition 4.2. Let 𝐺 = (𝑉 , 𝐸) be a regular 𝜆-spectral expander,
and let val : 𝑉 → {±1} be a balanced labelling of the vertices of 𝐺 ,
that is, E [val(𝑉 )] = 0. Then, for every integers 1 ≤ 𝑘 ≤ 𝑡 and every
subset 𝑆 ⊆ [𝑡] of size 𝑘 ,

E𝐺,val (𝜒𝑆 ) ≤
∑︁
𝐼 ∈F𝑘

𝜆
∑

𝑗∈𝐼 Δ𝑗 (𝑆) .

For example, for a set 𝑆 of size |𝑆 | = 6,

E𝐺,val (𝜒𝑆 ) ≤𝜆Δ1+Δ3+Δ5 + 𝜆Δ1+Δ2+Δ4+Δ5 + 𝜆Δ1+Δ2+Δ3+Δ5+

𝜆Δ1+Δ3+Δ4+Δ5 + 𝜆Δ1+Δ2+Δ3+Δ4+Δ5 .

Before proving Proposition 4.2, we remark that for sets of size

|𝑆 | = 1, the sum is taken over the empty index set F1 and so, by

the standard convention, the sum equals to 0. We also observe

that Proposition 2.3 follows by Proposition 4.2. To see this, note

that for every 𝐼 ∈ F𝑘 ,

2

∑︁
𝑖∈𝐼

Δ𝑖 ≥
𝑘−2∑︁
𝑖=1

min(Δ𝑖 ,Δ𝑖+1). (4.2)

Indeed, if we define 𝛿𝑖 to be the corresponding indicator for 𝑖 ∈ 𝐼 ,

namely, 𝛿𝑖 = 1 if 𝑖 ∈ 𝐼 and 𝛿𝑖 = 0 otherwise, we see that

2

∑︁
𝑖∈𝐼

Δ𝑖 ≥
𝑘−2∑︁
𝑖=1

𝛿𝑖Δ𝑖 + 𝛿𝑖+1Δ𝑖+1 .

Equation (4.2) follows since 𝛿𝑖Δ𝑖 + 𝛿𝑖+1Δ𝑖+1 ≥ min(Δ𝑖 ,Δ𝑖+1) as
indeed, for every 𝑖 ∈ [𝑘 − 2], at least one of 𝑖, 𝑖 + 1 is in 𝐼 . Now,

recall that in Equation (2.1), the right hand side of Equation (4.2)

was denoted by ∆(𝑆). As |F𝑘 | ≤ 2
𝑘−1

, Proposition 2.3 follows

by Proposition 4.2. We turn to prove Proposition 4.2.

Proof of Proposition 4.2. Consider any nonempty set

𝑆 ⊆ [𝑡] of size |𝑆 | = 𝑘 . As E[𝜒𝑆 (𝑈𝑡 )] = 0, we have that

E𝐺,val (𝜒𝑆 ) = E[𝜒𝑆 (RW𝐺,val)] .
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Wewish to express the right hand side algebraically. Let 𝑛 = |𝑉 | and
identify 𝑉 with [𝑛] in an arbitrary way. Let 𝑃 be a 𝑛 × 𝑛 diagonal

matrix with val(𝑣) on the diagonal in row 𝑣 . We slightly abuse

notation and denote the randomwalkmatrix (that is, the normalized

adjacency matrix) of𝐺 also by 𝐺 . Define 𝛿𝑖 = 1 if 𝑖 ∈ 𝑆 and 𝛿𝑖 = 0

otherwise. Observe that

E[𝜒𝑆 (RW𝐺,val)] = 1𝑇
(

𝑡∏
𝑖=1

𝑃𝛿𝑖𝐺

)
1.

Indeed, informally, at the 𝑖’th step we take a random step using 𝐺

and then, depending on 𝑖 being an element of 𝐼 or not, we multiply

by 𝑃 or by 𝐼 , respectively. Thus, we can write

E[𝜒𝑆 (RW𝐺,val)] = 1𝑇
(
𝑘−1∏
𝑖=1

𝑃𝐺Δ𝑖

)
𝑃1, (4.3)

where we have used the regularity of 𝐺 , namely, 𝐺1 = 1.
Next, we use the spectral decomposition of the expander graph

𝐺 . As 𝐺 is a 𝜆-spectral expander we know that 𝐺 = J + 𝜆𝐸 where

∥ 𝐸 ∥ ≤ 1
3
. Similarly, As 𝐺ℓ

is a 𝜆ℓ -spectral expander we have that

𝐺ℓ = J + 𝜆ℓ𝐸ℓ where ∥ 𝐸ℓ ∥ ≤ 1. Thus,

𝑘−1∏
𝑖=1

𝑃𝐺Δ𝑖 =
∑︁

𝐼 ⊆[𝑘−1]

𝑘−1∏
𝑖=1

𝑃𝐵𝑖 (𝐼 ), (4.4)

where

𝐵𝑖 (𝐼 ) =
{
𝜆Δ𝑖𝐸Δ𝑖

𝑖 ∈ 𝐼 ;

J otherwise.

For 𝐼 ⊆ [𝑘 − 1] let

𝑒𝐼 = 1𝑇
(
𝑘−1∏
𝑖=1

𝑃𝐵𝑖 (𝐼 )
)
𝑃1.

Equations (4.3) and (4.4) imply that

E[𝜒𝑆 (RW𝐺,val)] =
∑︁

𝐼 ⊆[𝑘−1]
𝑒𝐼 . (4.5)

Not all subsets 𝐼 ⊆ [𝑘 − 1] contribute non-zero values 𝑒𝐼 to the sum.

Indeed, if 𝑘 − 1 ∉ 𝐼 then 𝐵𝑘−1 (𝐼 ) = J and so

𝑒𝐼 = 1𝑇
(
𝑘−2∏
𝑖=1

𝑃𝐵𝑖 (𝐼 )
)
(𝑃J)𝑃1 = 1𝑇

(
𝑘−2∏
𝑖=1

𝑃𝐵𝑖 (𝐼 )
)
(𝑃11𝑇 )𝑃1

= 1𝑇
(
𝑘−2∏
𝑖=1

𝑃𝐵𝑖 (𝐼 )
)
𝑃1(1𝑇 𝑃1).

As 1𝑇 𝑃1 = E[val(𝑉 )] = 0, we have that 𝑒𝐼 = 0. Similarly 𝑒𝐼 = 0 for

𝐼 not containing 1. Moreover, if 𝑗, 𝑗 + 1 are both not contained in 𝐼

for some 𝑗 ∈ [𝑘 − 2] then

𝑒𝐼 = 1𝑇
(
𝑗−1∏
𝑖=1

𝑃𝐵𝑖 (𝐼 )
) (

𝑃𝐵 𝑗 (𝐼 )) (𝑃𝐵 𝑗+1 (𝐼 )
) ©«

𝑘−2∏
𝑖=𝑗+2

𝑃𝐵𝑖 (𝐼 )
ª®¬ 𝑃1

= 1𝑇
(
𝑗−1∏
𝑖=1

𝑃𝐵𝑖 (𝐼 )
)
(𝑃J) (𝑃J) ©«

𝑘−2∏
𝑖=𝑗+2

𝑃𝐵𝑖 (𝐼 )
ª®¬ 𝑃1.

3
Note that this is slightly different than the decomposition𝐺 = (1 − 𝜆)J + 𝜆𝐸 that

was used in the introduction.

However,

(𝑃J) (𝑃J) = (𝑃11𝑇 ) (𝑃11𝑇 ) = 𝑃1(1𝑇 𝑃1)1𝑇 = 0.

Thus, any subset 𝐼 ⊆ [𝑘 − 1] that may contribute to the sum

in Equation (4.5) is contained in F𝑘 as defined in Equation (4.1).

Using that ∥𝑃 ∥ ≤ 1 and the submultiplicativity of the euclidean

norm, for every 𝐼 ∈ F𝑘 we have that

𝑒𝐼 = 1𝑇
(
𝑘−1∏
𝑖=1

𝑃𝐵𝑖 (𝐼 )
)
𝑃1 ≤

𝑘−1∏
𝑖=1

∥𝑃𝐵𝑖 (𝐼 )∥ ≤
∏
𝑖∈𝐼

∥𝐵𝑖 (𝐼 )∥.

Recall that for every 𝑖 ∈ 𝐼 , 𝐵𝑖 (𝐼 ) = 𝜆Δ𝑖𝐸Δ𝑖
and that ∥𝐸Δ𝑖

∥ ≤ 1.

Thus, ∏
𝑖∈𝐼

∥𝐵𝑖 (𝐼 )∥ ≤
∏
𝑖∈𝐼

𝜆Δ𝑖 ,

which concludes the proof. □

4.2 Symmetric Test Functions
Given a symmetric function 𝑓 : {±1}𝑡 → R and 𝑘 ∈ [𝑡] we slightly
abuse notation and denote by 𝑓 (𝑘) = |𝑓 ( [𝑘]) |. For analyzing the

random walk with respect to symmetric test functions, we define

for every integer 𝑘 ∈ {0, 1, . . . , 𝑡},

𝛽𝑘 =
∑︁

𝑆⊆[𝑡 ]
|𝑆 |=𝑘

E[𝜒𝑆 (RW𝐺,val)] . (4.6)

Note that 𝛽𝑘 is independent of the choice of test function. However,

for symmetric tests functions, these quantities will appear in the

analysis, and so we begin by analyzing them. Indeed, a straightfor-

ward corollary of Lemma 4.1 is the following

Corollary 4.3. Let𝐺 = (𝑉 , 𝐸) be a regular 𝜆-spectral expander, and
let val : 𝑉 → {±1} be a balanced labelling of the vertices of𝐺 . Then,
for every symmetric function 𝑓 : {±1}𝑡 → R,

E𝐺,val (𝑓 ) ≤
𝑡∑︁

𝑘=2

𝑓 (𝑘) |𝛽𝑘 |.

The main technical work in this section is proving the bound on

|𝛽𝑘 | as given by the following lemma.

Lemma 4.4. Let 𝐺 be a regular 𝜆-spectral expander. Then, for every
𝑘 ∈ {0, 1, . . . , 𝑡}, it holds that

|𝛽𝑘 | ≤ 2
𝑘

(
𝑡 − 1

⌊ 𝑘
2
⌋

) (
𝜆

1 − 𝜆

) ⌈ 𝑘
2
⌉

(4.7)

To prove Lemma 4.4, we first prove the following claim.

Claim 4.5. Let𝐺 be a regular 𝜆-spectral expander. Then, for every
𝑘 ∈ {0, 1, . . . , 𝑡}, it holds that

|𝛽𝑘 | ≤ 2
𝑘

𝑡−⌊ 𝑘
2
⌋∑︁

𝑚= ⌈ 𝑘
2
⌉

(
𝑚 − 1

⌈𝑘
2
⌉ − 1

) (
𝑡 −𝑚

𝑘 − ⌈𝑘
2
⌉

)
𝜆𝑚 .

Proof of Claim 4.5. By Proposition 4.2, we have that

|𝛽𝑘 | ≤
∑︁

𝑆⊆[𝑡 ]
|𝑆 |=𝑘

∑︁
𝐼 ∈F𝑘

𝜆
∑

𝑗∈𝐼 Δ𝑗 (𝑆) =
∑︁
𝐼 ∈F𝑘

∑︁
𝑆⊆[𝑡 ]
|𝑆 |=𝑘

𝜆
∑

𝑗∈𝐼 Δ𝑗 (𝑆) .
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Note that for every 𝑆 ⊆ [𝑡] of size |𝑆 | = 𝑘 and every 𝑗 ∈ {0, 1, . . . , 𝑘},
Δ 𝑗 (𝑆) ≥ 1. Moreover, for every such 𝑆 ,

∑𝑘
𝑗=0 Δ 𝑗 (𝑆) = 𝑡 + 1. The

encoding 𝑆 ↦→ (Δ0, . . . ,Δ𝑘 ) is a bijection between cardinality 𝑘

subsets of [𝑡] and partitions of {1, . . . , 𝑡 + 1} into 𝑘 + 1 non-empty

intervals. Fix 𝐼 ∈ F𝑘 and let 𝛽𝑘 (𝐼 ) denote the contribution of 𝐼

to the above sum, that is, 𝛽𝑘 (𝐼 ) =
∑
𝑆⊆[𝑡 ]: |𝑆 |=𝑘 𝜆

∑
𝑗∈𝐼 Δ𝑗 (𝑆)

. Every

cardinality 𝑘 subset 𝑆 contributes 𝜆𝑚 to the sum, where𝑚 is the

sum of lengths of the intervals indexed by 𝐼 ∈ F𝑘 . To bound 𝛽𝑘 (𝐼 )
we find for every 𝑚 ⩽ 𝑡 the number of cardinality 𝑘 sets 𝑆 that

contribute 𝜆𝑚 . Note that this is precisely the number of ways to

choose positive integers𝑚1, . . . ,𝑚 |𝐼 | and 𝑛1, . . . , 𝑛𝑘+1−|𝐼 | such that∑
𝑚 𝑗 =𝑚 and

∑
𝑛 𝑗 = 𝑡 −𝑚 + 1, which is

(𝑚−1
|𝐼 |−1

) ( 𝑡−𝑚
𝑘−|𝐼 |

)
. Therefore,

𝛽𝑘 (𝐼 ) =

𝑡∑︁
𝑚=0

(
𝑚 − 1

|𝐼 | − 1

) (
𝑡 −𝑚

𝑘 − |𝐼 |

)
𝜆𝑚 .

Note that 𝛽𝑘 (𝐼 ) depends only on the cardinality of 𝐼 and not on

𝐼 itself. Moreover, 𝛽𝑘 (𝐼 ) is monotonically decreasing in |𝐼 |. To see

this, notice that when 𝐼 ⊆ 𝐼 ′ then for every 𝑆 ⊆ [𝑡], ∑𝑗 ∈𝐼 Δ 𝑗 (𝑆) ≤∑
𝑗 ∈𝐼 ′ Δ 𝑗 (𝑆), and therefore 𝛽𝑘 (𝐼 ′) ≤ 𝛽𝑘 (𝐼 ) (because 𝜆 ≤ 1). Thus,

if 𝐼∗ is a minimal cardinality set F𝑘 , then

|𝛽𝑘 | ≤
∑︁
𝐼 ∈F𝑘

𝛽𝑘 (𝐼 ) ≤
∑︁
𝐼 ∈F𝑘

𝛽𝑘 (𝐼∗)

≤ 2
𝑘

𝑡∑︁
𝑚=0

(
𝑚 − 1

|𝐼∗ | − 1

) (
𝑡 −𝑚

𝑘 − |𝐼∗ |

)
𝜆𝑚

The lemma follows by noting that for every 𝐼 ∈ F𝑘 we have |𝐼 | ≥
⌈𝑘
2
⌉. □

We turn to prove Lemma 4.4.

Proof of Lemma 4.4. The case𝑘 = 1 readily follows as, by Propo-

sition 4.2 and the remark following it, 𝛽1 = 0. By Claim 4.5,

|𝛽𝑘 | ≤ 2
𝑘

𝑡−⌊ 𝑘
2
⌋∑︁

𝑚= ⌈ 𝑘
2
⌉

(
𝑚 − 1

⌈𝑘
2
⌉ − 1

) (
𝑡 −𝑚

𝑘 − ⌈𝑘
2
⌉

)
𝜆𝑚

≤ 2
𝑘

(
𝑡 − 1

𝑘 − ⌈𝑘
2
⌉

)
· 𝜆 ·

𝑡−⌊ 𝑘
2
⌋∑︁

𝑚= ⌈ 𝑘
2
⌉

(
𝑚 − 1

⌈𝑘
2
⌉ − 1

)
𝜆𝑚−1

≤ 2
𝑘

(
𝑡 − 1

𝑘 − ⌈𝑘
2
⌉

)
· 𝜆 ·

∞∑︁
𝑖= ⌈ 𝑘

2
⌉−1

(
𝑖

⌈𝑘
2
⌉ − 1

)
𝜆𝑖 . (4.8)

By Claim 3.1,

∞∑︁
𝑖= ⌈ 𝑘

2
⌉−1

(
𝑖

⌈𝑘
2
⌉ − 1

)
𝜆𝑖 =

𝜆 ⌈
𝑘
2
⌉−1

(1 − 𝜆) ⌈
𝑘
2
⌉
.

Substituting to Equation (4.8) concludes the proof. □

4.3 Warm-up: Analyzing the Majority Function
As a warm-up for the proof of Theorem 1.1, in this section we

use the machinery developed in Section 4, namely, Proposition 4.2,

Corollary 4.3, and Lemma 4.4, to prove that random walks fool

the majority function. Recall thatMAJ𝑡 : {±1}𝑡 → {±1} on input

𝑥 = (𝑥1, . . . , 𝑥𝑡 ) ∈ {±1}𝑡 is defined by MAJ𝑡 (𝑥) = 1 if

∑
𝑥𝑖 ≥ 0

and MAJ𝑡 (𝑥) = −1 otherwise. When 𝑡 is clear from context, we

omit it from the subscript. More generally, for 𝑤 ∈ [𝑡] we define
the 𝑤 threshold function Th𝑤 : {±1}𝑡 → {±1} by Th𝑤 (𝑥) = 1 if

| {𝑥𝑖 |𝑥𝑖 = 1} | ≥ 𝑤 and Th𝑤 (𝑥) = −1 otherwise.

Theorem 4.6. There exists a universal constant 𝑐MAJ such that for
every 0 < 𝜆 < 1

4𝑐2MAJ
and every 𝑡 ∈ N

E𝜆 (MAJ𝑡 ) ≤ 2𝑐3MAJ

(
𝜆

1 − 𝜆

)
2

· 1

√
𝑡
.

As explained in the introduction it is known [24, 27] that the dis-

tribution of the sum when taking 𝑡 independent distributions and

when taking a random walk, is 𝑂 ( 1√
𝑡
) close in the Kolmogorov dis-

tance. This means that the two distributions look the samewhen the

test function can be an arbitrary threshold function. More formally:

Theorem 4.7 (follows, e.g., from [25], Theorem C). For every 𝑡 ∈ N
and𝑤 ∈ [𝑡],

E𝜆 (Th𝑤) = 𝑂

(
1

√
𝑡

)
.

Theorem 4.7 from [24] is more general than Theorem 4.6 that we

prove in this section. However, the proof techniques are completely

different. Theorem 4.7 holds only against threshold tests, while

the proof of Theorem 4.6 builds upon the behaviour of the parity

function that is far away from being threshold. We prove Theo-

rem 4.6 as we believe it is a good warm-up exercise towards the

more delicate calculations of Section 4.4. Indeed, in Section 4.4 we

show this allows proving CLT convergence in the stronger total

variation distance, rather than in the weaker Kolmagorov distance

as in Theorem 4.7.

Proof of Theorem 4.6. Let 𝐺 = (𝑉 , 𝐸) be a regular 𝜆-spectral
expander, and let val : 𝑉 → {±1} be a balanced labelling of 𝑉 . The

Fourier coefficients of the MAJ functions are well-known (see, e.g.,

[36], Theorem 5.19). Let 𝑆 ⊆ [𝑡] with |𝑆 | = 𝑘 . Then, for 𝑘 even

M̂AJ(𝑆) = 0; otherwise,

M̂AJ(𝑆) = (−1)
𝑘−1
2

( 𝑡−1
2

𝑘−1
2

)(𝑡−1
𝑘−1

) 2

2
𝑡

(
𝑡 − 1

𝑡−1
2

)
. (4.9)

Using Lemma 4.4, Equation (4.9) and the standard estimates:

2

2
𝑡

(𝑡−1
𝑡−1
2

)
≤ 𝑐1√

𝑡
,

( 𝑡−1
2

𝑘−1
2

)
≤

(
𝑒 · 𝑡−1

𝑘−1

) 𝑘−1
2

and

(𝑡−1
𝑘−1

)
≥

(
𝑡−1
𝑘−1

)𝑘−1
where 𝑐1 is some absolute constant (see Claim 3.1) we get for every

odd 𝑘 ∈ [𝑡],

|M̂AJ(𝑘) · 𝛽𝑘 | ≤

( 𝑡−1
2

𝑘−1
2

)(𝑡−1
𝑘−1

) 2

2
𝑡

(
𝑡 − 1

𝑡−1
2

)
· 2𝑘

(
𝑡 − 1

𝑘−1
2

) (
𝜆

1 − 𝜆

) 𝑘+1
2

≤ 𝑐1√
𝑡
· 𝑒𝑘−1 · 2𝑘+

𝑘−1
2 ·

(
𝜆

1 − 𝜆

) 𝑘+1
2

⩽
𝑐2

𝑘

√
𝑡

(
𝜆

1 − 𝜆

) 𝑘+1
2

.
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Corollary 4.3 then implies that

E𝐺,val (MAJ) ≤
𝑡∑︁

𝑘=3
𝑘 odd

|M̂AJ(𝑘) · 𝛽𝑘 |

≤
𝑡∑︁

𝑘=3
𝑘 odd

𝑐2
𝑘

√
𝑡

(
𝜆

1 − 𝜆

) 𝑘+1
2

=
𝑐3
2√
𝑡

(
𝜆

1 − 𝜆

)
2

·
∞∑︁
𝑖=0

(
𝑐2
2

𝜆

1 − 𝜆

)𝑖
. (4.10)

Set 𝑐MAJ = max(𝑐2, 1). As 𝜆 ≤ 1

4𝑐2MAJ
we have that 𝜆 ≤ 1

4
and so

𝑐2
2

𝜆

1 − 𝜆
≤ 4

3

· 𝑐2
2
𝜆 ≤ 4

3

· 𝑐2MAJ𝜆 ≤ 1

3

.

Thus, the sum in Equation (4.10) is bounded by
3

2
, and we conclude

that

E𝐺,val (MAJ) ≤
2𝑐3MAJ√

𝑡

(
𝜆

1 − 𝜆

)
2

.

□

4.4 Weight Indicator Functions
For integers 𝑡 and 𝑤 ∈ {0, 1, . . . , 𝑡} let 1𝑤 : {±1}𝑡 → {0, 1} be the
function indicating whether the weight of the input is𝑤 . That is,

1𝑤 (𝑥1, . . . , 𝑥𝑡 ) = 1 if

∑
𝑖 𝑥𝑖 = 1 and 1𝑤 (𝑥1, . . . , 𝑥𝑡 ) = 0 otherwise.

In this section we prove

Theorem 4.8. There exists universal constants 0 < 𝛾 ≤ 1 ≤ 𝑐 such
that the following holds. Let 1 ⩽ 𝜎0 ∈ R and 0 ≤ 𝑏 ≤ 𝜎0

√
𝑡 an integer.

Set𝑤 = 𝑡+𝑏
2
. Then, for any 𝜆 ≤ 𝛾

𝜎2

0

it holds that

E𝜆 (1𝑤) ≤
𝑐𝜆

1 − 𝜆
·
𝜎2
0√
𝑡
.

We analyze the weight indicator function in a similar way to the

majority function, except that we need to work harder to express the

Fourier coefficients of the weight function, and, more importantly,

the analysis is more delicate as the weight indicator function is not

anti-symmetric and therefore has Fourier mass on even layers. This

section is organized as follows: in Section 4.4.1 we compute the

Fourier coefficients of 1𝑤 and in Section 4.4.2 we prove Theorem 4.8.

4.4.1 The Fourier Coefficients of 1𝑤 . In this section we compute

the Fourier coefficients of the weight indicator function. While this

calculation is certainly known, and a full proof can be found in the

online version of the paper.

Lemma 4.9.

1̂𝑤 (𝑘) =


1

2
𝑡

( 𝑡𝑤)
(𝑡𝑘)

⌊
𝑘
2

⌋∑
𝑙=0

(−1)𝑙
(𝑡−𝑤

𝑙

) (
2𝑤−𝑡
𝑘−2𝑙

)
𝑤 ⩾ 𝑡

2

1

2
𝑡

( 𝑡𝑤)
(𝑡𝑘)

⌊
𝑘
2

⌋∑
𝑙=0

(−1)𝑘−𝑙
(𝑤
𝑙

) (𝑡−2𝑤
𝑘−2𝑙

)
𝑤 ⩽ 𝑡

2

Using Lemma 4.9 we turn to bound the magnitude of the weight

indicator Fourier coefficients, the calculation appears in the online

version of the paper.

Claim 4.10. Let 1 ⩽ 𝜎0 ∈ R and 0 ≤ 𝑏 ≤ 𝜎0
√
𝑡 an integer. Then

there is some constant 𝑐2 > 0 such that for𝑤 = 𝑡+𝑏
2

and𝑤 ′ = 𝑡 −𝑤

it holds that

|1̂𝑤 (𝑘) |, |1̂𝑤′ (𝑘) | ≤ 𝑘 · (𝑐2𝜎0)𝑘√
𝑡

(
𝑘

𝑡

)𝑘/2
4.4.2 Proof of Theorem 4.8. We are now ready to prove Theo-

rem 4.8.

Proof of Theorem 4.8. Let 𝐺 be a regular 𝜆-spectral expander

and let val : 𝑉 → {±1} be a balanced labelling. By Corollary 4.3,

E𝐺,val (1𝑤) ≤
𝑡∑︁

𝑘=2

|1̂𝑤 (𝑘)𝛽𝑘 |.

Using Claim 4.10 to upper bound |�1𝑤𝑊 | and Lemma 4.4 to bound

|𝛽𝑘 | we get,

E𝐺,val (1𝑤) ≤
𝑡∑︁

𝑘=2

|1̂𝑤 (𝑘) | · |𝛽𝑘 |

≤
𝑡∑︁

𝑘=2

𝑘
(𝑐2𝜎0)𝑘√

𝑡

(
𝑘

𝑡

)𝑘/2
· 2𝑘

(
𝑡 − 1

⌊ 𝑘
2
⌋

) (
𝜆

1 − 𝜆

) ⌈ 𝑘
2
⌉

≤
𝑡∑︁

𝑘=2

𝑘
(𝑐2𝜎0)𝑘√

𝑡

(
𝑘

𝑡

)𝑘/2
· 2𝑘

(
2𝑒𝑡

𝑘

)𝑘/2 (
𝜆

1 − 𝜆

) ⌈ 𝑘
2
⌉

=

𝑡∑︁
𝑘=2

(3𝑐2𝜎0)𝑘√
𝑡

(
𝜆

1 − 𝜆

) ⌈ 𝑘
2
⌉

≤ (3𝑐2𝜎0)2√
𝑡

· 𝜆

1 − 𝜆
·
∞∑︁
𝑖=0

(
3𝑐2𝜎0

√︂
𝜆

1 − 𝜆

)𝑖
.

The proof follows by taking 3𝑐2𝜎0

√︃
𝜆

1−𝜆 < 1

2
.

□

4.5 Proof of Theorem 1.3
For convenience we restate the theorem here.

Theorem (Theorem 1.3; restated). Let 𝐺 = (𝑉 , 𝐸) be a 𝜆-spectral
expander. Let val : 𝑉 → {0, 1} with E[val(𝑉 )] = 1

2
. Then,

∥ ΣRW𝑡 − ΣInd𝑡 ∥TVD = 𝑂 (𝜆 · log3/2 (1/𝜆)) .

Proof. Note that it suffices to prove the theorem only for 𝜆 < 𝜆0,

where 𝜆0 < 1 is some constant. Indeed, this can be incorporated

to the hidden constant factor in the big-𝑂 notation that appears in

the bound. We have that,

∥ ΣRW𝑡 − ΣInd𝑡 ∥TVD =
1

2

𝑡∑︁
𝑤=0

|Pr[ΣInd𝑡 = 𝑤] − Pr[ΣRW𝑡 = 𝑤] | .

Let 𝜎0 ∈ R be a parameter to be chosen later. For the proof, we

split the domain into two different intervals, based on 𝜎0. The

central interval 𝐼𝐶 =
{
𝑤 | |𝑤 − 𝑡

2
| ⩽ 𝜎0

2

√
𝑡
}
and the tails, 𝐼𝑇 ={

𝑤 | |𝑤 − 𝑡
2
| > 𝜎0

2

√
𝑡
}
. First notice that both ΣRW𝑡 , ΣInd𝑡 have

a very small probability to enter the tails region. Indeed, by the
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Chernoff bound,

Pr[ΣInd𝑡 ∈ 𝐼𝑇 ] =

Pr
[
ΣInd𝑡 ⩾

(
1 + 𝜎0√

𝑡

)
𝑡

2

]
+ Pr

[
ΣInd𝑡 ⩽

(
1 − 𝜎0√

𝑡

)
𝑡

2

]
⩽ 2 exp

(
−

(
𝜎0√
𝑡

)
2

𝑡

6

)
= 2𝑒−𝜎

2

0
/6 .

By the Chernoff bound for expander walks, and assuming 𝜆0 ≤ 1

2
,

Pr[|ΣRW𝑡 ∈ 𝐼𝑇 ] = Pr
[���ΣRW𝑡 −

𝑡

2

��� ⩾ 𝜎0

2

√
𝑡
· 𝑡

]
< 2 exp

(
− (1 − 𝜆)𝑡

4

(
𝜎0

2

√
𝑡

)
2

)
= 2𝑒−𝜎

2

0
/32 .

Combining those two results we get a bound on the total variation

distance in the tails region.∑︁
𝑤∈𝐼𝑇

| Pr[ΣInd𝑡 = 𝑤] − Pr[ΣRW𝑡 = 𝑤] | (4.11)

⩽
∑︁
𝑤∈𝐼𝑇

Pr[ΣInd𝑡 = 𝑤] + Pr[ΣRW𝑡 = 𝑤] |

⩽ 4𝑒−𝜎
2

0
/32 .

In the central interval, we invoke Theorem 4.8 to obtain∑︁
𝑤∈𝐼𝐶

| Pr[ΣInd𝑡 = 𝑤] − Pr[ΣRW𝑡 = 𝑤] | ⩽ (4.12)

∑︁
𝑤∈𝐼𝐶

E𝜆 (1𝑤) ⩽
∑︁
𝑤∈𝐼𝐶

𝑐𝜆
𝜎2
0√
𝑡
= 𝑐𝜆𝜎3

0
,

where 𝑐 is the constant that appears in the statement of Theorem 4.8.

Set 𝜎0 =

√︃
32 ln

1

𝜆
. Note that by choosing 𝜆0 sufficiently small so

that 32𝜆0 ln
1

𝜆0
≤ 𝛾 , where 𝛾 is the constant from Theorem 4.8,

this meets the requirement of Theorem 4.8. Thus, we obtain that

the bound in Equation (4.11) evaluates to 4𝜆 and the bound in

Equation (4.12) is𝑂 (𝜆 log3/2 1

𝜆
). Combining both bounds concludes

the proof. □

5 BEYOND SYMMETRIC FUNCTIONS
Several natural computational classes such as AC0

circuits, read-

once branching programs of various forms and functions with

bounded query complexity are known to have bounded Fourier

tails. In many cases, such tails are key to our understanding of these

classes.

Definition 5.1. For an integer 𝑡 ≥ 1 and 𝑏 ≥ 1, we denote by L𝑡
1
(𝑏)

the family of functions 𝑓 : {±1}𝑡 → {±1} that satisfy

𝐿
1,𝑘 (𝑓 ) ≜

∑︁
𝑆⊆[𝑡 ]
|𝑆 |=𝑘

|𝑓 (𝑆) | ≤ 𝑏𝑘 .

When 𝑡 is clear from context we omit it and write L1 (𝑏). Most

works consider the 𝐿2 norm. In the following we focus on the 𝐿1
norm as it is known that a bound on the 𝐿2 norm implies a bound

on the 𝐿1 norm [44]. Thus, the class of functions with 𝐿1 bounded

Fourier tails is richer. We turn to give some examples.

Bounded-depth circuits. The class of bounded-depth circuits has

been widely studied. The seminal work by Linial, Mansour and

Nisan [28] gives a bound on the 𝐿2 Fourier tail for this class. Tal [44]

obtained an improved result by showing that a function computed

by a depth-𝑑 size-𝑠 circuit is contained inL1 (𝑏) for 𝑏 = 𝑂 (log𝑑−1 𝑠).

Read-once branching programs. The class of ROBP is of wide

interest, motivated mostly by the study of the BPL vs. L problem.

Reingold, Steinke and Vadhan [39] proved that any function 𝑓 :

{±1}𝑡 → {±1} computed by a width-𝑤 permutation ROBP is in

L1 (2𝑤2). They further conjectured a bound for general ROBP. Their
conjecture was settled by Chattopadhyay et al. [12], who proved

that any function 𝑓 : {±1}𝑡 → {±1} computed by a width-𝑤 ROBP

is inL1 (𝑏) for 𝑏 = 𝑂 (log𝑤 𝑛). Both results hold in the more general

setting where the bits can be read in any (predetermined) order.

Query complexity measures. Denote by DT(𝑓 ) the decision tree

complexity of 𝑓 . It is easy to show that 𝐿
1,𝑘 (𝑓 ) ≤ DT(𝑓 )𝑘 and so

the class of functions with decision tree complexity 𝑑 is in L1 (𝑑).
As mentioned in the introduction, it is well-known that the deci-

sion tree complexity is polynomially-related to other complexity

measures such as the randomized and quantum decision tree mea-

sures, the certificate query complexity (namely, nondeterministic

query complexity), the approximate real degree of a function, and

most recently also to the sensitivity of a function [21]. Thus, every

function with a bound 𝑏 on any one of these measures is in L1 (𝑏𝑐 )
for some universal constant 𝑐 ≥ 1.

In this section we prove Theorem 1.5. To start with, we prove

Claim 5.2. For every 𝜆 ∈ [0, 1] and function 𝑓 : {±1}𝑡 → {±1},

E𝜆 (𝑓 ) ≤ 4Λ
2

√
𝜆
(𝑓 ).

Proof. Let 𝐺 = (𝑉 , 𝐸) be a regular 𝜆-spectral expander, and

val : 𝑉 → {±1} a balanced function. As E 𝑓 (𝑈𝑡 ) = 𝑓 (∅),

E𝐺,val (𝑓 ) = | E 𝑓 (RW𝐺,val) − E 𝑓 (𝑈𝑡 ) |

≤
∑︁

∅≠𝑆⊆[𝑡 ]
|𝑓 (𝑆) | | E 𝜒𝑆 (RW𝐺,val) |

≤
∑︁

𝑆⊆[𝑡 ]
|𝑆 | ≥2

|𝑓 (𝑆) | · 2 |𝑆 |𝜆∆(𝑆)/2 .

where the last inequality follows by Proposition 2.3. Now, ∆(𝑆) ≥
|𝑆 | − 2 and so

E𝐺,val (𝑓 ) ≤ 4

∑︁
𝑆⊆[𝑡 ]
|𝑆 | ≥2

|𝑓 (𝑆) | · (2
√
𝜆)∆(𝑆) ,

proving the corollary. □

The proof of Theorem 1.5 readily follows by the above-mentioned

results [12, 39, 44] and the following claim.

Claim 5.3. There exists a universal constant 𝑐 ≥ 1 such that the
following holds. For every function 𝑓 : {±1}𝑡 → {±1} in L1 (𝑏) and
𝜀 > 0, it holds that E𝜆 (𝑓 ) ≤ 𝜀 provided 𝜆 ≤ 𝜀2

𝑐𝑏4
.
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Proof. Let 𝐺 = (𝑉 , 𝐸) be a regular 𝜆-spectral expander, and

val : 𝑉 → {±1} a balanced function. By Claim 5.2,

E𝐺,val (𝑓 ) ≤ 4Λ
2

√
𝜆
(𝑓 )

= 4

∑︁
𝑆⊆[𝑡 ]
|𝑆 | ≥2

|𝑓 (𝑆) | · (2
√
𝜆)∆(𝑆) .

Consider a set 𝑆 of size |𝑆 | = 𝑘 . Recall that for 𝑘 = 2, 3 we have

that ∆(𝑆) ≥ 𝑘 − 1, and that for 𝑘 ≥ 4, it holds that ∆(𝑆) ≥ 𝑘 − 2.

Bounding the above sum according to the set size, we get

E𝐺,val (𝑓 ) ≤ 4

(
(2
√
𝜆)𝑏2 + (2

√
𝜆)2𝑏3 +

𝑡∑︁
𝑘=4

(2
√
𝜆)𝑘−2𝑏𝑘

)
≤ 8

√
𝜆𝑏2 + 16𝜆𝑏3 + 16𝜆𝑏4

1 − 2

√
𝜆𝑏

.

It is straightforward to verify that the above is bounded by 𝜀 for a

sufficiently large constant 𝑐 . □
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