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ABSTRACT
Matrix powering, and more generally iterated matrix multiplication,

is a fundamental linear algebraic primitive with myriad applications

in computer science. Of particular interest is the problem’s space

complexity as it constitutes the main route towards resolving the

BPL vs. L problem. The seminal work by Saks and Zhou [32] gives a

deterministic algorithm for approximating the product of 𝑛 stochas-

tic matrices of dimension𝑤×𝑤 in space𝑂 (log
3/2 𝑛+

√︁
log𝑛 · log𝑤).

The first improvement upon [32] was achieved by Hoza [15] who

gave a logarithmic improvement in the 𝑛 = poly(𝑤) regime, attain-

ing 𝑂 ( 1√
log log𝑛

· log
3/2 𝑛) space.

We give the first polynomial improvement over [32]. Our algo-

rithm achieves space complexity of

𝑂

(
log𝑛 +

√︁
log𝑛 · log𝑤

)
.

In particular, in the regime log𝑛 > log
2𝑤 , our algorithm runs in

nearly-optimal 𝑂 (log𝑛) space, improving upon the previous best

𝑂 (log
3/2 𝑛).

To obtain our result for the special case of matrix powering, we

harness recent machinery from time- and space-bounded Laplacian

solvers to the framework of [32] and devise an intricate precision-

alternating recursive scheme. This enables us to bypass the bottle-

neck of paying log𝑛-space per recursion level. The general case of

iterated matrix multiplication poses several additional challenges,

the substantial of which is handled by devising an improved shift

and truncate mechanism. The new mechanism is made possible by

a novel use of the Richardson iteration.
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1 INTRODUCTION
One of the great open problems of computational complexity is the

BPL vs. L problem: To what extent is randomness necessary for

space-bounded algorithms?More concretely, can every probabilistic

algorithm be fully derandomizedwith only a constant factor blowup

in space? The problem withstood countless attempts, even though

it is widely believed that BPL = L (as indeed follows from plausible

circuit lower bounds [21]), and there are no known barriers for the

unconditional derandomization of BPL.
The problem of derandomizing BPL is equivalent to the problem

of approximating powers of stochastic matrices.
1
Assuming𝑀 uses

𝑛 random bits, one is interested in approximating the probability

of reaching some accepting configuration 𝑡 starting from the initial

configuration 𝑠 . This clearly translates to approximating 𝐴𝑛 [𝑠, 𝑡].
A (halting) BPL machine is only allowed poly(𝑤) running time

and can toss at most one coin per step. Thus, 𝑛 = poly(𝑤) is the
regime of interest in the context of general space-bounded de-

randomization (see, e.g., [19, 24, 25]). Nonetheless, studying the

problem for arbitrary 𝑛,𝑤 has attracted substantial attention in the

literature and proved useful for obtaining important results in the

𝑛 = poly(𝑤) case. We turn to give a brief historic account on both

regimes.

The 𝑛 ≪ 𝑤 regime. Nisan and Zuckerman [26] proved that any

space-log𝑤 randomized algorithm that uses 𝑛 = poly(log𝑤) coins
can be simulated deterministically in space 𝑂 (log𝑤). Other works
include [2] who considered a different range of parameters, and

the work of Raz and Reingold [29] that put forth an approach for

significantly improving upon [26]. Most relevant to us is the work of

Saks and Zhou [32] which builds on Nisan’s work [24]. Interestingly,

1
Indeed, a Turing machine𝑀 that uses space 𝑆 = log𝑤 on inputs of length𝑚 can be

converted to a Markov chain𝐴 on𝑂 (𝑤 ·𝑚) states, and a Markov chain on𝑄 states

can be simulated in space𝑂 (log𝑄) .

https://doi.org/10.1145/3564246.3585181
https://doi.org/10.1145/3564246.3585181
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a recent line of work [4, 17, 27, 28] studies restricted models for

unbounded 𝑤 .

The 𝑛 ≫ 𝑤 regime. The other extreme case has been extensively

studied in the black-box model by analyzing the structure of the cor-

responding non-uniform model of read once branching programs

[11, 30, 36]. In particular, Meka, Reingold and Tal [23] constructed

a PRG against width𝑤 = 3 branching programs with seed length

𝑂 (log𝑛). There has been exciting line of work on more restricted

models in this regime (see, e.g., [6, 9, 10, 22, 35] and references

therein).

The 𝑛 ≫ 𝑤 regime: the non black-box model. The focus of this
work is the latter regime, 𝑛 ≫ 𝑤 , in the non black-box (or, white-

box) model. I.e., instead of trying to construct a PRG against width-

𝑤 length-𝑛 branching programs, our goal is to approximate𝐴𝑛
for a

stochastic𝑤×𝑤 matrix𝐴 in bounded space. Even more ambitiously,

we wish to handle the IteratedMatrix Multiplication (IMM) problem

for stochastic matrices, that is, to approximate the product𝐴1 · · ·𝐴𝑛

for arbitrary stochastic matrices. We turn to briefly survey the

known results.

Savitch’s theorem [33] can be adapted to obtain an exact com-

putation of the product of arbitrary matrices in space 𝑂 (log𝑛 ·
log(𝑛𝑤)) (ignoring bit representation issues, see Theorem 3.2). Al-

lowing for an approximation error 𝜀 > 0, one can implement Sav-

itch’s algorithm using standard techniques in 𝑂 (log𝑛 · (log𝑤 +
log log

𝑛
𝜀 )) space. For stochastic matrices the seminal Saks–Zhou

algorithm [32] runs in space

𝑂

(√︁
log𝑛 · log

𝑛𝑤

𝜀

)
.2

The dependence on 𝜀 was recently improved by Ahmadinejad, Kel-

ner, Murtagh, Peebles, Sidford, and Vadhan [1] using the Richardson

iteration (see subsection 3.3), reducing the space to

𝑂

((√︁
log𝑛 + log log

1

𝜀

)
· log𝑛𝑤

)
.

Hoza [15] gave a poly-logarithmic improvement in the 𝑛 = poly(𝑤)
regime, attaining𝑂 ( 1√

log log𝑛
·log

3/2 𝑛) space, also in the small error

regime. We refer the reader to the excellent, very recent survey

by Hoza [14] on the progress on derandomizing space-bounded

computation.

1.1 Our Result
The main result of this work is as follows.

Theorem 1.1 (see also Theorem 6.1). For any 𝑛,𝑤 ∈ N where
𝑛 ≥ 𝑤 , and any 𝜀 > 0, there exists a deterministic algorithm that
given𝑤 ×𝑤 stochastic matrices 𝐴1, . . . , 𝐴𝑛 , approximates 𝐴1 · · ·𝐴𝑛

to within error 𝜀 = 2
− polylog(𝑛) in space

𝑂

(
log𝑛 +

√︁
log𝑛 · log𝑤

)
,

2
[32] considers matrix powering. However, one can reduce IMM to matrix powering

via the embedding (𝐴1, . . . , 𝐴𝑛) ↦→ 𝐴 =
©«

0

𝐴
1

0

. . .
. . .
𝐴𝑛 0

ª®®¬. Indeed, 𝐴1 · · ·𝐴𝑛 appears

as an entry in𝐴𝑛
. We note that this simple reduction, that incurs a “blow up”𝑤 ↦→ 𝑛𝑤,

is moot in our regime of interest, 𝑛 ≫ 𝑤.

where the 𝑂 notation hides doubly-logarithmic factors in 𝑛 and𝑤 .

Theorem 1.1 gives the first polynomial improvement over [32]

(and over [1]) for IMM and even for matrix powering. In particular,

in the regime log𝑛 > log
2𝑤 , our algorithms runs in𝑂 (log𝑛) space

compared to the previous best 𝑂 (log
3/2 𝑛).

1.2 The Case of Matrix Powering
For the case of matrix powering, we observe that an exact algorithm

that is based on the Cayley–Hamilton theorem yields the following.

Theorem 1.2. For any 𝑛,𝑤 ∈ N there exists a deterministic algo-
rithm that on input a𝑤 ×𝑤 matrix 𝐴, represented by poly(𝑤) bits,
outputs 𝐴𝑛 using space 𝑂 (log𝑛 + log

2𝑤).

Although the proof of Theorem 1.2 uses standard linear alge-

bra and known results from parallel circuit complexity, we are not

aware of any reference in which it is explicitly stated. For complete-

ness, we give the proof in [8, Appendix A]. Our algorithm given

by Theorem 1.1 outperforms previous matrix powering algorithms,

including Theorem 1.2, whenever log𝑤 ≪ log𝑛 ≪ log
2𝑤 . We

stress that we are not aware of any algorithm, spectral or otherwise,

attaining such a space complexity for IMM as in Theorem 1.2.

There are two natural ways to further interpret our result for

matrix powering.

Approximating long random walks. Our result yields approxi-
mation of long random walks on arbitrary digraphs with super-

polynomial mixing time. Letting 𝐴 be a 𝑤 ×𝑤 stochastic matrix,

𝑛 = 𝑛(𝑤) ≫ 𝑤 , and 𝑣 ∈ R𝑤 be any initial distribution, Theo-

rem 1.1 gives a space-efficient algorithm for approximating 𝐴𝑛𝑣 ,

outperforming previous methods. When 𝐴 corresponds to an ir-

reducible and aperiodic Markov chain with a polynomial mixing

time, 𝑛 = poly(𝑤) already suffices for 𝐴𝑛𝑣 to be very close to the

stationary distribution. When the underlying Markov chain is not

poly-mixing, which is often the case for arbitrary digraphs, the

regime 𝑛 ≫ 𝑤 may give us valuable information.

Space-bounded derandomization. In the lens of derandomization,

Theorem 1.1 proves that any randomized algorithm that uses 𝑛

random bits and 𝑆 space can be simulated deterministically in

𝑂 (log𝑛 +
√︁

log𝑛 · 𝑆) space. In the regime 𝑛 = 2
𝑆𝑐

for 𝑐 > 1, where

our algorithm shines, there is a subtlety that one should bear in

mind. Conventionally, randomized algorithms use at most 2
𝑂 (𝑆)

random coins. Otherwise, the algorithm reaches the same state

twice, implying that there are (infinite) sequences of random coins

for which the algorithm never terminates. To settle the halting

issue, it is natural to consider the model in which a randomized

algorithm uses 𝑆 space, and𝑛 random coins in expectation. With this

modification, our simulation result holds. We make two additional

remarks: (1) For 𝑛 = 2
𝑂 (𝑆)

, the above modification agrees with

the standard model; and (2) Taking 𝑛 ≫ 2
𝑆
may decide languages

outside BPL, e.g., if 𝑛 = 2
2
𝑂 (𝑆 )

then we can decide the directed

connectivity problem which is not known to be in BPL.
Interestingly, as noted by Hoza [14], the early works on ran-

domized space-bounded algorithms showed more interest in the

“non-halting” model (see, e.g., [5, 12, 20, 31, 34]).
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2 PROOF OVERVIEW
In this section we give a high-level, yet comprehensive, overview

of the proof of Theorem 1.1. The proof involves several new ideas,

many of which appear already in the special case of matrix pow-

ering. There, we harness recent machinery from time- and space-

bounded Laplacian solvers to the [32] framework and devise an

intricate precision-alternating recursive scheme. We elaborate on

this in subsection 2.1. The general case of iterated matrix multipli-

cation poses additional significant challenges, the most substantial

of which is handled by devising an improved shift and truncate

mechanism. The new mechanism is made possible by a novel use

of the Richardson iteration. We present the main ideas that go into

the IMM algorithm in subsection 2.2.

In this conference version, we omit all proofs and skip most of

the technical content. The full version of the paper, which we will

often refer to, can be found in [8].

2.1 Matrix Powering
2.1.1 The [32] algorithm: a refresher. Our result is based on the

beautiful Saks–Zhou algorithm which we now briefly recall. For a

more complete exposition, see section 4. The algorithm consists of

two ingredients:

(1) The celebrated Nisan generator [24], which is used as a

randomized matrix exponentiation algorithm; and

(2) A canonicalization step that is based on the shift and truncate
technique. By the latter, we mean subtracting a small quan-

tity from intermediate calculations (i.e., shift), and keeping

only some of the most significant bits (i.e., truncate).

Roughly speaking the [32] algorithm works as follows, where,

for simplicity we first consider the case𝑤 = 𝑛. The algorithm gets

as input a stochastic matrix𝐴 ∈ R𝑛×𝑛 , auxiliary randomness for the

Nisan generator as well as for the shifts, and proceeds as follows.

(1) Set 𝐴0 = 𝐴.

(2) For 𝑖 = 1, . . . ,
√︁

log𝑛,

(a) Invoke the Nisan generator to approximate (𝐴𝑖−1)2

√
log𝑛

to within accuracy acc1.

(b) Shift (𝐴𝑖−1)2

√
log𝑛

by a random shift of magnitude Z · acc1,

where Z is chosen uniformly at random from {0, 1, . . . , 𝐿}
and truncate it to a precision of acc2 to obtain the matrix

𝐴𝑖 .

(3) Output 𝐴√
log𝑛

.

Setting of parameters. The parameters 𝐿, 1

acc1

, 1

acc2

are all set to

be sufficiently large polynomials in 𝑛 that further satisfy certain

relations. While the exact setting is not important for our current

discussion, the reader may take 𝐿 = 𝑛𝑎 , acc1 = 𝑛−4𝑎
, and acc2 =

𝑛−2𝑎
for some sufficiently large constant𝑎. The reasonwhy acc1 and

acc2 have to be polynomially small in𝑛 is because errors accumulate

additively, and if we raise to a power of 𝑛, the final error is of order

𝑛(acc1 + acc2). The reason why 𝐿 has to be polynomially large is

because we take the union bound over all 𝑛2
entries, and over the√︁

log𝑛 iterations, resulting in failure probability ≈ 𝑛2

𝐿
.

Analyzing the space complexity. The above algorithm is random-

ized. However, as usual, to obtain a deterministic algorithm one can

average over the choices of the auxiliary randomness which can

be done in additional space that is proportional to the randomness

complexity.

Let us sketch the analysis of the [32] algorithm’s space complex-

ity. The crucial point in the randomized algorithm above is that

the canonicalization step (which is implicit in (a) and discussed

in subsection 3.4) allows [32] to reuse the randomness needed for

the different applications of the Nisan generator. This reuse of ran-

domness saves on space in the resulting deterministic algorithm.

One, and hence all, application of Nisan’s generator with the above

parameters, requires 𝑂 (log
3/2 𝑛) random bits. Adding to that the

𝑂 (log𝑛) random bits per shift, which we do not reuse, we get ran-

domness complexity of 𝑂 (log
3/2 𝑛). The space complexity of every

iteration can be shown to be 𝑂 (log𝑛), yielding an overall space

complexity of 𝑂 (log
3/2 𝑛) for the randomized algorithm. Hence,

the overall space complexity of the deterministic algorithm is also

𝑂 (log
3/2 𝑛).

2.1.2 Attempting to gain on𝑤 ≪ 𝑛 in Saks–Zhou. We turn to check

what changes in the regime𝑤 ≪ 𝑛. First, let us employ the same

approach as before, i.e., we have

√︁
log𝑛 iterations, each raising the

previously computed matrix to a power of 2

√
log𝑛

. Then,

• As before, the parameters acc1, acc2 have to be 𝑛−Θ(1)
be-

cause the errors accumulate additively in 𝑛 regardless of the

matrix’s dimension𝑤 .

• However, we can now take 𝐿 to be smaller as there are

only 𝑤2
entries in the matrix, and we only need to take

the union bound over these entires and over the

√︁
log𝑛 it-

erations, which is negligible. Indeed, our algorithm invests

roughly log𝑤 random bits for choosing the shifts.
3

Doing the back-of-the-envelope calculation of the overall space

complexity, we see that we gained nothing. Indeed,

• Both the space and randomness complexity of the Nisan

generator is still Ω(
√︁

log𝑛 · log
1

acc1

) = Ω(log
3/2 𝑛), because

acc1 is polynomially-small in 𝑛; and,

• Each of the

√︁
log𝑛 iterations still requires Ω(log𝑛) space,

because the canonicalization step has to work with accuracy

of 𝑛−Θ(1)
.

Thus, the [32] algorithm does not benefit, as is, from the smaller

input matrix it is given. The crux of the problem lies in the fact

that we have to work with accuracy of 𝑛−Θ(1)
and then it seems

inevitable that each of the

√︁
log𝑛 iterations should take Ω(log𝑛)

space. In an amortized sense, the space complexity that we are

shooting for restricts us to

√︁
log𝑛+log𝑤 ≪ log𝑛 space per iteration

which seems insufficient if we are to maintain accuracy of 𝑛−Θ(1)
.

Despite the seemingly impossible “space vs. accuracy” require-

ment, the novelty of our solution allows us to accomplish just that,

namely, maintaining accuracy of 𝑛−Θ(1)
throughout the compu-

tation, at a cost of

√︁
log𝑛 + log𝑤 ≪ log𝑛 bits per iteration! To

explain how this is done, we pause our description of the modified

Saks–Zhou algorithm to discuss Richardson iteration.

3
Note, however, that each shift is of magnitude at most 𝐿 · acc1 = 𝑛−Θ(1)

.
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2.1.3 Richardson Iteration. Primarily used as an iterative method

for solving linear systems, the Richardson iteration has been ex-

tremely useful in graph algorithms, and was recently applied in the

space-bounded setting. In this work, we use it to obtain a high pre-

cision approximation of matrix powers from mild approximations,

as was done in [1, 7, 27]. We turn to describe this algorithm.

The algorithm R gets as input a substochastic matrix𝐴 of dimen-

sion𝑤 , an integer𝑘 , and a sequence of𝑤×𝑤 matrices𝐴1, . . . , 𝐴𝑛 sat-

isfying ∥𝐴𝑖 −𝐴𝑖 ∥∞ ≤ 1

𝑛 . The output, 𝑅, is a𝑤 ×𝑤 matrix satisfying

∥𝐴𝑛 −𝑅∥∞ ≤ 𝑛 · 2−𝑘 , computed in space𝑂

(
log

2 𝑘 + log𝑘 · log𝑛𝑤

)
.

Thus, the algorithm R allows us to obtain any desired approxima-

tion 𝜀 to 𝐴𝑛
given only a mild,

1

𝑛 , approximation of the powers

𝐴2, . . . , 𝐴𝑛
. The algorithm does so with extremely small space. In-

deed, the dependence on 𝜀 is only polynomial in log log
1

𝜀 . We think

of the matrix 𝐴 as an “anchor” – an error-free object that, infor-

mation theoretically, stores all that is needed to compute 𝐴𝑛
. With

access to 𝐴, the algorithm R is able, in a space-efficient manner,

to improve a modest approximation of 𝐴’s powers. We refer the

reader to subsection 3.3 for a more complete and formal discussion.

2.1.4 Turning back to our matrix powering algorithm. We employ

the following approximation scheme: Throughout the computation

our matrices 𝐴𝑖 are kept with 𝑛−Θ(1)
accuracy. However, before

we apply the canonicalization step, and the Nisan generator that

follows, we purposely decrease the precision of the input matrix

to the Nisan generator by truncating its entries to a precision of

𝑤−Θ(1) ≫ 𝑛−Θ(1)
. Indeed, with this modest precision, the Nisan

generator requires space of order

√︁
log𝑛 · log𝑤 ≪ log

3/2 𝑛. The

output of the generator then gives us a “mild” approximation of the

2

√
log𝑛

-th power. To restore the (required) high precision approxi-

mation of 𝑛−Θ(1)
, we invoke the Richardson iteration which can be

done space-efficiently.

It is crucial to note that although we decrease the precision

before using canonicalization and the Nisan generator to save on

space, this precision is not lost because we “keep” the untruncated

matrix as an anchor for the correct result: The Richardson iteration

combines the untruncated matrix with the mild approximation of

its 2

√
log𝑛

-th power, to get a high-precision approximation of that

power.

We are now ready to give a rough outline of our matrix powering

algorithm (see also Figure 1). The precise description is given in

section 5. Our algorithm gets as input a stochasticmatrix𝐴 ∈ R𝑤×𝑤
,

auxiliary randomness for the Nisan generator as well as for the

shifts, and proceeds as follows.

(1) Set 𝐴0 = 𝐴.

(2) For 𝑖 = 1, . . . ,
√︁

log𝑛,

(a) Truncate 𝐴𝑖−1 to a precision of 𝑤−Θ(1)
and denote the

result by ⌊𝐴𝑖−1⌋.
(b) Set the Nisan generator to work with accuracy 𝑤−Θ(1)

and use it to approximate ⌊𝐴𝑖−1⌋2

√
log𝑛

. Note that since

𝐴𝑖−1 approximates ⌊𝐴𝑖−1⌋ to within accuracy of𝑤−Θ(1)
,

we have that𝐴2

√
log𝑛

𝑖−1
approximates ⌊𝐴𝑖−1⌋2

√
log𝑛

to within

accuracy of𝑤−Θ(1) · 2

√
log𝑛

.

(c) Use the mild approximation obtained above to compute

a high precision approximation 𝑅𝑖 ≈ 𝐴2

√
log𝑛

𝑖−1
by applying

the Richardson iteration. We stress that the Richardson

iteration improves our approximation with respect to the

previous high precision approximation 𝐴𝑖−1 and not its

truncation.

(d) Shift 𝑅𝑖 by a random shift of magnitude 𝑛−Θ(1)
, and trun-

cate it to a precision of 𝑛−Θ(1)
, to obtain the matrix 𝐴𝑖 .

(3) Output 𝐴√
log𝑛

.

Figure 1 illustrates the alternating nature of the algorithm, zig-

zagging between a mild approximation of𝑤−Θ(1)
and a high preci-

sion approximation of 𝑛−Θ(1)
. Setting the parameters appropriately,

we get that with high probability over the auxiliary randomness,

i.e., the seed for the Nisan generator and the shifts, the algorithm

outputs a good approximation for𝐴𝑛
using space𝑂 (log𝑛+

√︁
log𝑛 ·

log𝑤).
Averaging over the auxiliary randomness, as done in [32], would

yield a space-efficient deterministic algorithm, albeit with accuracy

of𝑤−Θ(1)
. It is thus tempting to try and apply an additional layer

of the Richardson iteration in order to improve the accuracy to

an arbitrary 𝜀 > 0 (as done in [1] for the standard Saks–Zhou al-

gorithm). However, to apply the Richardson iteration, the initial

accuracy needs to be
1

𝑛 . To overcome this issue, we observe that

while the average does not give us a good enough guarantee, the

median does. Applying the Richardson iteration after taking the me-

dian over the auxiliary randomness, we get our final high-precision

approximation.

2.2 Iterated Matrix Multiplication
Let us try to naïvely extend our powering algorithm, discussed

in the previous section, to compute the product 𝐴1𝐴2 · · ·𝐴𝑛 of

arbitrary 𝑤 ×𝑤 stochastic matrices. Given 𝐴1, . . . , 𝐴𝑛 , we would

proceed as follows:

(1) Use Nisan generator to approximate iterated products of

2

√
log𝑛

matrices, instead of the 2

√
log𝑛

-th power of a single

matrix.

(2) Recursively, partition the iterated product to iterated prod-

ucts of 2

√
log𝑛

matrices. After

√︁
log𝑛 iterations, the entire

iterated product is approximated.

There are three major issues with this naïve attempt:

Working with one shift. When we needed to handle matrix pow-

ering, we invested only 𝑂 (log𝑤) random bits per shift, and we

had

√︁
log𝑛 such shifts, one for every matrix we encounter in the

computation (namely, the approximations for the matrices𝐴2
𝑖 ·
√

log𝑛

for 𝑖 = 1, . . . ,
√︁

log𝑛). However, now we have Ω(𝑛) intermediate

matrices, and we cannot afford to use an independent shift for each

nor to incur the union-bound over all Ω(𝑛) sub-sequences.
We therefore put forth a new approach which, in a way, is the

most economical approach we can think of. Instead of shifting

“output” matrices (those that arise as intermediate computation,

after applying Nisan’s generator), we shift the input matrices. Also,
as we have 𝑛 input matrices 𝐴1, . . . , 𝐴𝑛 , we use the same shift Z on

all 𝑛 input matrices. We need each of the shifts to work well, so we
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Figure 1: Our matrix powering algorithm. “S & T” refers to “shift and truncate”.

need to union-bound over 𝑛 matrices, and therefore use Ω(log𝑛)
bits for choosing the shift Z. Thus, we cannot afford to do such a

shift at each iteration, and instead we study what happens when

we just shift the input without shifting intermediate iterations.

While this saves space (now we can afford 𝑂 (log𝑛) random bits

for shifting the input since we only worry about one iteration–the

first one–rather than

√︁
log𝑛 of them), analyzing correctness be-

comes highly nontrivial, since we need to keep track of the way the

matrices (as well as the error) evolve throughout the intermediate

computations. We first show that the single initial perturbation

makes all original iterated products “safe”, in the sense that it does

not introduce undesired dependencies. However, the truncation

step makes the approximated matrices unsafe. Surprisingly, this is

resolved by introducing a second Richardson iteration, now for the

purpose of handling dependencies rather than for improving the

accuracy. See subsection 6.2 for a more detailed discussion.

Better space complexity analysis. In the space complexity analysis

of the matrix powering algorithm, we use standard composition

of space bounded algorithms, where the space complexity of each

iteration is roughly Θ(log𝑤). However, in IMM there are roughly 𝑛

terms in the product, and so the space complexity of each iteration is

Ω(log𝑛), even just for keeping an index to a multiplication interval

at each level of the composition. Thus, seemingly, the total space

complexity is Ω(log
3/2 𝑛). We resolve this issue by observing that

some of the indices can be maintained globally. See [8, Section 6.5.1]
for the details, and in particular [8, Lemma 6.13] that generalizes

the standard space composition theorem.

The confidence parameter. In the matrix powering algorithm,

Nisan generator has to work against all matrices 𝐴2
𝑖 ·
√

log𝑛

for 𝑖 =

0, 1, . . . ,
√︁

log𝑛 − 1. As there are only

√︁
log𝑛 matrices to consider,

we could choose a large confidence parameter 𝛿 ≈ 1

𝑤 (see, e.g., sub-

section 3.4 or Theorem 3.8) and still be certain that with probability

1 − 𝛿 over the auxiliary randomness for the Nisan generator ℎ, our

choice works well for all

√︁
log𝑛 ≪ 𝑤 matrices above.

In contrast, for the IMM algorithm, we need to fix a single ℎ that

works well against each of the Ω(𝑛) sub-products. Therefore, the
confidence deteriorates to≈ 𝑛·𝛿 which forces us to take𝛿 < 1

𝑛 . How-

ever, in this parameter setting Nisan’s generator has seed length

Ω(log
3/2 𝑛) which is too much for us. We remedy this by devising

a PRG with a better dependence on the confidence parameter 𝛿 .

This is done by standard techniques (see subsection 6.1 for more

details).

3 PRELIMINARIES
For a matrix 𝐴 ∈ R𝑤×𝑤

, we denote ∥𝐴∥
max

= max𝑖, 𝑗 ∈[𝑤 ] |𝐴[𝑖, 𝑗] |
and by ∥𝐴∥∞ we denote its induced ℓ∞ norm, i.e.,

∥𝐴∥∞ = max

𝑖∈[𝑤 ]

∑︁
𝑗 ∈[𝑤 ]

|𝐴[𝑖, 𝑗] | .

We say a real matrix is stochastic if it is row-stochastic, i.e., if
its entries are nonnegative and every row sums to 1. We say that a

real matrix is substochastic if its entries are nonnegative and every

row sums to at most 1, i.e., ∥𝐴∥∞ ≤ 1.

3.1 Space-Bounded Computation
A deterministic space-bounded Turing machine has three tapes:

an input tape (that is read-only); a work tape (that is read-write)

and an output tape (that is write-only and uni-directional). The

output of the TM is the content of its output tape once the machine

terminates. The space used by a TM𝑀 on input 𝑥 is the rightmost

work tape cell that𝑀 visits upon its execution on 𝑥 . Denoting this

quantity by 𝑠𝑀 (𝑥), the space complexity of𝑀 is thus the function

𝑠 (𝑛) = max𝑥 : |𝑥 |=𝑛 𝑠𝑀 (𝑥). For further details, see [3, Chapter 4] and
[13, Chapter 5].

We recall the space complexity of computing matrix powers via

naïve repeated squaring. Observe that whenever two numbers are

multiplied, their multiplication requires more digits of precision

and so we have to account for that as well.

Definition 3.1 (matrix bit complexity). Given a matrix𝐴 ∈ R𝑤×𝑤
,

we denote its bit complexity, i.e., the number of bits required to

represent all its entries, by |𝐴|. In particular, if we use 𝑘 bits of

precision for every entry in 𝐴 then |𝐴| = 𝑂 (𝑘𝑤2). We will always

assume |𝐴| = Ω(𝑤2).

Using space-efficient composition of space-bounded functions,

we can deduce:

Lemma 3.2. The matrix powering function 𝑓 (𝐴,𝑛) = 𝐴𝑛 can be
computed in space 𝑂 (log

2 𝑛 + log𝑛 · log |𝐴|).

We leave the details to the full version.
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3.2 Read-Once Branching Programs
We use the standard definition of layered read-once branching

programs. For a length parameter 𝑛 ∈ N, a width parameter𝑤 ∈ N,
and an alphabet Σ, an [𝑛,𝑤, Σ] BP is specified by an initial state

𝑣0 ∈ [𝑤], a set of accept states 𝑉acc ⊆ [𝑤] and a sequence of

transition functions 𝐵𝑖 : [𝑤] × Σ → [𝑤] for 𝑖 ∈ [𝑛]. The BP 𝐵

naturally defines a function 𝐵 : Σ𝑛 → {0, 1}: Start at 𝑣0, and then

for 𝑖 = 1, . . . , 𝑛 read the input symbol 𝑥𝑖 and transition to the state

𝑣𝑖 = 𝐵𝑖 (𝑣𝑖−1, 𝑥𝑖 ). The BP accepts 𝑥 , i.e., 𝐵(𝑥) = 1, if 𝑣𝑛 ∈ 𝑉acc, and

rejects otherwise.

Given a transition function 𝐵𝑖 , and 𝜎 ∈ Σ, we identify the

function 𝐵𝑖 (·, 𝜎) : [𝑤] → [𝑤] with a Boolean stochastic matrix

which we denote 𝐵𝑖 (𝜎), wherein 𝐵𝑖 (𝜎) [𝑢, 𝑣] = 1 if and only if

𝐵𝑖 (𝑢, 𝜎) = 𝑣 . The transition matrix of each layer corresponds to the

matrix A(𝐵𝑖 ) ≜ E𝜎 ∈Σ [𝐵𝑖 (𝜎)]. The transition matrix of 𝐵 itself is

thus

A(𝐵) ≜ A(𝐵1) · . . . · A(𝐵𝑛),
which describes a uniformly random walk on 𝐵 starting at 𝑣0. In

particular, the probability that 𝐵 accepts a random input is given

by

∑
𝑣∈𝑉acc A(𝐵) [𝑣0, 𝑣]. In our work we will approximate A(𝐵) in

a strong sense that would be oblivious to the initial state and the

set of accepting states, so we will never mention them explicitly.

Namely, if𝑀 is such that ∥A(𝐵) −𝑀 ∥∞ ≤ 𝜀, we 𝜀-approximate the

aforementioned acceptance probability for any 𝑣0 and 𝑉acc.

Finally, when we omit the length of the BP and simply refer

to 𝐵 as a [𝑤, Σ] BP, we mean that 𝐵 comprises a single transition

function, and we sometimes repeat it for, say, 𝑛 times, to mimic

the length-𝑛 BP in which every transition is the same as this of 𝐵.

This notion is very natural, and in fact suffices, when one wishes

to approximate powers of stochastic matrices rather than iterated

matrix multiplication. Given a [𝑤, Σ] BP 𝐵 with A(𝐵) = 𝐴, 𝐴𝑛
is

thus the transition matrix of the BP with 𝑛 identical transitions.

3.3 Richardson Iteration
Richardson iteration is a method for improving a given approxima-

tion to an inverse of a matrix. This method is frequently used to

construct a preconditioner to a Laplacian system, and has recently

been used in the context of space-bounded computation in [1, 7, 27].

We describe it formally.

Definition 3.3 (Richardson iteration). Given 𝐴, 𝐵 ∈ R𝑤×𝑤
, and

𝑘 ∈ N, we define

R(𝐴, 𝐵, 𝑘) =
𝑘−1∑︁
𝑖=0

(𝐼 −𝐴𝐵)𝑖 𝐴.

Above, one can think of 𝐵 as the Laplacian of some stochastic

matrix, and of 𝐴 as a coarse approximation of its inverse.

Lemma 3.4. For any sub-multiplicative norm ∥·∥, let𝐴, 𝐵 ∈ R𝑤×𝑤

be such that ∥𝐼 −𝐴𝐵∥ ≤ 𝜀 and 𝐵 is invertible. Then,R(𝐴, 𝐵, 𝑘) − 𝐵−1
 ≤

𝐵−1
 · 𝜀𝑘 .

The above lemma can be used to devise an algorithm that im-

proves the accuracy of matrix powers [1, 7, 27], as we state below.

For completeness, we provide the short proof in [8, Appendix B].

Lemma 3.5. There exists an algorithm R that gets as input a se-
quence of substochastic matrices (𝐴1, . . . , 𝐴𝑛) of dimension𝑤 ×𝑤 , an

integer𝑘 ∈ N, and a sequence of substochastic matrices (𝐵𝑖, 𝑗 )1≤𝑖< 𝑗≤𝑛
satisfying:

• If for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we have that
𝐴𝑖 · · ·𝐴 𝑗 − (𝐵)𝑖, 𝑗


∞ ≤

1

4(𝑛+1) , thenR(
(𝐵𝑖, 𝑗 )1≤𝑖< 𝑗≤𝑛, (𝐴𝑖 )1≤𝑖≤𝑛, 𝑘

)
−𝐴1 · · ·𝐴𝑛


∞ ≤ (𝑛 + 1) · 2

−𝑘 .

• R runs in 𝑂
(
log

2 𝑘 + log𝑘 · log(𝑛𝑇 )
)
space, where

𝑇 = max

{
|𝐴𝑖 | ,

��(𝐵)𝑖, 𝑗 ��}
is the maximum bit-complexity of the given matrices.

In the above lemma, whenever 𝐴1 = 𝐴2 = . . . = 𝐴𝑛 then it

suffices to get as input matrices (𝐵1, . . . , 𝐵𝑛) satisfying𝐴𝑖 − 𝐵𝑖

∞ ≤ 1

4(𝑛 + 1) .

In this case, we shall invoke the algorithm using R(𝐵1, . . . , 𝐵𝑛, 𝐴, 𝑘),
where 𝐴 = 𝐴1 = 𝐴2 = . . . = 𝐴𝑛 .

3.4 The Nisan Generator
Nisan, in his seminal work [24], constructed a family of pseudo-

random generators that 𝜀-fool [𝑛,𝑤, Γ] BPs using seed of length

𝑑 = 𝑂

(
log𝑛 · log

𝑛𝑤 |Γ |
𝜀

)
. We briefly recall the construction and its

properties.

Set the generator’s “working alphabet” Σ, where |Σ| = 𝑂

(
𝑛𝑤 |Γ |

𝜀

)
,
4

and letH ⊆ Σ → Σ with |H | = |Σ|2 be a two-universal family of

hash functions. The seed for

𝐺 = 𝐺
log𝑛 : {0, 1}𝑑 → Γ𝑛

comprises log𝑛 hash functions ℎ = (ℎ1, . . . , ℎlog𝑛), each ℎ𝑖 ∈ H ,

and a symbol 𝜎 ∈ Σ, noticing that indeed 𝑑 = 𝑂 (log𝑛 · log |Σ|). We

define

𝐺𝑖 : Σ × {0, 1}𝑖 ·2 log |Σ | → Γ2
𝑖

recursively as follows.

𝐺0 (𝜎) = 𝜎 | [1,...,log |Γ | ] ,

𝐺𝑖 (𝜎 ;ℎ1, . . . , ℎ𝑖 ) = 𝐺𝑖−1 (𝜎 ;ℎ1, . . . , ℎ𝑖−1) ◦𝐺𝑖−1 (ℎ𝑖 (𝜎);ℎ1, . . . , ℎ𝑖−1).
One can verify that the space needed to compute the output of 𝐺 ,

given an appropriateH , is 𝑂 (log |Σ|) ≪ 𝑑 . Nisan proved that for

every BP 𝐵, most ℎ = (ℎ1, . . . , ℎlog𝑛) are good in the sense that

𝐺 (Σ, ℎ) 𝜀-fools 𝐵. Formally,

Theorem 3.6 ([24]). Given𝑛,𝑤 ∈ N, an accuracy parameter 𝜀 > 0,
a confidence parameter 𝛿 > 0, and an alphabet Γ, let 𝐺 : {0, 1}𝑑N ×
Σ → Σ𝑛 be the above Nisan generator, where |Σ| = 𝑂

(
𝑛𝑤 |Γ |
𝜀𝛿

)
and

𝑑N = 𝑂 (log𝑛 · log |Σ|). Let 𝐵 be any [𝑛,𝑤, Γ] BP. Then, with proba-
bility at least 1 − 𝛿 over ℎ ∈ {0, 1}𝑑N , it holds thatA(𝐵) − E𝜎 ∈Σ [𝐵(𝐺 (ℎ, 𝜎))]


∞

≤ 𝜀,

recalling that A(𝐵) = E𝑧∈Γ𝑛 [𝐵(𝑧)].5

4
If Γ is large enough already, we can simply take Σ = Γ, but the above choice of Σ will

not change the parameters.

5
We note that one can view the output of Nisan generator as a [𝑤, Σ] BP 𝐵 (𝑛)

ℎ
whose

transition matrix A(𝐵 (𝑛)
ℎ

) is precisely E𝜎∈Σ [𝐵 (𝐺 (ℎ, 𝜎)) ].
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For every BP 𝐵, if we choose ℎ at random and store it then ℎ

is good for 𝐵 with probability 1 − 𝛿 . Thus, we can write ℎ once

and never change it. Put differently, the storage needed to keep ℎ

is a write-once memory. In contrast, the storage needed to keep 𝜎

is a multiple-read, multiple-write memory, as we need to average

over 𝜎 . It turns out that this distinction is incredibly useful. Saks

and Zhou call the write-once storage “offline” randomness, and the

multiple-write storage “online” randomness.

Canonicalization of BPs. As discussed above, a BP 𝐵 has an asso-

ciated transition matrix 𝐴(𝐵). This association, however, is not one
to one, and there are many different BPs that share the same associ-

ated transition matrix 𝐴. An important step in [32] is to transform

a BP 𝐵 to a canonical BP 𝐵′
that has the same associated transition

matrix. We first make this notion formal.

Given a𝑤 ×𝑤 substochastic matrix𝑀 in which every entry is

represented using at most 𝑠 bits, let 𝐵 = C(𝑀) be the [𝑤 + 1, Σ =

[2𝑠 ]] BP constructed as follows. Given 𝑖 ∈ [𝑤] and 𝜎 ∈ Σ, 𝐵(𝑖, 𝜎) =
𝑗 where 𝑗 is the smallest integer satisfying

∑
𝑘≤ 𝑗 𝑀 [𝑖, 𝑘] ≥ 𝜎 ·2−𝑠 if

such exists, and𝑤+1 otherwise. Moreover, we set 𝐵(𝑤+1, 𝜎) = 𝑤+1

for all 𝜎 ∈ Σ. One can then easily show that for a substochastic

matrix 𝑀 , it holds that A(C(𝑀)) [1,𝑤 ] = 𝑀 , where we denote by

𝐴 [𝑎,𝑏 ] the sub-matrix of 𝐴 that is formed by taking the rows and

columns indexed by 𝑎, . . . , 𝑏.

In our work, we will also need to work with lossy canonicaliza-

tions, in which we translate a substochastic matrix with a large

bit-complexity into a BP over a small alphabet. Given a substochas-

tic𝑀 and 𝑡 ∈ N, we let C𝑡 (𝑀) be the canonicalization of𝑀 into a

BP of width 𝑤 + 1 over the alphabet Σ = {0, 1}𝑡 , regardless of the
representation of its elements. Namely, 𝐵 = C𝑡 (𝑀) is defined such

that 𝐵(𝑖, 𝜎) = 𝑗 , where again, 𝑗 is the smallest integer satisfying∑
𝑘≤ 𝑗 𝑀 [𝑖, 𝑘] ≥ 𝜎 · 2

−𝑡
if such exists, and𝑤 + 1 otherwise. We also

set 𝐵(𝑤 + 1, 𝜎) = 𝑤 + 1 for all 𝜎 ∈ Σ as before. One can then show

that if every entry of𝑀 is represented using at most 𝑠 ≥ 𝑡 bits, thenA(C𝑡 (𝑀)) [1,𝑤 ] −𝑀

∞ ≤ 𝑤 · 2

−𝑡 .

Moreover, computing C𝑡 takes 𝑂 (log 𝑠 + log𝑤) space.

An Extended Nisan Algorithm. For simplicity, let us only con-

sider a [𝑤, Σ] BP with a transition matrix 𝐴 rather than different

transitions at each layer. Observe that the Nisan generator, set with

length parameter 𝑛, can also approximate all intermediate powers

by truncating its output accordingly. Thus:

Theorem 3.7 (following [24]). There exists an algorithm N that
gets as input a [𝑤, Σ] BP𝐵 with a transitionmatrix𝐴 = A(𝐵), a length
parameter 𝑛, an accuracy parameter 𝜀 > 0, a confidence parameter

𝛿 > 0, and a seed ℎ ∈ {0, 1}𝑑N where 𝑑N = 𝑂

(
log𝑛 · log

𝑛𝑤 |Σ |
𝜀𝛿

)
. The

algorithm runs in space 𝑂
(
log

𝑛𝑤 |Σ |
𝜀𝛿

)
and outputs(

𝑀
(1)
ℎ

, . . . , 𝑀
(𝑛)
ℎ

)
= N𝜀,𝛿 (𝐵,ℎ, 𝑛),

each𝑀
(𝑖)
ℎ

∈ R𝑤×𝑤 , and satisfies the following. With probability at
least 1 − 𝛿 over ℎ ∈ 𝐵𝑑N , it holds that for all 𝑖 ∈ [𝑛],𝑀 (𝑖)

ℎ
−𝐴𝑖


∞

≤ 𝜀.

We will often want to feed Nisan’s algorithm with stochastic

(or even substochastic) matrices, rather than BPs. The following

theorem extends upon Theorem 3.7 by preforming a canonicaliza-

tion step prior to applying Nisan’s algorithm, and even allows for a

lossy canonicalization step which would be useful toward reducing

the space requirements. As it will be clear from context, we use N
for both the algorithm that gets a BP as input and for the one that

gets a matrix as input.

Theorem 3.8. There exists an algorithm N𝜀,𝛿 that gets as input:
(1) A𝑤 ×𝑤 substochastic matrix 𝐴 in which every entry is repre-

sented using at most 𝑠 bits.
(2) An accuracy parameter 𝜀 > 0, a confidence parameter 𝛿 > 0,

and a canonicalization parameter 𝑡 ∈ N, where 𝑡 ≤ 𝑠 .

(3) A seed ℎ ∈ {0, 1}𝑑N for 𝑑N = 𝑂

(
log𝑛 ·

(
𝑡 + log

𝑛𝑤
𝜀𝛿

))
.

The algorithm runs in space 𝑂
(
𝑡 + log 𝑠 + log

𝑛𝑤
𝜀𝛿

)
and outputs(

𝑀
(1)
ℎ

, . . . , 𝑀
(𝑛)
ℎ

)
= N𝜀,𝛿 (𝐴,ℎ, 𝑛, 𝑡),

each𝑀
(𝑖)
ℎ

∈ R𝑤×𝑤 , and satisfies the following. With probability at

least 1 − 𝛿 over ℎ ∈ {0, 1}𝑑N , it holds that for all 𝑖 ∈ [𝑛],𝑀 (𝑖)
ℎ

−𝐴𝑖

∞

≤ 𝜀 + 𝑛𝑤 · 2
−𝑡 .

When we omit the parameter 𝑡 , we implicitly set 𝑡 = 𝑠 , and then the
error guarantee is simply 𝜀. Also, when we set N to output a single
matrix, we take it to be𝑀 (𝑛)

ℎ
.

4 BACKGROUND: THE SZ ALGORITHM
We review Saks and Zhou’s algorithm, presenting it using a ter-

minology which would allow us to lay the groundwork for our

improved algorithm given in the next sections. We begin with re-

calling the machinery of shift and truncate.

4.1 Shift and Truncate
Definition 4.1 (truncation). For 𝑧 ∈ R and 𝑡 ∈ N, we define the

truncation operator ⌊𝑧⌋𝑡 which truncates 𝑧 after 𝑡 bits. Namely,

⌊𝑧⌋𝑡 = max

{
2
−𝑡 · ⌊2𝑡𝑧⌋, 0

}
.

We extend it to matrices in an entry-wise manner. That is, for a

substochastic matrix 𝐴, the matrix ⌊𝐴⌋𝑡 has entries ⌊𝐴[𝑖, 𝑗]⌋𝑡 .
Lemma 4.2. Let 𝑦, 𝑧 ∈ [0, 1] be such that |𝑦 − 𝑧 | ≤ 2

−2𝑡 . Then, for
all ℓ < 𝑡 we have that

Pr

Z

[
⌊𝑧 − Z · 2

−2𝑡 ⌋𝑡 ≠ ⌊𝑦 − Z · 2
−2𝑡 ⌋𝑡

]
≤ 2

−ℓ ,

where Z is chosen uniformly at random from
{
0, 1, 2, . . . , 2ℓ − 1

}
.

The preceding lemma is an important ingredient in [32], that

enables one to eliminate dependencies between consecutive appli-

cations of Nisan’s algorithm. Think of 𝑧 as an approximation to

some 𝑦 obtained by a randomized algorithm that typically returns a

good approximation 𝑧 ≈ 𝑦. Note that while 𝑧,𝑦 might be extremely

close, their truncation may differ if they are on the boundary values

of the truncation operator. The idea behind Theorem 4.2 is that

if we randomly shift both 𝑦, 𝑧 then their truncation is equal with

high probability. Once we fix a good shift, our approximation de-

pends only on the input (and the fixed shift) and not on the internal
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randomness used to compute 𝑧. See [16, 18, 37] for additional dis-

cussion. Extending Theorem 4.2 to matrices, a simple union-bound

gives us the following corollary.

Corollary 4.3. Let𝑀,𝑀 ′ ∈ R𝑤×𝑤 be such that ∥𝑀 −𝑀 ′∥
max

≤
2
−2𝑡 . Then, for all ℓ < 𝑡 , we have that

Pr

Z

[
⌊𝑀 − Z · 2

−2𝑡 𝐽𝑤⌋𝑡 ≠ ⌊𝑀 ′ − Z · 2
−2𝑡 𝐽𝑤⌋𝑡

]
≤ 𝑤2

2
−ℓ ,

where Z is chosen uniformly at random from
{
0, 1, 2, . . . , 2ℓ − 1

}
and

𝐽𝑤 is the all-ones𝑤 ×𝑤 matrix.

4.2 The SZ Algorithm and Its Analysis
Given a𝑤 ×𝑤 stochastic matrix 𝐴, we wish to compute 𝐴𝑛

, where

𝑛 = 2
𝑟
for some integer 𝑟 (𝑛 can be assumed to be a power of 2

without loss of generality). In this section we describe Saks and

Zhou’s randomized algorithm that uses only 𝑂 (𝑟3/2) random bits,

and runs in space 𝑂 (𝑟3/2). As discussed toward the end of this sec-

tion, the algorithm can then be derandomized in a straightforward

manner while maintaining space complexity 𝑂 (𝑟3/2).
Let 𝜀 > 0 be a desired accuracy parameter, and 𝛿 > 0 be the

desired confidence. Write 𝑟 = 𝑟1𝑟2 for some 𝑟1, 𝑟2 ∈ N to be chosen

later on. Set 𝛿N = 𝛿
2𝑟2

, 𝑡 = log
2𝑛𝑤2𝑟2

𝜀𝛿
, ℓ = 𝑡

2
, 𝜀N = 2

−2𝑡
, and

𝑑N = 𝑂

(
𝑟1 ·

(
𝑡 + 𝑟1 + log

𝑤

𝜀N𝛿N

))
= 𝑂

(
𝑟2

1
+ 𝑟1 log

𝑛𝑤

𝜀𝛿

)
.

Without loss of generality we may assume that the input matrix

𝐴 is given to us using 𝑡 digits of precision. The algorithm gets as

input 𝐴 ∈ R𝑤×𝑤
, 𝑟 = 𝑟1𝑟2, ℎ ∈ {0, 1}𝑑N , and Z = (Z1, . . . ,Z𝑟2

) ∈{
0, . . . , 2ℓ − 1

}𝑟2

, and proceeds as follows.

(1) Set𝑀0 = 𝐴.

(2) For 𝑖 = 1, . . . , 𝑟2,

(a) Compute𝑀
(2𝑟1 )
𝑖−1

= N𝜀N,𝛿N

(
𝑀𝑖−1, ℎ, 2

𝑟1

)
.

(b) Set𝑀𝑖 =

⌊
𝑀

(2𝑟1 )
𝑖−1

− Z𝑖 · 2
−2𝑡 𝐽𝑤

⌋
𝑡
.

(3) Output𝑀𝑟2
.

Theorem 4.4 ([32]). For any 𝑤 × 𝑤 stochastic matrix 𝐴, and
integers 𝑟1, 𝑟2 such that 𝑟1𝑟2 = 𝑟 = log𝑛, the above algorithm satisfies
the following. With probability at least 1−𝛿 overℎ ∈ {0, 1}𝑑N and Z =

(Z1, . . . ,Z𝑟2
) ∈

{
0, . . . , 2ℓ − 1

}𝑟2 , the output𝑀𝑟2
= SZ(𝐴, 𝑟1, 𝑟2, ℎ,Z)

satisfies 𝐴𝑛 −𝑀𝑟2


∞

≤ 𝜀.

Moreover, SZ(𝐴, 𝑟1, 𝑟2, ℎ,Z) runs in space 𝑂
(
𝑟2 · log

𝑛𝑤
𝜀𝛿

)
.

Given the above theorem, one can readily obtain a deterministic

algorithm for matrix powering by averaging over all seeds, using

space

𝑂

(
𝑟2ℓ + 𝑑N + log

𝑛𝑤

𝜀𝛿

)
= 𝑂

(
𝑟2 log

𝑛𝑤

𝜀𝛿
+ 𝑟2

1
+ 𝑟1 log

𝑛𝑤

𝜀𝛿

)
.

Setting 𝑟1 = 𝑟2 =
√
𝑟 =

√︁
log𝑛, and 𝛿 = 𝜀, one gets 𝑂 (𝜀) approxima-

tion in the induced ℓ∞ norm using space

𝑂

(√︁
log𝑛 · log

𝑛𝑤

𝜀

)
.

We omit the details as we take a different approach for this final

step in our improved algorithm.

5 APPROXIMATE POWERING IN SMALL
SPACE

In this section, we present our improvement upon the Saks–Zhou

algorithm to obtain better space complexity for approximating large

powers of matrices, following the outline given in section 2.

Let 𝜀 > 0 be a desired accuracy parameter, and 𝛿 > 0 the desired

confidence. Let 𝑟 ∈ N, and write 𝑟 = 𝑟1𝑟2 for some 𝑟1, 𝑟2 ∈ N to be

chosen later on. We set the accuracy and confidence of Nisan algo-

rithm to be 𝜀N = 2
−2𝑟1

and 𝛿N = 𝛿
2𝑟2

, respectively. Nisan’s algorithm

Nwill work with each entry represented with 𝑡1 = 4𝑟1+ log𝑤 digits

of precision. Following Theorem 3.8, the seed for Nisan’s algorithm

is of length

𝑑N = 𝑂

(
𝑟1 ·

(
𝑡1 + 𝑟1 + log

𝑤

𝜀N𝛿N

))
= 𝑂

(
𝑟2

1
+ 𝑟1 log

𝑟2𝑤

𝛿

)
.

For the shift and truncate we take ℓ = log
2𝑤2𝑟2

𝛿
. Note that ℓ only

depends on𝑤 and 𝑟2, and not on 𝑛 or 𝜀. The number of bits required

for the shifts is thus

𝑟2 · ℓ = 𝑂

(
𝑟2 · log

𝑟2𝑤

𝛿

)
.

Finally, set 𝑡2 = log
16𝑤2𝑟2𝑛

𝜀𝛿
, and notice that 𝑡2 = Ω(log

𝑛
𝜀 ). We

stress that the key fact that unlike [32], here we take 𝑡1 ≪ 𝑡2.

The algorithm SZImp gets as input a stochastic matrix𝐴 ∈ R𝑤×𝑤
,

ℎ ∈ {0, 1}𝑑N , and (Z1, . . . ,Z𝑟2
) ∈

{
0, . . . , 2ℓ − 1

}𝑟2

. Without loss of

generality we may assume that each entry of the input matrix 𝐴 is

given with 𝑡2 digits of precision. The algorithm proceeds as follows.

(1) Set𝑀0 = 𝐴.

(2) For 𝑖 = 1, . . . , 𝑟2,

(a) Compute(
𝑀

(1)
𝑖−1

, 𝑀
(2)
𝑖−1

, . . . , 𝑀
(2𝑟1 )
𝑖−1

)
= N𝜀N,𝛿N

(
𝑀𝑖−1, ℎ, 2

𝑟1 , 𝑡1

)
.

(b) Compute

𝑀𝑖 =

⌊
R

(
𝑀

(1)
𝑖−1

, . . . , 𝑀
(2𝑟1 )
𝑖−1

, 𝑀𝑖−1, 3𝑡2

)
− Z𝑖2

−2𝑡2 𝐽𝑤

⌋
𝑡2

.6

(3) Output𝑀𝑟2
.

We first determine our algorithm’s space complexity.

Lemma 5.1. Computing SZImp (𝐴, 𝑟1, 𝑟2, ℎ,Z) takes

𝑂

(
(log𝑛 + 𝑟2 log𝑤) · log log

𝑛𝑤

𝜀𝛿
+ 𝑟2 log

1

𝛿
+ 𝑟2

(
log log

𝑛𝑤

𝜀𝛿

)
2

)
space.

For the correctness, we show:

Theorem 5.2. For any𝑤×𝑤 stochastic matrix𝐴 and integers 𝑟1, 𝑟2,
the above algorithm satisfies the following. With probability at least
1 − 𝛿 over ℎ ∈ {0, 1}𝑑N and Z = (Z1, . . . ,Z𝑟2

) ∈
{
0, . . . , 2ℓ − 1

}𝑟2 ,
the output𝑀𝑟2

= SZImp (𝐴, 𝑟1, 𝑟2, ℎ,Z) satisfies𝐴𝑛 −𝑀𝑟2


∞

≤ 𝜀,

6
The Richardson iteration may output a matrix which is not substochastic. This can

be addressed by first rounding all negative entries to 0 and all entries larger than 1 to

1. This step can only improve the accuracy. Then, if the sum of entries in some row

exceeds 1, decrease the largest entry in that row by the smallest value that will result

in its sum being at most 1 (note that we may not be able to get the sum to be exactly 1

as we work with𝑂 (𝑡2) bits of precision). In terms of accuracy, the above correction is

negligible compared to the truncation step for a good (ℎ,Z) .
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where 𝑟 = 𝑟1𝑟2 and 𝑛 = 2
𝑟 . Moreover, SZImp (𝐴, 𝑟1, 𝑟2, ℎ,Z) runs in

space

𝑂

(
(log𝑛 + 𝑟2 log𝑤) · log log

𝑛𝑤

𝜀𝛿
+ 𝑟2 log

1

𝛿
+ 𝑟2

(
log log

𝑛𝑤

𝜀𝛿

)
2

)
.

The dependence of Theorem 5.2 on 𝜀 is only double-logarithmic,

and so taking a tiny 𝜀 does not deteriorate the space complexity

by much. The dependence on 𝛿 , however, is logarithmic. When we

fix 𝑟1 = 𝑟2 =
√︁

log𝑛 and 𝜀, 𝛿 ≥ 1

𝑛 in Theorem 5.2, we get space

complexity �̃� (log𝑛 +
√︁

log𝑛 · log
𝑤
𝛿
). This means that to get space

complexity �̃� (log𝑛+
√︁

log𝑛 · log𝑤) we cannot take 𝛿 much smaller

than
1

𝑤 .

Now suppose our goal is to get a deterministic algorithm ap-

proximating 𝐴𝑛
to within

1

𝑛 accuracy. We can follow [32] and by

averaging over all offline seeds (namely, ℎ and the Z-s), taking

𝛿 = 1

𝑤 , get a deterministic approximation with
1

𝑤 error. However,

in this section we show how to get a much better accuracy
1

𝑛 . Our

algorithm is simple. Instead of averaging over all the good and bad

offline randomness strings, we iterate the SZImp algorithm over

all (ℎ,Z)-s and take the entry-wise median of the outputs. This

approach only requires 𝛿 = Ω(1) and works because we know

more than half of the offline strings are good. We defer the formal

description to the full version.

6 APPROXIMATING THE ITERATED
PRODUCT

In this section (or more precisely, in [8, Section 6]), we prove the

following theorem which implies Theorem 1.1.

Theorem 6.1. For any 𝑛,𝑤 ∈ N where 𝑛 ≥ 𝑤 , and any 𝜀 > 0,
there exists a deterministic algorithm that given 𝑤 × 𝑤 stochastic
matrices𝐴1, . . . , 𝐴𝑛 , approximates𝐴1 · · ·𝐴𝑛 to within error 𝜀 in space

𝑂

((
log𝑛 +

√︁
log𝑛 · log𝑤

)
· log log𝑛 + log log

1

𝜀
· log𝑛 +

(
log log

1

𝜀

)
2

)
.

Now that our matrix powering algorithm has been established,

we develop some of the ideas, discussed informally in subsection 2.2,

in preparation for our complete IMM algorithm.

6.1 Improving the Dependence on the
Confidence Parameter

Recall that the seed length and space complexity of the random-

ized IMM algorithm induced by the Nisan generator have poor

dependence on the confidence parameter 𝛿 . The discussion in sub-

section 2.2 shows that the confidence parameter has to be smaller

than
1

𝑛 . This requires us to use a PRG with a better dependence on

the confidence parameter.

Theorem 6.2. There exists an algorithm Λ𝜀,𝛿 that gets as input:
(1) A sequence of𝑤×𝑤 substochastic matrices (𝐴) = (𝐴1, . . . , 𝐴𝑛)

in which every entry is represented using at most 𝑠 bits.
(2) An accuracy parameter 𝜀 > 0, a confidence parameter 𝛿 > 0,

and a canonicalization parameter 𝑡 ∈ N, where 𝑡 ≤ 𝑠 .
(3) A seed ℎ ∈ {0, 1}𝑑Λ of length

𝑑Λ =

(
log𝑛 ·

(
𝑡 + log

𝑛𝑤

𝜀

)
+ log log𝑛 · log

1

𝛿

)
.

The algorithm runs in space 𝑂
(
log 𝑠 + 𝑡 + log

𝑛𝑤
𝜀 + log log

1

𝛿

)
and

outputs the matrix sequence

(𝑀ℎ) = Λ𝜀,𝛿 ((𝐴), ℎ, 𝑛, 𝑡),

and satisfies the following. With probability at least 1 − 𝛿 over ℎ ∈
{0, 1}𝑑Λ , it holds that for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,(𝑀ℎ)𝑖, 𝑗 −𝐴𝑖 · · ·𝐴 𝑗


∞ ≤ 𝜀 + 𝑛𝑤 · 2

−𝑡 .

When we omit the parameter 𝑡 , we implicitly set 𝑡 = 𝑠 , and then the
error guarantee is simply 𝜀.

Comparing Theorem 6.2 with Theorem 3.8, we see that Theo-

rem 6.2 improves the dependence on 𝛿 both in the the space com-

plexity and in the seed length, 𝑑Λ. The construction of Λ𝜀,𝛿 starts

with Nisan’s PRG with constant confidence, and amplifies its con-

fidence to the desired 𝛿 using a sampler, via “Armoni’s sampler

trick” [2]. We prove Theorem 6.2 in [8, Appendix C], where we also

discuss the underlying technique.

6.2 Dealing with the Shifts
As discussed in subsection 2.2, the shifts require new ideas and sub-

stantial effort. Our first attempt is the following algorithm, wherein

𝑡1 = Θ(log𝑤), 𝑡2 = Θ(log𝑛), 𝑟1𝑟2 = log𝑛 (and for simplicity, say,

𝑟1 = 𝑟2 =
√︁

log𝑛).

(1) Shift the entry of each of the input matrices by Z · 2
−2𝑡2

where Z ∼
{
0, 1, . . . , 2𝑡2 − 1

}
.

(2) For 𝑖 = 1, . . . , 𝑟2,

(a) Partition the iterated product to sub-products, each con-

sists of 2
𝑟1

matrices.

(b) Truncate the matrices to precision 𝑡1 and use Λ𝜀Λ,𝛿Λ to

approximate the iterated sub-products.

(c) Regain the high accuracy via the Richardson iteration, and

then truncate to precision 𝑡2.

Note that as in the powering algorithm, at each level we truncate

the input to 𝑡1 bits of accuracy, where 𝑡1 = Θ(log𝑤 +
√︁

log𝑛),
apply Λ𝜀Λ,𝛿Λ , and then use Richardson iteration to recover 𝑡2 bits

of accuracy, where recall 𝑡2 = Θ(log𝑛). The role of the “outer”

rounding, in (b), is to decorrelate the randomness ℎ from the output,

and at this stage it is not clear whether this step achieves this goal.

Notice also that unlike in the powering algorithm, we shift the input,
and we shift all 𝐴𝑖 -s by the same shift, using 𝑂 (log𝑛) bits for that
single shift. There are no other shifts for intermediate levels in the

algorithm. Our hope is that investing 𝑂 (log𝑛) bits of randomness

in this initial single shift “takes care” of all future iterations.

The analysis of this first attempt boils down to algebraically

expressing how a shift of the input affects the output product,

which we accomplish in [8, Section 6.3]. In [8, Lemma 6.6] we prove

that a shift 𝜁 of each entry of 𝐴1, . . . , 𝐴𝑛 results in an error matrix

𝐸 (𝜁 ), where 0 ≤ 𝐸 (𝜁 ) ≤ 𝜁 ·𝑇 , inequalities are entry-wise, and the

matrix 𝑇 is defined by

𝑇 = 𝐽𝑤

𝑛∑︁
𝑘=1

𝐴𝑘+1
· · ·𝐴𝑛 . (1)

This implies that each entry of 𝐸 has magnitude at most 𝑛2𝜁 . How-

ever, generalizing the truncation lemma, Theorem 4.2, to the case

where the shifts are given by some error function 𝐸 (𝜁 ) reveals that
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we need to bound 𝐸 (𝜁 ) not only from above, but also from below.

We give the precise details in [8, Lemma 6.7]. Luckily for us, it turns

out that

0 < (1 −𝑤𝑛𝜁 )𝜁 ·𝑇 ≤ 𝐸 (𝜁 ) ≤ 𝜁 ·𝑇,

and that with high probability, a 𝜁 -shift of the input is good, in the

sense that the output is far from the boundary of a truncation. In

particular, we conclude that at least in the first iteration, with high

probability over the shift, the truncation indeed decorrelates ℎ from

the output. We give the precise details in [8, Section 6.3].

Furthermore, by taking the union bound over all the “true” matri-

ces that are obtained as partial products in the computation, we see

that with high probability (over the initial shift) all these products

are 𝜌-safe, in the sense that their entries are at least 𝜌-far from a

2
−𝑡2

boundary, for 𝜌 and 2
−𝑡2

that may be polynomially-small in 𝑛.

Thus, if we could approximate the correct matrices with accuracy

better than, say, 𝜌/2, then that approximation is also 𝜌/2 safe, and

a truncation to 𝑡2 bits of accuracy gives a pre-determined result,

independent of ℎ.

However, the main challenge in the analysis is that we need to

track the shift effects not only upon multiplication, but also upon

the truncation steps that we have throughout the computation. Here

the approach runs into an unexpected problem: How should we

choose the parameter 𝜌? Clearly, 𝜌 should be smaller than 2
−𝑡2

(as

we want to be 𝜌-far from a 2
−𝑡2

boundary). But when we truncate

to 𝑡2 bits of accuracy, we introduce an error of 2
−𝑡2

, and so 𝜌 ≥ 2
−𝑡2

.

Indeed, after the truncation to 𝑡2 bits of accuracy, we are always at
a 2

−𝑡2
boundary point, and therefore the approximated matrix that

we get is never safe no matter what shift we choose.

To summarize, there are two contradicting forces in our strategy:

(1) perturbing the input, and (2) the truncation. While the initial

perturbation makes all correct iterated products safe, the trunca-

tion makes the approximated matrices unsafe. Perhaps a natural

approach is to allow a deterioration in the truncation parameters,

namely make 𝑡2 smaller as the algorithm progresses. However, this

does not work either because the argument seemingly loses log
1

𝜌

bits of precision at each iteration, which is roughly log𝑛.

Our solution to the problem is to introduce another Richardson
iteration step in order to make 𝜌 smaller than 2

−𝑡2
. The fact that

we use two Richardson steps at each layer may look perplexing

at first, but the utility of the two Richardson steps can be simply

explained: The inner Richardson iteration, combined with the trun-

cation performed right after, is designed to decorrelate ℎ, whereas

the outer Richardson iteration maintains a small universal error 𝜌

independent of the inner decorrelation procedure. Thus, while the ma-

trix after the truncation is not safe, the outer Richardson iteration

brings it closer to the correct value – so close that it must be safe.

We leave the full description of the algorithm, and its analysis,

to the full version of the paper.
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