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Lecture 2 — Deterministic Amplification

Amnon Ta-Shma and Dean Doron

1 A quick review of concentration bounds

Theorem 1 (Markov’s inequality). If X is a nonnegative random variable then for every a > 0,
Pr[X >a] < %.

Theorem 2 (Chebyshev’s inequality). If X is a random variable, then for every a > 0,

Var[X]

a2

Pr[| X — E[X]| > a] <
Theorem 3 (The Chernoff bound, [4, 2]). Suppose Y1,...,Y, are i.i.d. boolean random variables
with expectation . Then for every e > 0,

o2
Pr < e,

iYi> (e+e)n

=1

If the Y;-s are not necessarily boolean, we have:

Theorem 4 (The Chernoff-Hoeffding bound, [4]). Suppose Yi,...,Y, are independent random
variables with expectations py, ...,y such that Y; € [a,b] for every i € [n]. Then for every e > 0,

Pr

n _ 2:2n
> (Y- ) > en] < e 0o
i=1

2 k-wise independence

Definition 5. Let X1,..., X, be a sequence of random variables. We say they are k-wise indepen-
dent if for all 1 <4y < ... <1 <n, X;,...,X;, are independent. That is, for every aq,...,ax in
their support, Pr[X;, = a1 A... Xi, = ag) = Pr[X;, = aq] ... Pr[X;, = ag]. We will also assume

that each X; by itself is uniform.

We shall now construct a small pairwise-independent sample space. Namely, X,...,X,, where
each X; is uniform over [n] and the support size is n? (this is tight! explain why). Assume that n
is a power of 2 and consider the field F = GF(n).

The sample space is F x F and the distribution on the sample points is uniform. For every i € [n],
we set X;(a,b) = a-i+ b, where i is considered as an element from the field F and addition and
multiplication are in F. First, note that every X; is uniform over F. Now, for every distinct i, j € [n]

and a1,a9 € F,
1 ¢ a oq
Pr [X; = X, = = P . = .
a,béy[ =N X = a 0, beF [(1 J> (b> <042>]



As the determinant of <i ;) is nonzero,

a,béF[ T j =l IF|2  abeF a,beF

To generalize the above construction for k-wise, the sample space is (ag,...,ax_1) € F¥ and z; for
1e€Fis X; = Zf;ol ait. Tt is not hard to see that this is indeed a k-wise independent sample space
of size n*.

What if we need X7, ..., X, to be boolean and k-wise independent? One way is to use the previous
construction and truncate every element X; to, say, its least significant bit. We thus have:

Claim 6. There exists an explicit distribution that is k-wise independent over {0,1}" and has

support size n¥.

Proof. Let F = {agp,...,an—1} be a field of size n = 29. It follows from the above discussion that
the sample space D = {Ay |y eF k} C F" is k-wise independent over F, where A is the n x k
matrix for which A; ; = ag:ll (why?). Note that A is the generator matrix of a Reed-Solomon code,
and also known as the Vandermonde matrix of the field elements.

Consider the canonical representation of every field element a € F as a vector in Fi. Addition in F
is thus a simple addition over F4, whereas multiplication in F is a linear transformation. Namely,
y — «a -y in F corresponds to x — M, -z in F4, where M, € F1*?. Under this representation,

Ay € F™ in mapped to Az € F5? such that x € ng encodes y; in its i-th block and A € ngqu has
My, ; as its (i, j)-th sub-matrix.

Our new sample space, D' C Fé, is obtained by restricting every vector in {/_lx |z € ng} ton
coordinates, e.g., by taking every other ¢ coordinates. This specific construction corresponds to
truncating every element of D to its least significant bit.

Take I C [ng] of size k that fits our restriction. As the corresponding rows in A are independent,

verify to yourself that indeed (Az); is uniform where = ranges over ]ng. D’ is of size 259 = nF, as
desired. O
logn

In fact we can do better. We will see that for pairwise independence. The sample space is {0, 1}
and the distribution on the sample points is uniform. For every i € {0,1}'°", we set X;(a) =
(a,7) mod 2. The sample space is of size n. We will prove in the exercise that this is indeed a
pairwise independent sample space. In fact, this bound is also tight:

Claim 7. If X1, ..., X, are boolean random variables that are pairwise independent then the support
size is at least n.

Proof. Consider the S x n matrix describing the distribution. Consider every column as some
v; € R¥, where we map every b € {0,1} to (—1)?. We will show that the v;-s are orthogonal and
therefore independent, and this implies S > n.

For every i # 7,
(vi,vj) = Kk e[S (vir = (vj)e}| = [{k € [ST| (vi)k # (vj)r}]
1

— 18]+ Prlos = ] I8]- Pafu £ ] = 218] (Prlos = - ) = o
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In fact, a more general lower bound can be given:

Theorem 8. If X4,...,X,, are boolean random variables that are k-wise independent then the

k
support size is at least ZZLZQ(J) (") ~ ns.

Proof. As an exercise. O

3 Deterministic amplification

Most of the material in this section (and a lot that is not in this section) is covered in a survey of
Goldreich [3] and a monograph of Luby and Wigderson [5].

BPP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time
with a two-sided bounded error. RP and coRP are its one-sided variants. Formally:

Definition 9. For a < b, a language L € BPPla,b] if there exists a polynomial-time probabilistic
TM M(x,y), where:

o Ifx € L then Pry[M(z,y) = 1] > b.

o Ifx ¢ L then Pry[M(z,y) = 1] < a.
We denote BPP = BPP([3, §], RP = BPP[0, 3] and coRP = BPP[3, 1].

Suppose we have L € BPP[a — ¢,a + €], for some constant a and ¢ = £(n), accepted by a TM
M that on input of length n uses t(n) random bits. If we run M k times, each time with fresh,
independent, random bits and eventually output according to whether the average of k answers
exceeded a, the error probability should decrease exponentially.

If we denote X; as the answer in the ¢-th run, when x € L we err if % Zle X; < a. By Chernoft,
the probability for this to happen is bounded by e~k | Likewise for z ¢ L. Thus, to bring the

log * . .
error to §, we can take kK = O( 052‘5 ). Thus, we can amplify any polynomially large gap ¢ = n~
to an exponentially small error § = 27" in polynomial time, and therefore also using polynomially
many random bits. The question we ask is whether we can re-use random bits and reduce the error

without using too many additional random bits.

[0}

Throughout, we are given = and a black-box access to M (z,y). We are allowed to pick y1,...,yr
in some way, and answer according to M (x,y1), ..., M(x,yr). Denote m = |y|. So far we have seen
that with independent trials, with T" queries and mT random coins we can amplify (% — &, % +¢)
to (6,1 —6) error with 7' = O(Ei2 log ).

3.1 Via pair-wise independence

Let us start with k = 2. Pick y1,...,yr from a pairwise independent distribution where each y; is
uniform over 3 = {0,1}". For every i € [T], let Y; be the boolean random variable that is 1 iff



M (x,y;) answered correctly. Denote p; = E[Y;] > % +e. We answer according to the median of the
T trials. By Chebyshev and pairwise independence,

T
Pr[we are wrong] < Pr ZYQ—,ui >eT
i=1
Var[), Yi] < -3 +e) < 1 5
e2T? - e2T - e '

We thus choose T' = %. The sample space is of size at most 22" so overall 2m random coins are
used. If we want to amplify a non-negligible gap to a constant gap, it is sufficient to use pairwise
independence.

3.2 Via k-wise independence

We proceed with k£ = 4. For every i € [T, let X; be the output of the i-th run and let X =), Xj,
wi = E[X;] and p = )", pi. By Markov,

4
PHX —pl = 4] < Prf(x -tz 4t < HE W
Denote Z; = X; — p;, E[Z;] = 0. By linearity,
E(X -w' = B 2Z)= > ElZ,%,%,%).
i i1,02,13,14

By four-wise independence, whenever all iy, i, i3, i4 are different, E[Z;, Z;,Z;, Z;,] = E|Z;,] - E|Z;,)] -
E[Z;,] - E|Z;,]. However, for every i, E[Z;] = 0, and so the term vanishes. In fact, this is true for
every term i1, 42,13, %4 in which some term appears with an odd power. Thus, the only terms that
survive are those where every term appears an even number of times. Thus,

BX -0 = LBz () T EzE)

1<a<b<T
4
— ZE[Z§]+<2) > Var[Z,] Var[Zy).
a 1<a<b<T

As for every i, Var[Z;] = p;(1 — p;) <1,

E[(X —p)?l < T+ (;) <T> < 4T

We then obtain:

T
Pr[we are wrong] < Pr ZYi_M > T
i=1
E(X -~ ) _ a2 4
oA = At T a2 T %

So, with four-wise independence, we get an error of O(T~2). Specifically, we take T = E%\/% . For

arbitrary 2k-independence, similar analysis shows that the error decreases like O(T ).



Lemma 10. Let X be the average of T k-wise independent random wvariables for an even integer
k, and let p = E[X]. Then,

K2\ 2
Pilx -z < (gra)

The situation we have so far:

Table 1: Amplifying (% e, % +¢) to (0,1 — ¢) if » random bits are initially required

Number of samples | Number of random bits
Truly random 0(105’2%) - 0(1052%)
k-wise independence O(E%é—g) O(kr + klog % +log 3)
Pairwise independence O(%3) O(r +log 3-)

3.3 Via expanders

We start with a one-sided error (0,a) algorithm. With full independence, O(Llog }) trials are
sufficient (Check, and compare to the two sided error). Now, consider an expander G = (V =
{0,1}™, E) with a constant degree D and a constant A = min {X2(G), —Ap(G)} < 1.

The construction: Choose y; uniformly at random and take a random walk on G of length T'— 1
to obtain yo, ..., yr. Accept iff one of M(xz,y;) accepted. Fix x € {0,1}". If ¢ L then we always

reject, so we assume from now on that € L. Let Bad C {0,1}"™ be the set of strings that are bad
for z. That is, Bad = {y € {0,1}"" | M(z,y) = 0}. Thus,

T

/\ (vi € Bad)

i=1

Pr{we are wrong] = Pr

Then:

Theorem 11. Using our above notations,

T

/\(yz’ € Bad)

i=1

Pr < B+ 1=V,

Bad
where 8 = SH.

In our case, § < aand (8+(1-6)N) =

1—(1-X)(1-p8) < 1. Thus, with m+log D-(T—1) = m+O(T)
random coins we can amplify, say, (0, %) to

(0,1 — 27%(1)),

Proof. The proof has two main components. First, we need to translate the condition /\;il(yi €
Bad) to an algebraic terminology, and then we analyze it.

The translation to algebraic terminology. Let M be the transition matrix of G and denote
|V| =2" = N. Pick y; € V uniformly at random. That is, the initial distribution over the
vertices is u = %1 ~. Define an N x N diagonal matrix B with Bly,y] = 1 if y € Bad and



0 otherwise. In this terminology, |(1, Bu)| is the probability a random element belongs to
BAD (and so is ). [(1, BM Bu)| is the probability in a random walk of length two, both
samples belong to BAD. Similarly, |(1,(BM)*Bu)| is the probability in a random walk of
length k£ 4 1 the walk is confined to the set BAD, i.e., all samples belong to BAD.

Reducing the analysis to understanding a single step : As B is a projection, B> = B, and
so (BM)*Bu = (BM B)*Bu. Also, the vector is supported only on coordinates from Bad,
Cauchy-Schwartz implies

(1,(BMB)"Bu)| < /BN|(BMB)"Bul|,

and since || AB ||, < [[A|l5 || B |5,

(1, (BMB)'Bu)| < /BN||BMBI|l; || Bul,

= \/ﬂN\/E | BMB||;

BIBMBly < || BMB, .

Summing up, it is enough to show || BM B ||, < 1, i.e., it is enough to analyze a single step.

Thus, we are left with analyzing a single step. We will show, || BMB ||, < 5+ (1 — ).

Claim 12 ([6], Proposition 3.2). Let G be an undirected regular graph on n vertices, with A =
min {X2(G), —=A\v((G)} and its transition matriz is B. Then, B = (1 — \).J + AE for some E with
| E'lly <1 and J that is the normalized all-ones matriz. ILe., B is a convex combination of J (that
corresponds to a completely random walk) and E (that is some arbitrary error matrix).

Proof. The first eigenvector of B is u the all one vector (possibly normalized) with eigenvalue 1. u
is also an eigenvector of J with eigenvalue 1. We conclude that u is a common eigenvector of B, J
and E and with eigenvalue 1 for all of them (Check!).

What about vectors in the orthogonal complement? Let W+ denote all vectors perpendicular to
7z, i.e., all x such that (x,u) = 0. Then Jz = 0 (Why?). Also, W+ is invariant under B (Why?).
Thus, W+ is invariant also under £ (Why?).

Thus, to bound the norm of E, it is enough to limit attention to W+'. For v € W+, || Ev|| =
sl Avl < s lvl = vl Thus, || B, <1. =

Now, let us express BM B in this decomposition. We get

BMB = B((1—A)J+AE)B = (1—\)BJB+ ABEB

The BJB part is the part corresponding to a true random walk step, the other part is “junk”,
and indeed we easily see that | BEB ||, < || B, || E|l5 ] Bl < 1. Thus, we are now reduced to



analyzing BJB, i.e., one true random walk step. For any « # 0, z = ), x;¢;. Then, (BJBx)[i] =
% Y icBaq i if i € Bad and 0 otherwise (check!). Thus, by Cauchy-Schwarz,

2
1
| BJBz ||, = \| BN <N > :c> :\/E > m< \/E\/ﬂNHtz:ﬁ,

i€Bad i€Bad

which completes the proof. O

The two-sided error case is along the same ideas, but a bit more complicated. The analysis may
use the useful expander Chernoff bound.

Theorem 13. Let G be an undirected D-regular graph with 1 = A1 > Ao > ... > A\, and spectral
gap 1 — X and let f; : V — [0,1] for i € [T]. Take a random walk vy,...,vr and let X; be the
random variable f;(v;). Denote p; = E[X;] and o = % > i. Then,

S

We can then add the expander walk technique to our table, obtaining:

Pr

Z(S] S 267i(17;\)52T

Table 2: Amplifying (% — g, % +¢) to (4,1 —¢) if r random bits are initially required

Number of samples | Number of random bits

T T
Truly random O(lofg‘S ) r- O(lofg‘S )
1 1
Expander walk 0(10525 ) T+ O(loagg‘s )
k-wise independence O(E%f—;) O(kr + klog L +1log 3)
k
Pairwise independence O(%3) O(r +log 3-)

3.4 Via dispersers

We continue with the one-sided error. Let E : [N] x [T] — [M] be a (K, «) seeded disperser. The
construction: Pick § € [N] uniformly at random and for every i € [T] choose y; = E(y,i). As
usual, accept if and only if some M (x,y;) accepts.

Suppose we start with a (0,«) error algorithm. If z ¢ L then we always reject. If x € L let
Good = {y € [M] | M(z,y) = 1}, so |Good| > « - 2™. Let B be the set

B={y|T'(y) NGood =0} .

By the disperser property |B| < K (Why?? This is the central point of the proof, so if you don’t
see it, insist on it until you see it). We reject iff we sampled y € B. Thus,

z| =

Pr[we reject] <

The number of random coins used is log N. Say a = % An optimal disperser exists with T =
O(In %), so O(log 1) samples are sufficient to amplify the error to (0,1 — 4).

7



The comparison for one-sided error is given by:

Table 3: Amplifying (0,¢) to (4,1 — ¢) if » random bits are initially required

Number of samples | Number of random bits
Truly random O(% log $) T O(% log $)
Expander walk O(Llog$) r+0(Llog})
Disperser (optimal) O(Llog$) r+ O(log %)

3.5 Via extractors

We return to the two-sided case, and assume that we start with an (% —g, %—l-&‘) error algorithm. Let

E : [N]x[T] — [M] be a (k, ) extractor. The construction: Pick y € [N] uniformly at random and
for every ¢ € [T choose y; = E(y,i). Accept if and only if the majority of the M (x,y;) accepted.

Fix 2 and let Good = {y € [M] | M (z,y) answers correctly}. We know that y(Good) > 1 + ¢. Let
Bad = {gj € [N] | Prigim[E(y,1) € Good] < %} That is, ¥ € Bad if and only if the majority is
incorrect and we err. Assume to the contrary that |Bad| > 2¥ = K and let Xp be the uniform
distribution over Bad, so Hso(Xp) > k. On one hand, we have |E(Xp,U;) — Up| < e. On the
other hand, note that

1
E(y,i) € Good] < —,
QEBad],Cz’e[T][ (.7) o0 ] 2

and as (i(Good) > % + ¢, we have that |[E(Xp,Ur) — Uy| < ¢, in contradiction.
Thus, |Bad| < K so the probability that we pick a bad 7 is again at most % = ¢§. The number of

random coins used is log N.

Say € = #. An optimal extractor exists with 7’ = O(lIn ), so0 O(log %) samples are sufficient to

amplify the error to (d,1 — ¢), assuming M = O(KT). Observe our final comparison:

Table 4: Amplifying (3 — ¢, 3 +¢) to (6,1 — §) if r random bits are initially required

Number of samples | Number of random bits
T T
Truly random 0(10525 ) r- 0(10525 )
1
Extractor (optimal) 0(10525 ) r+ O(log )
1 1
Expander walk O(lofg‘S ) T+ O(lofg‘s )
k-wise independence 0(6%6—;) O(kr + klog % +log })
k
Pairwise independence O(%3) O(r +log £-)

4 Approximating frequency moments in small space

Definition 14. A family H C [n] — X is a k-universal family of hash functions if for any 1 <
h<...<ip<mn, foralloy,...,op €%,

hPG%[h@l) =01 N... h(lk) = Uk] — W



Equivalently, if we define random variables n random varibles Xj,...,X,, defined by uniformly
sampling h € ‘H and setting X; = h(i), then Xq,..., X, are k-wise independent.

Consider a “stream” of inputs x1,...,x, € 2. For every a € X, let m, denote the number of times
a occurs. We want to approximate Fp =, m? by allowing only a single pass over the inputs. We
will achieve an arbitrary constant accuracy using O(log(n|X|)) space. The result is due to Alon,
Matias and Szegedy [1].

The algorithm is as follows:
1. Fix a 4-universal family of hash functions H C ¥ — {—1,1}.
2. Pick hy,...,hp € H for some T that we shall soon determine.
3. For each t =1 to T', compute s; = Y . | he(;).
4. Output + ST st

The space complexity is easy. We need T counters. Each counter counts up to n, with O(logn)
bits. Each h € H is represented by O(log |X|) bits (why?).

We now turn to estimating the accuracy (and confidence) of this approximation method. Before
we start we notice that s; = > | he(x;) = >, mght(a). Thus, if an element appears many times
the values h;(z;) are more correlated than the case where, say, each element appears once. Now,

Els)) = Y E[h(xz:)] = 0
i=1
and due to pairwise independence,

E(s7] = Y mampE[h(a)h(D)]
a,b

= > miER*(a)]+ Y mempyE[h(a)|E[R(D)] = > mi = F.
a a#b a

This means that we use an unbiased estimator for Fb, .i.e., a random variable whose average is
correct. We are now left with estimating how concentrated is the random variable s7 around its
mean.

Note that sy,..., s are independent. Let Y; = s?, and we know that E[Y;] = F,. We want to say
T
that Pr H% ST Y- Ry

> €F2:| is small. By Chebyshev’s inequality,

Var [EiT:l Yz} _ TVarlYi]

P - .
' 2723 2T}

>eTFy| <

1 Z
— Y, — F.

We are back to a single hash function. Computing the variance, we have

Varl[y] = Elsi] - (E[s}])" = E[si] - F}.



We compute the fourth moment using 4-wise independence:

Eisi] = > mamememgE[h(a)h(b)h(c)h(d))
a,b,c,de¥

= > miERYa)] + 3> mimi E[h*(a)h? (b))
a ab

= 3) mimi—2) my = 3F; —2F},
a,b a

so Var[Y1] = 2(F§ — Fy) < 2F3. Hence:

T
1 212 F; 2 1
Pr||= Y, - By >eF| < 272 <
' T; PR =R = amp T AT =y
for T > 5.
&
So far, with O(Ei2 log(n|%])) space, we have a confidence of £. So far (and if we are only interested in
constant confidence) we could have worked with hq, ..., hp that are chosen in a pairwise independent
manner.

If we want to improve the confidence to an arbitrary § we can repeat the above procedure K
independent times and take the median. Trial ¢ succeeds if the answer is within ¢ from F5. By
Chernoff, the probability that % of the trials are unsuccessful is at most 27%() = 5. If half are
successful, the median is also good (why?).
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