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The Plane R? with ||-coords
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Figure 1: Points, above (3, —1), on the plane are represented by lines.
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Figure 2: Conversely, lines are represented by points inducing a point <— line duality.
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Figure 3: Model of the Projective Plane. Euclidean points are mapped into surface points of
the hemisphere and ideal points/directions are mapped into the diameters of the “cap” with
the same direction.

With d the distance between the axes the correspondence is :
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Lines with negative slope m < 0 (negative correlation) are mapped into points between the
axes, m > 1 to the left of the X; and 0 < m < 1 to the right of the X, axes. To include
lines with m = 1 the Euclidean plane R? is embedded in the Projective plane P?. Then a
line with slope m = 1 is mapped in the direction also called ideal point with slope b/d.

Homogeneous coordinates are very convenient and the conversion to/from Cartesian is
easy i.e. Cartesian (a,b) — (a,b,1) — k(a,b,1) for k # 0.

Sometimes it is preferable to describe the line ¢ by :

g:(l,].’l?]—FU/Q.’I?Q—FU,g:O (2)



Figure 4: Under the duality parallel lines map into points on the same vertical line. On the
projective plane model, the great semi-circles representing the lines share the same diameter
since the lines have the same ideal point (direction). An ideal point in the direction with
slope m is mapped into the vertical line ]5“010.

and for a; # 0, m = —Z—; and b = —Zi, providing the correspondence :
0 [ay, as,a3] — € : (day, —as, a; + ay). (3)
In turn this specifies a linear transformation between the triples ¢ and ¢ :
(=Al ,l=A"",

where ¢ and ¢ are considered as column vectors. The 3 x 3 matrix is :

a0 o 0o 0

[11 oJ { ofloJ'



which can be easily computed by taking 3 simple triples, like for example, [1,0,0], [0,1,0]

and [0,0,1] for /. For the other half of the duality, we look into the point P — P line
correspondence which is given by:

P (p]7p27p3) — P [(p1 *pQ)adp?n *dpl]- (5)

Again taking P and P as column vectors we have:

P=B'P ,P=BP

with
11 0 0 0 1/d
B]—[ 00(11,3—[1 01/d1 (6)
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Figure 5: Duality : Rotation of a line about a point <+ Translation of a point on a line.
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Figure 6: (a)Square,(b) 3-D cube (¢) 5-D hypercube all with unit side. All vertices, edges,
faces of all order can be seen after learning the contents of sections Lines & Planes.
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