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1 INTRODUCTION

1.1 The Key Idea

The principle of truth-functionality (or compositionality) is a basic princi-
ple in many-valued logic in general, and in classical logic in particular. Ac-
cording to this principle, the truth-value of a complex formula is uniquely
determined by the truth-values of its subformulas. However, real-world
information is inescapably incomplete, uncertain, vague, imprecise or in-
consistent, and these phenomena are in an obvious conflict with the prin-
ciple of truth-functionality. One possible solution to this problem is to
relax this principle by borrowing from automata and computability theory
the idea of non-deterministic computations, and apply it in evaluations of
truth-values of formulas. This leads to the introduction of non-deterministic
matrices (Nmatrices) — a natural generalization of ordinary multi-valued
matrices, in which the truth-value of a complex formula can be chosen non-
deterministically out of some non-empty set of options. There are many
natural motivations for introducing non-determinism into the truth-tables
of logical connectives. We discuss some of them below. They give rise to two
different ways in which non-determinism can be incorporated: the dynamic
and the static1. In both the value v(¦(ψ1, . . . , ψn)) assigned to the formula
¦(ψ1, ..., ψn) is selected from a set ¦̃(v(ψ1), . . . , v(ψn)) (where ¦̃ is the inter-
pretation of ¦). In the dynamic approach this selection is made separately
and independently for each tuple 〈ψ1, . . . , ψn〉. Thus the choice of one of the
possible values is made at the lowest possible (local) level of computation, or
on-line, and v(ψ1), . . . , v(ψn) do not uniquely determine v(¦(ψ1, . . . , ψn)).
In contrast, in the static semantics this choice is made globally, system-wide,
and the interpretation of ¦ is a function, which is selected before any compu-
tation begins. This function is a “determinisation” of the non-deterministic
interpretation ¦̃, to be applied in computing the value of any formula under
the given valuation. This limits non-determinism, but still leaves the free-
dom of choosing the above function among all those that are compatible
with the non-deterministic interpretation ¦̃ of ¦.

1The dynamic approach was introduced together with the concept of Nmatrices. The
static approach was later introduced in [Avron and Konikowska, 2005]
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1.2 Some Intuitive Motivations

We start by presenting some cases in which the need for non-deterministic
semantics naturally arises.

Syntactic “underspecification”:
Consider the standard Gentzen-type system LK for propositional classical
logic (see e.g. [Troelstra and Schwichtenberg, 2000]). Its introduction rules
for ¬ and ∨ are usually formulated as follows:

Γ ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
(¬ ⇒)

Γ, ψ ⇒ ∆
Γ ⇒ ∆,¬ψ

(⇒ ¬)

Γ, ψ ⇒ ∆ Γ, ϕ ⇒ ∆
Γ, ψ ∨ ϕ ⇒ ∆

(∨ ⇒)
Γ ⇒ ∆, ψ, ϕ

Γ ⇒ ∆, ψ ∨ ϕ
(⇒ ∨)

The corresponding semantics is given by the following classical truth-tables:

¬
t f
f t

∨
t t t
t f t
f f t
f f f

Note that each syntactic rule of LK dictates some semantic condition on
the connective it introduces: (¬ ⇒) corresponds to the condition ¬̃(t) =
f , while (⇒ ¬) corresponds to the condition ¬̃(f) = t, thus completely
determining the truth-table for negation. Similarly, (∨ ⇒) dictates the
last line of the truth-table for ∨, i.e ∨̃(f, f) = f , while (⇒ ∨) dictates
the other three lines. Now suppose we want to reject the law of excluded
middle (LEM), in the spirit of intuitionistic logic. This can most simply
be done by discarding the rule (⇒ ¬), which corresponds to LEM, while
keeping the rest of the rules unchanged. What is the semantics of the
resulting system? Intuitively, by discarding (⇒ ¬), we lose the information
concerning the second line of the truth-table for ¬. Accordingly, we are left
with a problem of underspecification. This can be modelled using Nmatrices
in a very natural way: in case of underspecification, all possible truth-values
are allowed. The corresponding semantics in the case we consider would be
as follows (we use sets of possible truth-values instead of truth-values):

¬
t {f}
f {t,f}

∨
t t {t}
t f {t}
f f {t}
f f {f}
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Linguistic ambiguity:
In many natural languages the meaning of the words “either ... or” is
ambiguous. Thus the Oxford English Dictionary explains the meaning of
this phrase as follows:

The primary function of either, etc., is to emphasize the indiffer-
ence of the two (or more) things or courses, ..., but a secondary
function is to emphasize the mutual exclusiveness (i.e. either of
the two, but not both).

Following this kind of common-sense intuition about “or”, it follows that
in many natural languages the word “or” has both an “inclusive” and an
“exclusive” sense. For instance, when some mathematician promises: “I
shall either attack problem A or attack problem B”, then in many cases he
might at the end solve the two problems, but there are certainly situations
in which what he means is “but do not expect me to attack them both”.
In the first case the meaning of “or” is inclusive, while in the latter case it
is exclusive. Now in many cases one is uncertain whether the meaning of a
speaker’s “or” is inclusive or exclusive. However, even in cases like this one
would still like to be able to make some certain inferences from what has
been said. This situation can be captured by dynamic semantics based on
the following non-deterministic truth-table for ∨:

∨
t t {t, f}
t f {t}
f t {t}
f f {f}

Note that the static semantics is less appropriate here, since the meaning
of a speaker’s “or” is not predetermined, and he might use both meanings
of “or” in two different sentences within the same discourse.

Inherent non-deterministic behavior of circuits:
Nmatrices can be applied to model non-deterministic behavior of various
elements of electrical circuits. An ideal logic gate performing operations
on boolean variables is an abstraction of a physical gate operating with a
continuous range of electrical quantity. This electrical quantity is turned
into a discrete variable by associating a whole range of electrical voltages
with the logical values 1 and 0 (see [Rabaey et. al, 2003] for further details).
There are a number of reasons, due to which the measured behavior of a
circuit may deviate from the expected behavior. One reason can be the
variations in the manufacturing process: the dimension and device parame-
ters may vary, affecting the electrical behavior of the circuit. The presence
of disturbing noise sources, temperature and other conditions are another
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Figure 1. The circuit C

source of deviations in the circuit response. The exact mathematical form
of the relation between input and output in a given logical gate is not always
known, and so it can be approximated by a non-deterministic truth-table.
For instance, suppose that the circuit C given in Figure 1 consists of a
standard OR gate and a faulty AND gate, which responds correctly if the
inputs are similar, and unpredictably otherwise. The behavior of the gate
can be described by the following truth-table, equipped with the dynamic
semantics:

AND
t t {t}
t f {f, t}
f t {f, t}
f f {f}

Computation with unknown functions:
Let us return to Figure 1, and suppose that this time it represents a circuit
about which only some partial information is known. Namely, it is known
that the gate labelled with “?” is either an XOR gate or an OR gate, but
it is not known which one. Thus the function describing the second gate
is deterministic, but unknown to us. This situation can be represented
by using the non-deterministic truth-table for ∨ given in the “linguistic
ambiguity” example, equipped with the static semantics.

Verification with unknown evaluation models:
There are two well-known three-valued logics for describing different types
of computational models. The first, which captures parallel evaluation, was
described in the context of computational mathematics by Kleene ([Kleene,
1938]); the second, programming oriented method, in which evaluation pro-
ceeds sequentially, was proposed by McCarthy ([McCarthy, 1963]). Below
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are the corresponding truth-tables for ∨:

(Kleene)
∨̃ f e t
f f e t
e e e t
t t t t

(McCarthy)
∨̃ f e t
f f e t
e e e e
t t t t

Now suppose we are sending an expression ψ ∨ ϕ for evaluation to some
distant computer, for which it is not known whether it performs parallel or
sequential computations. Hence we know that ψ∨ϕ will be evaluated using
a deterministic function ∨̃, defined by either Kleene’s or McCarthy’s truth-
table for ∨, but we have no information which of the two. Again this can
be captured by using a static interpretation of the following “truth-table”:

∨̃ f e t
f {f} {e} {t}
e {e} {e} {e, t}
t {t} {t} {t}

According to this static interpretation, the function f∨ : {t, f, e}2 → {t, f, e}
used by the computer satisfies either f∨(t, e) = t (in case the computation
is parallel) or f∨(t, e) = e (in case it is sequential). However, it is not known
which of these two conditions is satisfied.

Incompleteness and inconsistency:
This example is taken from [Avron et. al., 2006; Avron et. al., 2008].
Suppose we have a framework for information collecting and processing,
which consists of a set S of information sources and a processor P . The
sources provide information about formulas over {¬,∨}, and we assume that
for each such formula ψ a source s ∈ S can say that ψ is true (i.e., assigned
the truth-value 1), ψ is false (i.e., assigned the truth-value 0), or that it has
no knowledge about ψ. In turn, the processor collects information from the
sources, combines it according to some strategy and defines the resulting
combined valuation of formulas. Thus for every formula ψ the processor can
encounter one of the four possible situations: (a) it has information that ψ
is true, but no information that ψ is false, (b) it has information that ψ is
false, but no information that ψ is true, (c) it has both information that ψ
is true and information that it is false, and (d) it has no information on ψ at
all. In view of this, it was suggested by Belnap in [Belnap, 1977] (following
works and ideas of Dunn, e.g. [Dunn, 1976]) to account for incomplete and
contradictory information by using the following four logical truth values:

t = {1}, f = {0},> = {0, 1},⊥ = ∅
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Here 1 and 0 represent “true” and “false” respectively, and so > represents
inconsistent information, while ⊥ represents absence of information.

The above scenario has many ramifications, corresponding to various
assumptions regarding the kind of information provided by the sources and
the strategy used by the processor to combine it. We assume that the
processor respects at least the deterministic consequences (in both ways) of
each of the classical truth tables. This assumption means that the values
assigned by the processor to complex formulas and those it assigns to their
immediate subformulas are interrelated according to the following principles
derived from the classical truth-tables of ¬ and ∨:

1. The processor ascribes 1 to ¬ϕ iff it ascribes 0 to ϕ.

2. The processor ascribes 0 to ¬ϕ iff it ascribes 1 to ϕ.

3. If the processor ascribes 1 to either ϕ or ψ, then it ascribes 1 to ϕ∨ψ.

4. The processor ascribes 0 to ϕ ∨ ψ iff it ascribes 0 to both ϕ and ψ.

Here the statement “the processor ascribes 0 to ψ” means that 0 is included
in the subset of {0, 1} which is assigned by the processor to ψ (recall that
the truth-values used by the processor correspond to subsets of {0, 1}). It
is crucial to note that the converse of (3) does not hold, since some source
might inform the processor that ϕ∨ψ is true, without providing information
about the truth/falsehood of either ϕ or ψ. Under the above assumptions,
there can be a number of possible scenarios concerning the type of formulas
evaluated by the sources. The case when the sources provide information
only about atomic formulas has been considered in [Belnap, 1977]. This case
is deterministic, and leads to the famous Dunn-Belnap four-valued logic.
Now consider the case when the sources provide information about arbitrary
formulas (also complex ones), but not necessarily all of them. In this case
the assumptions above are reflected in the following non-deterministic truth-
tables:

∨̃ f ⊥ > t
f {f,>} {t,⊥} {>} {t}
⊥ {t,⊥} {t,⊥} {t} {t}
> {>} {t} {>} {t}
t {t} {t} {t} {t}

¬̃
f {f}
⊥ {⊥}
> {>}
t {f}

Note that the table for negation reflects the principles 1 and 2, while the
table for disjunction reflects the principles 3 and 4. To see this, let us
examine one of the most peculiar cases: the entry f∨̃f = {f,>}. Suppose
that ψ and ϕ are both assigned the truth-value f = {0}. Then by principle
4 above, the truth-value of ψ ∨ ϕ (which is a subset of {0, 1}) must include
0. If in addition one of the sources assigned 1 to ψ ∨ ϕ, then the processor
ascribes 1 to ψ∨ϕ too, and so the truth-value it assigned to ψ∨ϕ is in this
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case >. Otherwise it is f. This justifies the two options in the truth-table.
The rest of the entries can be explained in a similar way.

1.3 Things To Come

The rest of this survey is divided into two parts. Part I describes the propo-
sitional framework of Nmatrices. We begin with some preliminaries and
a review of many-valued matrices in Section 2. The basic definitions of
the framework of Nmatrices are presented in Section 3. In Section 4 we
introduce canonical signed calculi, a natural family of proof systems ma-
nipulating sets of signed formulae (Gentzen-type systems can be thought
of as a specific instance of such calculi). The relation between Nmatrices
and canonical calculi is then explored in two complementary directions. In
Section 4.1 we provide a general proof theory for Nmatrices using canoni-
cal calculi. In Section 4.2 modular non-deterministic semantics is provided
for every canonical calculus (satisfying a simple syntactic condition). We
then proceed to describe further applications of Nmatrices. In Section 5
we extend the modular approach to two non-canonical families of Gentzen-
type calculi: those that are obtained from the positive fragments of classical
logic and intuitionistic logic by adding various natural Gentzen-type rules
for negation. In Section 6 Nmatrices are used for yet another family of non-
classical logics: paraconsistent logics, designed for reasoning in the presence
of contradictions. In Part II we handle the extension of the framework
of Nmatrices to the first-order level and beyond. In Section 7 we briefly
review the two standard approaches to interpreting unary quantifiers in
many-valued logics. In Section 8 we extend the propositional framework of
Nmatrices to languages with such quantifiers and discuss the problems that
this move reveals (and were not evident on the propositional level). Section
9 is devoted to the particular case of the usual first-order quantifiers. An
application of this case is presented in Section 10, where we extend the re-
sults from Section 6, and provide semantics for a large family of first-order
paraconsistent logics. Section 11 further generalizes the framework of Nma-
trices to multi-ary quantifiers and extends the relation between Nmatrices
and canonical signed calculi to languages with such quantifiers.

Due to lack of space, we omit in what follows most of the proofs, pro-
viding instead pointers to the relevant papers. Those of the proofs we do
include are intended to give the reader a better insight into the nature of
Nmatrices, and a flavour of the (mostly new) methods that can be employed
in handling and applying them.
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PART I: THE PROPOSITIONAL CASE

2 PRELIMINARIES

In what follows, L is a propositional language and FrmL is its set of wffs.
The metavariables ψ, ϕ range over L-formulas, and Γ, ∆ over sets of L-
formulas. For an L-formula ψ, we denote by Atoms(ψ) the set of atomic
formulas in ψ. We denote by SF (Γ) the set of all subformulas of Γ.

2.1 Logics, Consequence Relations and Abstract Rules

DEFINITION 1.

1. A Scott consequence relation (scr for short) for a language L is a binary
relation ` between sets of formulas of L that satisfies the following
three conditions:

strong reflexivity: if Γ ∩∆ 6= ∅ then Γ ` ∆.
monotonicity: if Γ ` ∆ and Γ ⊆ Γ′, ∆ ⊆ ∆′ then Γ′ ` ∆′.
Transitivity (cut): if Γ ` ψ, ∆ and Γ′, ψ ` ∆′ then Γ, Γ′ ` ∆,∆′.

2. A Tarskian consequence relation (tcr) `1 for a language L is a binary
relation between sets of L-formulas and L-formulas, that satisfies the
following conditions:

strong reflexivity: if ψ ∈ Γ then Γ `1 ψ.
monotonicity: if Γ `1 ψ and Γ ⊆ Γ′, then Γ′ `1 ψ.
Transitivity (cut): if Γ `1 ψ and Γ′, ψ `1 ϕ then Γ, Γ′ `1 ϕ.

3. A tcr ` for L is structural if for every uniform L-substitution σ and
every Γ and ψ, if Γ ` ψ then σ(Γ) ` σ(ψ). ` is finitary if whenever
Γ ` ψ, there exists some finite Γ′ ⊆ Γ, such that Γ′ ` ψ. ` is consistent
(or non-trivial) if there exist some non-empty Γ and some ψ s.t. Γ 6` ψ.
` is uniform if Γ ` ψ whenever Γ, ∆ ` ψ, Atoms(Γ∪{ψ})∩Atoms(∆) =
∅, and ∆ is consistent (i.e. there exists ϕ such that Γ 6` ϕ). Similar
properties can be defined for an scr.

4. A Tarskian propositional logic (propositional logic) is a pair 〈L,`〉,
where L is a propositional language, and ` is a structural and consis-
tent tcr (scr) for L. The logic 〈L,`〉 is finitary if ` is finitary.

For the rest of this section, we focus on scrs. However, the properties
below can be formulated in the context of tcrs as well.
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There are several ways of defining consequence relations for a language
L. The two most common ones are the proof-theoretical and the model-
theoretical approaches. In the former, the definition of a consequence rela-
tion is based on some notion of a proof in some formal calculus. In the latter
approach, the definition is based on a notion of a semantics for L. The gen-
eral notion of an abstract semantics is rather opaque. One usually starts
by defining a notion of a valuation as a certain type of partial functions
from FrmL to some set. Then ones defines what it means for a valuation to
satisfy a formula (or to be a model of a formula). A semantics is then some
set S of valuations, and the consequence relation induced by S is defined as
follows: Γ `S ∆ if every total valuation in S which satisfies all the formulas
in Γ, satisfies some formula in ∆ as well (note that this always defines an
scr). We say that a semantics S is analytic2 if every partial valuation in S,
whose domain is closed under subformulas, can be extended to a full (i.e.
total) valuation in S. This implies that the exact identity of the language
L is not important, since analycity allows us to focus on some subset of
its connectives. (See Remark 12 below for another important consequence
of analycity.) We shall shortly see that both ordinary many-valued seman-
tics and non-deterministic semantics based on propositional Nmatrices are
always analytic. However this is not necessarily the case in general 3.

DEFINITION 2.

1. A pure (abstract) rule in a propositional language L is any ordered
pair 〈Γ, ∆〉, where Γ and ∆ are finite sets of formulas in L (We shall
usually denote such a rule by Γ ⇒ ∆ rather than by 〈Γ,∆〉).

2. Let L = 〈L,`1〉 be a propositional logic, and let S be a set of rules
in a propositional language L′. The extension L[S] of 〈L,`1〉 by S is4

the logic 〈L∗,`∗〉, where L∗ = L ∪ L′, and `∗ is the least structural
scr ` such that Γ ` ∆ whenever Γ `1 ∆ or 〈Γ, ∆〉 ∈ S.

REMARK 3. It is easy to see that `∗ is the closure under cuts and weaken-
ings of the set of all pairs 〈σ(Γ), σ(∆)〉, where σ is a uniform substitution in
L∗, and either Γ `1 ∆ or 〈Γ,∆〉 ∈ S. This in turn implies that an extension
of a finitary logic by a set of pure rules is again finitary.

2The term ‘effective’ was used in [Avron, 2007a; Avron and Zamansky, 2007d; Avron
and Zamansky, 2007a] instead of ‘analytic’.

3For instance, in the bivaluations semantics and the possible translations semantics
described in [Carnielli, 1998; Carnielli and Marcos, 2002; Carnielli and Marcos, 2007] no
general theorem of analycity is available. Hence analycity should be proved from scratch
for every useful instance of these types of semantics.

4Obviously, the extension of 〈L,`1〉 by S is well-defined (i.e. a logic) only if `∗
is consistent. In all the cases we consider below this will easily be guaranteed by the
semantics we provide (and so we shall not even mention it).
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CONVENTION 4. To emphasize the fact that the presence of a rule in a
system means the presence of all its instances, we shall usually describe a
rule using the metavariables ϕ,ψ, θ rather than the atomic formulas p1, p2, ....
Thus although formally (⊃⇒) is the rule p1, p1 ⊃ p2 ⇒ p2, we shall write
it as ϕ,ϕ ⊃ ψ ⇒ ψ.

REMARK 5. Suppose that the formula θ occurs in a pure rule of a logic L,
and we decide to select θ as the “principal formula” of that rule. Assume e.g.
that the rule is of the form ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk, θ (the consideration in
the other case is similar). Suppose further that Γi ` ∆i, ϕi for i = 1, . . . , n
and ψj ,Γj ` ∆j for j = 1, . . . , k. Then Γ1, . . . , Γn ` ∆1, . . . , ∆k, θ (by n+k
cuts). It follows that L is closed in this case under the Gentzen-type rule:

Γi ⇒ ∆i, ϕi (i = 1, . . . , n) ψj ,Γj ⇒ ∆j (j = 1, . . . , k)
Γ1, . . . , Γn ⇒ ∆1, . . . , ∆k, θ

Conversely, if L is closed under this Gentzen-type rule then by applying it
to the reflexivity axioms ϕi ` ϕi (i = 1, . . . , n) and ψj ` ψj (j = 1, . . . , k)
we get ϕ1, . . . , ϕn ` ψ1, . . . , ψk, θ. It follows that every pure rule in the
sense of Definition 2 is equivalent to some multiplicative (in the terminology
of [Girard, 1987]) or pure (in the terminology of [Avron, 1991]) Gentzen-
type rule. Moreover: it is easy to see that most standard rules used in
Gentzen-type systems are equivalent to finite sets of pure rules in the sense
of Definition 2. For example: the usual (⊃⇒) rule of classical logic is
equivalent by what we have just shown to the pure rule ϕ,ϕ ⊃ ψ ⇒ ψ. The
classical (⇒⊃), in turn, can be split into the following two rules:

Γ, ϕ ⇒ ∆
Γ ⇒ ∆, ϕ ⊃ ψ

Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ ⊃ ψ

Hence (⇒⊃) is equivalent to the set {ψ ⇒ ϕ ⊃ ψ, ⇒ ϕ,ϕ ⊃ ψ}. 5

2.2 Many-valued Matrices

The most standard general method for defining propositional logics is by
using many-valued (deterministic) matrices ([Rosser and Turquette, 1952;
Bolc and Borowik, 1992; Malinowski, 1993; Gottwald, 2001; Hähnle, 2001;
Urquhart, 2001]):

DEFINITION 6.

1. A matrix for L is a tuple P = 〈V,D,O〉, where:

• V is a non-empty set of truth values.

• D (designated truth values) is a non-empty proper subset of V.

5Recall that formally we should have written here {p2 ⇒ p1 ⊃ p2, ⇒ p1, p1 ⊃ p2}.
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• For every n-ary connective ¦ of L, O includes a corresponding
function ¦̃ : Vn → V.

We say that P is (in)finite if so is V.

2. A partial valuation in P is a function v to V from some subset of
FrmL which is closed under subformulas, such that for each n-ary
connective ¦ of L, the following holds for all ψ1, . . . , ψn ∈ FrmL:

v(¦(ψ1, ..., ψn)) = ¦̃(v(ψ1), ..., v(ψn))

A partial valuation in P is a (full) valuation if its domain is FrmL.
A partial valuation v in P satisfies a formula ψ (v |= ψ) if v(ψ) ∈ D.

3. Let P be a matrix. We say that Γ `P ∆ if whenever a valuation in
P satisfies all the formulas of Γ, it satisfies also at least one of the
formulas of ∆. We say that Γ `1

P ψ if Γ `P {ψ}. For a family of
matrices F , we say that Γ `F ∆ if Γ `P ∆ for every P in F .

4. A logic L is sound for a matrix P if `L⊆`P . L is complete for a matrix
P if `P⊆`L. P is a characteristic matrix for a logic L if `L=`P . F
is a characteristic set of matrices for L if `L=`F .

The following well-known theorem can easily be proved:

THEOREM 7. For every matrix P for L, `P is a uniform propositional
logic, and `1

P is a uniform Tarskian propositional logic.

The converse of this theorem also holds (see [Urquhart, 2001]):

THEOREM 8. Every (Tarskian) uniform structural logic has a character-
istic matrix.

REMARK 9. Although every Tarskian uniform structural logic has a char-
acteristic matrix, it is often the case that this matrix is infinite, and is hard
to find and use. We will shortly see that finite characteristic Nmatrices
exist for many logics which have only infinite characteristic matrices (see
Theorem 24).

THEOREM 10. (Compactness) ([Shoesmith, 1971]) If P is a finite ma-
trix then `P and `1

P are finitary.

The next important result is again very easy to prove:

PROPOSITION 11. (Analycity) Any partial valuation in a matrix P for
L, which is defined on a set of L-formulas closed under subformulas, can be
extended to a full valuation in P.

REMARK 12. At this point the importance of analycity should again be
stressed. Because of this property `S is decidable whenever S is a finite ma-
trix. Moreover, analycity guarantees semi-decidability of non-theoremhood
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even if a matrix P is infinite, provided that P is effective (i.e, the set of
truth-values is countable, the interpretation functions of the connectives
are computable, and the set of designated truth-values is decidable). Note
that this implies decidability in case `S also has a corresponding sound and
complete proof system.

REMARK 13. One of the main shortcomings of matrix-based semantics is
its lack of modularity with respect to proof systems. To use this type of
semantics, the rules and axioms of a system which are related to a given
connective should be considered as a whole, and there is no method for
separately determining the semantic effects of each rule alone. Take for
example the standard Gentzen-type rules for negation:

Γ ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
(¬ ⇒)

Γ, ψ ⇒ ∆
Γ ⇒ ∆,¬ψ

(⇒ ¬)

The corresponding truth-table is the classical one:

¬
t f
f t

However, if one of the negation rules is discarded, the resulting system has
no finite characteristic matrix (this is a special case of Theorem 24 below).
It follows that in the framework of (ordinary) matrices the semantic effects
of each of the above two rules of negation cannot be analyzed separately. We
will shortly see that in contrast, the semantics of non-deterministic matrices
does allow a high degree of modularity: In many cases the effect of each
syntactic rule or axiom alone can easily be determined, and the semantics
of a proof system can then be constructed by straightforwardly combining
the semantics of its various rules and axioms.

3 INTRODUCING NMATRICES

Nmatrices were introduced in [Avron and Lev, 2001; Avron and Lev, 2005;
Avron and Konikowska, 2005]. The definitions below are taken from there.

DEFINITION 14. A non-deterministic matrix (Nmatrix) for L is a tuple
M = 〈V,D,O〉, where:

• V is a non-empty set of truth values.

• D (designated truth values) is a non-empty proper subset of V.

• For every n-ary connective ¦ of L, O includes a corresponding function
¦̃ : Vn → 2V \ {∅}.
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DEFINITION 15. Let M = (V,D,O) be an Nmatrix for L.

1. A partial dynamic valuation in M (or an M-legal partial dynamic
valuation) is a function v from some subset of FrmL to V, which is
closed under subformulas, such that for each n-ary connective ¦ of L,
the following holds for all ψ1, . . . , ψn ∈ FrmL:

(SLC) v(¦(ψ1, . . . , ψn)) ∈ ¦̃(v(ψ1), . . . , v(ψn))

A partial valuation in M is called a valuation if its domain is FrmL.

2. A (partial) static valuation inM (or anM-legal (partial) static valua-
tion) is a (partial) dynamic valuation which satisfies also the following
compositionality (or functionality) principle (CMP): for each ¦ of L
and for every ψ1, . . . , ψn, ϕ1, . . . , ϕn ∈ FrmL,

v(¦(ψ1, . . . , ψn)) = v(¦(ϕ1, . . . , ϕn)) if v(ψi) = v(ϕi) (i = 1 . . . n)

REMARK 16. Ordinary (deterministic) matrices correspond to the case
when each ¦̃ is a function taking singleton values only (then it can be treated
as a function ¦̃ : Vn → V). In this case there is no difference between static
and dynamic valuations, and we have full determinism.

REMARK 17. Like in usual multi-valued semantics, the principle here is
that each formula has a definite logical value. This is why we exclude ∅ from
being a value of ¦̃. However, the absence of any logical value for a formula
can still be simulated in our formalism by introducing a special logical value
⊥ representing exactly this case (which is a well-known procedure in the
framework of partial logics ([Blamey, 1986])).

To understand the difference between ordinary matrices and Nmatrices,
recall that in the deterministic case (see Defn. 6), the truth-value assigned
by a valuation v to a complex formula is defined as follows: v(¦(ψ1, ..., ψn)) =
¦̃(v(ψ1), ..., v(ψn)). Thus the truth-value assigned to ¦(ψ1, ..., ψn) is uniquely
determined by the truth-values of its subformulas: v(ψ1), ..., v(ψn). This,
however, is not the case in dynamic valuations in Nmatrices: in general
the truth-values assigned to ψ1, ..., ψn do not uniquely determine the truth-
value assigned to ¦(ψ1, ..., ψn) because v makes a non-deterministic choice
out of the set of options ¦̃(v(ψ1), ..., v(ψn)). Therefore the non-deterministic
semantics is non-truth-functional, as opposed to the deterministic one.

DEFINITION 18.

1. A (partial) valuation v in M satisfies a formula ψ (v |= ψ) if (v(ψ) is
defined and) v(ψ) ∈ D. It is a model of Γ (v |= Γ) if it satisfies every
formula in Γ.
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2. We say that ψ is dynamically (statically) valid in M, in symbols
|=d
M ψ (|=s

M ψ), if v |= ψ for each dynamic (static) valuation v in M.

3. A logic L is dynamically (statically) weakly sound for an Nmatrix M
if `L ψ implies |=d

M ψ (|=s
M ψ). A logic L is dynamically (statically)

weakly complete for M if |=d
M ψ (|=s

M ψ) implies `L ψ. M is a
dynamically (statically) weakly characteristic for L if L is dynamically
(statically) both weakly sound and weakly complete for M.

4. `d
M (`s

M), the dynamic (static) consequence relation induced by M,
is defined as follows: Γ `d

M ∆ (Γ `s
M ∆), if every dynamic (static)

model v in M of Γ satisfies some ψ ∈ ∆.

5. A logic L = 〈`L,L〉 is dynamically (statically) sound for an Nmatrix
M for L if `L⊆`d

M (`L⊆`s
M). L is dynamically (statically) complete

for M if `d
M⊆`L (`s

M⊆`L). M is dynamically (statically) character-
istic for L if `d

M=`L (`s
M=`L).

REMARK 19. Obviously, the static consequence relation includes the dy-
namic one, i.e. `s

M ⊇ `d
M. Also, for ordinary matrices `s

M = `d
M.

CONVENTION 20. We shall denote F = V \ D, and shall usually identify
singletons of truth-values with the truth-values themselves.

EXAMPLE 21. Assume that L has binary connectives ∨, ∧, and ⊃ inter-
preted classically, and a unary connective ¬, for which the law of contradic-
tion obtains, but not necessarily the law of excluded middle. This leads to
the Nmatrix M2 = (V,D,O) for L, where Let V = {f, t},D = {t}, and O
is given by:

∨̃ ∧̃ ⊃̃
t t t t t
t f t f f
f t t f t
f f f f t

¬̃
t f
f {t, f}

Note that classical negation can be defined in M2 by: ∼ψ = ψ ⊃ ¬ψ (this
is a semantic counterpart of the observation made in [Béziau, 1999]).

EXAMPLE 22. Consider the following two 3-valued Nmatrices M3
L,M3

S .
In both we have V = {f,>, t},D = {>, t}. Also the interpretations of
disjunction, conjunction and implication are the same in both of them, and
correspond to those in positive classical logic:

a∨̃b =
{ D if either a ∈ D or b ∈ D
F if a, b ∈ F

a∧̃b =
{ D if a, b ∈ D
F if either a ∈ F or b ∈ F
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a⊃̃b =
{ D if either a ∈ F or b ∈ D
F if a ∈ D and b ∈ F

However, negation is interpreted differently: more liberally in M3
L, and

more strictly in M3
S :

M3
L :

¬̃
t f
> V
f t

M3
S :

¬̃
t f
> D
f t

EXAMPLE 23. After considering 2-valued Nmatrices and 3-valued Nma-
trices, our last example is the 4-valued Nmatrix M4 = (V,D,O), where
V = {f,⊥,>, t}, D = {>, t}, ∧,∨,⊃ are defined by the general rules given
in Example 22 (applied, however, to the sets D and F = V \ D appearing
in the current example), while ¬ is the negation of the bilattice FOUR
([Belnap, 1977; Ginsberg, 1988; Fitting, 1994; Arieli and Avron, 1996]):

¬̃
t f
> >
⊥ ⊥
f t

At this point it is natural to ask whether finite Nmatrices can be used
for characterizing logics that cannot be characterized by finite ordinary
matrices. The next theorem provides a positive answer to this question:

THEOREM 24. Let M be a two-valued Nmatrix which has at least one
proper non-deterministic operation. Then there is no finite family of finite
ordinary matrices F , such that `d

M= `F . If in addition M includes the
classical implication, then there is no finite family of ordinary matrices F ,
such that `d

M ψ iff `F ψ.

Proof: a straightforward modification of the proof of Theorem 3.4 in [Avron
and Lev, 2005].

As the next easy theorem shows, things are different in the case of the
static semantics:

THEOREM 25. For every (finite) Nmatrix M, there is a (finite) family of
ordinary matrices, such that `s

M=`F .

Thus only the expressive power of the dynamic semantics based on Nma-
trices is stronger than that of ordinary matrices. For this reason (after
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providing general proof theory for both kinds of semantics in the next sub-
section) our main focus will be on this semantics and what it induces. Ac-
cordingly, we shall usually write simply `M instead of `d

M.

The following theorem from [Avron and Lev, 2005] is a generalization of
Theorem 10 to the case of Nmatrices:

THEOREM 26. (Compactness) `M is finitary for any finite Nmatrix M.

Later we shall prove a stronger version of this theorem (see Theorem 53).
The proof of the next important result is as easy for Nmatrices as it is for
ordinary matrices:

PROPOSITION 27. (Analycity) Let M = 〈V,D,O〉 be an Nmatrix for
L, and let v′ be a partial valuation in M. Then v′ can be extended to a
(full) valuation in M.

It is easy to show that like in the case of ordinary matrices (see Remark
12), Proposition 27 implies the following Theorem:

THEOREM 28. Non-theoremhood of a logic which has an effective charac-
teristic Nmatrix M is semi-decidable. If M is finite, or L also has a sound
and complete formal proof system, then L is decidable.

The following is an easy analogue for Nmatrices of Theorem 7:

PROPOSITION 29. For any Nmatrix M, `M is uniform.

We end this subsection by introducing the notion of a refinement:

DEFINITION 30. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nma-
trices for a language L.

1. A reduction of M1 to M2 is a function F : V1 → V2 such that:

(a) For every x ∈ V1, x ∈ D1 iff F (x) ∈ D2.

(b) F (y) ∈ ¦̃M2(F (x1), . . . , F (xn)) for every n-ary connective ¦ of L
and every x1, . . . , xn, y ∈ V1 such that y ∈ ¦̃M1(x1, . . . , xn).

2. M1 is a refinement of M2 if there exists a reduction of M1 to M2.

THEOREM 31. If M1 is a refinement of M2 then `M2⊆ `M1 .

REMARK 32. An important case in which M1 = 〈V1,D1,O1〉 is a re-
finement of M2 = 〈V2,D2,O2〉 is when V1 ⊆ V2, D1 = D2 ∩ V1, and
¦̃M1(~x) ⊆ ¦̃M2(~x) for every n-ary connective ¦ of L and every ~x ∈ Vn

1 . It
is easy to see that the identity function on V1 is in this case a reduction of
M1 to M2. A refinement of this sort will be called simple.
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4 CANONICAL DEDUCTION SYSTEMS AND NMATRICES

The idea of “canonical” systems implicitly underlies a long tradition in
the philosophy of logic, established by G. Gentzen in his classical paper
[Gentzen, 1969]. According to this tradition, the meaning of a connective
is determined by the introduction and the elimination rules which are as-
sociated with it (see, e.g., [Zucker, 1978a; Zucker, 1978b]). The supporters
of this thesis usually have in mind Natural Deduction systems of an ideal
type. In this type of “canonical systems” each connective ¦ has its own
introduction and elimination rules, in each of which ¦ is mentioned ex-
actly once, and no other connective is involved. The rules should also be
pure in the sense of [Avron, 1991]. Unfortunately, already the handling of
negation requires rules which are not canonical in this sense. This prob-
lem was solved by Gentzen himself by moving to what is now known as
(multiple-conclusion) Gentzen-type calculi, which instead of introduction
and elimination rules use left and right introduction rules. The intuitive
notion of a “canonical rule” can be adapted to such systems in a straight-
forward way, and it is well-known that the usual classical connectives can
indeed be fully characterized in this framework by such rules. Moreover, the
cut-elimination theorem obtains in all the known Gentzen-type calculi for
propositional classical logic (or some fragment of it) which employ only rules
of this type. These facts were generalized in [Avron and Lev, 2005], where
the notion of a canonical propositional Gentzen-type system has been intro-
duced. This notion was further generalized in [Avron and Konikowska, 2005;
Avron and Zamansky, 2008b] to canonical signed calculi. These calculi
and their intimate connections with finite Nmatrices are the subject of the
present section.

Signed calculi consist of rules operating on finite sets of signed formulas,
and axioms being sets of such formulas. The deduction formalism we use
here for them is similar to the Rasiowa-Sikorski (R-S) systems ([Rasiowa
and Sikorski, 1963; Konikowska, 2002]), known also as dual tableaux ([Baaz
et. al., 1993; Hähnle, 1999]).

Henceforth (until the end of Section 4) V denotes some finite set of signs.

DEFINITION 33. A signed formula for (L,V) is an expression of the form
s : ψ, where s ∈ V and ψ ∈ FrmL. A signed formula s : ψ is atomic if ψ
is an atomic formula. A sequent for (L,V) is a finite set of signed formulas
for (L,V). A clause is a sequent consisting of atomic signed formulas.

REMARK 34. The usual (two-sided) sequent notation Γ ⇒ ∆ can be in-
terpreted as {f : Γ} ∪ {t : ∆}, i.e. a sequent in the sense of Defn. 33 over
the two signs {t, f}.
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DEFINITION 35. Let v be a function from the set of formulas of L to V.

1. v satisfies a signed formula γ = (l : ψ), denoted by v |= (l : ψ), if
v(ψ) = l.

2. v satisfies a set of signed formulas Υ, denoted by v |= Υ, if there is
some γ ∈ Υ, such that v |= γ.

CONVENTION 36. Formulas will be denoted by ϕ,ψ, signed formulas - by
α, β, γ, δ, sets of signed formulas - by Υ, Λ, sequents - by Ω,Σ,Π, sets of sets
of signed formulas - by Φ, Ψ and sets of sequents - by Θ, Ξ. We write S : ψ
instead of {s : ψ | s ∈ S}, and S : ∆ instead of {s : ψ | s ∈ S, ψ ∈ ∆}.
DEFINITION 37. A signed canonical (propositional) rule of arity n for
(L,V) is an expression of the form [Θ/S : ¦(p1, . . . , pn)], where S is a non-
empty subset of V, ¦ is an n-ary connective of L and Θ = {Σ1, ..., Σm},
where m ≥ 0 and for every 1 ≤ j ≤ m, Σj are clauses (see Definition 33)
consisting of signed formulas of the form a : pk, where a ∈ V and 1 ≤ k ≤ n.
An application of a rule [{Σ1, ..., Σm}/S : ¦(p1, . . . , pn)] is any inference of
the form:

Ω ∪ Σ∗1 ... Ω ∪ Σ∗m
Ω ∪ S : ¦(ψ1, ..., ψn)

where ψ1, ..., ψn are L-formulas, Ω is a sequent, and for all 1 ≤ i ≤ m: Σ∗i
is obtained from Σi by replacing pj by ψj for every 1 ≤ j ≤ n.

EXAMPLE 38.

1. The standard Gentzen-style introduction rules for the classical con-
junction are usually defined as follows:

Γ, ψ, ϕ ⇒ ∆
Γ, ψ ∧ ϕ ⇒ ∆

Γ ⇒ ∆, ψ Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ ∧ ϕ

Using the notation in Remark 34, we can write {f : Γ}∪{t : ∆} (that
is, ψ occurs with a sign ‘t’ if ψ ∈ Γ and with a sign ‘f ’ if ψ ∈ ∆), thus
the canonical representation of the rules above is as follows:

[{{f : p1, f : p2}}/{f} : p1 ∧ p2] [{{t : p1}, {t : p2}}/{t} : p1 ∧ p2]

Applications of these rules have the forms:

Ω ∪ {f : ψ1, f : ψ2}
Ω ∪ {f : ψ1 ∧ ψ2}

Ω ∪ {t : ψ1} Ω ∪ {t : ψ2}
Ω ∪ {t : ψ1 ∧ ψ2}
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2. Consider a calculus over V = {a, b, c} with the following introduction
rules for a ternary connective ◦:

[{{a : p1, c : p2}, {a : p3, b : p2}}/{a, c} : ◦(p1, p2, p3)]

[{{c : p2}, {a : p3, b : p3}, {c : p1}}/{b, c} : ◦(p1, p2, p3)]

Their applications are of the forms:

Ω ∪ {a : ψ1, c : ψ2} Ω ∪ {a : ψ3, b : ψ2}
Ω ∪ {a : ◦(ψ1, ψ2, ψ3), c : ◦(ψ1, ψ2, ψ3)}

Ω ∪ {c : ψ2} Ω ∪ {a : ψ3, b : ψ3} Ω ∪ {c : ψ1}
Ω ∪ {b : ◦(ψ1, ψ2, ψ3), c : ◦(ψ1, ψ2, ψ3)}

DEFINITION 39. Let V be a finite set of signs.

1. A logical axiom for V is a sequent of the form: {l : ψ | l ∈ V}.
2. The cut and weakening rules for V are defined as follows:

Ω ∪ {l : ψ | l ∈ L1} Ω ∪ {l : ψ | l ∈ L2}
Ω ∪ {l : ψ | l ∈ L1 ∩ L2} CUT

Ω
Ω, l : ψ

WEAK

where L1, L2 ⊆ V and l ∈ V.

The following proposition follows from the completeness of many-valued
resolution (see [Baaz et. al., 1995]):

PROPOSITION 40. Let Θ be a set of clauses and Ω - a clause. Then Ω
follows from Θ (in the sense that every v which satisfies Θ also satisfies Ω)
iff there is some Ω′ ⊆ Ω, such that Ω′ is derivable from Θ by cuts.

COROLLARY 41. Let Θ be a set of clauses. The empty sequent is derivable
from Θ by cuts iff Θ is not satisfiable.

Now we are ready to define “canonical signed calculi” in precise terms:

DEFINITION 42. A signed calculus over a language L and a finite set of
signs V is canonical if it consists of:

1. All logical axioms for V.

2. The rules of cut and weakening from Defn. 39.

3. Any number of signed canonical inference rules.
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Not all canonical calculi are useful. Of interest are only those of them
which “define” the semantic meaning of the logical connectives they intro-
duce. It turned out that this property can be captured syntactically by a
simple syntactic criterion called coherence, introduced in [Avron and Lev,
2005] for canonical Gentzen-type systems, and extended in [Avron and Za-
mansky, 2008b] to signed calculi.

DEFINITION 43. A canonical calculus G is coherent if Θ1 ∪ ... ∪ Θm is
unsatisfiable whenever {[Θ1/S1 : ψ], ..., [Θm/Sm : ψ]} is a set of rules of G
such that S1 ∩ ... ∩ Sm = ∅ (here ψ = ¦(p1, . . . , pn) for some n-ary ¦).
Obviously, coherence is a decidable property of canonical calculi. Note
also that by Corollary 41, a canonical calculus G is coherent if whenever
{[Θ1/S1 : ψ], ..., [Θm/Sm : ψ]} is a set of rules of G, and S1 ∩ ... ∩ Sm = ∅,
we have that Θ1 ∪ ... ∪ Θm is inconsistent (i.e. the empty sequent can be
derived from it using cuts).

EXAMPLE 44.

1. Consider the canonical calculus G1 over L = {∧} and V = {t, f}, the
canonical rules of which are the two rules for ∧ from Example 38. We
can derive the empty sequent from {{t : p1}, {t : p2}, {f : p1, f : p2}}
as follows:

{t : p1} {f : p1, f : p2}
{f : p2} CUT {t : p2}

∅ CUT

Thus G1 is coherent.

2. Consider the canonical calculus G2 over V = {a, b, c} with the follow-
ing introduction rules for the ternary connective ◦:

[{{a : p1}, {b : p2}}/{a, b} : ◦(p1, p2, p3)]

[{{a : p2, c : p3}}/{c} : ◦(p1, p2, p3)]

Clearly, the set {{a : p1}, {b : p2}, {a : p2, c : p3}} is satisfiable, thus
G2 is not coherent.

REMARK 45. [Ciabattoni and Terui, 2006a] investigates a general class
of single-conclusion two-sided (sequent) calculi called simple calculi. These
calculi may include any set of structural rules, and so the two-sided canonical
calculi are a particular instance of simple calculi which include all of the
standard structural rules. The reductivity condition of [Ciabattoni and
Terui, 2006a] can be shown to be equivalent to our coherence criterion in
the context of two-sided canonical systems.
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Next we define some notions of cut-elimination6 in canonical calculi:

DEFINITION 46. Let G be a canonical signed calculus and let Θ be some
set of sequents.

1. A cut is called a Θ-cut if the cut formula occurs in Θ. We say that a
proof is Θ-cut-free if the only cuts in it are Θ-cuts.

2. A cut is called Θ-analytic if the cut formula is a subformula of some
formula occurring in Θ. A proof is called Θ-analytic7 if all cuts in it
are Θ-analytic.

3. A canonical calculus G admits (standard) cut-elimination if whenever
`G Ω, Ω has a cut-free proof in G. G admits strong cut-elimination8

if whenever Θ `G Ω, Ω has in G a Θ-cut-free proof from Θ.

4. G admits strong analytic cut-elimination if whenever Θ `G Ω, Ω has in
G a Θ∪{Ω}-analytic proof from Θ. G admits analytic cut-elimination
if whenever `G Ω, Ω has in G a {Ω}-analytic proof.

EXAMPLE 47. Consider the following calculus G′ for a language with a
binary connective ◦ and V = {a, b, c}. The rules of G′ are as follows:

R1 = {{a : p1}}/{a, b} : p1 ◦ p2} R2 = {{a : p1}}/{b, c} : p1 ◦ p2}

In the following proof in G′, the cut in the final step is analytic:

a : p1, b : p1, c : p1

b : p1, c : p1, b : (p1 ◦ p2), c : (p1 ◦ p2)
a : p1, b : p1, c : p1

b : p1, c : p1, a : (p1 ◦ p2), b : (p1 ◦ p2)
b : p1, c : p1, b : (p1 ◦ p2)

4.1 Canonical Calculi for Nmatrices

There are numerous works on proof theory for logics based on finite ordi-
nary matrices, mainly using many-placed sequent calculi or tableaux sys-
tems with truth values as signs (cf. [Baaz et. al., 1993; Borowik, 1986;
Carnielli, 1991; Rousseau, 1967; Takahashi, 1967; Hähnle, 1999; Baaz et.
al., 2000]). In this section we present analogous canonical signed calculi

6We note that by ‘cut-elimination’ we mean here just the existence of proofs without
(certain forms of) cuts, rather than an algorithm to transform a given proof to a cut-free
one (for the assumptions-free case the term “cut-admissibility” is sometimes used, but
this notion is too weak for our purposes).

7This is a generalization of the notion of analytic cut (see e.g. [Baaz et. al., 2001]).
8The notion of strong cut-elimination from [Avron, 1993] was studied in the context

of canonical Gentzen-type systems in [Avron and Zamansky, 2007c].
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for logics based on finite Nmatrices (developed in [Avron and Konikowska,
2005]).

DEFINITION 48. Let M = 〈V,D,O〉 be an Nmatrix for L.

1. Φ `d
M Υ (Φ `s

M Υ) if v |= Υ for every M-legal dynamic (static)
valuation v which satisfies all the sets in Φ.

2. Let G be a deduction system based on sequents. G is dynamically
(statically) strongly sound for M if Θ `G Ω implies that Θ `d

M Ω
(Θ `s

M Ω). G is dynamically (statically) strongly complete for M if
Θ `d

M Ω (Θ `s
M Ω) implies Θ `G Ω. M is a dynamically (statically)

strongly characteristic Nmatrix for G if G is dynamically (statically)
strongly sound and strongly complete for M. (The notions of sound-
ness, completeness and a characteristic Nmatrix are defined similarly
by setting Θ = ∅.)

It should be noted that the set of designated values D in an Nmatrix
M = 〈V,D,O〉 has not been used in the semantic definitions above. This is
because the consequence relations defined above are between sets of sequents
and sequents. Recall, however, that the set D is used in Definition 18,
where the consequence relations between sets of formulas are defined. The
following easy observations are the key for using proof systems based on
sets of signed formulas for characterizing logics induced by Nmatrices:

PROPOSITION 49. Let M = 〈V,D,O〉 be an Nmatrix for L. Then:

Γ `d
M ∆ iff {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} `d

M ∅ iff `d
M F : Γ∪D : ∆

Γ `s
M ∆ iff {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} `s

M ∅ iff `s
M F : Γ∪D : ∆

DEFINITION 50. The proof system SF d
M for the dynamic semantics of a

finite-valued Nmatrix M = 〈V,D,O〉 is the canonical signed calculus for
(L,V) which for every n-ary ¦, and every a1, . . . , am, b1, . . . , bk ∈ V such
that ¦̃(a1, . . . , am) = {b1, . . . , bk}, includes the rule:

[{a1 : p1}, . . . , {am : pm}/{b1, . . . , bk} : ¦(p1, . . . , pn)]

or in a more conventional formulation:

(¦-D)
Ω ∪ {a1 : ϕ1} . . . Ω ∪ {am : ϕm}

Ω ∪ {b1 : ¦(ϕ1, . . . , ϕm), . . . , bk : ¦(ϕ1, . . . , ϕm)}

The following theorem is a generalization of a result first shown in [Avron
and Konikowska, 2005]. Its proof requires just a straightforward extension
of the argument given there:
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THEOREM 51. SF d
M is dynamically strongly characteristic for M.

The following corollary follows from Prop. 49 and the above theorem:

COROLLARY 52. Γ `d
M ∆ iff {D : ψ | ψ ∈ Γ} ∪ {F : ψ | ψ ∈ ∆} `SF d

M
∅.

Moreover, if Γ and ∆ are finite then Γ `d
M ∆ iff `SF d

M
F : Γ ∪ D : ∆.

Now we are ready to prove the general compactness theorem mentioned
immediately after Theorem 26:

THEOREM 53. (Compactness)

1. Let Θ be a set of sequents and Ω a sequent. If Θ `d
M Ω, then there is

some finite Θ′ ⊆ Θ, such that Θ′ `d
M Ω.

2. Let Γ, ∆ be two sets of L-formulas. If Γ `d
M ∆, then there are some

finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, such that Γ′ `d
M ∆′.

Proof. For the first part, assume that Θ `d
M Ω. Then Θ `SF d

M
Ω by

Theorem 51, and so there is some finite Θ′ ⊆ Θ, such that Θ′ `SF d
M

Ω.
Hence (again by Theorem 51) Θ′ `d

M Ω. For the second part, suppose that
Γ `d

M ∆. Then by Proposition 49, {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} `d
M ∅.

By the first part, there are some finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, such that
{D : ψ | ψ ∈ Γ′} ∪ {F : ψ | ψ ∈ ∆′} `d

M ∅. By Proposition 49, Γ′ `d
M ∆′.

¥

DEFINITION 54. The proof system SF s
M for the static semantics of M is

obtained from the system SF d
M by adding, for any m-ary connective ¦ of L

and any a1, . . . , am, b ∈ V such that b ∈ ¦̃(a1, . . . , am), the rule (¦-S):

{Ω ∪ {aj : ϕj}}1≤j≤m {Ω ∪ {aj : ψj}}1≤j≤m Ω ∪ {b : ¦(ψ1, . . . , ψm)}
Ω ∪ {b : ¦(ϕ1, . . . , ϕm)}

Obviously, these (2m + 1)-premise inference rules are not very convenient.
More importantly: they are not analytic9. However, they can be simplified
at the price of extending the language with a constant a for every a ∈ V .
In that case we can also resign from repeating the inference rules from the
dynamic semantics, adding instead equivalent axioms for the constants:

DEFINITION 55. The proof system SF sc
M for the static semantics of the

language featuring constants consists of:

9By an analytic rule we mean a rule which has some kind of a subformula property
(see, e.g. [Baaz et. al., 2000]). This should not be confused with analycity of semantics
(see Remark 12).
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• Axioms: Each set of signed formulas containing either:

1. {a : ϕ | a ∈ V}, where ϕ is any formula in W; or

2. {a : a}, for any a ∈ V; or

3. {b1 : ¦(a1, . . . , am), . . . , bk : ¦(a1, . . . , am)} for any m-ary con-
nective ¦ of L and any a1, . . . , am, b1, . . . , bk ∈ V such that
¦̃(a1, . . . , am) = {b1, . . . , bk} .

• Inference rules: For any a1, . . . , am, b ∈ V and any m-ary connec-
tive ¦ such that b ∈ ¦̃(a1, . . . , am), the rule (¦-SC):

Ω ∪ {a1 : ϕ1} . . . Ω ∪ {am : ϕm} Ω ∪ {b : ¦(a1, . . . , am)}
Ω ∪ {b : ¦(ϕ1, . . . , ϕm)}

REMARK 56. Examining the generic deduction systems given above, we
can easily observe that the inference rules of the static semantics really differ
from those of the dynamic semantics only in case of truly non-deterministic
values of the connectives. Indeed, if the value of the connective is a singleton,
i.e. ¦̃(a1, . . . , am) = {b}, the rule (¦-S) is just a weaker version of (¦-D), and
so need not be included in SF s

M. As for SF sc
M, the last premise of rule (¦-SC)

is derivable in the system by virtue of the singleton set {b : ¦(a1, . . . , am)}
being an axiom — hence it can be skipped. As the other premises of the
“static” and “dynamic” rules coincide, and so do the conclusions in such
a “singleton” case, the rules can be considered identical. in this case the
“static” Axiom 3 corresponding to such a singleton value of the connective
can be deleted too, since it is derivable from rule (¦-D) and the basic axioms
for the constants (“static” Axiom 2).

REMARK 57. It can easily be proved that the weakening rule is admissible
in SF sc

M. This is the reason why it is not necessary to officially include it
among the rules of this system.

The following generalizes a theorem from [Avron and Konikowska, 2005]:

THEOREM 58. SF sc
M is statically strongly characteristic for M.

COROLLARY 59. Γ `s
M ∆ iff {D : ψ | ψ ∈ Γ} ∪ {F : ψ | ψ ∈ ∆} `SF s

M ∅.
Moreover, if Γ and ∆ are finite, then Γ `s

M ∆ iff `SF sc
M F : Γ ∪ D : ∆.

4.2 Nmatrices for Canonical Calculi

In this subsection we provide, in a modular way, finite non-deterministic
semantics for signed canonical calculi. Moreover, we show that there is
an exact correspondence between the coherence of a canonical calculus G,
the existence of a strongly characteristic Nmatrix for G, and analytic cut-
elimination (Definition 46) in G. Then we focus on stronger notions of cut-
elimination and show that coherence is not a sufficient condition for them.
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Therefore we define a stronger criterion of density which is a necessary and
sufficient condition for strong cut-elimination in canonical calculi. Finally,
we focus on the special case of Gentzen-type (two-signed) canonical calculi
and show how the correspondence theorem can be used to provide a solution
to the well-known “Tonk” problem of Prior ([Prior, 1960]).

Modular Semantics for Signed Canonical Calculi 10

We start by defining semantics for the simplest canonical calculus: the one
without any canonical rules.

DEFINITION 60. G
(L,V)
0 is the canonical calculus over a language L and a

set of signs V, whose set of canonical rules is empty.

In the rest of this section we assume that our language L, the set of signs
V, and the set of designated signs D, are fixed. Accordingly, we shall write
G0 instead of G

(L,V)
0 . It is easy to see that G0 is (trivially) coherent. We

now define a strongly characteristic Nmatrix for G0. It has the maximal
degree of non-determinism in interpreting the connectives of L.

DEFINITION 61. M0 = 〈V,D,O〉 is the Nmatrix in which ¦̃(a1, ..., an) =
V for every n-ary connective ¦ of L and a1, ..., an ∈ V.

THEOREM 62. M0 is (dynamically) strongly characteristic for G0.

Now to the modular effects of canonical rules. The idea is that each rule
which is added to G0 imposes a certain semantic condition on refinements
of M0, while coherence guarantees that these semantic conditions are not
contradictory. This can be formalized as follows:

DEFINITION 63. For 〈a1, ..., an〉 ∈ Vn, the set of clauses C〈a1,...,an〉 is
defined as follows:

C〈a1,...,an〉 = {{a1 : p1}, {a2 : p2}, ..., {an : pn}}

DEFINITION 64. Let R be a canonical rule of the form [Θ/S : ¦]. C(R),
the refining condition induced by R, is defined as follows:

C(R): For a1, ..., an ∈ V, if C〈a1,...,an〉∪Θ is consistent, then ¦̃(a1, ..., an) ⊆ S.

Intuitively, a rule [Θ/S : ¦] leads to the deletion from ¦̃(a1, ..., an) of all the
truth-values which are not in S. If some rules [Θ1/S1 : ¦], ..., [Θm/S2 : ¦]
“overlap”, their overall effect leads to S1 ∩ ... ∩ Sm (the coherence of a
calculus guarantees that S1 ∩ ... ∩ Sm is not empty in such a case).

10This subsection is based on [Avron and Zamansky, 2008b], where all proofs can be
found.
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DEFINITION 65. Let G be a canonical calculus for (L,V).

1. Define an application of a rule [Θ/S : ¦] of G for some n-ary connective
¦ on a1, ..., an ∈ V as follows:

[Θ/S : ¦](a1, ..., an) =

{
S if Θ ∪ C〈a1,...,an〉 is consistent
V otherwise

2. MG = 〈V,D,O〉 is any Nmatrix, such that for every n-ary connective
¦ for L and every a1, ..., an ∈ V:

¦̃MG
(a1, ..., an) =

⋂
{[Θ/S : ¦](a1, ..., an) | [Θ/S : ¦] ∈ G}

PROPOSITION 66. If G is coherent, then MG is well-defined.

REMARK 67. It is easy to see that for a coherent calculus G, MG is the
weakest refinement ofM0, in which all the conditions induced by the rules of
G are satisfied. Thus if G′ is a coherent calculus obtained from G by adding
a new canonical rule, M′

G can be straightforwardly obtained from MG by
some deletions of options as dictated by the condition which corresponds to
the new rule.

THEOREM 68. For every coherent canonical calculus G, MG is a (dynam-
ically) strongly characteristic Nmatrix for G.

REMARK 69. The last theorem provides the converse of Theorem 51.

The next theorem is the most important result of this subsection. It
establishes a quadruple correspondence between coherence of canonical cal-
culi, non-deterministic matrices and analytic cut-elimination.

THEOREM 70. Let G be a canonical calculus. The following statements
concerning G are equivalent.

1. G is coherent.

2. G has a strongly characteristic Nmatrix.

3. G admits strong analytic cut-elimination.

4. G admits analytic cut-elimination.

What about full (strong) cut-elimination? The next example shows that
coherence is not a sufficient condition for it. Therefore a stronger condition
is provided in the definition that follows that example.

EXAMPLE 71. Consider the calculus G′ from Example 47. G′ is obviously
coherent. A proof of the sequent {b : p1, c : p1, b : (p1 ◦ p2)} is given in that
example. However, this sequent clearly has no cut-free proof in G′.
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DEFINITION 72. A canonical calculus G is dense if for every a1, ..., an ∈ V
and every two rules of G of the forms [Θ1/S1 : ¦] and [Θ2/S2 : ¦], such that
Θ1 ∪ Θ2 ∪ C〈a1,...,an〉 is consistent, there is some rule [Θ/S : ¦] in G, such
that Θ ∪ C〈a1,...,an〉 is consistent and S ⊆ S1 ∩ S2.

LEMMA 73. Every dense canonical calculus is coherent.

THEOREM 74. Let G be a canonical calculus. Then the following state-
ments concerning G are equivalent:

1. G is dense.

2. G admits cut-elimination.

3. G admits strong cut-elimination.

Canonical Gentzen-type Calculi and Tonk

A very important class of canonical signed calculi is the class of canoni-
cal ordinary Gentzen-type calculi ([Avron and Lev, 2001; Avron and Lev,
2005]), i.e. calculi employing ordinary sequents of the form Γ ⇒ ∆. As
noted above, such calculi can be thought of as a special case of canonical
signed calculi in which the set V of signs is {t, f}, and D is {t}. For this par-
ticular class, the criteria of coherence and density can be simplified, because
the next proposition can easily be proved:

PROPOSITION 75. A canonical ordinary Gentzen-type calculus G is co-
herent iff for every two canonical rules of G of the form Θ1/{t} : ¦ and
Θ2/{f} : ¦, the set of clauses Θ1∪Θ2 is classically inconsistent (and so the
empty sequent can be derived from it using cuts). Moreover, such a calculus
is dense iff it is coherent.

The following characterization theorem11 easily follows from Theorems
70, 74, and Proposition 75:

THEOREM 76. Let G be a canonical calculus with the set of signs V =
{t, f}. Then the following statements concerning G are equivalent:

1. G is coherent.

2. G is non-trivial.

3. G has a characteristic two-valued Nmatrix.

4. G admits cut-elimination.

5. G admits strong cut-elimination.
11With the exception of the last item (concerning strong cut-elimination), this theorem

was originally proved in [Avron and Lev, 2005].
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Theorem 76 was used in [Avron and Lev, 2001; Avron and Lev, 2005] to
provide a complete solution for the old “Tonk” problem of Prior in the mul-
tiple conclusion framework (the single conclusion case is handled in [Avron,
2008b]). In [Prior, 1960] Prior strongly challenged the above mentioned
Gentzen’s thesis that the semantic meaning of a connective is determined
by its introduction and elimination rules. He did that by introducing his fa-
mous binary “connective” Tonk (denoted below by T), which has two rules
of the “ideal” type. The introduction rule allows to infer ϕTψ from ϕ. The
elimination rule allows to infer ψ from ϕTψ. In the presence of Tonk, every
formula can be derived from any other formula, making trivial the “logic”
that is “defined” by any system which includes this “connective”. Prior’s
paper made it clear that not every combination of “ideal” introduction and
elimination rules can be used for defining the semantic meaning of a con-
nective, and some constraints should be imposed on the set of rules. Such a
constraint was indeed suggested by Belnap in [Belnap, 1962]: the rules for a
connective ¦ should be conservative, in the sense that if T ` ψ is derivable
using them, and ¦ does not occur in T ∪{ψ}, then T ` ψ can also be derived
without using the rules for ¦. However, Belnap did not provide any effective
necessary and sufficient criterion for checking whether a given set of rules is
conservative in the above sense. Moreover: he formulated the condition of
conservativity only with respect to the basic deduction framework, in which
no connectives are assumed. Accordingly, nothing in what he wrote excludes
the possibility of a system G having two connectives, each of them “defined”
by a set of rules which is conservative over the basic system, while G itself
is not conservative over it. To prevent this situation one should demand a
much stronger conservativity condition than Belnap’s, and it might not even
be clear how it should be formulated. Later attempts of solutions of the
Tonk problem insisted on closer connections between the introduction and
the elimination rules for a given connective than those implicit in Belnap’s
condition of conservativity. Usually it is demanded that the introduction
and elimination rules should precisely “match” (see, e.g., [Sundholm, 2002;
Hodges, 2001]) in the sense that the elimination rules could be derived from
the introduction rules by some syntactic procedure. From Theorem 76 it
follows that this condition is too strong. What should be required from the
set of rules is only coherence, which is an absolute (and minimal) condition
for non-triviality. Tonk’s rules indeed do not meet this condition: in the
framework of canonical Gentzen-type systems its rules are translated into
the following pair of rules: {{f : p1}}/{f} : T and {{t : p2}}/{t} : T. This
pair is not coherent, since the set {{f : p1}, {t : p2}} is classically consistent.
It is no wonder therefore that the resulting calculus is inconsistent. On the
other hand every coherent set of canonical rules does indeed define a unique
non-deterministic connective over {t, f}. This proves Gentzen’s thesis at
least in the multiple-conclusion canonical case. For further discussion and
generalizations, we refer the reader to [Avron, 2008b].
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5 USING NMATRICES FOR NON-CANONICAL SYSTEMS

In the previous section we have applied finite Nmatrices in a modular way
to characterize canonical calculi. The goal of this section is to show that the
modular approach can be further extended and fruitfully applied (at least
in many important cases) also to non-canonical Gentzen-type calculi. As
our example we take the most common type of non-canonical rules that can
be found in the literature: those which involve a combination of negation
with other connectives. We investigate the semantic effects of rules of this
type in the context of two major families of non-canonical Gentzen-type
calculi: those that are obtained from the positive fragments of classical logic
and intuitionistic logic by adding various natural Gentzen-type rules for
negation. Not surprisingly, while Nmatrices suffice for providing adequate
semantics for the first family, for the second one we need a combination of
Nmatrices with intuitionistic Kripke frames. We demonstrate the power of
this semantic tool by using it for solving the following important problem:
given a system from the second family, determine whether or not it is a
conservative extension of the positive fragment of intuitionistic logic.

The material of this section is based on [Avron, 2007b; Avron, 2005a].

5.1 Extensions of Classical Logic

In this section L denotes the propositional language {∧,∨,⊃,¬}, while Lff

is the language obtained from L by adding the constant ff . LK+ denotes
positive classical logic taken over L, and LK denotes positive classical logic
taken over Lff . G[LK+], the standard Gentzen-type (canonical) for LK+,
is given in Figure 2. G[LK], the Gentzen-type system for LK, is obtained
from G[LK+] by adding the sequent ff ⇒ as an additional axiom.

The table in Figure 3 lists the most common and natural logical rules for
formulas involving negation and its combinations with other connectives
(along with corresponding Hilbert-style axioms and Gentzen-style rules).
Note that only the first two rules in this table are canonical.

DEFINITION 77. Denote by NIR the set of rules in Figure 3. For a logic
L and S ⊆ NIR, let L[S] be the extension of L by S.

CONVENTION 78. For a rule R, denote by HR its corresponding Hilbert-
style axiom, and by GR its corresponding Gentzen-style rule.

REMARK 79. It is easy to see that for every S ⊆ NIR and L ∈ {LK+, LK},
a sound and complete Hilbert-style axiomatization for L[S] can be obtained
by adding to some axiomatization of L the set of axioms {HR| R ∈ S},
and similarly for Gentzen-type axiomatizations. We denote the resulting
systems by HL[S] and GL[S], respectively.
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Axioms:

A ⇒ A

Structural Rules:

Cut, Weakening

Logical Rules:

Γ ⇒ ∆, ψ ϕ, Γ ⇒ ∆
Γ, ψ ⊃ ϕ ⇒ ∆

(⊃⇒)
Γ, ψ ⇒ ϕ,∆

Γ ⇒ ψ ⊃ ϕ, ∆
(⇒⊃)

Γ, ψ, ϕ ⇒ ∆
Γ, ψ ∧ ϕ ⇒ ∆

(∧ ⇒)
Γ ⇒ ψ, ∆ Γ ⇒ ϕ,∆

Γ ⇒ ψ ∧ ϕ,∆
(⇒ ∧)

Γ, ψ ⇒ ∆ Γ, ϕ ⇒ ∆
Γ, ψ ∨ ϕ ⇒ ∆

(∨ ⇒)
Γ ⇒ ψ, ϕ, ∆

Γ ⇒ ψ ∨ ϕ,∆
(⇒ ∨)

Figure 2. The system LK

Now we provide semantics for the systems introduced in Defn. 77. The
basic idea is to let the value assigned to a sentence ϕ provide information
not only about the truth/falsity of ϕ, but also about the truth/falsity of its
negation. This leads to the use of elements from {0, 1}2 as our truth-values,
where the intended intuitive meaning of v(ϕ) = 〈x, y〉 is the following:

• x = 1 iff ϕ is “true” (i.e. v(ϕ) ∈ D ).

• y = 1 iff ¬ϕ is “true” (i.e. v(¬ϕ) ∈ D).

This interpretation of the truth-values dictates the following constraint on
any valuation v (where P1(〈x1, x2〉) = x1, and P2(〈x1, x2〉) = x2):

P1(v(¬ϕ)) = P2(v(ϕ))

In terms of Nmatrices this constraint translates into the condition:

(NEG) ¬̃a ⊆ {y | P1(y) = P2(a)}

We start our semantic investigation of NIR with the weakest Nmatrix which
satisfies Condition (NEG) and has the standard interpretation of ⊃,∧, and
∨ (since the standard rules for these connectives are in LK+).
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Rule Abstract form Hilbert-style axiom Gentzen-style rule

(¬ ⇒) ¬ϕ, ϕ ` ¬ϕ ⊃ (ϕ ⊃ ψ)

Γ ⇒ ∆, ϕ

Γ,¬ϕ ⇒ ∆

(⇒ ¬) ` ¬ϕ, ϕ ¬ϕ ∨ ϕ

Γ, ϕ ⇒ ∆

Γ ⇒ ∆,¬ϕ

(¬¬ ⇒) ¬¬ϕ ` ϕ ¬¬ϕ ⊃ ϕ

Γ, ϕ ⇒ ∆

Γ,¬¬ϕ ⇒ ∆

(⇒ ¬¬) ϕ ` ¬¬ϕ ϕ ⊃ ¬¬ϕ

Γ ⇒ ∆, ϕ

Γ ⇒ ∆,¬¬ϕ

(¬ ⊃⇒)1 ¬(ϕ ⊃ ψ) ` ϕ ¬(ϕ ⊃ ψ) ⊃ ϕ

Γ, ϕ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(¬ ⊃⇒)2 ¬(ϕ ⊃ ψ) ` ¬ψ ¬(ϕ ⊃ ψ) ⊃ ¬ψ

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(⇒ ¬ ⊃) ϕ,¬ψ ` ¬(ϕ ⊃ ψ) ϕ ⊃ (¬ψ ⊃ ¬(ϕ ⊃ ψ))

Γ ⇒ ∆, ϕ Γ ⇒ ¬ψ

Γ ⇒ ∆,¬(ϕ ⊃ ψ)

(¬∨ ⇒)1 ¬(ϕ ∨ ψ) ` ¬ϕ ¬(ϕ ∨ ψ) ⊃ ¬ϕ

Γ,¬ϕ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(¬∨ ⇒)2 ¬(ϕ ∨ ψ) ` ¬ψ ¬(ϕ ∨ ψ) ⊃ ¬ψ

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(⇒ ¬∨) ¬ϕ,¬ψ ` ¬(ψ ∨ ϕ) (¬ϕ ∧ ¬ψ) ⊃ ¬(ϕ ∨ ψ)

Γ ⇒ ∆,¬ψ Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ϕ ∨ ψ)

(¬∧ ⇒) ¬(ϕ ∧ ψ) ` ¬ϕ,¬ψ ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ)

Γ,¬ψ ⇒ ∆ Γ,¬ϕ ⇒ ∆

Γ,¬(ϕ ∧ ψ) ⇒ ∆

(⇒ ¬∧)1 ¬ϕ ` ¬(ϕ ∧ ψ) ¬ϕ ⊃ ¬(ϕ ∧ ψ)

Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

(⇒ ¬∧)2 ¬ψ ` ¬(ϕ ∧ ψ) ¬ψ ⊃ ¬(ϕ ∧ ψ)

Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

Figure 3. The set of rules NIR
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DEFINITION 80. Let MB
4 = 〈V4,D4,O4〉 be the following Nmatrix for L:

• V4 = {t,>,⊥, f}12 where:

t = 〈1, 0〉
> = 〈1, 1〉
⊥ = 〈0, 0〉
f = 〈0, 1〉

• D4 = {a ∈ V4 | P1(a) = 1} = {t,>}
• Let V = V4, D = D4, F = V4 −D. The operations in O4 are:

¬̃a =
{ D if P2(a) = 1 (i.e. a ∈ {f,>})
F if P2(a) = 0 (i.e. a ∈ {t,⊥})

a⊃̃b =
{ D if a ∈ F or b ∈ D
F otherwise

a∨̃b =
{ D if a ∈ D or b ∈ D
F otherwise

a∧̃b =
{ D if a ∈ D and b ∈ D
F otherwise

MBff
4 (for Lff ) is obtained from MB

4 by adding the condition: ff̃ ∈ F .

THEOREM 81. MB
4 (MBff

4 ) is a (dynamically) characteristic Nmatrix for
LK+ (LK).

Now each rule of NIR induces a semantic condition, and L[S] (L ∈
{LK+, LK}) is characterized by the simple refinement (Remark 32) of
MB

4 /MBff
4 , induced by the conditions that correspond to the rules in S.

DEFINITION 82. The refining conditions induced by the rules in NIR:

C(¬ ⇒) : If P1(a) = 1 then P2(a) = 0

C(⇒ ¬) : If P1(a) = 0 then P2(a) = 1

C(⇒ ¬¬) : If P1(a) = 1 then ¬̃a ⊆ {x | P2(x) = 1}
C(¬¬ ⇒) : If P1(a) = 0 then ¬̃a ⊆ {x | P2(x) = 0}
C(¬ ⊃⇒)1 : If P1(a) = 0 then a⊃̃b ⊆ {x | P2(x) = 0}
C(¬ ⊃⇒)2 : If P2(b) = 0 then a⊃̃b ⊆ {x | P2(x) = 0}

12The intuition behind these four truth-values is like in Dunn-Belnap’s logic, see the
end of the Introduction.
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C(⇒ ¬ ⊃) : If P1(a) = 1 and P2(b) = 1 then a⊃̃b ⊆ {x | P2(x) = 1}
C(¬∨ ⇒)1 : If P2(a) = 0 then a∨̃b ⊆ {x | P2(x) = 0}
C(¬∨ ⇒)2 : If P2(b) = 0 then a∨̃b ⊆ {x | P2(x) = 0}
C(⇒ ¬∨) : If P2(a) = 1 and P2(b) = 1 then a∨̃b ⊆ {x | P2(x) = 1}
C(⇒ ¬∧)1 : If P2(a) = 1 then a∧̃b ⊆ {x | P2(x) = 1}
C(⇒ ¬∧)2 : If P2(b) = 1 then a∧̃b ⊆ {x | P2(x) = 1}
C(¬∧ ⇒) : If P2(a) = 0 and P2(b) = 0 then a∨̃b ⊆ {x | P2(x) = 0}

As an example how these conditions have been derived, take (¬ ⊃⇒)2.
This rule is valid if ¬(a ⊃ b) is in F whenever ¬b is in F (where x ⊃ y
denotes some element in x⊃̃y, and ¬x denotes some element in ¬̃x). This is
equivalent to: if P2(b) = 0 then P2(a ⊃ b) = 0, which is exactly C(¬ ⊃⇒)2.

REMARK 83. With the obvious extensions of P1 and P2, The above for-
mulation of the conditions in C(NIR) can be applied whenever the truth-
values are finite sequences of 0’s and 1’s, the designated elements are those
for which the first component is 1, and condition (NEG) is satisfied. How-
ever, these conditions can be simplified in case exactly {t, f,>,⊥} are used.
Thus the conditions involving ¬ and ⊃ can be reformulated as follows:

C(¬ ⇒) : Use only t, f and ⊥
C(⇒ ¬) : Use only t, f and >
C(⇒ ¬¬) : ¬̃t = {f}, ¬̃> = {>}
C(¬¬ ⇒) : ¬̃f = {t}, ¬̃ ⊥= {⊥}
C(¬ ⊃⇒)1 : If a ∈ F then a⊃̃b ⊆ {t,⊥}
C(¬ ⊃⇒)2 : If b ∈ {t,⊥} then a⊃̃b ⊆ {t,⊥}
C(⇒ ¬ ⊃) : If a ∈ D and b ∈ {>, f} then a⊃̃b ⊆ {>, f}
Moreover, if we consider only simple refinements of MB

4 , then the three last
conditions can be further transformed into more specific ones:

C(¬ ⊃⇒)1 : If a ∈ F then a⊃̃b = {t}
C(¬ ⊃⇒)2 : If b = t then a⊃̃b = {t}

If b = ⊥ and a ∈ F then a⊃̃b = {t}
If b = ⊥ and a ∈ D then a⊃̃b = {⊥}

C(⇒ ¬ ⊃) : If a ∈ D and b ∈ {>, f} then a⊃̃b = {b}
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DEFINITION 84.

1. For S ⊆ NIR, let C(S) = {Cr | r ∈ S}
2. For S ⊆ NIR, let MS (Mff

S ) be the weakest simple refinement of
MB

4 (MBff
4 ) in which the conditions in C(S) are all satisfied. In other

words: MS = 〈VS ,DS ,OS〉, where VS is the set of values from V4

which are not rejected by any condition in S, DS = D4 ∩ VS , and
for any connective ¦ and ~x ∈ Vn

S (where n is the arity of ¦), the
interpretation in O of ¦ assigns to ~x the set of all the values in ¦̃(~x)
which are not forbidden by any condition in C(S) (it is easy to check
that for S ⊆ NIR this set is never empty. The same is true for DS).

EXAMPLE 85.

1. Let Cmin = LK+[{(⇒ ¬), (¬¬ ⇒)}]. ThenMCmin
is the three-valued

Nmatrix13 〈V,D,O〉, where:

• V = {t,>, f} (the rule (⇒ ¬) causes the deletion of ⊥)

• D = {t,>}
• The operations in O are:

¬̃a =




D if a = >
{f} if a = t
{t} if a = f

a⊃̃b =
{ D if a = f or b ∈ D
{f} otherwise

a∨̃b =
{ D if a ∈ D or b ∈ D
{f} otherwise

a∧̃b =
{ D if a, b ∈ D
{f} otherwise

2. Let FOUR = NIR − {(¬ ⇒), (⇒ ¬)}. Then MFOUR is a 4-valued
deterministic Nmatrix (i.e. an ordinary matrix). The operations in
this matrix are defined as follows (where a ≤t⊥,> ≤t t): 14

¬̃t = f ¬̃f = t ¬̃> = > ¬̃ ⊥=⊥
13Cmin is studied in [Carnielli and Marcos, 1999]. The 3-valued Nmatrix for this logic

described here was first introduced in [Avron and Lev, 2005].
14Without e⊃, MFOUR is the famous 4-valued matrix of Dunn and Belnap ([Dunn,

1976; Belnap, 1977]). The connective e⊃ of O4 was introduced in [Arieli and Avron, 1996].
The soundness and completeness of the logic FOUR for MFOUR was also first stated
and proved there.
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a⊃̃b =
{

t if a 6∈ D
b otherwise

a∧̃b = inf≤t{a, b} a∨̃b = sup≤t{a, b}

Now the modular character of the semantics of Nmatrices allows us to
formulate and prove together soundness and completeness theorems for 213

systems (most of which define different logics):

THEOREM 86. For S ⊆ NIR, MS (Mff
S ) is a (dynamically) characteristic

Nmatrix for LK+[S] (LK[S]).

Proof. We give an outline of the completeness part. So let L ∈ {LK+, LK},
and assume that T 6`L[S] ψ0. We construct a model of T in MS which is
not a model of ψ0. For this extend T to a maximal set T ∗ of formulas such
that T ∗ 6`L[S] ψ0. Then ϕ 6∈ T ∗ iff T ∗, ϕ `L[S] ψ0. Define now a valuation
v by v(ϕ) = 〈x(ϕ), y(ϕ)〉, where:

x(ϕ) =
{

1 ϕ ∈ T ∗
0 ϕ 6∈ T ∗ y(ϕ) =

{
1 ¬ϕ ∈ T ∗
0 ¬ϕ 6∈ T ∗

It is not difficult to see that v is a legal valuation in MB
4 . To show that

it is also a legal valuation in MS , we need to check that it respects the
conditions in C(S) (as formulated in Remark 83). We do some of the cases,
leaving the rest for the reader:

C(¬ ⇒) : Assume (¬ ⇒) ∈ S. Then there can be no sentence ϕ such that
{ϕ,¬ϕ} ⊆ T ∗. Hence v(ϕ) 6= > for all ϕ.

C(⇒ ¬) : Assume (⇒ ¬) ∈ S, but v(ϕ) =⊥ for some ϕ. Then ϕ 6∈ T ∗ and
¬ϕ 6∈ T ∗. It follows that T ∗, ϕ `L[S] ψ0 and T ∗,¬ϕ `L[S] ψ0. Hence
T ∗ `L[S] ϕ ⊃ ψ0, and T ∗ `L[S] ¬ϕ ⊃ ψ0. This contradicts the fact
that T ∗ 6`L[S] ψ0, since ϕ ⊃ ψ0,¬ϕ ⊃ ψ0 `L[S] ψ0 in case (¬ ⇒) ∈ S.

C(⇒ ¬¬) : Assume (⇒ ¬¬) ∈ S.

• Suppose v(ϕ) = t. Then ϕ ∈ T ∗ and ¬ϕ 6∈ T ∗. By (⇒ ¬¬), also
¬¬ϕ ∈ T ∗. Hence v(¬ϕ) = f by definition of v.

• Suppose v(ϕ) = >. Then ϕ ∈ T ∗ and ¬ϕ ∈ T ∗. By (⇒ ¬¬),
also ¬¬ϕ ∈ T ∗. Hence v(¬ϕ) = > by definition of v.

C(¬ ⊃⇒)1 : Assume (¬ ⊃⇒)1 ∈ S. Suppose that v(ϕ) 6∈ D. Then ϕ 6∈ T ∗,
and so also ¬(ϕ ⊃ ψ) 6∈ T ∗. It follows that v(ϕ ⊃ ψ) ∈ {t,⊥}.

Obviously, v is a model of T in MS which is not a model of ψ0. ¥

The following corollary is implied by the above theorem and the analycity
of Nmatrices:

COROLLARY 87. LK+[S] and LK[S] are decidable for every S ⊆ NIR.
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5.2 Extensions of Intuitionistic Logic

Let LJ denote propositional intuitionistic logic (over {∧,∨,⊃,ff}), and let
LJ+ be its positive fragment (i.e. its {∧,∨,⊃}-fragment). Next we investi-
gate extensions of LJ+ and LJ by a negation connective ¬.15 Now, it is well
known that it is impossible to conservatively add to LJ+ or LJ a connective
¬ which is both explosive (i.e.: ¬A,A ` B for all A,B) and satisfies the law
of excluded middle LEM. With such an addition we get classical logic. The
intuitionists indeed reject LEM, retaining the explosive nature of negation
(which is usually defined by ∼ ϕ =Def ϕ ⊃ ff). In this subsection we show
that this is not the only possible choice. The main problem we shall solve
is: Which of the logics LJ+[S] (S ⊆ NIR) is conservative over LJ+ (and
similarly for LJ)? We believe that each such logic is entitled to be called
“a logic with a constructive negation”.

REMARK 88. G[LJ+] (G[LJ ]), a multiple-conclusioned Gentzen-type sys-
tem for LJ+ (LJ), is obtained from G[LK+] (G[LK]) by replacing the
(⇒⊃) rule with the following impure (single-conclusion) rule:

Γ, A ⇒ B

Γ ⇒ A ⊃ B
(⇒⊃)

It is again easy to see that for every S ⊆ NIR and L ∈ {LJ+, LJ}, a
Gentzen-type system GL[S] which is sound and complete for L[S] can be
obtained by adding to GL the Gentzen-type versions of the rules in S. In
what follows we identify L[S] and GL[S].

Like in the classical case, we start by generalizing the standard, two-
valued semantics of LJ+ (or LJ). Recall that this semantics is usually
provided by the class of all Kripke frames of the form W = 〈W,≤, v〉 16,
where 〈W,≤〉 is a nonempty partially ordered set (of “worlds”), and v is a
function from W × FrmL to V that satisfies the following conditions:

1. If y ≥ x and v(x, ϕ) = t then v(y, ϕ) = t.17

15Positive intuitionistic logic might be a better starting point for investigating negations
than positive classical logic (especially constructive negations), because its valid sentences
are all intuitively correct. LK+, in contrast, includes counterintuitive tautologies like
(A ∧ B ⊃ C) ⊃ (A ⊃ C) ∨ (B ⊃ C) or A ∨ (A ⊃ B). Moreover: the classical natural
deduction rules for the positive connectives (∧,∨ and ⊃) define LJ+, not LK+. It is
only with the aid of the classical rules for (the classical) negation that one can prove the
counterintuitive positive tautologies mentioned above.

16In the literature by a “frame” one usually means just the pair 〈W,≤〉. Here we have
found it convenient to use this technical term differently, so that the valuation v is an
integral part of it.

17For the language of LJ it suffices to demand this condition for atomic formulas only;
then one can prove that every formula has this property. This is not the case for the
nondeterministic generalizations with ¬ that we present below.
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2. • v(x, ϕ ∧ ψ) = t iff v(x, ϕ) = t and v(x, ψ) = t

• v(x, ϕ ∨ ψ) = t iff v(x, ϕ) = t or v(x, ψ) = t

• v(x,ff) = f (if ff is in the language).

3. v(x,ff) = f (if ff is in the language).

4. v(x, ϕ ⊃ ψ) = t iff v(y, ψ) = t for every y ≥ x such that v(y, ϕ) = t

Obviously, if W = 〈W,≤, v〉 is a frame, then for every x ∈ W the function
λϕ.v(x, ϕ) behaves like an ordinary classical valuation with respect to all
the connectives except ⊃. The treatment of ⊃ is indeed what distinguishes
between classical logic and intuitionistic logic. This observation leads to the
following nondeterministic generalization of intuitionistic Kripke frames:

DEFINITION 89. Let ⊃ be one of the connectives of a propositional lan-
guage L, and let M = 〈V,D,O〉 be an Nmatrix for L − {⊃}. An M-frame
for L is a triple W = 〈W,≤, v〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set

2. v : W × FrmL → V satisfies the following conditions:

• Persistence: if y ≥ x and v(x, ϕ) ∈ D then v(y, ϕ) ∈ D
• For every x ∈ W , λϕ.v(x, ϕ) is a legal M-valuation.

• v(x, ϕ ⊃ ψ) ∈ D iff v(y, ψ) ∈ D for every y ≥ x such that
v(y, ϕ) ∈ D

We say that a formula ϕ is true in a world x ∈ W of a frameW if v(x, ϕ) ∈ D.
A sequent Γ ⇒ ∆ is valid in W if for every x ∈ W there is either ϕ ∈ Γ
such that ϕ is not true in x, or ψ ∈ ∆ such that ψ is true in x.

Obviously, if M1 is a refinement of M2, then any M1-frame is also an
M2-frame, and every sequent valid in M2 is also valid in M1.

DEFINITION 90.

1. Let M = 〈V,D,O〉 be an Nmatrix for a language which includes the
language of LJ+. We say that M is suitable for LJ+ if the following
conditions are satisfied (where again V − D is denoted by F):

• If a ∈ D and b ∈ D then a ∧ b ⊆ D
• If a 6∈ D then a ∧ b ⊆ F
• If b 6∈ D then a ∧ b ⊆ F

• If a ∈ D then a ∨ b ⊆ D
• If b ∈ D then a ∨ b ⊆ D
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• If a 6∈ D and b 6∈ D then a ∨ b ⊆ F

• If b ∈ D then a ⊃ b ⊆ D
• If a ∈ D and b 6∈ D then a ⊃ b ⊆ F

2. Let M = 〈V,D,O〉 be an Nmatrix for a language which includes the
language of LJ . We say that M is suitable for LJ if it is suitable for
LJ+, and the following condition is satisfied:

• ff ⊆ F

THEOREM 91. Assume W is an M-frame, where M is suitable for LJ+

(LJ). Then any sequent provable in LJ+ (LJ) is valid in W.

Below we concentrate on the systems LJ+(S) for S ⊆ NIR (obtaining
similar results for LJ(S) causes no further difficulties).

DEFINITION 92. Let MIB
4 be the following Nmatrix 〈V,D,O〉 for L:

• V = {t,>, f,⊥}

• D = {t,>}

• a ⊃ b =




D b ∈ D
F b 6∈ D, a ∈ D
V a, b ∈ F

a ∨ b =
{ D a ∈ D or b ∈ D
F otherwise

a ∧ b =
{ D a, b ∈ D
F otherwise

¬t = ¬ ⊥= F ¬f = ¬> = D

REMARK 93. The only difference betweenMIB
4 andMB

4 (recall Defn. 80)
is that in MIB

4 we have a ⊃ b = V in case a, b ∈ F = V − D, while in MB
4

a ⊃ b = D in this case.

PROPOSITION 94. Let M be a refinement of MIB
4 . Then LJ+ is sound

for every M-frame.

Now we turn to the effects of the various negation rules in the context of
our semantics for LJ+ and its extensions. The conditions we associated with
these conditions in the previous subsection lead this time to refinements of
MIB

4 on which the corresponding frames are based.
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DEFINITION 95. For S ⊆ NIR, let MI
S be the weakest refinement of

MIB
4 in which the conditions in C(S) are satisfied.18

THEOREM 96. If S ⊆ NIR then LJ+(S) is sound and strongly complete
for MI

S-frames: Γ `LJ+(S) ψ iff for every MI
S-frame W = 〈W,≤, v〉, and

every x ∈ W , if v(x, ϕ) ∈ D for every ϕ ∈ Γ then also v(x, ψ) ∈ D.

EXAMPLE 97. The system Cω of da Costa ([da Costa, 1974]) is identical
to LJ+({(⇒ ¬), (¬¬ ⇒)}). Theorem 96 provides illuminating semantics
for it which is much simpler than the Kripke-type semantics given in [Baaz,
1986] and the bivaluations semantics of [Loparić, 1986] (and can be used
for a decision procedure — see Corrolary 104 below). Here is a compact
description of this semantics: A frame for Cω is a triple 〈W,≤, v〉 such that
〈W,≤〉 is a nonempty partially ordered set, and v : W × F → {t, f,>} is a
valuation which satisfies the following conditions:

• If x ≤ y then v(x, ϕ) ≤k v(y, ϕ)

• v(x, ϕ ∧ ψ) = f iff v(x, ϕ) = f or v(x, ψ) = f

• v(x, ϕ ∨ ψ) = f iff v(x, ϕ) = f and v(x, ψ) = f

• v(x, ϕ ⊃ ψ) = f iff for some y ≥ x, v(y, ϕ) 6= f while v(y, ψ) = f

• v(x,¬ϕ) = f iff v(x, ϕ) = t

• If v(x, ϕ) = f then v(x,¬ϕ) = t

A frame is a model of a formula ϕ if v(x, ϕ) 6= f for every x ∈ W .

Theorem 96 does not have much value in itself. Indeed, it does not
guarantee that LJ+(S) is conservative over LJ+, and neither does it provide
a decision procedure for LJ+(S). The reason for this is that the current
semantic framework (of Nmatrices combined with intuitionistic frames) is
not always analytic (recall Remark 12). Next we provide a definition of this
notion which is suitable for the present context. For this we need first the
following important observation.

PROPOSITION 98. Let M be a refinement of MIB
4 . Then the persistence

condition for M is equivalent to the following monotonicity condition:

• If x ≤ y then v(x, ϕ) ≤k v(y, ϕ), where the partial order ≤k on V4 is
defined by: ⊥≤k t, f ≤k >. 19

18It is advisable here to read again the first part of Remark 83.
19≤k had a crucial role already in [Belnap, 1977]. The structure obtained by equipping

V4 with both ≤t and ≤k is nowadays known as the basic (distributive) bilattice (see
[Ginsberg, 1988; Fitting, 1994; Arieli and Avron, 1996]).
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Analycity for the semantics of frames can now be defined as follows:

DEFINITION 99. Let M = MI
S for some S ⊆ NIR.

1. An M-semiframe is a triple W = 〈W,≤, v′〉 such that:

(a) 〈W,≤〉 is a nonempty partially ordered set.

(b) v′ : W ×F ′ → V is a partial valuation such that:

• F ′ is a subset of FrmL which is closed under subformulas.
• v′ satisfies the monotonicity condition: if y ≥ x and ϕ ∈ F ′,

then v′(x, ϕ) ≤k v′(y, ϕ).
• v′ respectsM: If ¦(ψ1, . . . , ψn) ∈ F ′, then v′(x, ¦(ψ1, . . . , ψn))

is in ¦̃(v′(x, ψ1), . . . , v′(x, ψn)).
• If ϕ ⊃ ψ ∈ F ′ then v′(x, ϕ ⊃ ψ) ∈ D iff v′(y, ψ) ∈ D for

every y ≥ x such that v′(y, ϕ) ∈ D.

2. MI
S is analytic if for any MI

S- semiframe 〈W,≤, v′〉 there exists an
MI

S-frame 〈W,≤, v〉 such that v extends v′.

The next theorem provides the conditions under which MI
S is analytic:

THEOREM 100. MI
S (S ⊆ NIR) is analytic iff either {(⇒ ¬), (¬ ⇒)} ⊆ S

or {(⇒ ¬), (¬ ⊃⇒)1} 6⊆ S.

REMARK 101. In [Avron, 2005a] it is shown that Theorem 100 would have
failed had the definition of a semiframe included the persistence condition
rather than the monotonicity condition.

REMARK 102. The problem with the combination {(⇒ ¬), (¬ ⊃⇒)1} is
that the condition imposed by (¬ ⊃⇒)1 is not consistent with the condition
of monotonicity in case ⊥ is not available.

As an immediate application, Theorem 100 can be used to determine for
which S ⊆ NIR the system LJ+(S) is conservative over LJ+. This is done
in the next theorem. The proof of this theorem nicely demonstrates how our
semantic framework can be used, as well as the crucial role of the analycity
property. Therefore we include here this proof.

THEOREM 103. Let S ⊆ NIR. If neither {(⇒ ¬), (¬ ⇒)} ⊆ S nor
{(⇒ ¬), (¬ ⊃⇒)1} ⊆ S, then LJ+(S) is a conservative extension of LJ+.
Otherwise LJ+(S) = LK+(S).

Proof. It is easy to see that the two conditions are necessary. Let SN =
NIR − {(⇒ ¬)}, SP = NIR − {(¬ ⇒), (¬ ⊃⇒)1}. To show that the
two conditions together are also sufficient, it suffices to show that both
LJ+(SN) and LJ+(SP ) are conservative over LJ+. So let ψ be a sentence
in the language of LJ+ which is not provable in LJ+. We show that ψ
is provable in neither LJ+(SN) nor LJ+(SP ). Since 6`LJ+ ψ, there is an
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ordinary two-valued Kripke frame 〈W,≤, u〉 (where u : W×FrmL → {t, f})
in which ψ is not valid (i.e. u(x0, ψ) = f for some x0 ∈ W ). Now we define
the corresponding semiframes for LJ+(SN) and LJ+(SP ). Let F ′ be the
set of formulas in the language of LJ+.

LJ+(SN): Define v′N on W ×F ′ by:

v′N (x, ϕ) =
{

t if u(x, ϕ) = t
⊥ if u(x, ϕ) = f

It is straightforward to check that 〈W,≤, v′N 〉 is anMIP [SN ]-semiframe
(note that any condition concerning ¬ is vacuously satisfied, since
there is no sentence of the form ¬ϕ in F ′).

LJ+(SP ): Define v′P on W ×F ′ by:

v′P (x, ϕ) =
{ > if u(x, ϕ) = t

f if u(x, ϕ) = f

Again, it is easy to check that 〈W,≤, v′P 〉 is an MIP [SP ]-semiframe.

By Theorem 100, 〈W,≤, v′N 〉 and 〈W,≤, v′P 〉 can respectively be extended
to anMIP [SN ]-frame 〈W,≤, vN 〉 and anMIP [SP ]-frame 〈W,≤, vP 〉. Since
vN (x0, ψ) = v′N (x0, ψ) =⊥, ψ is not valid in 〈W,≤, v′N 〉, and so it is not
provable in LJ+(SN). Similarly, vP (x0, ψ) = v′P (x0, ψ) = f . Hence ψ is
not valid in 〈W,≤, v′P 〉, and so is not provable in LJ+(SP ). ¥

Theorems 100, 103 and Corollary 87 immediately entail:

COROLLARY 104. LJ+(S) is decidable for every S ⊆ NIR.

It follows from Theorem 103 that LJ+(SN) and LJ+(SP ) are the two
maximal logics in the family {LJ+(S) | S ⊆ NIR} which are conservative
extensions of constructive positive logic. Now the first is the well-known
system N of Nelson ([Almukdad and Nelson, 1984]) and von Kutschera
([von Kutschera, 1969]). The other, in contrast, is new. However, it is a
very attractive system for constructive negation. First: it is paraconsistent
(i.e.: a single contradiction does not imply everything in it). Second: LEM
is valid in it. In fact, LJ+(SP ) is obtained from N by replacing two of
its axioms by LEM. Now, while LEM is very intuitive, the two axioms it
replaces are not. Indeed, one of them, ¬ϕ ⊃ (ϕ ⊃ ψ), intuitively means
that if ϕ is false then it implies everything. The second, ¬(ϕ ⊃ ψ) ⊃ ϕ,
intuitively means that if there is something that ϕ does not imply, then ϕ
should be true (i.e.: it cannot be false). Obviously, these two principles are
similar — and counterintuitive. It is no wonder that from a constructive
point of view, each of them is inconsistent with LEM, and is rejected in
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LJ+(SP ). It is also worth noting that despite the paraconsistent nature of
LJ+(SP ), the basic intuitive law of contradiction ¬(ϕ ∧ ¬ϕ) is valid in it.

Next we turn to another application of Theorems 96 and 100: elimi-
nations of cuts. It was shown in [Avron, 2007b] that in general the cut-
elimination theorem does not hold for the Gentzen-type systems presented
in this subsection. Moreover: examples have been given there of a subset S
of NIR and a sequent which is provable in LJ+(S), but any proof of it there
should contain a non-analytic cut. This is perhaps not surprising, since our
logical rules themselves do not have the strict subformula property: some
of them involve negations of subformulas of their conclusion, even though
those negations are not subformulas themselves. Therefore, it is reasonable
to expect the same from cuts. This leads to the following theorem from
[Avron, 2005a]:

THEOREM 105. Assume that S ⊆ NIR, and {(⇒ ¬), (¬ ⊃⇒)1} 6⊆ S.
Then for every sequent s in the language of LJ+ there is either a finite
MI

S-frame in which s is not valid, or a proof in LJ+(S) in which every cut
is either on a subformula of s or on a negation of such a subformula.

6 NMATRICES FOR LOGICS OF FORMAL INCONSISTENCY

In this section we apply the framework of Nmatrices to provide modular
semantics for yet another family of non-classical logics: da Costa’s para-
consistent logics. A paraconsistent logic is a logic which allows non-trivial
inconsistent theories. One of the oldest and best known approaches to the
problem of designing useful paraconsistent logics is da Costa’s approach.
This approach is based on two main ideas. The first is to limit the applica-
bility of the classical (and intuitionistic) rule ¬ϕ,ϕ ` ψ to the case where ϕ
is “consistent”. The second is to express this assumption of consistency of ϕ
within the language. The easiest way to implement these ideas is to include
in the language a special connective ◦, with the intended meaning of ◦ϕ
being “ϕ is consistent”. Then one can explicitly add the assumption of the
consistency of ϕ to the problematic (from a paraconsistent point of view)
rule, getting the rule called (b) below. Other rules concerning ¬ and ◦ can
then be added, leading to a large family of logics known as “Logics of For-
mal Inconsistency” (LFIs - see [da Costa, 1974; Carnielli and Marcos, 2002;
Carnielli and Marcos, 2007]). In this chapter we investigate those that are
obtained using the rules in NIR, as well as the main rules involving the
consistency operator that have been studied in the literature on LFIs. The
latter rules are listed in Figure 4 (in which ¦ ∈ {∧,∨,⊃}). The material of
this section is based on [Avron, 2007a]. Throughout it, we fix the language
LC = {¬, ◦,⊃,∧,∨}. Again our basic system will be LK+ (the positive
fragment of classical logic).
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Name of rule Abstract form Hilbert-style axiom
(b) ◦ϕ,¬ϕ,ϕ ` (◦ϕ ∧ ¬ϕ ∧ ϕ) ⊃ ψ
(k1) ` ◦ϕ, ϕ ◦ϕ ∨ ϕ
(k2) ` ◦ϕ,¬ϕ ◦ϕ ∨ ¬ϕ
(i1) ¬◦ϕ ` ϕ ¬◦ϕ ⊃ ϕ
(i2) ¬◦ϕ ` ¬ϕ ¬◦ϕ ⊃ ¬ϕ
(a¬) ◦ϕ ` ◦¬ϕ ◦ϕ ⊃ ◦¬ϕ
(a¦) ◦ϕ, ◦ψ ` ◦(ϕ ¦ ψ) ◦ϕ ⊃ (◦ψ ⊃ ◦(ϕ ¦ ψ))
(o1
¦) ◦ϕ ` ◦(ϕ ¦ ψ) ◦ϕ ⊃ ◦(ϕ ¦ ψ)

(o2
¦) ◦ψ ` ◦(ϕ ¦ ψ) ◦ψ ⊃ ◦(ϕ ¦ ψ)

(l) ¬(ϕ ∧ ¬ϕ) ` ◦ϕ ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ

Figure 4. Schemata involving ◦

6.1 LFIs with Finite Characteristic Nmatrices

DEFINITION 106.

1. Let FCR be the set of all the rules in the table above except the last
one (l). We shall write (i) instead of the combination of (i1) and (i2),
(a) instead of {(a¦) | ¦ ∈ {∧,∨,⊃}} and similarly for (o).

2. Let LFIR = NIR∪FCR. We denote by HLFIR the set of Hilbert-
style axioms corresponding to the rules in LFIR.

3. For S ⊆ LFIR let LK+[S] be the extension of LK+ by S.

The basic idea in providing semantics for LK+[S] (where S ⊆ LFIR) is
this time to let the value assigned to a sentence ϕ provide information not
only about the truth/falsity of ϕ and ¬ϕ, but also about the truth/falsity
of ◦ϕ. This leads to the use of elements from {0, 1}3 as our truth-values,
where the intended intuitive meaning of v(ϕ) = 〈x, y, z〉 is now:

• x = 1 iff ϕ is “true” (i.e. v(ϕ) ∈ D ).

• y = 1 iff ¬ϕ is “true” (i.e. v(¬ϕ) ∈ D).

• z = 1 iff ◦ϕ is “true” (i.e. v(◦ϕ) ∈ D).

In addition to (NEG), which remains unchanged, this interpretation dictates
also the following condition:

(CON) ◦̃a ⊆ {y | P1(y) = P3(a)}

Accordingly, this time we start our semantic investigation of LFIR with
the weakest Nmatrix which satisfies both (NEG) and (CON). Then we show
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that every logic which is defined by some subset of LFIR is characterized
by some (easily computable) simple refinement of that Nmatrix.

DEFINITION 107. The Nmatrix MB
8 = 〈V8,D8,O8〉 is defined as follows:

• V8 = {0, 1}3

• D8 = {a ∈ V8 | P1(a) = 1}
• Let V = V8, D = D8, F = V8 −D. The operations in O8 are:

¬̃a =
{ D if P2(a) = 1
F if P2(a) = 0

◦̃a =
{ D if P3(a) = 1
F if P3(a) = 0

a∨̃b =
{ D if either a ∈ D or b ∈ D,
F if a, b ∈ F

a⊃̃b =
{ D if either a ∈ F or b ∈ D
F if a ∈ D and b ∈ F

a∧̃b =
{ F if either a ∈ F or b ∈ F
D otherwise

DEFINITION 108.

1. The general refining conditions induced by the conditions in NIR are
identical to those given in Definition 82.

2. The general refining conditions induced by the conditions in FCR are:

C(b): If P1(a) = 1 and P2(a) = 1 then P3(a) = 0

C(k1): If P1(a) = 0 then P3(a) = 1

C(k2): If P2(a) = 0 then P3(a) = 1

C(i1): If P1(a) = 0 then ◦̃a ⊆ {x | P2(x) = 0}
C(i2): If P2(a) = 0 then ◦̃a ⊆ {x | P2(x) = 0}
C(a¬): If P3(a) = 1 then ¬̃a ⊆ {x | P3(x) = 1}
C(a¦): If P3(a) = 1 and P3(b) = 1 then a¦̃b ⊆ {x | P3(x) = 1}
C(o1

¦): If P3(a) = 1 then a¦̃b ⊆ {x | P3(x) = 1}
C(o2

¦): If P3(b) = 1 then a¦̃b ⊆ {x | P3(x) = 1}
3. For S ⊆ LFIR, let C(S) = {Cr | r ∈ S}, and let MS be the weakest

simple refinement of MB
8 in which the conditions in C(S) are all

satisfied (again it is not difficult to check that this is well-defined for
every S ⊆ LFIR).
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THEOREM 109. MS (S ⊆ LFIR) is a characteristic Nmatrix for LK+[S].

COROLLARY 110. LK+[S] is decidable for every S ⊆ LFIR.

EXAMPLE 111.

1. Let B = LK+[{(⇒ ¬), (b)}]. This logic is the basic logic of formal
inconsistency from [Carnielli and Marcos, 2002; Carnielli and Mar-
cos, 2007] (where it is called mbC). By Theorem 109, the following
Nmatrix MB

5 = 〈V5,D5,O5〉 is characteristic for it:

• V5 = {t, tI , I, fI , f} where:

t = 〈1, 0, 1〉
tI = 〈1, 0, 0〉
I = 〈1, 1, 0〉
f = 〈0, 1, 1〉
fI = 〈0, 1, 0〉

• D5 = {t, I, tI} (= {〈x, y, z〉 ∈ V5 | x = 1}).
• Let D = D5, F = V5 −D. The operations in O5 are defined by:

¬̃a =
{ D if a ∈ {I, f, fI}
F if a ∈ {t, tI}

◦̃a =
{ D if a ∈ {t, f}
F if a ∈ {I, tI , fI}

The rest of the operations are defined like in Definition 107.

2. Let S = {(⇒ ¬), (b), (⇒ ¬ ⊃), (i1), (a¬)}. ThenMS = 〈VS ,DS ,OS〉,
where:

• VS = {t, tI , I, f}
• DS = {t, I, tI}

• a⊃̃b =




DS if either a = f or b ∈ {t, tI}
{I} if a ∈ DS and b = I
{f} if a ∈ DS and b = f

• ¬̃t = ¬̃tI = {f} ¬̃I = DS ¬̃f = {t}
• ◦̃t = DS ◦̃tI = ◦̃I = {f} ◦̃f = {t, tI}

3. Let Cia = {(⇒ ¬), (b), (¬¬ ⇒), (i), (a)}. MCia = 〈VCia,DCia,OCia〉,
where:

• VCia = {t, I, f}
• DCia = {t, I}
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• a⊃̃b =




{f} if a ∈ {t, I} and b = f
{t} if either a = f, b ∈ {f, t} or a = t, b = t
{t, I} otherwise

• a∨̃b =




{f} if a = f and b = f
{t} if either a = t, b ∈ {f, t} or b = t, a ∈ {f, t}
{t, I} otherwise

• a∧̃b =




{f} if a = f or b = f
{t} if a = t and b = t
{t, I} otherwise

• ¬̃t = {f} ¬̃I = {I} ¬̃f = {t}
• ◦̃t = ◦̃f = {t} ◦̃I = {f}

6.2 LFIs with Infinite Characteristic Nmatrices

The family of LFIs for which we provided semantics in the previous subsec-
tion does not include the well-known da Costa’s original logic C1 from ([da
Costa, 1974]). Now C1 is just the ◦-free fragment of Cila, the logic which
is obtained by adding the rule (l) from Figure 4 to the system Cia from
Example 111. This rule is problematic, because of the following theorem:

THEOREM 112. No system between Bl and Bl[(⇒ ¬¬), (¬¬ ⇒), (i), (o)]
has a finite characteristic Nmatrix (and so none of them has a finite char-
acteristic ordinary matrix). 20

It follows that the method used in the previous subsection cannot work
for logics like Cila. As a reasonable useful substitute, in this subsection we
present infinite (but still effective) characteristic Nmatrices for a family of
such systems (which includes Cila). Then we show that these Nmatrices can
still be used to provide decision procedures for the logics they characterize.

As usual, we start with the basic LFI which includes (l), and find first a
characteristic Nmatrix for it.

DEFINITION 113. The system Bl is obtained from the basic system B
(from Example 111) by adding (l) as an axiom.

Now the validity of (l) in an Nmatrix means that whenever ◦ϕ is “false”,
so is ¬(ϕ ∧ ¬ϕ). Accordingly, Nmatrices appropriate for Bl should be able
to distinguish between conjunctions of an “inconsistent” formula with its
negation from other types of conjunctions. Therefore such Nmatrices should
enforce an intimate connection between the truth-value of an “inconsistent”

20It easily follows from this theorem that C1 has no finite characteristic Nmatrix. Now
it has been known before that C1 and some other LFIs have no characteristic ordinary
matrices (see e.g. [Carnielli and Marcos, 2002; Carnielli and Marcos, 2007]). However,
the result of Theorem 112 is much stronger.
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formula and the truth-value of its negation. This in turn requires a supply
of infinitely many truth-values, corresponding to the potentially infinite
number of “inconsistent” formulas. But from where will we take these truth-
values, and how should we define the operations on them? A key observation
in our path to solve these problems is that (k1) and (k2) are theorems of Bl.
Hence Bl extends B[{(b), (⇒ ¬), (k1), (k2)}]. Accordingly, the Nmatrices
which we will use for characterizing Bl and its extensions will be refinements
(see Definition 30) of M{(b),(⇒¬),(k1),(k2)}. The latter is an Nmatrix with
three truth-values: those that were denoted above by t, f , and I. Now one
of the most productive method of refining a given Nmatrix M (which is
not available in the framework of ordinary matrices!) is to first duplicate its
elements: we can construct an Nmatrix M′ which is completely equivalent
to M by replacing each element a by a nonempty set of “copies”, and then
defining the operations in M′ to be “the same” as in the original M, but
without distinguishing between two copies of the same element of M. In
other words: if b′, a′1, . . . , a

′
n are copies in M′ of b, a1 . . . , an (respectively),

then b′ ∈ ¦̃(a′1 . . . , a′n) in M′ iff b ∈ ¦̃(a1 . . . , an) in M. 21 What we shall
do in order to construct an Nmatrix for Bl is first to duplicate the elements
of M{(b),(⇒¬),(k1),(k2)} (actually only t and I) infinitely many times. Then
we shall refine the resulting Nmatrix in the way hinted above so that axiom
(l) becomes valid.

DEFINITION 114. Let T = {tji | i ≥ 0, j ≥ 0}, I = {Ij
i | i ≥ 0, j ≥ 0},

F = {f}. The Nmatrix MBl = 〈V,D,O〉 is defined as follows:

1. V = T ∪ I ∪ F and D = T ∪ I.

2. O is defined by:

a∨̃b =
{ D if either a ∈ D or b ∈ D
F if a, b ∈ F

a⊃̃b =
{ D if either a ∈ F or b ∈ D
F if a ∈ D and b ∈ F

a∧̃b =




F if either a ∈ F or b ∈ F
T if a = Ij

i and b ∈ {Ij+1
i , tj+1

i }
D otherwise

¬̃a =




F if a ∈ T
D if a ∈ F
{Ij+1

i , tj+1
i } if a = Ij

i

21Actually, we have already implicitly used this method above several times. Thus
from the point of view of the positive classical connectives, MB

8 is just a duplication of
the classical two-valued matrix: all elements of D are copies of “true”, all elements of F
are copies of “false”.
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◦̃a =
{ D if a ∈ F ∪ T
F if a ∈ I

THEOREM 115. MBl is a characteristic Nmatrix for Bl.

Now we turn to the extensions of Bl with axioms.

DEFINITION 116.

1. Let LFIRl = LFIR− {(⇒ ¬), (¬ ⇒), (b), (k1), (k2)}.
2. For S ⊆ LFIRl, the system Bl[S] is obtained from Bl by adding the

schemata in S.

Like in the previous subsection, each of the schemata in LFIRl corre-
sponds to some easily computed semantic condition, this time on simple
refinements of the basic Nmatrix MBl. These conditions are in fact iden-
tical to the conditions that correspond to these axioms in refinements of
M{(b),(⇒¬),(k1),(k2)}, but with t replaced by T , and I replaced by I.

DEFINITION 117. For S ⊆ LFIRl, MBl[S] is the weakest simple refine-
ment of MBl which satisfies the following conditions:

1. If (¬¬ ⇒) ∈ S then a ∈ F ⇒ ¬̃(a) ⊆ T
2. If (⇒ ¬¬) ∈ S then a ∈ I ⇒ ¬̃(a) ⊆ I
3. If (i1) ∈ S then a ∈ T ⇒ ◦̃(a) ⊆ T
4. If (i1) ∈ S then a ∈ F ⇒ ◦̃(a) ⊆ T
5. If (a¬) ∈ S then a ∈ I ⇒ ◦̃a ⊆ I
6. If (a¦) ∈ S then a ∈ F ∪ I, b ∈ F ∪ I ⇒ a¦̃b ⊆ F ∪ I
7. If (o1

¦) ∈ S then a ∈ F ∪ T ⇒ a¦̃b ⊆ F ∪ T
8. If (o2

¦) ∈ S then b ∈ F ∪ T ⇒ a¦̃b ⊆ F ∪ T
9. If (¬ ⊃⇒)1 ∈ S then a ∈ F ⇒ (a⊃̃b) ⊆ T

10. If (¬ ⊃⇒)2 ∈ S then b ∈ T ⇒ (a⊃̃b) ⊆ T
11. If (⇒ ¬ ⊃) ∈ S then a ∈ D, b ∈ F ∪ I ⇒ a⊃̃b ⊆ F ∪ I

THEOREM 118. For S ⊆ LFIR, MBl[S] is a (dynamically) characteristic
Nmatrix for Bl[S].

COROLLARY 119. For every S ⊆ LFIRl, the logic Bl[S] is decidable.



NON-DETERMINISTIC SEMANTICS FOR LOGICAL SYSTEMS 49

Proof. The proof of Theorem 118 in [Avron, 2007a] implies that to check
whether a given formula ϕ is provable in L, it suffices to check all legal
partial valuations v in ML which assign to subformulas of ϕ values in

{f} ∪ {tji | 0 ≤ i ≤ n(ϕ), 0 ≤ j ≤ k(ϕ)} ∪ {Ij
i | 0 ≤ i ≤ n(ϕ), 0 ≤ j ≤ k(ϕ)}

where n(ϕ) is the number of subformulas of ϕ which do not begin with ¬,
and k(ϕ) is the maximal number of consecutive negation symbols occurring
within ϕ. This is a finite process.

COROLLARY 120. da Costa’s system C1 is decidable, 22 and it has a char-
acteristic Nmatrix MC1 , in which the sets of truth-values and designated
truth-values are like in MBl, and the interpretations of the connectives are
defined as follows:

a⊃̃b =





F a ∈ D, b ∈ F
T a ∈ F , b 6∈ I
T b ∈ T , a 6∈ I
D otherwise

a∧̃b =





F a ∈ F or b ∈ F
T a ∈ T , b ∈ T
T a = Ij

i , b ∈ {Ij+1
i , tj+1

i }
D otherwise

¬̃a =




F a ∈ T
T a ∈ F
{Ij+1

i , tj+1
i } a = Ij

i

a∨̃b =





F a ∈ F , b ∈ F
T a ∈ T , b 6∈ I
T b ∈ T , a 6∈ I
D otherwise

PART II: THE FIRST-ORDER CASE AND BEYOND

In the first part we have described the semantic framework of Nmatrices
on the propositional level and presented a number of applications of this
framework. However, no semantic framework can be considered really use-
ful unless it can be naturally extended at least to the first-order level. Ac-
cordingly, this part is devoted to extending the framework of Nmatrices to
languages with quantifiers.

The simplest and most well-known quantifiers are of course the first-order
quantifiers ∀ and ∃ (and we shall devote Section 9 to them). However, we
start by exploring a more general notion of quantifiers. By a (unary) quan-
tifier we mean a logical constant which (may) bind a variable when applied
to a formula. In other words, if Q is a quantifier, x is a variable and ψ is a
formula, then Qxψ is a formula in which all occurrences of x are bound by
Q. It should be noted that this notion can be further generalized to multi-
ary quantifiers, which are logical constants that can be applied to more than

22The decidability of C1, as well as of most of the systems presented here is not new
(see, e.g. [Carnielli and Marcos, 2002; Carnielli and Marcos, 2007]).
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one formula. If Q is an n-ary quantifier, x is a variable and ψ1, ..., ψn are
formulas, then Qx(ψ1, ..., ψn) is a formula in which all occurrences of x are
bound by Q. In this context the ordinary quantifiers can be thought of as
unary quantifiers, while the bounded universal and existential quantifiers ∀
and ∃ used in syllogistic reasoning are examples of binary quantifiers23.

7 MANY-VALUED MATRICES WITH QUANTIFERS

We start with ordinary (unary) quantifiers and their treatment in the frame-
work of standard many-valued matrices. In what follows, L is a language,
which includes a set of propositional connectives, a set of quantifiers, a
countable set of variables, and a signature, consisting of a non-empty set of
predicate symbols, a set of function symbols, and a set of constants. FrmL

is the set of (standardly defined) wffs of L, and Frmcl
L is its set of closed

wffs. TrmL is the set of terms of L, and Trmcl
L is its set of closed terms. In

ordinary (deterministic) many-valued matrices (unary) quantifiers are stan-
dardly interpreted using the notion of distributions. This notion is due to
Mostowski ([Mostowski, 1961]; the term ‘distribution’ was later coined in
[Carnielli, 1987].

DEFINITION 121. Given a set of truth values V, a distribution of a quan-
tifier Q is a function λQ : (2V \ {∅}) → V.

The following is a standard definition (see, e.g. [Urquhart, 2001]) of a
deterministic matrix with distribution quantifiers:

DEFINITION 122. A matrix for L is a tuple P = 〈V,D,O〉, where:

• V is a non-empty set of truth-values,

• D is a non-empty proper set of V,

• O includes a function ¦̃ : Vn → V for every n-ary connective of L, and
a function Q̃ : 2V \ {∅} → V for every quantifier of L.

EXAMPLE 123. Consider the matrix P = 〈{t, f}, {t},O〉 for a first-order
language L, where O contains the following (standard) interpretations of ∀
and ∃:

H ∀̃(H) ∃̃(H)
{t} t t
{t, f} f t
{f} f f

23The respective meanings of ∀x(ψ1, ψ2) and ∃x(ψ1, ψ2) are ∀x(ψ1 → ψ2) and
∃x(ψ1 ∧ ψ2).
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The notion of a structure is defined standardly:

DEFINITION 124. Let P = 〈V,D,O〉 be a matrix for L. An L-structure
S for P is a pair 〈D, I〉 where D is a (non-empty) domain and I is an
interpretation of constants, predicate symbols and function symbols of L,
which satisfies:

• For every constant c of L: I(c) ∈ D.

• For every n-ary predicate symbol p of L: I(p) ∈ Dn → V.

• For every n-ary function symbol f of L: I(f) ∈ Dn → D.

There are two main approaches to interpreting quantified formulas: the
objectual (referential) approach, which uses assignments, and the substitu-
tional approach ([Leblanc, 2001]), which is based on substitutions. Below
we shortly review these two approaches. In the better known objectual ap-
proach (used in most standard textbooks on classical first-order logic, like
[Mendelson, 1964; Enderton, 1972; van Dalen, 1980]), a variable is thought
of as ranging over a set of objects from the domain, and assignments map
variables to elements of the domain. In the context of many-valued deter-
ministic matrices this is usually formalized as follows (see e.g. [Urquhart,
2001; Hähnle, 1999]).

DEFINITION 125. Given an L-structure S = 〈D, I〉, an assignment G in S
is any function mapping the variables of L to D. For any a ∈ D we denote
by G[x := a] the assignment which is similar to G, except that it assigns a
to x. G is extended to L-terms as follows: G(c) = I(c) for every constant
c of L and G(f(t1, ..., tn)) = I(f)(G(t1), ..., G(tn)) for every n-ary function
symbol f of L and t1, ..., tn ∈ TrmL.

DEFINITION 126. Let S be an L-structure for a matrix P and let G be
an assignment in S. The valuation vS,G : FrmL → V is defined as follows:

• vS,G(p(t1, ..., tn)) = I(p)(G(t1), ..., G(tn)).

• vS,G(¦(ψ1, ..., ψn)) = ¦̃(vS,G(ψ1), ..., vS,G(ψn)).

• vS,G(Qxψ) = Q̃({vS,G[x:=a](ψ) | a ∈ D}).

In the alternative substitutional approach to quantification (used e.g.
for first-order classical logic in [Shoenfield, 1967]) a variable is thought of
as ranging over syntactical (closed) terms rather than over elements of the
domain. Accordingly, the key notion in this approach is that of a substitution
instance (rather than an assignment):

DEFINITION 127. For any formula ψ, a substitution L-instance of ψ is a
formula ψ{t1/x1, ..., tn/xn}, where for all 1 ≤ i ≤ n, ti is an L-term free for
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xi in ψ. A substitution L-instance of Γ is a set {ψ{t1/x1, ..., tn/xn} | ψ ∈ Γ}
for some t1, ..., tn ∈ TrmL which are free for x1, ..., xn (respectively) in all
the formulas of Γ.

The main idea of the substitutional approach is that a formula is inter-
preted in terms of its substitution instances. Thus a formula ∀ψx (∃xψ) is
true if and only if each (at least one) of the closed substitution instances of
ψ is true. To apply this approach, we need to assume that every element of
the domain has a closed term referring to it. This condition can be satisfied
by extending the language with individual constants:

DEFINITION 128. For an L-structure S = 〈D, I〉 for P, L(D) is the
language obtained from L by adding to it the set of individual constants
{a | a ∈ D}. The L(D)-structure which is induced by S is 〈D, I ′〉, where I ′

is the unique extension of I to L(D) such that I ′(a) = a.

Henceforth we shall identify an L-structure S with the L(D)-structure
which is induced by S.

Here is the substitutional counterpart of the notion of a valuation given
in Definition 126:

DEFINITION 129. Let S = 〈D, I〉 be an L-structure for a matrix P =
〈V,D,O〉. The valuation vS : Frmcl

L(D) → V is defined as follows:

• vS(p(t1, ..., tn)) = I(p)(I(t1), ..., I(tn))

• vS(¦(ψ1, ..., ψn)) = ¦̃(v(ψ1), ..., v(ψn))

• vS(Qxψ) = Q̃({vS(ψ{a/x}) | a ∈ D})

For reasons that will become clear in the sequel, in what follows we shall
use the substitutional approach to define the consequence relations we are
interested in, and not the objectual one.

DEFINITION 130. Let S = 〈D, I〉 be an L-structure for a matrix P =
〈V,D,O〉.

• The valuation vS satisfies a sentence ψ (denoted by vS |= ψ), if
vS(ψ) ∈ D. vS is a model of Γ ⊆ Frmcl

L(D) (denoted by vS |= Γ),
if vS(ψ) ∈ D for every ψ ∈ Γ.

• vS satisfies a formula ϕ ∈ FrmL, denoted by vS |= ϕ, if for every
closed L(D)-instance ϕ′ of ϕ, (vS(ϕ′) is defined and) vS(ϕ′) ∈ D. vS

satisfies a set of formulas Γ ⊆ FrmL, denoted by vS |= Γ, if for every
closed L(D)-instance Γ′ of Γ, vS |= Γ′.

In analogy to the propositional case (recall Definition 1), a (Taskian)
logic L is a pair 〈L,`〉, where L is a language and ` is a structural and
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consistent scr (tcr) for L.24 However, unlike in the propositional case, when
variables and quantifiers are involved, there is more than one natural way
of defining consequence relations induced by a given matrix. Two such
relations which are usually associated with first-order logic are the truth and
the validity consequence relations ([Avron, 1991]). Using the substitutional
approach they can be generalized to the context of many-valued matrices
as follows:

DEFINITION 131.

• For sets of L-formulas Γ, ∆, we say that Γ `t
P ∆ if for every L-

structure S and every closed L(D)-instance Γ′ ∪∆′ of Γ∪∆: vS |= Γ′

implies that vS |= ψ for some ψ ∈ ∆′.

• We say that Γ `v
P ∆ if for every L-structure S: vS |= Γ implies that

vS |= ψ for some ψ ∈ ∆.

To demonstrate the difference between the validity and the truth con-
sequence relations, consider a matrix P for a first-order language L with
the standard interpretations of the quantifiers ∀ and ∃ from Example 123.
Then p(x) `v

P ∀xp(x), but p(x) 6`t
P∀xp(x). On the other hand, the classical

deduction theorem holds for `t
P , but not for `v

P . However, the two conse-
quence relations are identical from the point of view of theoremhood (i.e.,
`t
P ψ iff `v

P ψ). This is a special case of the second part of the following
well-known proposition:

PROPOSITION 132. Let P be a matrix for L.

1. Γ `t
P ψ implies Γ `v

P ψ.

2. If Γ ⊆ Frmcl
L (i.e, Γ contsists of sentences), then Γ `t

P ψ iff Γ `v
P ψ.

8 NMATRICES WITH QUANTIFIERS

The extension of Nmatrices to languages with quantifiers is a natural gen-
eralization of Definition 122:

DEFINITION 133. An Nmatrix for L is a tuple M = 〈V,D,O〉, where:

• V is a non-empty set of truth-values,

• D is a non-empty proper set of V,

• O includes a function ¦̃ : Vn → 2V \ {∅} for every n-ary connective of
L, and a function Q̃ : 2V \ {∅} → 2V \ {∅} for every quantifier of L.

24The extension of the notion of structurality to languages with quantifiers is not an
immediate matter. We omit the technical details.
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EXAMPLE 134. Consider the NmatrixM = 〈{t, f}, {t},O〉 for a first-order
language L, where O contains the following (non-standard) interpretations
of ∀ and ∃:

H ∀̃(H) ∃̃(H)
{t} {t, f} {t}
{t, f} {f} {t, f}
{f} {f} {f}

L-structures for Nmatrices are defined like in Definition 124. However,
it seems difficult to apply the objectual approach to quantification in the
context of Nmatrices. The reason for this is that unlike the deterministic
case (recall Definition 126), an L-structure S and an assignment G do not
uniquely determine the valuation vS,G in a NmatrixM. Thus the expression
vS,G[x:=a] (used in Definition 126) is not well-defined. The substitutional
approach, in contrast, is suitable for the non-deterministic context.

DEFINITION 135. Let S = 〈D, I〉 be an L-structure.

1. A set of sentences W ⊆ Frmcl
L(D) is closed under subsentences with

respect to S if (i) for every n-ary connective ¦ of L: ψ1, ..., ψn ∈ W
whenever ¦(ψ1, ..., ψn) ∈ W , and (ii) for every quantifier Q of L and
every a ∈ D: if Qxψ ∈ W , then ψ{a/x} ∈ W .

2. Let W ⊆ Frmcl
L(D) be some set of sentences closed under subsentences

with respect to S. We say that a partial S-valuation v : W → V is
semi-legal in M if it satisfies the following conditions:

• v(p(t1, ..., tn)) = I(p)(I(t1), ..., I(tn))

• v(¦(ψ1, ..., ψn)) ∈ ¦̃M(v(ψ1), ..., v(ψn))

• v(Qxψ) ∈ Q̃({v(ψ{a/x}) | a ∈ D})
A partial S-valuation v in M is a (full) S-valuation if its domain is
Frmcl

L(D).

It is easy to see that the above notion of a valuation is now well-defined. This
is due to the fact that the truth-value v(Qxψ) depends on the truth-values
assigned by v itself to the subsentences of Qxψ (unlike in our previous
attempt using objectual quantification, where vS,G[x:=a] was used in the
definition of vS,G).

REMARK 136. It is important to stress the difference between our use of
notation in the above definition and the one used in Definition 129. Given a
(deterministic) matrix P and an L-structure S, the valuation vS is uniquely
determined by S and P. However, this is not the case for non-deterministic
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valuations in an Nmatrix M (although S does determine the truth-values
of the atomic sentences), and so we write “an S-valuation v” (compare to
“the valuation vS”).

DEFINITION 137. Let S = 〈D, I〉 be an L-structure for an Nmatrix M =
〈V,D,O〉. Let W ⊆ Frmcl

L(D) be some set of sentences closed under sub-
sentences with respect to S, and let v : W → V be a partial S-valuation.

• v satisfies a sentence ψ ∈ W (denoted by v |= ψ), if v(ψ) ∈ D. v is a
model of Γ ⊆ W (denoted by v |= Γ), if v(ψ) ∈ D for every ψ ∈ Γ.

• v satisfies a formula ϕ ∈ FrmL (denoted by v |= ϕ), if for every closed
L(D)-instance ϕ′ of ϕ, (v(ϕ′) is defined and) v(ϕ′) ∈ D. v is a model
of Γ ⊆ FrmL (denoted by v |= Γ), if for every closed L(D)-instance
Γ′ of Γ, v |= Γ′.

The following analycity property is analogous to that given in Proposition
27 for the propositional case:

PROPOSITION 138. Let M be an Nmatrix for L and S an L-structure for
M. Any partial S-valuation v, which is semi-legal in M can be extended to
a full S-valuation, which is semi-legal in M.

At this point we note two important problems concerning the above naive
semantics, which do not arise on the propositional level. The first problem
is related to the principle of α-equivalence, capturing the idea that the
names of bound variables are immaterial. It is of course quite reasonable
to expect that in any useful semantics two α-equivalent sentences are al-
ways assigned the same truth-value. However, this is not necessarily the
case for valuations in Nmatrices as defined above. As an example, con-
sider a language La with the unary connective ¬ and the quantifier ∀. Let
Ma = 〈{t, f}, {t},O〉 be the Nmatrix for La with the standard (determinis-
tic) interpretation of ∀ and the non-deterministic interpretation of ¬ given
in Example 21. Let Sa = 〈{a}, Ia〉 be the simple La-structure, such that
Ia(ca) = a and Ia(p)(a) = t. Clearly, there is a Ma-semi-legal Sa-valuation
v, such that v(¬∀xp(x)) = t and v(¬∀yp(y)) = f. Hence two α-equivalent
formulas are not necessarily assigned the same truth-value by a Ma-semi-
legal Sa-valuation!25 The second problem is related to the nature of identity
and becomes really crucial if equality is added to the language. Suppose we
have two terms, denoting the same object. It is again reasonable to expect
that we should be able to use these terms interchangeably, or substitute one
term for another in any context. Returning to our example, suppose we
add another constant da to the language La and extend the structure Sa

to interpret it: I(da) = a. Thus the constants da and ca refer to the same

25Of course, two different occurrences of the same formula are still assigned the same
truth-value, since a valuation is a mapping from formulas to truth-values.
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element a, but there is a Ma-legal valuation v, such that v(¬p(ca)) = t and
v(¬p(da)) = f.

These problems are directly related to introducing a new level of freedom
by the non-deterministic choice of truth-values for quantified formulas. In
view of these issues, further limitations need to be imposed on this choice.
This can be done by introducing the following congruence relation, captur-
ing these principles.

DEFINITION 139. Let S = 〈D, I〉 be an L-structure for an Nmatrix M.
The relation ∼S between terms of L(D) is defined as follows:

• x ∼S x for every variable x of L.

• If t, t′ ∈ Trmcl
L(D) and I[t] = I[t′], then t ∼S t′.

• If t1 ∼S t′1, ..., tn ∼S t′n, then f(t1, ..., tn) ∼S f(t′1, ..., t
′
n).

The relation ∼S between formulas of L(D) is defined as follows:

• If t1 ∼S t′1, t2 ∼S t′2, ..., tn ∼S t′n, then p(t1, ..., tn) ∼S p(t′1, ..., t
′
n).

• If ψi ∼S ϕi for all 1 ≤ i ≤ n, then ¦(ψ1, ..., ψn) ∼S ¦(ϕ1, ..., ϕn) for
every n-ary connective ¦ of L.

• If ψ{z/x} ∼S ϕ{z/y}, where x, y are distinct variables and z is a new
variable, then Qxψ ∼S Qyϕ for every quantifier Q of L.

The following lemma is easy to prove:

LEMMA 140. Let S be an L-structure, and let t1, t2 be closed terms of L(D)
such that t1 ∼S t2. Let ψ1, ψ2 be L(D)-formulas such that ψ1 ∼S ψ2. Then
ψ1{t/x} ∼S ψ2{t2/x}.

Using the above congruence relation, we can now modify Definition 135
as follows:

DEFINITION 141. Let S be an L-structure and M an Nmatrix for L. Let
W ⊆ Frmcl

L(D) be some set of sentences closed under subsentences with
respect to S. A partial S-valuation v : W → V is ∼S-legal in M if it is
semi-legal in M and for every ψ, ϕ ∈ W : ψ ∼S ϕ implies v(ψ) = v(ϕ).

Now we come to the definition of consequence relations induced by Nma-
trices, analogous to Definition 131:

DEFINITION 142.

• For sets of L-formulas Γ, ∆, we say that Γ `t
M ∆ if for every L-

structure S, every S-valuation v which is ∼S-legal in M, and every
closed L(D)-instance Γ′ ∪∆′ of Γ∪∆: v |= Γ′ implies v |= ψ for some
ψ ∈ ∆′.
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• We say that Γ `v
M ∆ if for every L-structure S and S-valuation v

which is ∼S-legal in M: v |= Γ implies v |= ψ for some ψ ∈ ∆.

The following extension of Proposition 132 to the context of Nmatrices
can be easily proved:

PROPOSITION 143. Let M be an Nmatrix for L.

1. Γ `t
M ψ implies Γ `v

M ψ.

2. If Γ ⊆ Frmcl
L (i.e, Γ contains only closed formulas), then Γ `t

M ψ iff
Γ `v

M ψ.

As for analycity, the following analogue of Proposition 138 can be proved
(the presence of the ∼S-relation makes its proof less trivial):

PROPOSITION 144. Let M be an Nmatrix for L and S an L-structure.
Then any partial S-valuation which is ∼S-legal in M can be extended to a
full S-valuation which is ∼S-legal in M.

We end this section by generalizing the notions of reduction and refine-
ment from Definition 30 to languages with quantifiers:

DEFINITION 145. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be two
Nmatrices for L.

1. A reduction of M1 to M2 is a function F : V1 → V2, such that:

• For every x ∈ V1, x ∈ D1 iff F (x) ∈ D2.

• F (y) ∈ ¦̃M2(F (x1), ..., F (xn)) for every n-ary connective ¦ of L
and every x1, ..., xn, y ∈ V1, such that y ∈ ¦̃M1(x1, ..., xn).

• F (y) ∈ Q̃M2({F (z) | z ∈ H}) for every quantifier Q of L, every
y ∈ V1 and H ∈ 2V1 \ {∅}, such that y ∈ Q̃M1(H).

2. M1 is a refinement of M2 if there exists a reduction of M1 to M2.

THEOREM 146. Let M1 be a refinement of M2. Then `t
M2
⊆ `t

M1
and

`v
M2
⊆ `v

M1
.

REMARK 147. Again an important case in which M1 = 〈V1,D1,O1〉 is a
refinement of M2 = 〈V2,D2,O2〉 is when V1 ⊆ V2, D1 = D2 ∩V1, ¦̃M1(~x) ⊆
¦̃M2(~x) for every n-ary connective ¦ of L and every ~x ∈ Vn

1 , and Q̃M1(H) ⊆
Q̃M2(H) for every quantifier Q of L and every H ∈ 2V1 \ {∅}. It is easy
to see that the identity function on V1 is in this case a reduction of M1 to
M2. We will refer to this kind of refinement as simple.
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9 THE FIRST-ORDER CASE

Next we focus on the first-order quantifiers ∀ and ∃ with their natural
interpretations. Throughout this section we assume that ∀ and ∃ are in L.
In Example 123 we have seen the standard interpretation of these quantifiers
in the two-valued case. This can be generalized to an arbitrary number of
truth-values as follows:

DEFINITION 148. Let M = 〈V,D,O〉 be an Nmatrix for L. We say that
a quantifier Q is universally interpreted in M if for all H ∈ 2V \ {∅}:

Q̃(H) ⊆
{
D if H ⊆ D
F otherwise

A quantifier Q is existentially interpreted in M if for all H ∈ 2V \ {∅}:

Q̃(H) ⊆
{
D if H ∩ D 6= ∅
F otherwise

At this point we note a problem, the nature of which is very similar to the
problems of the α-equivalence and identity principles which we handled in
the previous section. Namely, in the context of universally and existentially
interpreted quantifiers, one would expect the equivalence of two formulas,
where one is obtained from the other by deletion or addition of void quan-
tifiers (by a void quantifier we mean the case then a variable is bound
vacuously). For instance, we expect ¬∀xp(c) and ¬p(c) to be equivalent.
This, however, is not always the case, again due to the degree of freedom
introduced by the non-deterministic choice in our semantic framework. For
an example, consider again the Nmatrix Ma = 〈{t, f}, {t},O〉 discussed in
the previous section, where ¬ is interpreted like in Example 21, and ∀ and ∃
have the universal and the existential interpretations in Ma (respectively).
Then there exists an L-structure S and an S-valuation v legal in Ma, such
that v(¬∀xp(c)) = t, but v(¬p(c)) = f.
The solution is similar to the one in the previous section: we extend the
congruence relation ∼S to capture the principle of void quantification:

DEFINITION 149. Let L be a language which includes the quantifiers ∀
and ∃ and let S = 〈D, I〉 be an L-structure. ∼S

∀∃ is the minimal congruence
relation between L(D)-formulas, which satisfies: (i) ∼S⊆∼S

∀∃, and (ii) If
ψ ∼S

∀∃ ψ′ and x does not occur free in ψ, then Qxψ ∼S
∀∃ ψ′ for Q ∈ {∀, ∃}.

The following extension of Lemma 140 is again easy to prove:

LEMMA 150. Let S be an L-structure, and let t1, t2 be closed terms of L(D)
such that t1 ∼S t2. Let ψ1, ψ2 be L(D)-formulas such that ψ1 ∼S

∀∃ ψ2. Then
ψ1{t/x} ∼S

∀∃ ψ2{t2/x}.
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DEFINITION 151. Let S be an L-structure and M an Nmatrix for L. Let
W ⊆ Frmcl

L(D) be some set of sentences closed under subsentences with
respect to S. A partial S-valuation v : W → V is ∼S

∀∃-legal in M if it is
semi-legal in M and for every ψ,ϕ ∈ W : ψ ∼S

∀∃ ϕ implies v(ψ) = v(ϕ).

Using the above definition, we can now modify the notions of truth- and
validity-based consequence relations from Definition 142:

DEFINITION 152. The consequence relations `t
M,∀∃ and `v

M,∀∃ are defined
like `t

M and `v
M (respectively), but using ∼S

∀∃ rather than ∼S .

PROPOSITION 153. Let M be an Nmatrix for L.

1. Γ `t
M,∀∃ ψ implies Γ `v

M,∀∃ ψ.

2. If Γ ⊆ Frmcl
L (i.e, Γ contains only closed formulas), then Γ `t

M,∀∃ ψ
iff Γ `v

M,∀∃ ψ.

It should be noted that analycity for ∼S
∀∃ is not always guaranteed. Con-

sider, for instance, an Nmatrix Mv = 〈{t, f}, {t},O〉 for some first-order
language L, with the following interpretation of ∀: ∀̃[{H}] = {t} for every
H ⊆ P+({t, f}). Let S = 〈{a}, I〉 be an L-structure, such that I(c) = a
and I(p) = ∅. Let W = {p(c)}. Then no partial valuation on W can
be extended to a full M-legal valuation v which respects ∼S

∀∃. Next we
characterize those Nmatrices in which this problem does not occur.

DEFINITION 154. Let L include propositional connectives and (at most)
the quantifiers ∀ and ∃. An Nmatrix M for L is {∀,∃}-analytic if every
L-structure S has the property that every partial S-valuation which is ∼S

∀∃-
legal in M can be extended to a full S-valuation which is ∼S

∀∃-legal in M.

THEOREM 155. Let M = 〈V,D,O〉 be an Nmatrix for a language which
in addition to propositional connectives includes (at most) the quantifiers ∀
and ∃. M is {∀, ∃}-analytic iff for every a ∈ V: a ∈ Q̃[{a}] for Q ∈ {∀, ∃}.

Next we turn to the problem of extending a propositional formal system
having a nondeterministic semantics to the first-order level. We take as an
example HLK+, the Hilbert-type system which corresponds to the basic
Nmatrix MB

4 from Definition 80 (see Remark 79).

DEFINITION 156. QHL0 is obtained by adding to HLK+ the following
standard axioms and inference rules for ∀ and ∃:

∀xψ ⊃ ψ{t/x} ψ{t/x} ⊃ ∃xψ

(ϕ ⊃ θ)
(ϕ ⊃ ∀xθ)

(θ ⊃ ϕ)
(∃xθ ⊃ ϕ)

where t is any term free for x in ψ, and x does not occur free in ϕ.



60 ARNON AVRON AND ANNA ZAMANSKY

Unfortunately, QHL0 is not very useful. Due to the absence of axioms
for negation, neither the α-equivalence principle, nor the void quantification
principle, are derivable in it. For instance, 6`QHL0¬∀xp(x) ↔ ¬∀yp(y), and
6`QHL0(¬∀xp(c)) ↔ ¬p(c). To handle this, we follow da Costa’s approach
from [da Costa, 1974]:

DEFINITION 157. ∼dc is the minimal congruence relation between formu-
las, which satisfies for Q ∈ {∀, ∃}:

• If ψ{z/x} ∼dc ψ′{z/y}, where z is fresh, then Qxψ ∼dc Qyψ′.

• If ψ ∼dc ψ′ and x does not occur free in ψ, then Qxψ ∼dc ψ′.

DEFINITION 158. Let QHL be the system obtained from QHL0 by adding
the axiom (DC) ψ ⊃ ψ′ whenever ψ ∼dc ψ′.

DEFINITION 159. Let the Nmatrix QMB
4 be the extension of the Nmatrix

MB
4 (Definition 80) with the following interpretations of ∀ and ∃:

∀̃(H) =

{
D if H ⊆ D
F otherwise

∃̃(H) =

{
D if H ∩ D 6= ∅
F otherwise

PROPOSITION 160. Γ `QHL ψ iff Γ `v
QMB

4 ,∀∃ ψ.

The proof is very similar to the proof of Theorem 163 below.

10 AN APPLICATION: NMATRICES FOR FIRST-ORDER LOGICS
OF FORMAL INCONSISTENCY

In this section we further apply the framework of Nmatrices with first-
order quantifiers to provide semantics for first-order LFIs (the propositional
fragments of which were already handled in section 6). For simplicity of
presentation, we formulate these logics in terms of Hilbert-style systems,
rather than in terms of abstract consequence relations. The results of this
section are mainly taken from [Avron and Zamansky, 2007d; Avron and
Zamansky, 2007b]. Throughout it, we let LC = {∨,∧,⊃,¬, ◦, ∀, ∃}.

Our starting point will be the basic paraconsistent system QHB, ob-
tained from QHL (Definition 158) by the addition of the following schemata:

(⇒ ¬) ϕ ∨ ¬ϕ (b) (◦ϕ ∧ ¬ϕ ∧ ϕ) ⊃ ψ
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CONVENTION 161. QHB is the obvious first-order extension of the Hilbert-
style axiomatization of the logic B from Example 111. Accordingly, in this
section we shall refer to QHB simply as B.

We obtain a large family of first-order LFIs by extending B with various
combinations of axioms from HLFIR (Definition 106), to which we add
the following quantifier-related versions of the axioms (see, e.g. [Carnielli
et. al., 2000]) (a) and (o) which were considered in section 6: 26

(aQ) ∀x◦ϕ⊃ (◦(Qxϕ)) (oQ) ∃x◦ϕ⊃ (◦(Qxϕ)) (Q ∈ {∀,∃})

DEFINITION 162. Let QR = HLFIR ∪ {(a∀), (a∃), (o∀), (o∃)}. For a set
S ⊆ QR, B[S] is the system obtained by adding the axioms in S to B.

Our Nmatrix for B is a straightforward extentension of the Nmatrix MB
5

from Example 111:

THEOREM 163. Let QMB
5 be the extension of MB

5 with the following
interpretations of quantifiers:

∀̃(H) =

{
D if H ⊆ D
F otherwise

∃̃(H) =

{
D if H ∩ D 6= ∅
F otherwise

Then Γ `v
QMB

5 ,∀∃ ψ0 iff Γ `B ψ0.

Proof. The proof of soundness is not hard and is left to the reader. For
completeness, we first note that by definition of the interpretation of ∀ in
QMB

5 , ∀xϕ `QMB
5

ϕ and ϕ `QMB
5
∀xϕ for every formula ϕ and every

variable x. Obviously the same relations hold between ϕ and ∀xϕ also in
B. It follows that we may assume that all formulas in Γ∪{ψ0} are sentences.
It is also easy to see that we may restrict ourselves to sentences in σr, the
signature consisting of all the constants, function, and predicate symbols
occurring in Γ ∪ {ψ0}. Now suppose that Γ 6 `B ψ0. We will construct an
σr-structure S and a QMB

5 -legal S-valuation v, such that v |= Γ, but v 6|=ψ0.
Let L′ be the language obtained from σr by adding a countably infinite set of
new constants. It is a standard matter to show (using a usual Henkin-type
construction) that Γ can be extended to a maximal set Γ∗ of sentences in
L′, such that: (i) Γ∗ 6`B ψ0, (ii) Γ ⊆ Γ∗, (iii) For every L′-sentence ∃xψ ∈ Γ∗

there is a constant c of L′, such that ψ{c/x} ∈ Γ∗, and (iv) For every
L′-sentence ∀xψ 6∈ Γ∗, there is a constant c of L′, such that ψ{c/x} 6∈ Γ∗.
(The last property follows from property (iii), the deduction theorem for B,
and the fact that for any x 6∈ Fv(ϕ), (∀xψ ⊃ ϕ) ⊃ ∃x(ψ ⊃ ϕ) is provable
in B.) It is now easy to show that Γ∗ has the following properties: (1) If

26See [Zamansky and Avron, 2006b; Avron and Zamansky, 2007d; Avron and Zaman-
sky, 2007b] for other quantifier-related axioms treated in the context of Nmatrices.
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ψ 6∈ Γ∗, then ψ ⊃ ψ0 ∈ Γ∗, (2) ψ ∨ ϕ ∈ Γ∗ iff either ϕ ∈ Γ∗ or ψ ∈ Γ∗,
(3) ψ ∧ ϕ ∈ Γ∗ iff both ϕ ∈ Γ∗ and ψ ∈ Γ∗, (4) ϕ ⊃ ψ ∈ Γ∗ iff either
ϕ 6∈ Γ∗ or ψ ∈ Γ∗, (5) Either ψ ∈ Γ∗ or ¬ψ ∈ Γ∗, (6) If ψ and ¬ψ are
both in Γ∗, then ◦ψ 6∈ Γ∗, (7) If ψ ∈ Γ∗, then for every L′-sentence ψ′ such
that ψ′ ∼dc ψ: ψ′ ∈ Γ∗, (8) If ∀xθ ∈ Γ∗, then for every closed L′-term t:
θ{t/x} ∈ Γ∗. If ∀xθ 6∈ Γ∗, then there is some closed term tθ of L′, such
that θ{tθ/x} 6∈ Γ∗, (9) If ∃xθ ∈ Γ∗, then there is some closed term tθ of L,
such that θ{tθ/x} ∈ Γ∗. If ∃xθ 6∈ Γ∗, then for every closed term t of L′:
θ{t/x} 6∈ Γ∗.
The L′-structure S = 〈D, I〉 is defined as follows:

• D is the set of all the closed terms of L′.

• For every constant c of L′: I(c) = c.

• For every t1, ..., tn ∈ D: I(f)(t1, ..., tn) = f(t1, ..., tn).

• For every t1, ..., tn ∈ D: I(p)(t1, ..., tn) = 〈x, y, z〉, where x, y, z ∈
{0, 1} and (i) x = 1 iff p(t1, ..., tn) ∈ Γ∗, (ii) y = 1 iff ¬p(t1, ..., tn) ∈
Γ∗, (iii) z = 1 iff ◦p(t1, ..., tn) ∈ Γ∗.

Given an L′(D)-sentence ψ, let the sentence ψ̃ be obtained by replacing
all individual constants t occurring in ψ by the respective (closed) term t.
Then the following lemma is easy to prove:

LEMMA 164. For any ψ, ϕ ∈ Frmcl
L′(D): if ψ ∼S

∀∃ ϕ, then ψ̃ ∼dc ϕ̃.

The refuting S-valuation v : Frmcl
L′(D) → V is defined as follows:

v(ψ) = 〈xψ, yψ, zψ〉

where xψ, yψ, zψ ∈ {0, 1} and: (i) xψ = 1 iff ψ̃ ∈ Γ∗, (ii) yψ = 1 iff ¬̃ψ ∈ Γ∗,
(iii) zψ = 1 iff ◦̃ψ ∈ Γ∗.

Let ψ, ψ′ be two L′(D)-sentences, such that ψ ∼S
∀∃ ψ′. Then by lemma

164, ψ̃ ∼dc ψ̃′, and by property 7 of Γ∗, ψ̃ ∈ Γ∗ iff ψ̃′ ∈ Γ∗. Similarly, since
¬ψ ∼S

∀∃ ¬ψ′ and ◦ψ ∼S
∀∃ ◦ψ′, ¬ψ̃ = ¬̃ψ ∼dc ¬̃ψ′ = ¬ψ̃′ and ◦̃ψ ∼dc ◦̃ψ′.

Thus ¬̃ψ ∈ Γ∗ iff ¬̃ψ′ ∈ Γ∗ and ◦̃ψ ∈ Γ∗ iff ◦̃ψ′ ∈ Γ∗. Hence v(ψ) = v(ψ′)
and so v respects the ∼S

∀∃ relation.
It remains to check that v respects the interpretations of the connectives
and quantifiers in QM5. This is guaranteed by the properties of Γ∗. We
prove this for the case of ∀:

• Let ∀xψ be an L′(D)-sentence, such that {v(ψ{a/x}) | a ∈ D} ⊆ D.
Suppose by contradiction that v(∀xψ) 6∈ D. Then ∀̃xψ = ∀xψ̃ 6∈ Γ∗.
By property 8 of Γ∗, there exists some closed L′-term t, such that
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ψ̃{t/x} 6∈ Γ∗. Then v(ψ̃{t/x}) 6∈ D. Since ψ ∼S
∀∃ ψ̃, by lemma

150 also ψ{t/x} ∼S
∀∃ ψ̃{t/x}. We have already shown that v re-

spects the ∼S
∀∃ relation, and so v(ψ{t/x}) 6∈ D. By lemma 150 again,

ψ{t/x} ∼S
∀∃ ψ{t/x}, and so v(ψ{t/x}) 6∈ D, in contradiction to our

assumption.

• Let ∀xψ be an L′(D)-sentence, such that {v(ψ{a/x}) | a ∈ D} ∩
F 6= ∅. Suppose by contradiction that v(∀xψ) 6∈ F . Then ∀xψ̃ ∈
Γ∗. By property 8 of Γ∗, for every closed L′-term t: ψ̃{t/x} ∈ Γ∗.
Then v(ψ̃{t/x}) ∈ D. Similarly to the previous case, we get that
v(ψ{a/x}) ∈ D for every a ∈ D, in contradiction to our assumption.

Now for every L′-sentence ψ: v(ψ) ∈ D iff ψ ∈ Γ∗. So v |= Γ (recall that
Γ ⊆ Γ∗), but v 6|=ψ0. ¥

Like in the propositional case, the systems obtained by adding some set
of axioms from QR to B can be characterized by the simple refinement of
QMB

5 induced by the conditions corresponding to the axioms from QR:

DEFINITION 165.

1. Let Con = {〈x, y, 1〉 | x, y ∈ {0, 1}}.
• For r ∈ HLFIR, C(r) is defined like in Definition 82 (for NIR)

or Definition 108 (for FCR).
• C(aQ): If H ⊆ Con, then Q̃(H) ⊆ Con

• C(oQ): If H ∩ Con 6= ∅, then Q̃(H) ⊆ Con

2. For S ⊆ QR, C(S) = {Cr | r ∈ S}, and QMS is the weakest simple
refinement of QMB

5 in which the conditions in C(S) are all satisfied.

EXAMPLE 166. Let Si = {(i)}, Sa = Si ∪ {(a)} and So = Si ∪ {(o)}.
The interpretations of ∀ and ∃ are defined in QMSi , QMSa and QMSo

(respectively) as follows:27

QMSi :
H ∀̃[H] ∃̃[H]
{t} {t, I} {t, I}
{f} {f} {f}
{I} {t, I} {t, I}
{t, f} {f} {t, I}
{t, I} {t, I} {t, I}
{f, I} {f} {t, I}
{t, f, I} {f} {t, I}

27Recall that by C(i1) and C(i2) the truth-values tI and fI are deleted and we are left
with only three truth-values: t, f and I.
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QMSo
: QMSa

:
H ∀̃[H] ∃̃[H]
{t} {t} {t}
{f} {f} {f}
{I} {t, I} {t, I}
{t, f} {f} {t}
{t, I} {t} {t}
{f, I} {f} {t}
{t, f, I} {f} {t}

H ∀̃[H] ∃̃[H]
{t} {t} {t}
{f} {f} {f}
{I} {t, I} {t, I}
{t, f} {f} {t}
{t, I} {t, I} {t, I}
{f, I} {f} {t, I}
{t, f, I} {f} {t, I}

THEOREM 167. For S ⊆ QR, Γ `v
QMS ,∀∃ ψ iff Γ `B[S] ψ.

And what about systems which include the problematic axiom (l) (see
Figure 4 and Section 6.2)? It suffices to say that they can be handled in
a way which is very similar to the systems discussed so far in this section.
The only difference is that their semantics is based on the Nmatrix MBl

from Definition 114 rather than on MB
5 .

EXAMPLE 168. da Costa’s well-known first-order logic C∗1 is the ◦-free
fragment of B[{(i), (c), (a)}] (note that the axioms (a∀) and (a∃) are also
included). Let MC∗1 be the Nmatrix which extends MC1 from Corollary
120 with the following interpretations of quantifiers:

∀̃(H) =





T if H ⊆ T
D if H ⊆ D and H ∩ I 6= ∅
F otherwise

∃̃(H) =





T if H ⊆ T ∪ F and H ∩ T 6= ∅
D if H ∩ I 6= ∅
F otherwise

Then Γ `v
QMC∗1 ,∀∃ ψ iff Γ `C∗1 ψ.

11 CANONICAL DEDUCTION SYSTEMS AND NMATRICES WITH
MORE GENERAL QUANTIFIERS

The main goal of this section is to extend the notion of coherent canonical
calculi from the propositional case to the level of multi-ary quantifiers. After
that we briefly summarize the main related results, omitting the (quite
complicated) technical details, which can be found in [Avron and Zamansky,
2008b].
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H ∀̃(H) ∃̃(H) Q̃2(H)
{〈t, t〉} {t} {t} {t, f}
{〈t, f〉} {f} {t} {t}
{〈f, f〉} {t} {f} {t, f}
{〈f, t〉} {t} {t} {f}

{〈t, t〉, 〈t, f〉} {f} {t} {t, f}
{〈t, t〉, 〈f, t〉} {t} {t} {t, f}
{〈t, t〉, 〈f, f〉} {t} {t} {t, f}
{〈f, t〉, 〈t, f〉} {f} {t} {t}
{〈f, t〉, 〈f, f〉} {t} {t} {t}
{〈t, f〉, 〈f, f〉} {f} {t} {t}

{〈t, t〉, 〈t, f〉, 〈f, t〉} {f} {t} {f}
{〈t, t〉, 〈f, f〉, 〈f, t〉} {t} {t} {t, f}
{〈f, t〉, 〈t, f〉, 〈f, f〉} {f} {t} {t}
{〈f, f〉, 〈t, f〉, 〈f, t〉} {f} {t} {t, f}

{〈t, t〉, 〈t, f〉, 〈f, t〉, 〈f, f〉} {f} {t} {t}

Figure 5. The interpretation of the quantifiers in Example 170

Henceforth L is a language with multi-ary quantifiers28. Recall that the
interpretation of a unary quantifier Q1 in an Nmatrix M = 〈V,D,O〉 for
L is a function Q̃1 : 2V \ {∅} → V. Similarly, an n-ary quantifier will be
interpreted by a function Q̃n : 2V

n \ {∅} → V . Thus the following is an
extension of Definition 133 to the level of multi-ary quantifiers:

DEFINITION 169. An Nmatrix for L is a tuple M = 〈V,D,O〉, where:

• V is a non-empty set of truth-values,

• D is a non-empty proper set of V,

• O includes a function ¦̃ : Vn → 2V \ {∅} for every n-ary connective,
and a function Q̃ : 2V

n \ {∅} → 2V \ {∅} for every n-ary quantifier.

EXAMPLE 170. Consider the Nmatrix M = 〈{t, f}, {t},O〉 for a language
with the standard bounded universal and existential (binary) quantifiers ∀
and ∃ used in syllogistic reasoning (see footnote 23). In addition, the lan-
guage contains a binary quantifier Q2. The interpretations of the quantifiers
in M are given in Figure 5.

The congruence relations ∼S and ∼S
∀∃ (Definitions 139 and 149) are nat-

urally extended to languages with multi-ary quantifiers. All is needed is to
28For simplicity of presentation, we assume that the language L does not include any

propositional connectives. The latter can anyway be thought of as multi-ary quantifiers
which bind no variables.
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modify the third condition of the second part of Definition 135 as follows:

v(Qx(ψ1, ..., ψn)) ∈ Q̃M(〈{v(ψ1{a/x}), ..., v(ψn{a/x})〉 | a ∈ D})

After this modification, Definitions 141 and 142 remain the same. Then to
work with signed formulas, we need to extend also the semantic notions from
Definitions 35 and 48 to languages with multi-ary quantifiers. This is done
by replacing “M-legal valuation v” by “a structure S and an S-valuation
v which is ∼S-legal in M”, and `d

M by `t
M. We then have the following

counterpart of Proposition 49:

PROPOSITION 171. Let M = 〈V,D,O〉 be an Nmatrix for L. Then:

Γ `t
M ∆ iff {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} `t

M ∅ iff `t
M F : Γ∪D : ∆

In order to represent canonical rules with multi-ary quantifiers, we shall
use a simplified language which abstracts over the internal structure of L-
formulas. For a single canonical rule introducing some n-ary quantifier, this
representation language includes the unary predicate symbols p1, ..., pn and
some finite sets of variables and constants: a constant signifies the case of
a term variable, while a variable signifies an eigenvariable.

DEFINITION 172. For n ≥ 1 and a set of constants Con, QLn(Con) is the
first-order language with n unary predicate symbols p1, ..., pn and the set of
constants Con (QLn(Con) contains no quantifiers or logical connectives).

CONVENTION 173. In case the set Con is clear from context, we will
write QLn instead of QLn(Con).

DEFINITION 174. A signed canonical quantifier rule of arity n over a finite
set of signs V is an expression of the form [Θ/ S : Q], where Q is an n-ary
quantifier, S ⊆ V, and Θ = {Σ1, ..., Σm}, where for all 1 ≤ j ≤ m, Σj is a
clause over QLn (i.e. it consists of signed formulas of the form s : pi(x) or
s : pi(c), where s ∈ V and 1 ≤ i ≤ n).

EXAMPLE 175. Using the notation in Remark 34, applications of the stan-
dard Gentzen-type introduction rules for ∀ have the following forms:

Ω, t : ψ{z/w}
Ω, t : ∀wψ

Ω, f : ψ{t/w}
Ω, f : ∀wψ

where z and t are free for w in ψ and z does not occur free in Ω ∪ {∀wψ}.
The canonical representation of these rules will be:

[{{t : p1(x)}}/ {t} : ∀] [{{f : p1(c1)}}/{f} : ∀]

This shows that for instantiating a canonical rule we need a context and
some notion of a mapping from the terms and formulas of QLn to the terms



NON-DETERMINISTIC SEMANTICS FOR LOGICAL SYSTEMS 67

and formulas of L, which handles with care the choice of terms and variables
of L, so that they satisfy the appropriate conditions.

DEFINITION 176. For a canonical rule R = [Θ/ S : Q] and a sequent
Ω over L, an 〈R, Ω, z〉-mapping is any function χ from the predicate sym-
bols, terms and formulas of QLn to formulas and terms of L, satisfying the
following conditions:

• For every 1 ≤ i ≤ n, χ(pi) is an L-formula.

• χ(y) is a variable of L.

• χ(x) 6= χ(y) for every two variables x 6= y of QLn.

• χ(c) is an L-term, such that χ(x) does not occur in χ(c) for any
variable x occurring in Θ.

• For every 1 ≤ i ≤ n, if pi(t) occurs in Θ, χ(t) is a term free for
z in χ(pi), and if t is a variable, then χ(t) does not occur free in
Ω ∪ {Qz(χ(p1), ..., χ(pn))}.

• χ(pi(t)) = χ(pi){χ(t)/z}.
χ is extended to sequents as follows: χ(Σ) = {a : χ(ψ) | a : ψ ∈ Σ}.

DEFINITION 177. Let Q be an n-ary quantifier. An application of a
canonical quantifier rule R = [{Σ1, ..., Σm}/ S : Q] is any inference step
of the form:

Ω ∪ χ(Σ1) . . . Ω ∪ χ(Σm)
Ω ∪ S : Qx(χ(p1), . . . , χ(pn))

where Ω is a sequent and χ is some 〈R, Ω, x〉-mapping.

EXAMPLE 178. The introduction rules for the bounded universal binary
quantifier ∀ over V = 〈t,>, f,⊥〉 can be formulated as follows (taking t
and > as the designated truth-values, this is a natural generalization of its
classical interpretation):

[ { {f : p1(x),⊥ : p1(x), t : p2(x),> : p2(x)} } / {t,>} : ∀ ]

[ { {t : p1(c1),> : p1(c1)}, {f : p2(c1),⊥ : p2(c1)} } / {f,⊥} : ∀ ]

Their applications have the forms:

Ω ∪ {f : ψ1{y/z},⊥ : ψ1{y/z}, t : ψ2{y/z},> : ψ2{y/z}}
Ω ∪ {t : ∀z(ψ1, ψ2),> : ∀z(ψ1, ψ2)}

Ω ∪ {t : ψ1{t/z},> : ψ1{t/z}} Ω ∪ {f : ψ2{t/z},⊥ : ψ2{t/z}}
Ω ∪ {f : ∀z(ψ1, ψ2),⊥ : ∀z(ψ1, ψ2)}
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On the level of quantifiers two new elements are added to canonical cal-
culi: the axiom of α-equivalence and the rule of substitution.

DEFINITION 179. Let V = {l1, ..., ln} be a finite set of signs.

1. A logical axiom29 for V is any sequent {l1 : ψ1, l2 : ψ2..., ln : ψn},
where ψ1 ≡α ψ2... ≡α ψn.

2. The substitution rule for V is defined as follows:

Ω
Ω′ Sub

where Ω′ is obtained from Ω by legal substitutions of terms for free
variables.

The following proposition follows from the completeness of many-valued
resolution ([Baaz et. al., 1995]):

PROPOSITION 180. Let Θ be a set of clauses. The empty sequent can be
derived from Θ using cuts and substitutions iff Θ is not satisfiable.

DEFINITION 181. We say that a signed calculus over V is canonical if it
consists of: (i) All logical axioms for V, (ii) The rules of cut, weakening and
substitution, and (iii) A finite number of signed canonical quantifier rules.

Next we extend the propositional criterion of coherence to canonical cal-
culi with multi-ary quantifiers.

DEFINITION 182. For sets of clauses Θ1, ..., Θm, Rnm(Θ1 ∪ ... ∪Θm) is a
set Θ′1 ∪ ... ∪ Θ′m, such that for all 1 ≤ i ≤ n, Θ′i is obtained from Θi by
renaming the constants and variables which occur in Θi, and no constant
or variable occur in both Θ′i and Θ′j in case i 6= j.

DEFINITION 183. A canonical calculus G is coherent if Rnm(Θ1∪ ...∪Θm)
is unsatisfiable whenever [Θ1/ S1 : Q], ..., [Θm/ Sm : Q] is a set of rules of
G, such that S1 ∩ ... ∩ Sm = ∅.

Note that by Proposition 180, the above definition of coherence can be
translated into a purely syntactic one.

PROPOSITION 184. The coherence of a canonical calculus is decidable.

EXAMPLE 185. Consider a canonical calculus over V = {t,>, f} with the
following rules for a unary quantifier Q:

R1 = [ { {t,>} : p1(x) } / {t,>} : Q ]

R2 = [ { {>, f} : p1(y) } / {>, f} : Q ]

R3 = [ { {t, f} : p1(c1) } / {t, f} : Q ]
29This is an extension of the α-axiom from [Zamansky and Avron, 2006c]
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Since {t,>} ∩ {>, f} ∩ {t, f} = ∅, we need to check whether the empty
sequent is derivable (using cuts and substitutions) from the set of premises
of these rules:

{t, f} : p1(c1)
{t,>} : p1(x)
{t,>} : p1(c1)

Sub

{t} : p1(c1)
Cut

{>, f} : p1(y)
{>, f} : p1(c1)

Sub

∅ Cut

Thus this calculus is coherent (note that each pair of premises is consistent,
but the three of them together are not).

Below we briefly review the main results related to the connection be-
tween canonical calculi and finite Nmatrices. What follows is an extension
of the results for the propositional case from Sections 4.1 and 4.2.

The notions of standard, analytic and strong cut-elimination from Defi-
nition 46 can be naturally extended to calculi with multi-ary quantifiers.

THEOREM 186. A coherent canonical calculus which admits strong cut-
elimination can be constructed for every finite Nmatrix.

As a corollary, we have the following extension of Theorem 53:

COROLLARY 187. (Compactness) Let Θ be a set of sequents and Ω a
sequent.

1. If Θ `t
M Ω, then there is some finite Θ′ ⊆ Θ, such that Θ′ `t

M Ω.

2. Let Γ, ∆ be two sets of L-formulas. If Γ `t
M ∆, then there are some

finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, such that Γ′ `t
M ∆′.

In the converse direction, every coherent calculus has a corresponding fi-
nite Nmatrix. Moreover, there is a direct correspondence30 between analytic
cut-elimination, coherence and finite Nmatrices:

THEOREM 188. Let G be a canonical calculus for a language L and a finite
set of signs V. The following statements concerning G are equivalent:

1. G is coherent.

2. G has a strongly characteristic finite Nmatrix.

3. G admits strong analytic cut-elimination.

30Cut-elimination for a general family of sequent calculi with generalized quantifiers
(of which the canonical calculi are specific instances) is investigated in [Ciabattoni and
Terui, 2006b] (extending [Ciabattoni and Terui, 2006a], see Remark 45). Their reductivity
condition can again be shown to be equivalent to coherence.
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