
5

Complexity and Information in Invariant Inference

YOTAM M. Y. FELDMAN, Tel Aviv University, Israel
NEIL IMMERMAN, UMass Amherst, USA

MOOLY SAGIV, Tel Aviv University, Israel
SHARON SHOHAM, Tel Aviv University, Israel

This paper addresses the complexity of SAT-based invariant inference, a prominent approach to safety

verification. We consider the problem of inferring an inductive invariant of polynomial length given a transition
system and a safety property. We analyze the complexity of this problem in a black-box model, called the
Hoare-query model, which is general enough to capture algorithms such as IC3/PDR and its variants. An

algorithm in this model learns about the system’s reachable states by querying the validity of Hoare triples.

We show that in general an algorithm in the Hoare-query model requires an exponential number of queries.

Our lower bound is information-theoretic and applies even to computationally unrestricted algorithms,

showing that no choice of generalization from the partial information obtained in a polynomial number of

Hoare queries can lead to an efficient invariant inference procedure in this class.

We then show, for the first time, that by utilizing rich Hoare queries, as done in PDR, inference can be

exponentially more efficient than approaches such as ICE learning, which only utilize inductiveness checks

of candidates. We do so by constructing a class of transition systems for which a simple version of PDR

with a single frame infers invariants in a polynomial number of queries, whereas every algorithm using only

inductiveness checks and counterexamples requires an exponential number of queries.

Our results also shed light on connections and differences with the classical theory of exact concept learning

with queries, and imply that learning from counterexamples to induction is harder than classical exact learning

from labeled examples. This demonstrates that the convergence rate of Counterexample-Guided Inductive

Synthesis depends on the form of counterexamples.

CCSConcepts: •Theory of computation→Theory and algorithms for application domains;Program
verification; • Software and its engineering→ Formal methods.

Additional KeyWords and Phrases: invariant inference, complexity, synthesis, exact learning, property-directed

reachability

ACM Reference Format:
Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham. 2020. Complexity and Information

in Invariant Inference. Proc. ACM Program. Lang. 4, POPL, Article 5 (January 2020), 30 pages. https://doi.org/

10.1145/3371073

1 INTRODUCTION
The inference of inductive invariants is a fundamental technique in safety verification, and the

focus of many works [e.g. Alur et al. 2015; Bradley 2011; Cousot and Cousot 1977; Dillig et al. 2013;

Eén et al. 2011; Fedyukovich and Bodík 2018; McMillan 2003; Srivastava et al. 2013]. The task is to

find an assertion I that holds in the initial states of the system, excludes all bad states, and is closed

Authors’ addresses: Yotam M. Y. Feldman, Tel Aviv University, Israel, yotam.feldman@gmail.com; Neil Immerman, UMass

Amherst, USA, immerman@cs.umass.edu; Mooly Sagiv, Tel Aviv University, Israel, msagiv@acm.org; Sharon Shoham, Tel

Aviv University, Israel, sharon.shoham@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART5

https://doi.org/10.1145/3371073

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

https://doi.org/10.1145/3371073
https://doi.org/10.1145/3371073
https://doi.org/10.1145/3371073

5:2 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

under transitions of the system, namely, the Hoare triple {I }δ {I } is valid, where δ denotes one step

of the system. Such an I overapproximates the set of reachable states and establishes their safety.

The advance of SAT-based reasoning has led to the development of successful algorithms inferring

inductive invariants using SAT queries. A prominent example is IC3/PDR [Bradley 2011; Eén et al.

2011], which has led to a significant improvement in the ability to verify realistic hardware systems.

Recently, this algorithm has been extended and generalized to software systems [e.g. Bjørner and

Gurfinkel 2015; Cimatti et al. 2014; Hoder and Bjørner 2012; Karbyshev et al. 2017; Komuravelli

et al. 2014].

Successful SAT-based inference algorithms are typically tricky and employ many clever heuristics.

This is in line with the inherent asymptotic complexity of invariant inference, which is hard even

with access to a SAT solver [Lahiri and Qadeer 2009]. However, the practical success of inference

algorithms calls for a more refined complexity analysis, with the objective of understanding the

principles on which these algorithms are based. This paper studies the asymptotic complexity of

SAT-based invariant inference through the decision problem of polynomial length inference in the

black-box Hoare-query model, as we now explain.

Inference of polynomial-length CNF. Naturally, inference algorithms succeed when the

invariant they infer is not too long. Therefore, this paper considers the complexity of inferring
invariants of polynomial length. We follow the recent trend in invariant inference, advocated

in [Bradley 2011; McMillan 2003], to search for invariants in rich syntactical forms, beyond those

usually considered in template-based invariant inference [e.g. Alur et al. 2015; Colón et al. 2003;

Jeannet et al. 2014; Sankaranarayanan et al. 2004; Srivastava and Gulwani 2009; Srivastava et al.

2013], with the motivation of achieving generality of the verification method and potentially

improving the success rate. We thus study the inference of invariants expressed in Conjunctive

Normal Form (CNF) of polynomial length. Interestingly, our results also apply to inferring invariants

in Disjunctive Normal Form.

The Hoare-query model. Our study of SAT-based methods focuses on an algorithmic model

called the Hoare-query model. The idea is that the inference algorithm is not given direct access to

the program, but performs queries on it. In the Hoare-query model, algorithms repeatedly choose

α , β and query for the validity of Hoare triples {α }δ {β}, where δ is the transition relation denoting

one step of the system, inaccessible to the algorithm but via such Hoare queries. The check itself is

implemented by an oracle, which in practice is a SAT solver. This model is general enough to capture

algorithms such as PDR and its variants, and leaves room for other interesting design choices,

but does not capture white-box approaches such as abstract interpretation [Cousot and Cousot

1977]. The advantage of this model for a theoretical study is that it enables an information-based

analysis, which (i) sidesteps open computational complexity questions, and therefore results in

unconditional lower bounds on the computational complexity of SAT-based algorithms captured

by the model, and (ii) grants meaning to questions about generalization from partial information

we discuss later.

Results. This research addresses two main questions related to the core ideas behind PDR, and

theoretically analyzes them in the context of the Hoare-query model:

(1) These algorithms revolve around the question of generalization: from observing concrete

states (to be excluded from the invariant), the algorithm seeks to produce assertions that

hold for all reachable states. The different heuristics in this context are largely understood as

clever ways of performing this generalization. The situation is similar in interpolation-based

algorithms, only that generalization is performed from bounded safety proofs rather than

states. How should generalization be performed to achieve efficient invariant inference?

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:3

(2) A key aspect of PDR is the form of SAT checks it uses, as part of relative inductiveness
checks, of Hoare triples {α }δ {β} in which in general α , β .1 Repeated queries of this form

are potentially richer than presenting a series of candidate invariants, where the check is

{α }δ {α }. Is there a benefit in using relative inductiveness beyond inductiveness checks?

We analyze these questions in the foundational case of Boolean programs, which is applicable to

infinite-state systems through predicate abstraction [Flanagan and Qadeer 2002; Graf and Saïdi

1997; Lahiri and Qadeer 2009], and is also a core part of other invariant inference techniques for

infinite-state systems [e.g. Hoder and Bjørner 2012; Karbyshev et al. 2017; Komuravelli et al. 2014].

In §6, we answer question 1 with an impossibility result, by showing that no choice of gener-

alization can lead to an inference algorithm using only a polynomial number of Hoare queries.

Our lower bound is information-theoretic, and holds even with unlimited computational power,

showing that the problem of generalization is chiefly a question of information gathering.

In §7, we answer question 2 in the affirmative, by showing an exponential gap between algorithms

utilizing rich {α }δ {β} checks and algorithms that perform only inductiveness checks {α }δ {α }.
Namely, we construct a class of programs for which a simple version of PDR can infer invariants

efficiently, but every algorithm learning solely from counterexamples to the inductiveness of candi-

dates requires an exponential number of queries. This result shows, for the first time theoretically,

the significance of relative inductiveness checks as the foundation of PDR’s mechanisms, in com-

parison to a machine learning approach pioneered in the ICE model [Garg et al. 2014, 2016] that

infers invariants based on inductiveness checks only (but of course this result does not mean that

PDR is always more efficient than every ICE algorithm).

Our results also clarify the relationship between the problem of invariant inference and the

classical theory of exact concept learning with queries [Angluin 1987]. In particular, our results

imply that learning from counterexamples to induction is harder than learning from positive &

negative examples (§8), providing a formal justification to the existing intuition [Garg et al. 2014].

This demonstrates that the convergence rate of learning in Counterexample-Guided Inductive

Synthesis [e.g. Jha et al. 2010; Jha and Seshia 2017; Solar-Lezama et al. 2006] depends on the form

of examples. We also establish impossibility results for directly applying algorithms from concept

learning to invariant inference.

The contributions of the paper are summarized as follows:

• We define the problem of polynomial-length invariant inference, and show it is ΣP
2
-complete

(§4), strengthening the hardness result of template-based abstraction by Lahiri and Qadeer

[2009].

• We introduce the Hoare-query model, a black-box model of invariant inference capable of

modeling PDR (§5), and study the query complexity of polynomial-length invariant inference

in this model.

• We show that in general an algorithm in this model requires an exponential number of queries

to solve polynomial-length inference, even though Hoare queries are rich and versatile (§6).

• We also extend this result to a model capturing interpolation-based algorithms (§6.2).

• We show that Hoare queries are more powerful than inductiveness queries (§7). This also

proves that ICE learning cannot model PDR, and that the extension of the model by Vizel

et al. [2017] is necessary.

• We prove that exact learning from counterexamples to induction is harder than exact learning

from positive & negative examples, and derive impossibility results for translating some exact

concept learning algorithms to the setting of invariant inference (§8).

1
For the PDR-savvy: β is typically a candidate clause, and α is derived from the previous frame.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:4 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

2 OVERVIEW
Coming up with inductive invariants is one of the most challenging tasks of formal verification—it is

often referred to as the “Eureka!” step. This paper studies the asymptotic complexity of automatically

inferring CNF invariants of polynomial length, a problem we call polynomial-length inductive
invariant inference, in a SAT-based black-box model.

Consider the dilemmas Abby faces when she attempts to develop an algorithm for this problem

from first principles. Abby is excited about the popularity of SAT-based inference algorithms. Many

such algorithms operate by repeatedly performing checks of Hoare triples of the form {α }δ {β},
where α , β are a precondition and postcondition (resp.) chosen by the algorithm in each query and δ
is the given transition relation (loop body). A SAT solver implements the check. We call such checks

Hoare queries, and focus in this paper on black-box inference algorithms in the Hoare-query
model: algorithms that access the transition relation solely through Hoare queries.

Fig. 1 displays one example program that Abby is interested in inferring an inductive invariant

for. In this program, a number x, represented by n bits, is initialized to zero, and at each iteration

incremented by an even number that is decided by the input variables y (all computations are mod

2
n
). The representation of the number x using the bits x1, . . . ,xn is determined by another set of

bits c1, . . . , cn , which are all immutable, and only one of them is true: if c1 = true, the number is

represented by x1,x2, . . . ,xn , if c2 = true the least-significant bit (lsb) shifts and the representation

is x2,x3, . . . ,xn ,x1 and so on. The safety property is that x is never equal to the number with all

bits 1. Intuitively, this holds because the number x is always even. An inductive invariant states
this fact, taking into account the differing representations, by stating that the lsb (as chosen by c)
is always 0: I = (c1 → ¬x1) ∧ . . . (cn → ¬xn). Of course, Abby aims to verify many systems, of

which Fig. 1 is but one example.

2.1 Example: Backward-Reachability with Generalization
How should Abby’s algorithm go about finding inductive invariants? One known strategy is that

of backward reachability, in which the invariant is strengthened to exclude states from which bad

states may be reachable.
2
Alg. 1 is an algorithmic backward-reachability scheme: it repeatedly

checks for the existence of a counterexample to induction (a transition σ ,σ ′ of δ from σ |= I to
σ ′ ̸ |= I), and strengthens the invariant to exclude the pre-state σ using the formula Block returns.

Alg. 1 depends on the choice of Block. Themost basic approach is of Alg. 2, which excludes exactly
the pre-state, by conjoining to the invariant the negation of the cube of σ (the cube is the conjunction

of all literals that hold in the state; the only state that satisfies cube(σ) is σ itself, and thus the only

one to be excluded from I in this approach). For example, when Alg. 1 needs to block the state

x = 011 . . . 1, c = 000 . . . 1 (this state reaches the bad state x = 111 . . . 1, c = 000 . . . 1), Alg. 2 does so
by conjoining to the invariant the negation of ¬xn∧xn−1∧xn−2∧ . . . x1∧¬cn∧¬cn−1∧¬cn−2∧ . . . c1,
and this is a formula that other states do not satisfy.

Alas, Alg. 1 with blocking by Alg. 2 is not efficient. In essence it operates by enumerating

and excluding the states backward-reachable from bad. The number of such states is potentially

exponential, making Alg. 2 unsatisfactory. For instance, the example of Fig. 1 requires the exclusion

of all states in which x is odd for every choice of lsb, a number of states exponential in n. The
algorithm would thus require an exponential number of queries to arrive at a (CNF) inductive

invariant, even though a CNF invariant with only n clauses exists (as above).

Efficient inference hence requires Abby to exclude more than a single state at each time, namely,

to generalize from a counterexample—as real algorithms do. What generalization strategy could

Abby choose that would lead to efficient invariant inference?

2
Our results are not specific to backward-reachability algorithms; we use them here for motivation and illustration.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:5

1 init x1 = . . . = xn = 0

2 axiom ∃!i, 1 ≤ i ≤ n . ci = 1

3

4 function add -double(a,b) = (a + 2 · b) mod 2
n

5

6 while *

7 input y1, . . . , yn
8 if c1:
9 (x1, x2, . . . , xn−1, xn) := add -double((x1, x2, . . . , xn−1, xn),(y1, y2, . . . , yn−1, yn))
10 if c2:
11 (x2, x3, . . . , xn, x1) := add -double((x2, x3, . . . , xn, x1),(y2, y3, . . . , yn, y1))
12 ...

13 if cn :
14 (xn, x1, . . . , xn−2, xn−1) := add -double((xn, x1, . . . , xn−2, xn−1),(yn, y1, . . . , yn−2, yn−1))
15 assert ¬(x1 = . . . = xn = 1)

Fig. 1. An example propositional transition system for which we would like to infer an inductive invariant. The state is
over x1, . . . , xn . The variables y1, . . . , yn are inputs and can change arbitrarily in each step. c1, . . . , cn are immutable,
with the assumption that exactly one is true.

Algorithm 1
Backward-reachability

1: procedure Block-Cube(δ)
2: I ← ¬Bad
3: while {I }δ {I } not valid do
4: σ , σ ′ ← cti(δ, I)
5: d ← Block(δ ,σ)
6: I ← I ∧ ¬d

return I

Algorithm 2 Naive Block

1: procedure Block-Cube(δ ,σ)
2: return

∧
i, σ |=pi pi ∧

∧
i, σ |=¬pi ¬pi

Algorithm 3
Generalization with Init-Step Reachability

1: procedure Block-PDR-1(δ, σ)
2: d ← cube(σ)
3: for l ∈ cube(σ) do
4: t ← d \ {l }
5: if (Init =⇒ ¬t) ∧ {Init}δ {¬t } then
6: d ← t

return d

2.2 All Generalizations Are Wrong
One simple generalization strategy Abby considers appears in Alg. 3, based on the standard ideas in

IC3/PDR [Bradley 2011; Eén et al. 2011] and subsequent developments [e.g. Hoder and Bjørner 2012;

Komuravelli et al. 2014]. It starts with the cube (as Alg. 2) and attempts to drop literals, resulting in

a smaller conjunction, which many states satisfy; all these states are excluded from the candidate

in line 6 of Alg. 1. Hence with this generalization Alg. 1 can exclude many states in each iteration,

overcoming the problem with the naive algorithm above. Alg. 3 chooses to drop a literal from the

conjunction if no state reachable in at most one step from Init satisfies the conjunction even when

that literal is omitted (line 4 of Alg. 3); we refer to this algorithm as PDR-1, since it resembles PDR

with a single frame.

For example, when in the example of Fig. 1 the algorithm attempts to block the state with

x = 011 . . . 1, c = 000 . . . 1, Alg. 3 minimizes the cube to d = x1 ∧ c1, because no state reachable in

at most one step satisfies d , but this is no longer true when another literal is omitted. Conjoining

the invariant with ¬d (in line 6 of Alg. 1) produces a clause of the invariant, c1 → ¬x1. In fact, our

results show that PDR-1 finds the aforementioned invariant in n2 queries.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:6 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

Yet there is a risk in over-generalization, that is, of dropping too many literals and excluding too

many states. In Alg. 1, generalization must not return a formula that some reachable states satisfy,

or the candidate I would exclude reachable states and would not be an inductive invariant. Alg. 3

chooses to take the strongest conjunction that does not exclude any state reachable in at most one

step; it is of course possible (and plausible) that some states are reachable in two steps but not in

one. Alg. 1 with the generalization in Alg. 3 might fail in such cases.

The necessity of generalization, on the one hand, and the problem of over-generalization on the

other leads in practice to complex heuristic techniques. Instead of simple backward-reachability

with generalization per Alg. 1, PDR never commits to a particular generalization [Eén et al. 2011]

through a sequence of frames, which are (in some sense) a sequence of candidate invariants.

The clauses resulting from generalization are used to strengthen frames according to a bounded

reachability analysis; Alg. 3 corresponds to generalization in the first frame.

Overall, the study of backward-reachability and the PDR-1 generalization leaves us with the

question: Is there a choice of generalization that can be used—in any way—to achieve an
efficient invariant inference algorithm?

In a non-interesting way, the answer is yes, there is a “good” way to generalize: Use Alg. 1, with

the following generalization strategy: Upon blocking a pre-state σ , compute an inductive invariant

of polynomial length, and return the clause of the invariant that excludes σ ,3 and this terminates

in a polynomial number of steps.

Such generalization is clearly unattainable. It requires (1) perfect information of the transition

system, and (2) solving a computationally hard problem, since we show that polynomial-length

inference is ΣP
2
-hard (Thm. 4.2). What happens when generalization is computationally unbounded

(an arbitrary function), but operates based on partial information of the transition system? Is there

a generalization from partial information, be it computationally intractable, that facilitates

efficient inference? If such a generalization exists we may wish to view invariant inference

heuristics as approximating it in a computationally efficient way.

Similar questions arise in interpolation-based algorithms, only that generalization is performed

not from a concrete state, but from a bounded unreachability proof. Still it is challenging to

generalize enough to make progress but not too much as to exclude reachable states (or include

states from which bad is reachable).

2.2.1 Our Results. Our first main result in this paper is that in general, there does not exist
a generalization scheme from partial information leading to efficient inference based on

Hoare queries. Technically, we prove that even a computationally unrestricted generalization from

information gathered from Hoare queries requires an exponential number of queries. This result

applies to any generalization strategy and any algorithm using it that can be modeled using Hoare

queries, including Alg. 1 as well as more complex algorithms such as PDR. We also extend this

lower bound to a model capturing interpolation-based algorithms (Thm. 6.6).

These results are surprising because a-priori it would seem possible, using unrestricted com-

putational power, to devise queries that repeatedly halve the search space, yielding an invariant

with a polynomial number of queries (the number of candidates is only exponential because we are

interested in invariants up to polynomial length). We show that this is impossible to achieve using

Hoare queries.

2.3 Inference Using RichQueries
So far we have established strong impossibility results for invariant inference based on Hoare

queries in the general case, even with computationally unrestricted generalization. We now turn

3
Such a clause exists because σ is backward-reachable from bad states, and thus excluded from the invariant.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:7

to shed some light on the techniques that inference algorithms such as PDR employ in practice.

One of the fundamental principles of PDR is the incremental construction of invariants relying

on rich Hoare queries. PDR-1 demonstrates a simplified realization of this principle. When PDR-1

considers a clause to strengthen the invariant, it checks the reachability of that individual clause

from Init, rather than the invariant as a whole. This is the Hoare query {Init}δ {¬t} in line 4 of

Alg. 3, in which, crucially, the precondition is different from the postcondition. The full-fledged

PDR is similar in this regard, strengthening a frame according to reachability from the previous

frame via relative induction checks [Bradley 2011].

The algorithm in Alg. 2 is fundamentally different, and uses only inductiveness queries {I }δ {I }, a
specific form of Hoare queries where the precondition and postcondition are the same. Algorithms

performing only inductiveness checks can in fact be very sophisticated, traversing the domain

of candidates in clever ways. This approach was formulated in the ICE learning framework for

learning inductive invariants [Garg et al. 2014, 2016] (later extended to general Constrained-Horn

Clauses [Ezudheen et al. 2018]), in which algorithms present new candidates based on positive,

negative, and implication examples returned by a “teacher” in response to incorrect candidate

invariants.
4
The main point is that such algorithms do not perform queries other than inductiveness,

and choose the next candidate invariant based solely on the counterexamples to induction showing

the previous candidates were unsuitable.

The contrast between the two approaches raises the question: Is there a benefit to invariant
inference in Hoare queries richer than inductiveness? For instance, to model PDR in the ICE

framework, Vizel et al. [2017] extended the framework with relative inductiveness checks, but the

question whether such an extension is necessary remained open.

2.3.1 Our Results. Our second significant result in this paper is showing an exponential gap

between the general Hoare-query model and the more specific inductiveness-query model. To

this end, we construct a class of transition systems, including the example of Fig. 1, for which

(1) PDR-1, which is a Hoare-query algorithm, infers an invariant in a polynomial number of queries,

but (2) every inductiveness-query algorithm requires an exponential number of queries, that is, an

exponential number of candidates before it finds a correct inductive invariant. This demonstrates

that analyzing the reachability of clauses separately can offer an exponential advantage in certain

cases. This also proves that PDR cannot be cast in the ICE framework, and that the extension

by Vizel et al. [2017] is necessary and strictly increases the power of inference with a polynomial

number of queries. To the best of our knowledge, this is not only the first lower bound on ICE

learning demonstrating such an exponential gap (also see the discussion in §9), but also the first

polynomial upper bound on PDR for a class of systems.

We show this separation on a class of systems constructed using a technical notion of maximal
systems for monotone invariants. These are systems for which there exists a monotone invariant

(namely, an invariant propositional variables appear only negatively) with a linear number of

clauses, and the transition relation includes all transitions allowed by this invariant. For example, a

maximal system can easily be constructed from Fig. 1: this system allows every transition between

states satisfying the invariant (namely, between all even x’s with the same representation), and also

every transition between states violating the invariant (namely, between all odd x’s with the same

representation).
5
; a maximal system also includes all the transitions from states that violate that

invariant to the states that satisfy it (here, between odd x and even x with the same c). The success
of PDR-1 on such systems relies on the small diameter (every reachable state is reachable in one

4
Our formulation focuses on implication examples—counterexamples to inductiveness queries—and strengthens the algo-

rithm with full information about the set of initial and bad states instead of positive and negative examples (resp.).

5
Transitions violating the c axiom or modifying it are excluded in this modeling.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:8 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

step) and harnesses properties of prime consequences of monotone formulas. In contrast, we show

that for inductiveness-query algorithms this class is as hard as the class of all programs admitting

monotone invariants, whose hardness is established from the results of §2.2.1. For example, from the

perspective of inductiveness-query algorithms, the example of Fig. 1, which is a maximal program

as explained above, is as hard as any system that admits its invariant (and also respects the c
axiom and leaves c unchanged). This is because an inductiveness-query algorithm can only benefit

from having fewer transitions and hence fewer counterexamples to induction, whereas maximal

programs include as many transitions as possible. If an inductiveness query algorithm is to infer

an invariant for the example of Fig. 1, it must also be able to infer an invariant for all systems

whose transitions are a subset of the transitions of this example. This includes systems with an

exponential diameter, as well as systems admitting other invariants, potentially exponentially long.

This program illustrates our lower bound construction, which takes all maximal programs for

monotone-CNF invariants.

In our lower bound we follow the existing literature on the analysis of inductiveness-query

algorithms, which focuses on the worst-case notion w.r.t. potential examples (strong convergence

in Garg et al. [2014]). An interesting direction is to analyze inductiveness-query algorithms that

exercise some control over the choice of counterexamples to induction, or under probabilistic

assumptions on the distribution of examples.

2.4 A Different Perspective: Exact Learning of Invariants with HoareQueries
This paper can be viewed as developing a theory of exact learning of inductive invariants with

Hoare queries, akin to the classical theory of concept learning with queries [Angluin 1987]. The

results outlined above are consequences of natural questions about this model: The impossibility

of generalization from partial information (§2.2.1) stems from an exponential lower bound on the

Hoare-query model. The power of rich Hoare queries (§2.3.1) is demonstrated by an exponential

separation between the Hoare- and inductiveness-query models, in the spirit of the gap between

concept learning using both equivalence and membership queries and concept learning using

equivalence queries alone [Angluin 1990].

The similarity between invariant inference (and synthesis in general) and exact concept learning

has been observed before [e.g. Alur et al. 2015; Bshouty et al. 2017; Garg et al. 2014; Jha et al. 2010;

Jha and Seshia 2017]. Our work highlights some interesting differences and connections between

invariant learning with Hoare, and concept learning with equivalence and membership queries.

This comparison yields (im)possibility results for translating algorithms from concept learning with

queries to invariant inference with queries. Another outcome is the third significant result of this

paper: a proof that learning from counterexamples to induction is inherently harder than learning

from examples labeled as positive or negative, formally corroborating the intuition advocated

by Garg et al. [2014]. More broadly, the complexity difference between learning from labeled

examples and learning from counterexamples to induction demonstrates that the convergence rate

of learning in Counterexample-Guided Inductive Synthesis [e.g. Jha et al. 2010; Jha and Seshia 2017;

Solar-Lezama et al. 2006] depends on the form of examples. The proof of this result builds on the

lower bounds discussed earlier, and is discussed in §8.
6

6
It may also be interesting to note that one potential difference between classical learning and invariant inference, mentioned

by Löding et al. [2016], does not seem to manifest in the results discussed in §2.2.1: the transition systems in the lower

bound for inductiveness queries in Corollary 7.11 have a unique inductive invariant, and still the problem is hard.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:9

3 BACKGROUND
3.1 States, Transitions Systems, and Inductive Invariants
In this paper we consider safety problems defined via formulas in propositional logic. Given a

propositional vocabulary Σ that consists of a finite set of Boolean variables, we denote by F (Σ)
the set of well formed propositional formulas defined over Σ. A state is a valuation to Σ. For a
state σ , the cube of σ , denoted cube(σ), is the conjunction of all literals that hold in σ . A transition
system is a triple TS = (Init,δ ,Bad) such that Init,Bad ∈ F (Σ) define the initial states and the bad
states, respectively, and δ ∈ F (Σ ⊎ Σ′) defines the transition relation, where Σ′ = {x ′ | x ∈ Σ}
is a copy of the vocabulary used to describe the post-state of a transition. A class of transition

systems, denoted P, is a set of transition systems. A transition system TS is safe if all the states
that are reachable from the initial states via steps of δ satisfy ¬Bad. An inductive invariant for TS is
a formula I ∈ F (Σ) such that Init =⇒ I , I ∧ δ =⇒ I ′, and I =⇒ ¬Bad, where I ′ denotes the result
of substituting each x ∈ Σ for x ′ ∈ Σ′ in I , and φ =⇒ ψ denotes the validity of the formula φ → ψ .
In the context of propositional logic, a transition system is safe if and only if it has an inductive

invariant. When I is not inductive, a counterexample to induction is a pair of states σ ,σ ′ such that

σ ,σ ′ |= I ∧ δ ∧ ¬I ′ (where the valuation to Σ′ is taken from σ ′).

The classes CNFn , DNFn and Mon-CNFn . CNFn is the set of propositional formulas in Conjunctive

Normal Form (CNF) with at most n clauses (disjunction of literals). DNFn is likewise for Disjunctive

Normal Form (DNF), where n is the maximal number of cubes (conjunctions of literals). Mon-CNFn
is the subset of CNFn in which all literals are negative.

3.2 Invariant Inference Algorithms
In this section we briefly provide background on inference algorithms that motivate our theoretical

development in this paper. The main results of the paper do not depend on familiarity with these

algorithms or their details; this (necessarily incomprehensive) “inference landscape” is presented

here for context and motivation for defining the Hoare-query model (§5), studying its complexity

and the feasibility of generalization (§6), and analyzing the power of Hoare queries compared to

inductiveness queries (§7). We allude to specific algorithms in motivating each of these sections.

IC3/PDR. IC3/PDR maintains a sequence of formulas F0, F1, . . ., called frames, each of which can

be understood as a candidate inductive invariant. The sequence is gradually modified and extended

throughout the algorithm’s run. It is maintained as an approximate reachability sequence, meaning

that (1) Init =⇒ F0, (2) Fj =⇒ Fj+1, (3) Fj ∧ δ =⇒ (Fj+1)
′
, and (4) Fj =⇒ ¬Bad. These properties

ensure that Fj overapproximates the set of states reachable in j steps, and that the approximations

contain no bad states. (We emphasize that Fj =⇒ ¬Bad does not imply that a bad state is unreachable

in any number of states.) The algorithm terminates when one of the frames implies its preceding

frame (Fj =⇒ Fj−1), in which case it constitutes an inductive invariant, or when a counterexample

trace is found. In iteration N , a new frame FN is added to the sequence. One way of doing so is by

initializing FN to true, and strengthening it until it excludes all bad states. Strengthening is done by
blocking bad states: given a bad state σb |= FN ∧ Bad, the algorithm strengthens FN−1 to exclude all
σb ’s pre-states—states that satisfy FN−1 ∧ δ ∧ (cube(σb))′—one by one (thereby demonstrating that

σb is unreachable in N steps). Blocking a pre-state σa from frame N − 1 is performed by a recursive

call to block its own pre-states from frame N − 2, and so on. If this process reaches a state from Init,
the sequence of states from the recursive calls constitutes a trace reaching Bad from Init, which is a

counterexample to safety. Alternatively, when a state σ is successfully found to be unreachable

from Fj−1 in one step, i.e., Fj−1 ∧ δ ∧ (cube(σb))′ is unsatisfiable, frame Fj is strengthened to reflect

this fact. Aiming for efficient convergence (see §2.1), PDR chooses to generalize, and exclude more

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:10 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

states. A basic form of generalization is performed by dropping literals from cube(σ) as long as

the result t is still unreachable from Fj−1, i.e., Fj−1 ∧ δ ∧ t
′
is still unsatisfiable. This is very similar

to PDR-1 above (§2.2), where Fj−1 was always F0 = Init. Often inductive generalization is used,

dropping literals as long as Fj−1 ∧ ¬t ∧ δ ∧ t
′
, reading that ¬t is inductive relative to Fj−1, which

can drop more literals than basic generalization. A core optimization of PDR is pushing, in which a

frame Fj is “opportunistically” strengthened with a clause α from Fj−1, if Fj−1 is already sufficiently

strong to show that α is unreachable in Fj .
For a more complete presentation of PDR and its variants as a set of abstract rules that may be

applied nondeterministically see e.g. Gurfinkel and Ivrii [2015]; Hoder and Bjørner [2012]. The key

point from the perspective of this paper is that the algorithm and its variants access the transition

relation δ in a very specific way, checking whether some α is unreachable in one step of δ from the

set of states satisfying a formula F (or those satisfying F ∧ α), and obtains a counterexample when

it is reachable (see also Vizel et al. [2017]). Crucially, other operations (e.g., maintaining the frames,

checking whether Fj =⇒ Fj−1, etc.) do not use δ . We will return to this point when discussing the

Hoare-query model, which can capture IC3/PDR (§5).

ICE. The ICE framework [Garg et al. 2014, 2016] (later extended to general Constrained-Horn

Clauses [Ezudheen et al. 2018]), is a learning framework for inferring invariants from positive,

negative and implication counterexamples. We now review the framework using the original

terminology and notation; later in the paper we will use a related formulation that emphasizes the

choice of candidates (in §7.1).

In ICE learning, the teacher holds an unknown target (P ,N ,R), where P ,N ⊆ D,R ⊆ D × D
are sets of examples. The learner’s goal is to find a hypothesis H ∈ C s.t. P ⊆ H ,N ∩ H = ∅,
and for each (x ,y) ∈ R, x ∈ H =⇒ y ∈ H . The natural way to cast inference in this framework

is, given a transition system (Init,δ ,Bad) and a set of candidate invariants L, to take D as the

set of program states, P a set of reachable states including Init, N a set of states including Bad
from which a safety violation is reachable, R the set of transitions of δ , and C = L. Iterative ICE
learning operates in rounds. In each round, the learner is provided with a sample—(E,B, I) s.t.
E ⊆ P ,B ⊆ N , I ⊆ R—and outputs an hypothesis H ∈ C . The teacher returns that the hypothesis is
correct, or extends the sample with an example showing that H is incorrect. The importance of

implication counterexamples is that they allow implementing a teacher using a SAT/SMT solver

without “guessing” what a counterexample to induction indicates [Garg et al. 2014; Löding et al.

2016]. Examples of ICE learning algorithms include Houdini [Flanagan and Leino 2001] and symbolic

abstraction [Reps et al. 2004; Thakur et al. 2015], as well as designated algorithms [Garg et al. 2014,

2016]. Theoretically, the analysis of Garg et al. [2014] focuses on strong convergence of the learner,
namely, that the learner can always reach a correct concept, no matter how the teacher chooses to

extend samples between rounds. In this work, we will be interested in the number of rounds the
learner performs. We will say that the learner is strongly-convergent with round-complexity r if for
every ICE teacher, the learner finds a correct hypothesis in at most r rounds, provided that one

exists. We extend this definition to a class of target descriptions in the natural way.

Interpolation. The idea of interpolation-based algorithms, first introduced by McMillan [2003], is

to generalize proofs of bounded unreachability into elements of a proof of unbounded reachability,

utilizing Craig interpolation. Briefly, this works as follows: encode a bounded reachability from a

set of states F in k steps, and use a SAT solver to find that this cannot reach Bad. When efficient

interpolation is supported in the logic and solver, the SAT solver can produce an interpolant C:
a formula representing a set of states that (i) overapproximates the set of states reachable from

F in k1 steps, and still (ii) cannot reach Bad in k2 steps (any choice k1 + k2 = k is possible). Thus

C overapproximates concrete reachability from F without reaching a bad state, although both

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:11

these facts are known in only a bounded number of steps. The hope is that C would be a useful

generalization to include as part of the invariant. The original algorithm [McMillan 2003] sets some

k as the current unrolling bound, starts with F = Init, obtains an interpolantC withk1 = 1,k2 = k−1,
sets F ← F ∨C and continues in this fashion, until an inductive invariant is found, or Bad becomes

reachable in k steps from F , in which case k is incremented and the algorithm is restarted. The use

of interpolation and generalization from bounded unreachability has been used in many works

since [e.g. Henzinger et al. 2004; Jhala and McMillan 2007; McMillan 2006; Vizel and Grumberg

2009; Vizel et al. 2013]. Combining ideas from interpolation and PDR has also been studied [e.g.

Vizel and Gurfinkel 2014]. The important point for this paper is that many interpolation-based

algorithms only access the transition relation when checking bounded reachability (from some set

of states α to some set of states β), and extracting interpolants when the result is unreachable. We

will return to this point when discussing the interpolation-query model, which aims to capture

interpolation-based algorithms (§6.2).

4 POLYNOMIAL-LENGTH INVARIANT INFERENCE
In this section we formally define the problem of polynomial-length invariant inference for CNF
formulas, which is the focus of this paper. We then relate the problem to the problem of inferring

DNF formulas with polynomially many cubes via duality (see the extended version [Feldman et al.

2020]), and focus on the case of CNF in the rest of the paper.

Our object of study is the problem of polynomial-length inference:

Definition 4.1 (Polynomial-Length Inductive Invariant Inference). The polynomial-length inductive
invariant inference problem (invariant inference for short) for a class of transition systems P and a

polynomial p(n) = Ω(n) is the problem: Given a transition system TS ∈ P over Σ, decide whether
there exists an inductive invariant I ∈ CNFp(n) for TS, where n = |Σ|.

Notation. In the sequel, when considering the polynomial-length inductive invariant inference

problem of a transition system TS = (Init,δ ,Bad) ∈ P, we denote by Σ the vocabulary of Init,Bad
and δ . Further, we denote n = |Σ|.

Complexity. The complexity of polynomial-length inference ismeasured in |TS| = |Init|+|δ |+|Bad|.
Note that the invariants are required to be polynomial in n = |Σ|.
CNFp(n) is a rich class of invariants. Inference in more restricted classes can be solved efficiently.

For example, when only conjunctive candidate invariants are considered, and P is the set of all

propositional transition systems, the problem can be decided in a polynomial number of SAT

queries through the Houdini algorithm [Flanagan and Leino 2001; Lahiri and Qadeer 2009]. Similar

results hold also for CNF formulas with a constant number of literals per clause (by defining a

new predicate for each of the polynomially-many possible clauses and applying Houdini), and for

CNF formulas with a constant number of clauses (by translating them to DNF formulas with a

constant number of literals per cube and applying the dual procedure). However, a restricted class

of invariants may miss invariants for some programs and reduces the generality of the verification

procedure. Hence in this paper we are interested in the richer class of polynomially-long CNF

invariants. In this case the problem is no longer tractable even with a SAT solver:

Theorem 4.2. Let P be the set of all propositional transition systems. Then polynomial-length
inference for P is ΣP

2
-complete, where ΣP

2
= NP SAT is the second level of the polynomial-time hierarchy.

We defer the proof to §6.1.1.

We note that polynomial-length inference can be encoded as specific instances of template-based

inference; the ΣP
2
-hardness proof of Lahiri and Qadeer [2009] uses more general templates and

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:12 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

therefore does not directly imply the ΣP
2
-hardness of polynomial-length inference. Lower bounds

on polynomial-length inference entail lower bounds for template-based inference.

Remark 4.1. In the above formulation, an efficient procedure for deciding safety does not imply
polynomial-length inference is tractable, since the program may be safe, but all inductive invariants
may be too long. To overcome this technical quirk, we can consider a promise problem [Goldreich
2006] variant of polynomial-length inference:

Given a transition system TS ∈ P,
• (Completeness) If TS has an inductive invariant I ∈ CNFp(n), the algorithm must return yes.
• (Soundness) If TS is not safe the algorithm must return no.

Other cases, including the case of safety with an invariant outside CNFp(n), are not constrained. An
algorithm deciding safety thus solves also this problem. All the results of this paper apply both to the
standard version above and the promise problem: upper bounds on the standard version trivially imply
upper bounds on the promise problem, and in our lower bounds we use transition systems that are
either (i) safe and have an invariant in CNFp(n), or (ii) unsafe.

5 INVARIANT INFERENCEWITH QUERIES AND THE HOARE QUERY MODEL
In this paper we study algorithms for polynomial-length inference through black-box models

of inference with queries. In this setting, the algorithm accesses the transition relation through

(rich) queries, but cannot read the transition relation directly. Our main model is of Hoare-query
algorithms, which query the validity of a postcondition from a precondition in one step of the

system. Hoare-query algorithms faithfully capture a large class of SAT-based invariant inference

algorithms, including PDR and related methods.

A black-box model of inference algorithms facilitates an analysis of the information of the

transition relation the algorithm acquires. The advantage is that such an information-based anal-

ysis sidesteps open computational complexity questions, and therefore results in unconditional

lower bounds on the computational complexity of SAT-based algorithms captured by the model.

Such an information-based analysis is also necessary for questions involving unbounded computa-

tional power and restricted information, in the context of computationally-unrestricted bounded-

reachability generalization (see §6.3).

In this section we define the basic notions of queries and query-based inference algorithms.

We also define the primary query model we study in the paper: the Hoare-query model. In the

subsequent sections we introduce and study additional query models: the interpolation-query

model (§6.2), and the inductiveness-query model (§7.1).

Inference with queries. We model queries of the transition relation in the following way: A

query oracle Q is an oracle that accepts a transition relation δ , as well as additional inputs, and
returns some output. The additional inputs and the output, together also called the interface of the
oracle, depend on the query oracle under consideration. A family of query oracles Q is a set of

query oracles with the same interface. We consider several different query oracles, representing

different ways of obtaining information about the transition relation.

Definition 5.1 (Inference algorithm in the query model). An inference algorithm from queries,
denoted AQ (Init,Bad, [δ]), is defined w.r.t. a query oracle Q and is given:

• access to the query oracle Q ,
• the set of initial states (Init) and bad states (Bad);
• the transition relation δ , encapsulated—hence the notation [δ]—meaning that the algorithm

cannot access δ (not even read it) except for extracting its vocabulary; δ can only be passed

as an argument to the query oracle Q .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:13

AQ (Init,Bad, [δ]) solves the problem of polynomial-length invariant inference for (Init,δ ,Bad).

The Hoare-query model. Our main object of study in this paper is the Hoare-query model of

invariant inference algorithms. It captures SAT-based invariant inference algorithms querying the

behavior of a single step of the transition relation at a time.

Definition 5.2 (Hoare-Query Model). For a transition relation δ and input formulas α , β ∈ F (Σ),
the Hoare-query oracle,H(δ ,α , β), returns false if (α ∧ δ ∧ ¬β ′) ∈ SAT; otherwise it returns true.

An algorithm in the Hoare-query model, also called a Hoare-query algorithm, is an inference from

queries algorithm expecting the Hoare query oracle.

Intuitively, a Hoare-query algorithm gains access to the transition relation, δ , exclusively by

repeatedly choosing α , β ∈ F (Σ), and callingH(δ ,α , β).
If we are using a SAT solver to compute theHoare-query,H(δ ,α , β), thenwhen the answer is false,

the SAT solver will also produce a counterexample pair of states σ ,σ ′ such that σ ,σ ′ |= α ∧δ ∧¬β ′.
We observe that using binary search, a Hoare-query algorithm can do the same:

Lemma 5.3. Whenever H(δ ,α , β) = false, a Hoare-query algorithm can find σ ,σ ′ such that
σ ,σ ′ |= α ∧ δ ∧ ¬β ′ using n = |Σ| Hoare queries.

Proof. For each xi ∈ Σ ⊎ Σ′, if xi ∈ Σ, conjoin it to α , else to β , and check whetherH(δ ,αi , βi)
is still false. If it is, continue to xi+1; otherwise flip xi and continue to xi+1. �

Example: PDR as a Hoare-query algorithm. The Hoare-query model captures the prominent PDR

algorithm, facilitating its theoretical analysis. As discussed in §3.2, PDR accesses the transition

relation via checks of unreachability in one step and counterexamples to those checks. These

operations are captured in the Hoare query model by checkingH(δ , F ,α) orH(δ , F ∧ α ,α) (for the
algorithm’s choice of F ,α ∈ F (Σ)), and obtaining a counterexample using a polynomial number of

Hoare queries, if one exists (Lemma 5.3). Furthemore, the Hoare-query model is general enough to

express a broad range of PDR variants that differ in the way they use such checks but still access

the transition relation only through such queries.

The Hoare-query model is not specific to PDR. It also captures algorithms in the ICE learning

model [Garg et al. 2014], as we discuss in §7.1, and as result can model algorithms captured by the

ICE model (see §3.2). In §7.2 we show that the Hoare-query model is in fact strictly more powerful

than the ICE model.

Remark 5.1. Previous black-box models for invariant inference [Garg et al. 2014] encapsulated
access also to Init,Bad. In our model we encapsulate only access to δ , since (1) it is technically simpler,
(2) a simple transformation can make Init,Bad uniform across all programs, embedding the differences
in the transition relation; indeed, our constructions of classes of transition systems in this paper are
such that Init,Bad are the same in all transition systems that share a vocabulary, hence Init,Bad may
be inferred from the vocabulary. (Unrestricted access to Init,Bad is stronger, thus lower bounds on our
models apply also to models restricting access.)

Complexity. Focusing on information, we do not impose computational restrictions on the algo-

rithms, and only count the number of queries the algorithm performs to reveal information of the

transition relation. In particular, when establishing lower bounds on the query complexity, we

even consider algorithms that may compute non-computable functions. However, whenever we

construct algorithms demonstrating upper bounds on query complexity, these algorithms in fact

have polynomial time complexity, and we note this when relevant.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:14 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

Given a query oracle and an inference algorithm that uses it, we analyze the number of queries

the algorithm performs as a function of n = |Σ|, in a worst-case model w.r.t. to possible transition

systems over Σ in the class of interest.

The definition is slightly more complicated by considering, as we do later in the paper, query-

models in which more than one oracle exists, i.e., an algorithm may use any oracle from a family of

query oracles. In this case, we analyze the query complexity of an algorithm in a worst-case model

w.r.t. the possible query oracles in the family as well.

Formally, the query complexity is defined as follows:

Definition 5.4 (Query Complexity). For a class of transitions systems P, the query complexity of

(a possibly computationally unrestricted) A w.r.t. a query oracle family Q is defined as

qQ
A
(n) = sup

Q ∈Q
sup

(Init,δ,Bad)∈P,
|Σ |=n

#query(AQ (Init,Bad, [δ])) (1)

where #query(AQ (Init,Bad, [δ])) is the number of times the algorithm accessesQ given this oracle

and the input. (These numbers might be infinite.)

The query complexity in the Hoare-query model is q {H}
A
(n).

Remark 5.2. In our definition, query complexity is a function of the size of the vocabulary n = |Σ|,
but not of the size of the representation of the transition relation |δ |. This reflects the fact that an
algorithm in the black-box model does not access δ directly. In the extended version [Feldman et al.
2020] we discuss the complexity w.r.t. |δ | as well. The drawback of such a complexity measure is that
learning δ itself becomes feasible, undermining the black-box model. Efficiently learning δ is possible
when using unlimited computational power and exponentially-long queries. However, whether the
same holds when using unlimited computational power with only polynomially-long queries is related
to open problems in classical concept learning.

6 THE INFORMATION COMPLEXITY OF HOARE-QUERY ALGORITHMS
In this section we prove an information-based lower bound on Hoare-query invariant inference

algorithms, and also extend the results to algorithms using interpolation, another SAT-based op-

eration. We then apply these results to study the role of information in generalization as part of

inference algorithms.

6.1 Information Lower Bound for Hoare-Query Inference
We show that a Hoare-query inference algorithm requires 2

Ω(n)
Hoare-queries in the worst case to

decide whether a CNF invariant of length polynomial in n exists. (Recall that n is a shorthand for |Σ|,
the size of the vocabulary of the input transition system.) This result applies even when allowing

the choice of queries to be inefficient, and when allowing the queries to use exponentially-long

formulas. It provides a lower bound on the time complexity of actual algorithms, such as PDR, that

are captured by the model. Formally:

Theorem 6.1. Every Hoare-query inference algorithm AH deciding polynomial-length inference
for the class of all propositional transition systems has query complexity of 2Ω(n).

The rest of this section proves a strengthening of this theorem, for a specific class of transition

systems (which we construct next), for any class of invariants that includes monotone CNF, and for

computationally-unrestricted algorithms:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:15

Theorem 6.2. Every Hoare-query inference algorithm AH , even computationally-unrestricted,
deciding invariant inference for the class of transition systems PΣP

2

(§6.1.1) and for any class of target
invariants L s.t. Mon-CNFn ⊆ L

7 has query complexity of 2Ω(n).

(That classes containing Mon-CNFn are already hard becomes important in §7.)

6.1.1 A Hard Class of Transition Systems. In this section we construct a PΣP
2

, a hard class of

transition systems, on which we prove hardness results.

The QBF
2
problem. The construction of PΣP

2

follows the ΣP
2
-complete problem of QBF

2
from

classical computational complexity theory. In this problem, the input is a quantified Boolean formula

∃y. ∀x . ϕ(x ,y) where ϕ is a Boolean (quantifier-free) formula, and the problem of QBF
2
is to decide

whether the quantified formula is true, namely, there exists a Boolean assignment to y s.t. ϕ(x ,y) is
true for every Boolean assignment to x .

The class PΣP
2

. For each k ∈ N, we define Pk
ΣP
2

. Finally, PΣP
2

=
⋃

k ∈N P
k
ΣP
2

.

Let k ∈ N. For each formula ∃y. ∀x .ϕ(y,x), where y = y1, . . . ,yk , x = x1, . . . ,xk are vari-

ables and ϕ is a quantifier-free formula over the variables x ∪ y, we define a transition system

TSϕ = (Initk ,δPϕ ,Badk). Intuitively, it iterates through y lexicographically, and for each y it iterates

lexicographically through x and checks if all assignments to x satisfy ϕ(y,x). If no such y is found,

this is an error. More formally,

(1) Σk = {y1, . . . ,yk ,x1, . . . ,xk ,a,b, e}.
(2) Initk = y = 0 ∧ x = 0 ∧ ¬a ∧ b ∧ ¬e .
(3) Badk = e .
(4) δPϕ : evaluate ϕ(y,x), and perform the following changes (at a single step): If the result is false,

set a to true. If x = 1 and a is still false, set b to false. If in the pre-state x = 1, increment y
lexicographically, reset a to false, and set x = 0; otherwise increment x lexicographically. If

in the pre-state y = 1, set e to b. (Intuitively, a is false as long as no falsifying assignment to

x has been encountered for the current y, b is true as long as we have not yet encountered a

y for which there is no falsifying assignment.)

We denote the resulting class of transition systems Pk
ΣP
2

= {TSϕ | ϕ = ϕ(y1, . . . ,yk ,x1, . . . ,xk)}.

The following lemma relates the QBF
2
problem for ϕ to the inference problem of TSϕ :

Lemma 6.3. Let TSϕ ∈ Pk
ΣP
2

. Then TSϕ is safe iff it has an inductive invariant in Mon-CNF
2k+1 iff

the formula ∃y. ∀x .ϕ(y,x) is true.
Proof. There are two cases:

• If ∃y. ∀x .ϕ(y,x) is true, letv be the first valuation fory that realizes the existential quantifiers.
Then the following is an inductive invariant for TSϕ :

I = ¬e ∧ (b → y ≤ v) ∧ ((b ∧ a) → y < v) (2)

where the lexicographic constraint is expressed by the following recursive definition on

y[d] = (y1, . . . ,yd),v[d] = (v1, . . . ,vd):

y[d] < v[d]
def

=

{
¬yd ∨ (y[d−1] < v[d−1]) vd = true
¬yd ∧ (y[d−1] < v[d−1]) vd = false

7
Here we extend the definition of polynomial-length invariant inference to L instead of CNFp(n).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:16 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

and y ≤ v
△
= y < (v + 1) (or true if v = 1).

I ∈ Mon-CNF
2k+1: Note that y[k] < v[k] can be written in CNF with at most n clauses: in the

first case a literal is added to each clause, and in the second another clause is added. Thus

I can be written in CNF with at most 2k + 1 clauses. Further, the literals of y appear only

negatively in y[k] < v[k], and hence also in I . The other literals (¬e,¬a,¬b) also appear only

negatively in I . Hence, I is monotone.

The proof that I is indeed inductive appears in the extended version [Feldman et al. 2020].

• If ∃y. ∀x .ϕ(y,x) is not true, then TSϕ is not safe (and thus does not have an inductive invariant

of any length). This is because for every valuation of y a violating x is found, turning a to

true, and b never turns to false, so after iterating through all possible y’s e will become true.

�

Before we turn to prove Thm. 6.2 and establish a lower bound on the query complexity in the

Hoare model, we note that this construction also yields the computational hardness mentioned in

§4:

Proof of Thm. 4.2. The upper bound is straightforward: guess an invariant in CNFp(n) and check

it. For the lower bound, use the reduction outlined above: given ϕ(y1, . . . ,yk ,x1, . . . ,xk), construct
TSϕ . Note that the vocabulary size, n, is 2k + 3, and the invariant, when exists, is of length at most

2k + 1 ≤ n.8 The reduction is polynomial as the construction of TSϕ (and n) from ϕ is polynomial in

k and |ϕ |: note that lexicographic incrementation can be performed with a propositional formula

of polynomial size. �

6.1.2 Lower Bound’s Proof. We now turn to prove Thm. 6.2. Given an algorithm with polynomial

query complexity, the proof constructs two transition system: one that has a polynomial-length

invariant and one that does not, and yet all the queries the algorithm performs do not distinguish

between them. The construction uses the path the algorithm takes when all Hoare queries return

false as much as possible. Intuitively, such responses are less informative and rule out less transition

relations, because they merely indicate the existence of a single counterexample to a Hoare triple,

opposed to the result true which indicates that all transitions satisfy a property.

Proof of Thm. 6.2. Let A be a computationally unbounded Hoare-query algorithm. We show

that the number of Hoare queries performed by A on transition systems from PΣP
2

with |Σ| = n is

at least 2

n−1
2 . To this end, we show that if A over |Σ| = 2n + 3 performs less than 2

n
queries, then

there exist two formulasψ1,ψ2 over y1, . . . ,yn ,x1, . . . ,xn such that

• all the Hoare queries performed by A on δPψ1

and δPψ2

(the transition relations of TSψ1
and

TSψ2
, respectively) return the same result, even though

• A should return different results when run on TSψ1 ∈ Pn
ΣP
2

and TSψ2 ∈ Pn
ΣP
2

, since TSψ1
has

an invariant in Mon-CNF
2n+1 and TSψ2

does not have an invariant (of any length).

We begin with some notation. Running on input TSϕ , we abbreviateH(δPϕ , ·, ·) byH(ϕ, ·, ·). Denote
the queries A performs and their results byH(ϕ,α1, β1) = b1, . . . ,H(ϕ,αm , βm) = bm . We call an

index i sat if bi = false. We say thatψ query-agrees with ϕ ifH(ψ ,αi , βi) = bi for all i . We say that

ψ sat-query-agrees with ϕ if for every i such that bi = false it holds thatH(ψ ,αi , βi) = false.

8
For an arbitrary polynomial p(n) = Ω(n), e.g., p(n) = c · n with 0 < c < 1, enlarge Σ, e.g., by adding to Init initialization
of fresh variables that are not used elsewhere, to ensure existence of an invariant of length ≤ p(n).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:17

We first find a formula ϕ overy1, . . . ,yn ,x1, . . . ,xn such that the sequence of queriesA performs

when executing on TSϕ is maximally satisfiable: ifψ sat-query-agrees with ϕ, thenψ (completely)

query-agrees with ϕ on the queries, that is,

∀ψ . (∀i . bi = false⇒H(ψ ,αi , βi) = bi) =⇒ (∀i . H(ψ ,αi , βi) = bi) (3)

We construct this sequence iteratively (and define ϕ accordingly) by always taking ϕ so that

the result of the next query is false as long as this is possible while remaining consistent with the

results of the previous queries: Initially, choose some arbitrary ϕ0. At each point i , consider the
first i queriesA performs on ϕi ,H(ϕi ,α1, β1) = b1, . . . ,H(ϕ

i ,αi , βi) = bi . IfA terminates without

performing another query, we are done: the desired ϕ is ϕi . Otherwise let (αi+1, βi+1) be the next
query. Amongst formulas ϕi+1 that query-agree on the first i queries, namely,H(ϕi+1,α j , βj) = bj
for all j ≤ i , choose one such thatH(ϕi+1,αi+1, βi+1) = false if possible; if such ϕi+1 does not exist
take e.g. ϕi+1 = ϕi . The dependency of A on ϕi is solely through the results of the queries to

H(δPϕ , ·, ·), so A performs the same i initial queries when given ϕi+1. The result is a maximally

satisfiable sequence, for if a formulaψ differs in query i + 1 in which the result is false instead of

true we would have taken such aψ as ϕi+1.
Let ϕ be such a formula with a maximally satisfiable sequence of queries A performs on ϕ,
H(ϕ,α1, β1) = b1, . . . ,H(ϕ,αm , βm) = bm . For every sat i , take a counterexample σi ,σ

′
i |= αi ∧

δPϕ ∧ ¬β
′
i . The single transition (σi ,σ

′
i) of δ

P
ϕ depends on the value of ϕ on at most one assignment

to x ,y, so there exists a valuation vi : y ∪ x → {true, false} such that

∀ψ . ψ (vi) = ϕ(vi) =⇒ σi ,σ
′
i |= αi ∧ δ

P
ψ ∧ ¬β

′
i (4)

as well. It follows that

∀ψ . ψ (vi) = ϕ(vi) =⇒H(ψ ,αi , βi) = H(ϕ,αi , βi) = false. (5)

Let vi1 , . . . ,vit be the valuations derived from the sat queries (concerning indexing, bi = false iff
bi = bi j for some j). We say that a formulaψ valuation-agreeswithϕ onvi1 , . . . ,vit ifψ (vi j) = ϕ(vi j)
for all j’s. Since the sequence of queries is maximally satisfiable, ifψ valuation-agrees with ϕ on

vi1 , . . . ,vit thenψ query-agrees with ϕ, namely,H(ψ ,αi , βi) = H(ϕ,αi , βi) for all i = 1, . . . ,m. As

the dependency of A on ϕ is solely through the results b1, . . . ,bm , it follows that A performs the

same queries onψ as it does on ϕ and returns the same answer.

It remains to argue that ifm < 2
n
then there exist two formulasψ1,ψ2 that valuation-agree with

ϕ onvi1 , . . . ,vit but differ in the correct resultA should return: ∃y. ∀x .ψ1(y,x) is true, and so TSψ1

has an invariant in Mon-CNF
2n+1 (Lemma 6.3), whereas ∃y. ∀x .ψ2(y,x) is not, and so TSψ2

does

not have an invariant of any length or form (Lemma 6.3). This is possible because the number of

constraints imposed by valuation-agreeing with ϕ onvi1 , . . . ,vit is less than the number of possible

valuations of x for every valuation of y and vice versa:

ψ1(y,x) =
∧
i=1..t

θ (vij)=false

(y,x) , vi j (6)

is true on all valuations except for some of vi1 , . . . ,vit , and since t ≤ m < 2
n
there exists some y

such that for all x , (y,x) is not one of these valuations (recall that |y | = n bits). Dually,

ψ2(y,x) =
∨
i=1..t

θ (vij)=true

(y,x) = vi j (7)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:18 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

is false on all valuations except for some of vi1 , . . . ,vit , and since t ≤ m < 2
n
for every y there

exists x such that (y,x) is not one of these valuations (recall that |y | = n bits). This concludes the

proof. �

6.2 Extension to Interpolation-Based Algorithms
We now consider inference algorithms based on interpolation, another operation supported by SAT

solvers. Interpolation has been introduced to invariant inference by McMillan [2003], and since

extended in many works (see §3.2).

Interpolation algorithms infer invariants from facts obtained with Bounded Model Checking

(BMC), which we formalize as follows:

Definition 6.4 (Bounded Reachabilitiy Check). The k-bounded reachability check returns

H (k)(δ ,α , β)
def

= α(Σ0) ∧ δ (Σ0, Σ1) ∧ . . . ∧ δ (Σk−1, Σk) =⇒ β(Σk) (8)

for α , β ∈ F (Σ), where Σ0, . . . , Σk are k + 1 distinct copies of the vocabulary.

Definition 6.5 (Interpolation-Query Model). An interpolation-query oracle is a query oracle Q such

that for every δ , α , β ∈ F (Σ), and k1,k2 ∈ N,

• Q (k1,k2)(δ ,α , β) = ⊥ ifH (k1+k2)(δ ,α , β) = false, and
• Q (k1,k2)(δ ,α , β) = ρ for ρ ∈ F (Σ) such that H (k1)(δ ,α , ρ) = true and H (k2)(δ , ρ, β) = true
otherwise.

We define itp to be the family of all interpolation-query oracles.

An algorithm in the interpolation-query model, also called an interpolation-query algorithm, is

an inference from queries algorithm expecting any interpolation query oracle, where k1,k2 are
bounded by a polynomial in n in all queries. The query complexity in this model is qitp

A
(n).

Interpolation-query oracles form a family of oracles since different oracles can choose different

ρ for every δ ,α , β,k1,k2. Note that ρ may be exponentially long.

6.2.1 Lower Bound on Interpolation-Query Algorithms. We show an exponential lower bound on

query complexity for interpolation-query algorithms. To this end we prove the following adaptation

of Thm. 6.2:

Theorem 6.6. Every interpolation-query inference algorithm, even computationally-unrestricted,
deciding polynomial-length inference for the class of transition systems PΣP

2

(§6.1.1) has query com-
plexity of 2Ω(n).

We remark that the lower bound on the interpolation-query model does not follow directly from

the result for the Hoare-query model: an interpolant for H (k1+k2)(δ ,α , β) = true depends on all

traces of length k1 + k2 starting from states satisfying α , which may be an exponential number, so

it cannot be computed simply by performing a polynomial number of Hoare queries to find these

traces and computing an interpolant based on them. In principle, then, an interpolant can convey

information beyond a polynomial number of Hoare queries. Our proof argument is therefore more

subtle: we show that there exists a choice of an interpolant that is not more informative than the

existence of some interpolant (i.e., only reveals information onH (k1+k2)(·, ·, ·)), in the special case

of systems in PΣP
2

, in the maximally satisfiable branch of an algorithm’s execution as used in the

proof of Thm. 6.2. The full proof appears in the extended version [Feldman et al. 2020].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:19

6.3 Impossibility of Generalization from Partial Information
Algorithms such as PDR use generalization schemes to generalize from specific states to clauses (see

§2.2 and §3.2). It is folklore that “good” generalization is the key to successful invariant inference. In

this section, we apply the results of §6.1 to shed light on the question of generalization. Technically,

this is a discussion of the results in §6.1.

Clearly, if the generalization procedure has full information, that is, has unrestricted access to

the input—including the transition relation—then unrestricted computational power makes the

problem of generalization trivial (as is every other problem!). For example, “efficient” inference

can be achieved by a backward-reachability algorithm (see §2.1) that blocks counterexamples

through a generalization that uses clauses from a target invariant it can compute. This setting of

full-information, computationally-unrestricted generalization was used by Padon et al. [2016] in an

interactive invariant inference scenario.

Our analysis in §6.1 implies that the situation is drastically differentwhen generalization possesses

partial information: the algorithm does not know the transition relation exactly, and only knows

the results of a polynomial number of Hoare queries. By Thm. 6.2, no choice of generalization made

on the basis on this information can in general achieve inference in a polynomial number of steps.

This impossibility holds even when generalization uses unrestricted computational power, and thus

it is a problem of information. To further illustrate the idea of partial information, we note that the

problem remains hard even when generalization is equipped with information beyond the results

of a polynomial number of Hoare queries, information of the reachability of the transition system

from Init and backwards from Bad in a polynomial number of steps
9
; in contrast, information of

the states reachable in any number of steps constitutes full information and the problem is again

trivial with unrestricted computational power.

Finally, the same challenge of partial information is present in algorithms basing generalization

on a polynomial number of interpolation queries, as follows from Thm. 6.6.

7 THE POWER OF HOARE-QUERIES
Hoare queries are rich in the sense that the algorithm can choose a precondition α and postcondition

β and checkH(δ ,α , β), where α may be different from β . As such, algorithms in the Hoare-query

model can utilize more flexible queries beyond querying for whether a candidate is inductive. In

practice, this richer form of queries facilitates an incremental construction of invariants in complex

syntactic forms. For example, PDR [Bradley 2011; Eén et al. 2011] incrementally learns clauses in

different frames via relative inductiveness checks, and interpolation learns at each iteration a term

of the invariant from an interpolant [McMillan 2003] (see §3.2). In this section we analyze this

important aspect of the Hoare-query model and show that it can be strictly stronger than inference

based solely on presenting whole candidate inductive invariants. We formalize the latter approach

by the model of inductiveness-query algorithms, closely related to ICE learning [Garg et al. 2014],

and construct a class of transition systems for which a simple Hoare-query algorithm can infer

invariants in polynomial time, but every inductiveness-query algorithm requires an exponential

number of queries.

7.1 Inductiveness-Query Algorithms
We define a more restricted model of invariant inference using only inductiveness queries.

9
This can be shown by noting that in PΣP

2

(used to establish the exponential lower bound) such polynomial-reachability

information can be obtained from a polynomial number of Hoare queries, reducing this scenario to the original setting.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:20 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

Definition 7.1 (Inductiveness-Query Model). An inductiveness-query oracle is a query oracle Q
such that for every δ and α ∈ F (Σ) satisfying Init =⇒ α and α =⇒ ¬Bad,

• Q(δ ,α) = true if α ∧ δ =⇒ α ′, and
• Q(δ ,α) = (σ ,σ ′) such that (σ ,σ ′) |= α ∧ δ ∧ ¬α ′ otherwise.

We define I to be the family of all inductiveness-query oracles.

An algorithm in the inductiveness-query model, also called an inductiveness-query algorithm, is an

inference from queries algorithm expecting any inductiveness query oracle. The query complexity

in this model is qI
A
(n).

Inductiveness-query oracles form a family of oracles since different oracles can choose different

(σ ,σ ′) for every δ ,α . Accordingly, the query complexity of inductiveness-query algorithms is

measured as a worst-case query complexity over all possible choices of an inductiveness-query

oracle in the family.

ICE learning and inductiveness-queries. The inductiveness-query model is closely related to ICE

learning [Garg et al. 2014], except here the learner is provided with full information on Init,Bad
instead of positive and negative examples (and the algorithm refrains from querying on candidates

that do not include Init or do not exclude Bad). This model captures several interesting algorithms

(see §3.2). Our complexity definition in the inductiveness-query model being the worst-case among

all possible oracle responses is in line with the analysis of strong convergence in Garg et al. [2014].

Hence, lower bounds on the query complexity in the inductiveness query model imply lower

bounds for the strong convergence of ICE learning. We formalize this in the following lemma, using

terminology borrowed from Garg et al. [2014] (see §3.2):

Lemma 7.2. Let P be a class of transition systems, and L a class of candidate invariants. Assume
that deciding the existence of an invariant in L, given an instance from P, requires at least r queries
in the inductiveness-query model. Then every strongly-convergent ICE-learner for (P,L) has round
complexity at least r .

The proof appears in the extended version [Feldman et al. 2020].

Inductiveness queries vs. Hoare queries. Inductiveness queries are specific instances of Hoare
queries, where the precondition and postcondition are the same. Since Hoare queries can also find

a counterexample in a polynomial number of queries (Lemma 5.3), inductiveness-query algorithms

can be simulated by Hoare-query algorithms. Our results in the rest of this section establish that

the converse is not true.

7.2 Separating Inductiveness-Queries from Hoare-Queries
In this section we show that the Hoare query model (Def. 5.2) is strictly stronger than the induc-

tiveness query model (Def. 7.1). We will prove the following main theorem:

Theorem 7.3. There exists a class of systemsME for which

• polynomial-length invariant inference has polynomial query complexity in the Hoare-query
model (in fact, also polynomial time complexity modulo the query oracle), but
• every algorithm in the inductiveness-query model requires an exponential number of queries.

The upper bound is proved in Corollary 7.9, and the lower bound in Corollary 7.11.

7.2.1 Maximal Transition Systems for Monotone Invariants. We first define the transition systems

with which we will prove Thm. 7.3. We start with a definition:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:21

Definition 7.4 (Maximal System). Let Init,Bad . false and let φ be a formula such that Init =⇒ φ
and φ =⇒ ¬Bad. The maximal transition system w.r.t. φ is (Init,δMφ ,Bad) where δ

M
φ = φ → φ ′.

A maximal transition system is illustrated as follows:

Note that δMφ goes from any state satisfying φ to any state satisfying φ, and from any state

satisfying ¬φ to all states, good or bad. δMφ ismaximal in the sense that it allows all transitions that

do not violate the consecution of φ. Thus any transition relation
˜δ for which φ satisfies consecution

has
˜δ =⇒ δMφ .

Lemma 7.5. A maximal transition system (Init,δMφ ,Bad) has a unique inductive invariant, φ.

Proof. Let I be any invariant of (Init,δMφ ,Bad). By the definition of δMφ and the fact that Init =⇒
φ, the set of states reachable from Init is exactly the set of states satisfying φ. Thus φ =⇒ I .

Since δMφ allows transitions from any state satisfying ¬φ to Bad, I =⇒ φ. �

The class of transition systems on which we focus,ME , is the class of maximal systems for

monotone invariants,M, together with certain unsafe systems.

Formally, for each k ∈ N, we defineMk
as the class of all transition systems (Initk ,δMφ ,Badk)

for Initk ,Badk from Pk
ΣP
2

(§6.1.1) and φ ∈ Mon-CNF
2k+1 such that Initk =⇒ φ and φ =⇒ ¬Badk . We

then defineM =
⋃

k ∈NM
k
. Further, for each k we take the unsafe program Ek = (Initk , true,Badk),

and define the classME =M ∪ {Ek | k ∈ N}. Below we abbreviate and refer to the classME as

“monotone maximal systems”.

Note that for each k , only a single transition system, Ek , inME does not have an invariant, and

the others have a monotone invariant. Still, Corollary 7.11 establishes a lower bound on polynomial-

length inference forME using inductiveness queries. This means that using inductiveness queries

alone, it is hard to distinguish between monotone invariants (otherwise decision would have been

feasible via search). On the other hand, with Hoare queries, search becomes feasible (establishing

the upper bound).

7.2.2 Upper Bound for Hoare-Query Algorithms for MonotoneMaximal Systems. A simple algorithm

can find inductive invariants of monotone maximal systems with a polynomial number of queries. It

is essentially PDR with a single frame. The ability to find invariants forME (and check invariants)

shows that it is possible to decide polynomial-length inference forME .

We now present the PDR-1 algorithm (which was also discussed in §2.2, and is cast here formally

as a Hoare-query algorithm). This is a backward-reachability algorithm, operating by repeatedly

checking for the existence of a counterexample to induction, and obtaining a concrete example by

the method discussed in Lemma 5.3. The invariant is then strengthened by conjoining the candidate

invariant with the negation of the formula Block returns. This formula is a subset of the cube of the

pre-state. In PDR-1, Block performs generalization by dropping a literal from the cube whenever

the remaining conjunction does not hold for any state reachable in at most one step from Init. The
result is the strongest conjunction whose negation does not exclude any state reachable in at most

one step. (This might exclude reachable states in general transition systems, but not in monotone

maximal systems, since maximality ensures that their diameter is one.)

The main property of monotone CNF formulas we exploit in the upper bound is the ability to

reconstruct them from prime consequences.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:22 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

Algorithm 4 PDR-1 invariant inference in the Hoare-query model

1: procedure PDR-1(Init, Bad, [δ]) // Backward-reachability with PDR-1 generalization

2: I ← ¬Bad
3: while H(δ, I, I) = false do // I not inductive
4: (σ , σ ′) ← model([δ], I, ¬I ′) // counterexample to induction of I . implemented using Lemma 5.3

5: d ← Block-PDR-1(Init, [δ], σ)
6: I ← I ∧ ¬d

return I
7:

8: procedure Block-PDR-1(Init, [δ], σ) // Generalization according to one-step reachability

9: d ← cube(σ)
10: for l ∈ cube(σ) do
11: t ← d \ {l }
12: if Init =⇒ ¬t ∧ H(δ, Init, ¬t) then // Init =⇒ t ∧ Init ∧ δ =⇒ ¬t ′

13: d ← t
return d

Definition 7.6 (Prime Consequence). A clause c is a consequence ofφ ifφ =⇒ c . A prime consequence,
c , of φ is a minimal consequence of φ, i.e., no proper subset of c is a consequence of φ.

Theorem 7.7 (Folklore). If φ ∈ Mon-CNFn and a clause c is a prime consequence of φ then c is a
clause of φ.

Thm. 7.7 is the dual of the folklore theorem on prime implicants of monotone DNF formulas as

used e.g. by Valiant [1984]. For completeness we provide a proof in the extended version [Feldman

et al. 2020].

We use this property to show that PDR-1 efficiently finds the invariants of the safe maximal

monotone systemsM, as implied by the following, slightly more general, lemma:

Lemma 7.8. Let TS = (Init,δ ,Bad) be a transition system over Σ, n = |Σ|, andm ∈ N such that
(i) TS is safe,
(ii) every reachable state in TS is reachable in at most one step from Init,
(iii) this set can be described by a formula φ ∈ Mon-CNFm .
Then PDR-1(Init,Bad, [δ]) returns the inductive invariant φ for TS with at most n ·m Hoare queries.

From this lemma and the uniqueness of the invariants (Lemma 7.5) the upper bound forME
follows easily (the proofs appear in the extended version [Feldman et al. 2020]) :

Corollary 7.9. Polynomial-length invariant inference ofME can be decided in a polynomial
number of Hoare queries.

Remark 7.1. The condition that the invariant is monotone in Lemma 7.8 can be relaxed to pseudo-
monotonicity: A formula φ in CNF is pseudo-monotone if no propositional variable appears in φ both
positively and negatively. Thus it can be made monotone by renaming variables. It still holds for a
pseduo-monotone CNF φ that a prime consequence is a clause of φ, and therefore PDR-1 successfully
finds an invariant in a polynomial number of Hoare queries also for the class of maximal systems for
pseudo-monotone invariants.

7.2.3 Lower Bound for Inductiveness-Query Algorithms for Monotone Maximal Systems. We now

prove that every inductiveness-query algorithm for the class of monotone maximal systems requires

exponential query complexity. The main idea of the proof is that inductiveness-query algorithms

are oblivious to adding transitions:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:23

Theorem 7.10. Let X ,Y be sets of transition systems, such that Y covers the transition relations
of X , that is, for every (Init,δ ,Bad) ∈ X there exists (Init, ˆδ ,Bad) ∈ Y over the same vocabulary s.t.
(1) δ =⇒ ˆδ , and (2) if (Init,δ ,Bad) has an inductive invariant in CNFp(n), then so does (Init, ˆδ ,Bad).
Then if A is an inductiveness-query algorithm for Y with query complexity t , then A is also an
inductiveness-query algorithm for X with query complexity t .

Proof. Let A be an algorithm for Y as in the premise. We show that A also solves the problem

for X . Let (Init,δ ,Bad) ∈ X and analyze AQ (Init,Bad, [δ]), where Q is some inductiveness-query

oracle. Consider the first t candidates, α1, . . . ,αt . If one of them is an inductive invariant for

(Init,δ ,Bad), we are done (recall that the inductiveness query is only defined for queries with αi
s.t. Init =⇒ αi and αi =⇒ ¬Bad). If we are not done, let (Init, ˆδ ,Bad) ∈ Y as in the premise for the

given (Init,δ ,Bad). We show that in this caseAQ (Init,Bad, [δ]) simulatesAQ ′(Init,Bad, [ˆδ]) where
Q ′ is an inductiveness-query oracle derived from Q by Q ′(ˆδ ,αi) = Q(δ ,αi) for all i = 1, . . . , t .

Note that Q ′(ˆδ , ·) is a valid inductiveness-query oracle: by the assumption that αi is not inductive

for δ , Q(δ ,α) = (σ ,σ ′), that is, σ ,σ ′ |= α ∧ δ ∧ ¬α ′. From condition 1, δ =⇒ ˆδ , and so we deduce

that also σ ,σ ′ |= α ∧ ˆδ ∧ ¬α ′. Therefore, after at most t queries, AQ ′(Init,Bad, [ˆδ]) terminates,

returning either (i) an inductive invariant φ ∈ CNFp(n) for (Init,
ˆδ ,Bad), which is also an inductive

invariant for (Init,δ ,Bad), by condition 1; or (ii) no inductive invariant in CNFp(n) for (Init,
ˆδ ,Bad),

in which case this is also true for (Init,δ ,Bad), by condition 2. Either way AQ (Init,Bad, [δ]) is
correct and uses ≤ t queries. �

The lower bound for monotone maximal systems results from Thm. 7.10 together with the

hardness previously obtained in Thm. 6.2:

Corollary 7.11. Every inductiveness-query algorithm, even computationally-unrestricted, deciding
polynomial-length inference forME has query complexity of 2Ω(n).

The proof applies Thm. 7.10 toME , which covers PΣP
2

, while the hardness of the latter was

established in Thm. 6.2. The full proof appears in the extended version [Feldman et al. 2020].

We note that the transition relations inME are themselves polynomial in |Σ|. Hence the query
complexity in this lower bound is exponential not only in |Σ| but also in |δ | (see Remark 5.2).

Finally, it is interesting to notice that the safe systems inME have a unique inductive invariant,
and still the problem is hard.

8 INVARIANT LEARNING & CONCEPT LEARNINGWITH QUERIES
The theory of exact concept learning [Angluin 1987] asks a learner to identify an unknown formula

10

φ from a class L using queries posed to a teacher. Prominent types of queries include membership—
given state σ , return whether σ |= φ—and equivalence—given θ , return true if θ ≡ φ or, otherwise,

a counterexample, a σ s.t. σ ̸ |= θ ,σ |= φ or vice versa.

What are the connections and differences between concept learning formulas in L and learning

invariants in L? Can concept learning algorithms be translated to inference algorithms? These

questions have spurred much research [e.g. Garg et al. 2014; Jha and Seshia 2017]. In this section

we study these questions with the tool of query complexity and our aforementioned results.

The most significant outcome of this analysis is a new hardness result (Corollary 8.1) showing

that ICE-learning is provably harder than classical learning: namely, that, as advocated by Garg

et al. [2014], learning from counterexamples to induction is inherently harder than learning from

examples labeled positive or negative. The proof of this result builds on the lower bound of

10
In general, a concept is a set of elements; here we focus on logical concepts.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:24 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

Table 1. Concept vs. invariant learning: query complexity of learning Mon-CNFn

Invariant Inference Concept Learning

Maximal Systems General Systems

Inductiveness

Exponential

(Corollary 7.11)

Exponential

(Thm. 6.2)

Equivalence

Subexponential
1
/ Polynomial

2

[Angluin 1987; Hellerstein et al. 2012]

Hoare

Polynomial

(Corollary 7.9)

Exponential

(Thm. 6.2)

Equivalence +

Membership

Polynomial

[Angluin 1987]

1
proper learning

2
with exponentially long candidates

Corollary 7.11. We also establish (im)possibility results for directly applying algorithms from

concept learning to invariant inference.

Complexity: the easy, the complex, and the even-more-complex. In this paper we have studied

the complexity of inferring L = Mon-CNFn invariants using Hoare/inductiveness queries in two

settings: for general systems (in §6.1), and formaximal systems in §7. Table 1 summarizes our results

and contrasts them with known complexity results in classical concept learning for the same class

of formulas. For the sake of the comparison, the table maps inductiveness queries to equivalence

queries (as these are similar at first sight) and maps the more powerful setting of Hoare queries to

the more powerful setting of equivalence and membership queries.

Starting with similarity, the gap in the complexity between Hoare- and inductiveness-queries in

learning invariants for maximal systems parallels the gap between equivalence and equivalence

+ membership queries in concept learning. Our proof for the upper bound for Hoare queries is

related to the upper bound in concept learning and simulations of concept learning algorithms (see

below), but the lower bound for inductiveness queries uses very different ideas, and establishes

stronger lower bounds than possible in concept learning, as we describe below.

The similarity ends here. First, general systems are harder , and inferring L = Mon-CNFn in-

variants for them is harder than concept learning with the same L, even with the full power of

Hoare queries. This, unsurprisingly, illustrates the challenges stemming from transition systems

with complex reachability patterns, such as a large diameter. Second, even the hard cases for

concept learning have lower complexity than the hard invariant inference problems: learning

concepts in L = Mon-CNFn has subexponential query complexity (or even polynomial complexity

when exponentially-long candidates are allowed), whereas we prove exponential lower bounds
for inference. One important instance of this discrepancy shows that inductiveness queries are

inherently weaker than equivalence queries, as learning Mon-CNFn invariants in the inductiveness
model is harder than learning Mon-CNFn formulas using equivalence queries. Put differently, this
is a hardness result for concept learning with ICE-equivalence queries, which are like equivalence

queries, only when the given θ is not equivalent to the target concept φ the teacher responds with

an implication counterexample [Garg et al. 2014]: a pair σ ,σ ′ s.t. σ |= θ and σ ′ ̸ |= θ , but σ ̸ |= φ or

σ ′ |= φ. Our results thus imply:

Corollary 8.1. There exists a class of formulas L that can be learned using a subexponential
number of equivalence queries, but requires an exponential number of ICE-equivalence queries.

This result quantitatively corroborates the difference between counterexamples to induction and

examples labeled positive or negative, a distinction advocated by Garg et al. [2014].

The higher complexity of inferring invariants has consequences for the feasibility of simulating

queries (and algorithms) from concept learning in invariant inference, as we discuss next.

Queries: some unimplementable algorithms. Table 2 summarizes our results for the possibility

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:25

Table 2. Concept vs. invariant learning: implementability of concept-learning queries

Maximal Systems General Systems

Inductiveness Hoare Inductiveness Hoare

Equivalence ✗ ✓ ✗ ✗

Membership ✗ ✓ ✗ ✗

and impossibility of simulating concept learning algorithms in invariant learning. This table depicts

implementability (✓) or unimplementability (✗) of membership and equivalence queries used in

concept learning a class of formulas L through inductiveness and Hoare queries used in learning

invariants for maximal systems over L, and for general systems with candidate invariants in L. The

proofs of impossibilities are based on the differences in complexity described above: that neither

equivalence nor membership queries can be simulated over general systems using even Hoare

queries is implied by the hardness of general systems; that neither equivalence nor membership

can be simulated even over maximal systems using inductiveness queries is implied by the higher

complexity of these compared to concept learning. The only possibility result is of simulating

inductiveness and membership queries using Hoare queries over maximal systems; the idea is

that a Hoare queryH(δMφ , Init,¬cube(σ))
?

= false implements a membership query on σ , thanks
to fact that the inductive invariant is exactly the set of states reachable in one step, and that a

membership query can disambiguate a counterexample to induction into a labeled example, so it is

possible to simulate an equivalence query by an inductiveness query. Interestingly, the algorithm

we use to show the polynomial upper bound on Hoare queries for maximal systems, PDR-1, can be

obtained as such a translation of an algorithm from Angluin [1987] performing concept learning of

Mon-CNFn using equivalence and membership queries.

9 RELATEDWORK

Complexity of invariant inference. The fundamental question of the complexity of invariant in-

ference in propositional logic has been studied by Lahiri and Qadeer [2009]. They show that deciding

whether an invariant exists is PSPACE-complete. This includes systems with only exponentially-

long invariants, which are inherently beyond reach for algorithms aiming to construct an invariant.

In this paper we focus on the search for polynomially-long invariants. Lahiri and Qadeer [2009]

study the related problem of template-based inference, and show it is ΣP
2
-complete. Polynomial-

length inference for CNF formulas can be encoded as specific instances of template-based inference;

the ΣP
2
-hardness proof of Lahiri and Qadeer [2009] uses more general templates and therefore does

not directly imply the same hardness for polynomial-length inference. The same work also shows

that inference is only Π
p
1
= coNP-complete when candidates are only conjunctions (or, dually,

disjunctions). In this paper we focus on the richer class of CNF invariants.

Black-box invariant inference. Black-box access to the program in its analysis is widespread

in research on testing [e.g. Nidhra and Dondeti 2012]. In invariant inference, Daikon [Ernst et al.

2001] initiated the black-box learning of likely program invariants [see e.g. Csallner et al. 2008;

Sankaranarayanan et al. 2008]. In this paper we are interested in inferring necessarily correct

inductive invariants. The ICE learning model, introduced by Garg et al. [2014, 2016], and extended to

general Constrained Horn Clauses in later work [Ezudheen et al. 2018], pioneered a black-box view

of inference algorithms such as Houdini [Flanagan and Leino 2001] and symbolic abstraction [Reps

et al. 2004; Thakur et al. 2015]. The inductivenessmodel in ourwork is inspired by this work, focusing

on black-box access to the transition relation while providing the learner with full knowledge of

the set of initial and bad states. Capturing PDR in a black-box model was achieved by extending

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:26 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

ICE with relative-inductiveness queries [Vizel et al. 2017]. Our work shows that an extension is

necessary, and applies to any Hoare-query algorithm.

Lower bounds for black-box inference. To the best of our knowledge, our work provides the first
unconditional exponential lower bound for rich black-box inference models such as the Hoare-query

model. An impossibility result for ICE learning in polynomial time in the setting of quantified

invariants was obtained by Garg et al. [2014], based on the lower bound of Angluin [1990] for

concept learning DFAs with equivalence queries. Our lower bound for monotone maximal systems

(i) demonstrates an exponential gap between ICE learning and Hoare-query algorithms such as

PDR (§7), and (ii) separates ICE learning from concept learning (§8); in particular, it holds even

when candidates may be exponentially long (see Corollary 7.11 and Garg et al. [2013, Appendix B]).

Learning and synthesis with queries. Connections with exact learning with queries [Angluin

1987] are discussed in §8. The lens of synthesis has inspired many works applying ideas from

machine learning to invariant inference [e.g. Garg et al. 2014; Jha et al. 2010; Sharma and Aiken 2016;

Sharma et al. 2013b,a, 2012]. The role of learning with queries is recognized in prominent synthesis

approaches such as Counterexample-Guided Inductive Synthesis (CEGIS) [Solar-Lezama et al. 2006]

and synthesizer-driven approaches [e.g. Gulwani 2012; Jha et al. 2010; Le et al. 2017], which learn

from equivalence and membership queries [Alur et al. 2015; Bshouty et al. 2017; Drachsler-Cohen

et al. 2017; Jha and Seshia 2017]. The theory of oracle-guided inductive synthesis [Jha and Seshia

2017] theoretically studies the convergence of CEGIS in infinite concept classes using different

types of counterexamples-oracles, and relates the finite case to the teaching dimension [Goldman

and Kearns 1995]. In this work we study inference based on a different form of queries, and prove

lower bounds on the convergence rate in finite classes.

Proof complexity. Proof complexity studies the power of polynomially-long proofs in different

proof systems. A seminal result is that a propositional encoding of the pigeonhole principle has

no polynomial resolution proofs [Haken 1985]. Ideas and tools from proof complexity have been

applied to study SAT solvers [e.g. Pipatsrisawat and Darwiche 2011] and recently also SMT [Robere

et al. 2018]. Proof complexity is an alternative technical approach to study the complexity of proof

search algorithms, by showing that some instances do not have a short proof, showing a lower

bound regardless of how search is conducted. Our work, inspired by learning theory, provides

exponential lower bounds on query-based search even when the proof system is sufficiently strong

to admit short proofs: in our setting, there is always a short derivation of an inductive invariant by

generalization in backward-reachability, blocking counterexamples with the optimal choice, using

clauses from a target invariant (see §6.3). We expect that proof complexity methods would prove

valuable in further study of inference.

10 CONCLUSION
Motivated by the rise of SAT-based invariant inference algorithms, we have attempted to elucidate

some of the principles on which they are based by a theoretical complexity analysis of algorithms

attempting to infer invariants of polynomial size. We have developed information-based analysis

tools, inspired by machine learning theory, to investigate two focal points in SAT-based inference

design: (1) Generalization, which we have shown to be impossible from a polynomial number of

Hoare queries in the general case; (2) Rich Hoare queries, beyond presenting candidate invariants,

which we have shown to be pivotal in some cases. Our upper bound for PDR on the class of

monotone maximal systems is a first step towards theoretical conditions guaranteeing polynomial

running time for such algorithms. One lesson from our results is the importance of characteristics of

the transition relations (rather than of candidate invariants), which make the difference between the

lower bound for general systems (Thm. 6.2) and the upper bound formaximal systems (Corollary 7.9),

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

Complexity and Information in Invariant Inference 5:27

both for the same class of candidate invariants. We believe that theoretical guarantees of efficient

inference would involve special classes of transitions systems and algorithms using repeated

generalization employing rich Hoare queries.

At the heart of our analysis lies the observation that many interesting SAT-based algorithms

can be cast in a black-box model. This work focuses on the limits and opportunities in black-

box inference and shows interesting information-theoretic lower bounds. One avenue for further

research is an information-based analysis of black-box models extended with white-box capabilities,

e.g. by investigating syntactical conditions on the transition relation that simplify generalization.

ACKNOWLEDGMENTS
We thank our shepherd and the anonymous referees for comments that improved the paper. We thank

Kalev Alpernas, Nikolaj Bjørner, P. Madhusudan, Yishay Mansour, Oded Padon, Hila Peleg, Muli Safra, and

James R. Wilcox for insightful discussions and suggestions, and Gil Buchbinder for saving a day. The research

leading to these results has received funding from the European Research Council under the European Union’s

Horizon 2020 research and innovation programme (grant agreement No [759102-SVIS]). This research was

partially supported by the National Science Foundation (NSF) grant no. CCF-1617498, by Len Blavatnik and the

Blavatnik Family foundation, the Blavatnik Interdisciplinary Cyber Research Center, Tel Aviv University, the

United States-Israel Binational Science Foundation (BSF) grant No. 2016260, and the Israeli Science Foundation

(ISF) grant No. 1810/18.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

5:28 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

REFERENCES
Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan,

Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,

Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthesis. In Dependable Software Systems Engineering. 1–25.
Dana Angluin. 1987. Queries and Concept Learning. Machine Learning 2, 4 (1987), 319–342.

Dana Angluin. 1990. Negative Results for Equivalence Queries. Machine Learning 5 (1990), 121–150.

Nikolaj Bjørner and Arie Gurfinkel. 2015. Property Directed Polyhedral Abstraction. In Verification, Model Checking, and
Abstract Interpretation - 16th International Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings.
263–281. https://doi.org/10.1007/978-3-662-46081-8_15

Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In Verification, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings. 70–87.
https://doi.org/10.1007/978-3-642-18275-4_7

Nader H. Bshouty, Dana Drachsler-Cohen, Martin T. Vechev, and Eran Yahav. 2017. Learning Disjunctions of Predicates. In

Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017. 346–369.
Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. 2014. IC3 Modulo Theories via Implicit Predicate

Abstraction. In Tools and Algorithms for the Construction and Analysis of Systems - 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014. Proceedings. 46–61. https://doi.org/10.1007/978-3-642-54862-8_4

Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear Constraint

Solving. In Computer Aided Verification, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003,
Proceedings. 420–432.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977. 238–252. https://doi.org/10.1145/512950.512973

Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy: dynamic symbolic execution for invariant

inference. In 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008. 281–290.
https://doi.org/10.1145/1368088.1368127

Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013. Inductive invariant generation via abductive inference.

In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 443–456.

Dana Drachsler-Cohen, Sharon Shoham, and Eran Yahav. 2017. Synthesis with Abstract Examples. In Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. 254–278.
https://doi.org/10.1007/978-3-319-63387-9_13

Niklas Eén, Alan Mishchenko, and Robert K. Brayton. 2011. Efficient implementation of property directed reachability.

In International Conference on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 -
November 02, 2011. 125–134. http://dl.acm.org/citation.cfm?id=2157675

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dynamically Discovering Likely Program

Invariants to Support Program Evolution. IEEE Trans. Software Eng. 27, 2 (2001), 99–123. https://doi.org/10.1109/32.908957
P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan. 2018. Horn-ICE learning for synthesizing

invariants and contracts. PACMPL 2, OOPSLA (2018), 131:1–131:25.

Grigory Fedyukovich and Rastislav Bodík. 2018. Accelerating Syntax-Guided Invariant Synthesis. In Tools and Algorithms
for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
I. 251–269. https://doi.org/10.1007/978-3-319-89960-2_14

Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham. 2020. Complexity and Information in Invariant
Inference. Technical Report. arXiv:1910.12256 https://arxiv.org/abs/1910.12256

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In FME 2001: Formal
Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March
12-16, 2001, Proceedings. 500–517.

Cormac Flanagan and Shaz Qadeer. 2002. Predicate abstraction for software verification. In Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA, January 16-18, 2002.
191–202. https://doi.org/10.1145/503272.503291

Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. 2013. ICE: A robust framework for learning invariants.
Technical Report. 69–87 pages. http://hdl.handle.net/2142/45973

Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. 2014. ICE: A robust framework for learning invariants. In

Computer Aided Verification. Springer, 69–87.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

https://doi.org/10.1007/978-3-662-46081-8_15
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/1368088.1368127
https://doi.org/10.1007/978-3-319-63387-9_13
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1109/32.908957
https://doi.org/10.1007/978-3-319-89960-2_14
http://arxiv.org/abs/1910.12256
https://arxiv.org/abs/1910.12256
https://doi.org/10.1145/503272.503291
http://hdl.handle.net/2142/45973

Complexity and Information in Invariant Inference 5:29

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and implication

counterexamples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. 499–512. https://doi.org/10.1145/2837614.2837664

Sally A. Goldman and Michael J. Kearns. 1995. On the Complexity of Teaching. J. Comput. Syst. Sci. 50, 1 (1995), 20–31.
https://doi.org/10.1006/jcss.1995.1003

Oded Goldreich. 2006. On Promise Problems: A Survey. In Theoretical Computer Science, Essays in Memory of Shimon Even.
254–290.

Susanne Graf and Hassen Saïdi. 1997. Construction of Abstract State Graphs with PVS. In Computer Aided Verification, 9th
International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings. 72–83. https://doi.org/10.1007/3-540-63166-

6_10

Sumit Gulwani. 2012. Synthesis from Examples: Interaction Models and Algorithms. In 14th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012, Timisoara, Romania, September 26-29, 2012.
8–14. https://doi.org/10.1109/SYNASC.2012.69

Arie Gurfinkel and Alexander Ivrii. 2015. Pushing to the Top. In Formal Methods in Computer-Aided Design, FMCAD 2015,
Austin, Texas, USA, September 27-30, 2015. 65–72.

Armin Haken. 1985. The Intractability of Resolution. Theor. Comput. Sci. 39 (1985), 297–308. https://doi.org/10.1016/0304-

3975(85)90144-6

Lisa Hellerstein, Devorah Kletenik, Linda Sellie, and Rocco A. Servedio. 2012. Tight Bounds on Proper Equivalence Query

Learning of DNF. In COLT 2012 - The 25th Annual Conference on Learning Theory, June 25-27, 2012, Edinburgh, Scotland.
31.1–31.18. http://proceedings.mlr.press/v23/hellerstein12/hellerstein12.pdf

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. 2004. Abstractions from proofs. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004. 232–244. https://doi.org/10.1145/964001.964021

Krystof Hoder and Nikolaj Bjørner. 2012. Generalized Property Directed Reachability. In Theory and Applications of
Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings. 157–171.

Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan. 2014. Abstract acceleration of general linear loops. In

The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014. 529–540. https://doi.org/10.1145/2535838.2535843

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010. 215–224. https://doi.org/10.1145/1806799.1806833

Susmit Jha and Sanjit A. Seshia. 2017. A theory of formal synthesis via inductive learning. Acta Inf. 54, 7 (2017), 693–726.
https://doi.org/10.1007/s00236-017-0294-5

Ranjit Jhala and Kenneth L. McMillan. 2007. Interpolant-Based Transition Relation Approximation. Logical Methods in
Computer Science 3, 4 (2007). https://doi.org/10.2168/LMCS-3(4:1)2007

Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and Sharon Shoham. 2017. Property-Directed

Inference of Universal Invariants or Proving Their Absence. J. ACM 64, 1 (2017), 7:1–7:33. https://doi.org/10.1145/3022187

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2014. SMT-Based Model Checking for Recursive Programs. In

Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings. 17–34.

Shuvendu K. Lahiri and Shaz Qadeer. 2009. Complexity and Algorithms for Monomial and Clausal Predicate Abstraction. In

Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7,
2009. Proceedings. 214–229.

Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit Gulwani. 2017. Interactive

Program Synthesis. CoRR (2017). arXiv:1703.03539 http://arxiv.org/abs/1703.03539

Christof Löding, P. Madhusudan, and Daniel Neider. 2016. Abstract Learning Frameworks for Synthesis. In Tools and
Algorithms for the Construction and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings. 167–185. https://doi.org/10.1007/978-3-662-49674-9_10

Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Computer Aided Verification, 15th International
Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. 1–13.

Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In Computer Aided Verification, 18th International Conference,
CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings. 123–136. https://doi.org/10.1007/11817963_14

Srinivas Nidhra and Jagruthi Dondeti. 2012. Black Box andWhite Box Testing Techniques - A Literature Review. International
Journal of Embedded Systems and Applications 2 (06 2012), 29–50. https://doi.org/10.5121/ijesa.2012.2204

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1006/jcss.1995.1003
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1109/SYNASC.2012.69
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1016/0304-3975(85)90144-6
http://proceedings.mlr.press/v23/hellerstein12/hellerstein12.pdf
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/2535838.2535843
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.2168/LMCS-3(4:1)2007
https://doi.org/10.1145/3022187
http://arxiv.org/abs/1703.03539
http://arxiv.org/abs/1703.03539
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/11817963_14
https://doi.org/10.5121/ijesa.2012.2204

5:30 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham

Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. 614–630.
Knot Pipatsrisawat and Adnan Darwiche. 2011. On the power of clause-learning SAT solvers as resolution engines. Artif.

Intell. 175, 2 (2011), 512–525. https://doi.org/10.1016/j.artint.2010.10.002

Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. 2004. Symbolic Implementation of the Best Transformer. In Verification,
Model Checking, and Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy, January 11-13, 2004,
Proceedings. 252–266. https://doi.org/10.1007/978-3-540-24622-0_21

Robert Robere, Antonina Kolokolova, and Vijay Ganesh. 2018. The Proof Complexity of SMT Solvers. In Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II. 275–293. https://doi.org/10.1007/978-3-319-96142-2_18

Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivancic, and Aarti Gupta. 2008. Dynamic inference of likely data

preconditions over predicates by tree learning. In Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008. 295–306. https://doi.org/10.1145/1390630.1390666

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Constraint-Based Linear-Relations Analysis. In Static
Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings. 53–68.

Rahul Sharma and Alex Aiken. 2016. From invariant checking to invariant inference using randomized search. Formal
Methods in System Design 48, 3 (2016), 235–256. https://doi.org/10.1007/s10703-016-0248-5

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013b. A Data Driven

Approach for Algebraic Loop Invariants. In Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings. 574–592. https://doi.org/10.1007/978-3-642-37036-6_31

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V. Nori. 2013a. Verification as Learning Geometric

Concepts. In Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings.
388–411.

Rahul Sharma, Aditya V. Nori, and Alex Aiken. 2012. Interpolants as Classifiers. In Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. 71–87. https://doi.org/10.1007/978-3-

642-31424-7_11

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

sketching for finite programs. In Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006. 404–415. https://doi.org/10.1145/

1168857.1168907

Saurabh Srivastava and Sumit Gulwani. 2009. Program verification using templates over predicate abstraction. In Proceedings
of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland,
June 15-21, 2009. 223–234.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2013. Template-based program verification and program synthesis.

STTT 15, 5-6 (2013), 497–518.

Aditya V. Thakur, Akash Lal, Junghee Lim, and Thomas W. Reps. 2015. PostHat and All That: Automating Abstract

Interpretation. Electr. Notes Theor. Comput. Sci. 311 (2015), 15–32. https://doi.org/10.1016/j.entcs.2015.02.003

Leslie G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27, 11 (1984), 1134–1142. https://doi.org/10.1145/1968.1972

Yakir Vizel and Orna Grumberg. 2009. Interpolation-sequence based model checking. In Proceedings of 9th International
Conference on Formal Methods in Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA. 1–8.
https://doi.org/10.1109/FMCAD.2009.5351148

Yakir Vizel, Orna Grumberg, and Sharon Shoham. 2013. Intertwined Forward-Backward Reachability Analysis Using

Interpolants. In Tools and Algorithms for the Construction and Analysis of Systems - 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. 308–323. https://doi.org/10.1007/978-3-642-36742-7_22

Yakir Vizel and Arie Gurfinkel. 2014. Interpolating Property Directed Reachability. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings. 260–276. https://doi.org/10.1007/978-3-319-08867-9_17

Yakir Vizel, Arie Gurfinkel, Sharon Shoham, and Sharad Malik. 2017. IC3 - Flipping the E in ICE. In Verification, Model
Checking, and Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France, January 15-17, 2017,
Proceedings. 521–538.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 5. Publication date: January 2020.

https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1007/978-3-319-96142-2_18
https://doi.org/10.1145/1390630.1390666
https://doi.org/10.1007/s10703-016-0248-5
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-31424-7_11
https://doi.org/10.1007/978-3-642-31424-7_11
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1145/1968.1972
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.1007/978-3-319-08867-9_17

	Abstract
	1 Introduction
	2 Overview
	2.1 Example: Backward-Reachability with Generalization
	2.2 All Generalizations Are Wrong
	2.3 Inference Using Rich Queries
	2.4 A Different Perspective: Exact Learning of Invariants with Hoare Queries

	3 Background
	3.1 States, Transitions Systems, and Inductive Invariants
	3.2 Invariant Inference Algorithms

	4 Polynomial-Length Invariant Inference
	5 Invariant Inference with Queries and the Hoare Query Model
	6 The Information Complexity of Hoare-Query Algorithms
	6.1 Information Lower Bound for Hoare-Query Inference
	6.2 Extension to Interpolation-Based Algorithms
	6.3 Impossibility of Generalization from Partial Information

	7 The Power of Hoare-Queries
	7.1 Inductiveness-Query Algorithms
	7.2 Separating Inductiveness-Queries from Hoare-Queries

	8 Invariant Learning & Concept Learning with Queries
	9 Related Work
	10 Conclusion
	References

