Compiler Construction
Winter 2020

Recitation 12:
Activation Records

Yotam Feldman

Based on slides by Technion compilers class’ staff
and Guy Golan-Gueta

Assembly Code Generation

. Abstract
‘ LEXIca.| =) Parsing mmp| -
code analysis (AST)

Semantic | Intermediate LLVM Target x86
. . q- ‘ I ‘
[analysis } {code generatlon} code code generation code

Lowering (LLVM) to Assembly

e Different instruction set
 Unbounded number of registers

— Register allocation & spilling

* Function calls

— Activation records -

What’s in a Procedure

* A procedure needs access to
— Its local variables
— |ts parameters

— Return address int add(int x, int y)
{
int inc = x;
inc = inc + y;
return inc;

The Deep Dive: Recursion

* Where are the arguments / local int fact(int n)
. : . {
variables of each invocation stored? if (n == 1)
return 1;
* How do we know to access the return n*fact(n-1);
}
correct ones?
void £ ()
{
. fact (5) ;
e How do we know to which £fact }

invocation to return? Or to £?

Activation Records / Stack Frames

Data structure per procedure invocation
Records all the necessary information

Stored in the stack

At runtime, an activation record is allocated for each
Invocation

— Allocated when the procedure is called

— Released when the procedure terminates

void £()

{
mm) frac(5);
}

int fact(int n)

—— int fact(int n)

naonnn

f0

fact(b)

fact(4)

What if there’s no more
available space in the stack?

Ct(3)

}

ﬁ;

=)

}

{

}

IITC IrgcCT(IIrTc II)

if (n == 1)
return 1;
return n*fact(n-1);

fact(2)

fact(l1)

NL

Stacktrace

Runtime Stack

e Stack grows downwards
(towards smaller addresses)

* BP— base / frame pointer

— base of current frame

e SP — stack pointer
— top of current frame
— |last allocated value

Activation Record’s Contents

How can we execute our code while...

* Finding arguments?
* Finding local variables?

Global variables access via their fixed address

Heap variables by following pointers from
other variables

argument n
fp+12 — Sometimes uses [~
fo+g — also registers
fp — .
variable 1
-t iable 2 -
variapie
fp-8 — :
spt4 — variable n B
Sp—

* 32 bit addresses * Layout may change

between architectures and
operating systems

Activation Record’s Contents

How can we execute our code while...

* Finding arguments?
* Finding local variables?
How can we return to the caller’s context...

* |nstruction pointer?
* Activation record?
* Registers?

argument n

argument 2 —
argument 1
return address
previous fp
variable 1
variable 2 -

variable n
Sp—

* Layout may change
between architectures and
operating systems

Activation Record’s Contents

How can we execute our code while...

* Finding arguments?
* Finding local variables?
How can we return to the caller’s context...

* |nstruction pointer?
* Activation record?
* Registers?

argument n

argument 2 —
argument 1
return address
previous fp
variable 1
variable 2

variable n

reqgisters
sp— -

* Layout may change
between architectures and
operating systems

Application Binary Interface:
Things to Be Done (and By Whom) (and How) .o,

Upon call: Upon return:
* Storing arguments * Deallocating stack space for
* Storing return address registers
* Storing frame pointer * Deallocating stack space for
* Allocating stack space local variables
for registers * “Cleanup” arguments
* Storing registers e Storing return value
* Allocating stack space * Restoring base pointer

for local variables o , ,
e Restoring instruction pointer

Example Application Binary Interface (ABI) In x86

callee

Storing frame
pointer and opening

saving

caller

register ecx

storing args

push %ecx

: _ push $21 :

activation record fp { oush $42 SR
. call call _foo
{ push %ebp <
mov %esp, %ebp :
allocate stack " sub %% %esp rseag\i/;rt]gr ' ¢
store return

memory for pu SP bx b " qi

i ebx address and jump

Some computation to callee code
restore pop %ebx cleanup
register ebx e &hp, %esp args
sgister g return

freeing record =

» add $8, %esp
pop %ecx

Restoring instruction

) restoring
pointer (return to caller)

register ecx

Restoring
frame pointer

Caller- and Callee-Saved Resigters

callee saving caller

register ecx

push %ecx

push $21
{ push $42

call call _foo
push %ebp <
mov %esp, %ebp savin g
sub %8, %esp register
push %ebx . ebx
Some computation
restore pop %ebx
register ebx mov %ebp, %esp
op %eb
fetp i return » add $8, %esp
pop %ecx

restoring
register ecx

Register Preservation

Who's responsible to store and backup important registers?

Caller knows which registers need to be preserved
Callee knows which registers it overwrites

Callee-saved: Caller guaranteed that they are not modified by the callee,
or restored before callee returns

— In x86: ebp, esp, ebx, edi, ...
Caller-saved: Can be modified by the callee, the caller needs to store them

before the call if it needs them
— In x86: eax, ecx, edyx, ...

The compiler’s register allocation chooses between callee- and caller-saved
— And generate code that respects the rules

Passing Arguments

In a reqister On the stack
return mov eax, 5 5 push 5
address | mov ebx, 37 push 37

call £ 37 call £
return
address
int f£(int a, int b) void g()

{ {
£(5,37);

} }

Passing Arguments

In_a reqister On the stack
Limited number of registers « Slower access
Register preservation * Need to cleanup

Most x86 (cdecl,stdcall): arguments on the stack

Xx86_64: first arguments in designated (caller-saved) registers,
rest on the stack

vararg

Argument Cleanup

By caller

37

5

return
address

ret

add $8, %esp

o e.g.cdecl, ...

printf (“%d”,1);

printf (“%d,%d”,1,2);

By Callee
37 ret 8
5
return
address

o e.g.stdcall, ...

Smaller
binaries

Order of Arguments on the Stack

|eft to right

5

37

return
address

push 5
push 37
call £

Right to left
push 37
=0 push 5
5 call £
return
address

o e.g.cdecl, stdcall, ...

Return Value

In_a reqister On the stack
« Limited number of registers « Slower access
« Register preservation * Need to cleanup

o What if we want to return something that doesn't fit in a register?

Return Address

o In a designated register or on the stack?

o Store the current instruction or the next instruction?

¢ In practice, this is decided by the architecture’s “call” operation

4

L)

1)

4

L)

1)

1)

Which i1s Best?

No “correct” answer

Depends on

¢ Processor capabilities,

“ Applications’ characteristics

% Conventions

Caller & callee must agree on the calling convention!
Interoperability between compilers

Or with explicit directives:

int _ cdecl system(const char *);

\/
0‘0
\/
0‘0

Summary

Runtime stack

Activation records

Frame pointer, stack pointer
Calling conventions

