
TELAVIVUNIVERSITY@אוניברסיטתתל-אביב
Raymond and Beverly Sackler Faculty of Exact Sciences

School of Computer Science

Algebraic and Algorithmic
Applications of Support Theory

Thesis submitted for the degree of “Doctor of Philosophy”
by

Doron Chen

This work was carried out under the supervision of
Prof. Sivan Toledo

Submitted to the Senate of Tel-Aviv University
September 2005

3

To my dear parents.

Acknowledgments

I have been fortunate to collaborate with several researchers during my
graduate studies: Erik G. Boman, Bruce Hendrickson, Ojas Parekh, John
Gilbert, Olga Sorkine and Daniel Cohen-Or. I have enjoyed working with
them and learned a great deal from them. I would like to thank them all.

I would like to thank my office-mates for their friendship and basketball
games.

I would also like to thank my dear friends: Oren, Etai, Leah, Dan and
Ginna.

I wish to express my deepest gratitude to my parents for their love
and ongoing support. To my sister Leat and her family: Gilad, Talia and
Avivush.

Most of all, I would like to thank my advisor, Sivan Toledo. One cannot
hope for a better advisor, both on a personal and on a professional level.
Working with Sivan has been both a wonderful learning experience and a
pleasure.

5

Abstract

This thesis contains algebraic and algorithmic results in sparse linear
algebra. All these results make use of support theory. Though the tools
of support theory were originally designed in order to bound the condition
numbers of preconditioned systems, we show here that these tools have
a variety of other uses. The results given in this work have applications
in support theory, but they can also be viewed as independent algebraic
results. For instance, we show how support theory can be used in order
to obtain new bounds on the 2-norm of any rectangular real matrix. We
also show new applications of support theory in computer graphics and in
solving singular linear systems.

This thesis consists of four main themes:

(1) Factor Width: We define a matrix concept called factor width,
a measure for the combinatorial complexity of symmetric positive
semidefinite (SPSD) matrices. This gives a hierarchy of matrix
classes for SPSD matrices. Factor-width-2 matrices are matrices
that can be represented as graphs. Factor-width-3 matrices are
matrices that can be represented as hypergraphs, such that each
hyperedge connects three vertices. In general, factor-width-k ma-
trices are matrices that can be represented as hypergraphs, such
that each hyperedge connects k vertices. We prove that the set
of symmetric matrices with factor width at most two is exactly
the class of symmetric H-matrices with non-negative diagonals.
We prove bounds on the factor width, including one that is tight
for factor widths up to two. These results were published in “On
Factor Width and Symmetric H-matrices”, Linear Algebra and its
Applications 405: 239–248 (2005) by Erik G. Boman, Doron Chen,
Ojas Parekh and Sivan Toledo.

(2) Null Spaces of Symmetric H-matrices: We characterize the
structure of null spaces of factor-width-2 matrices. We show that
the structure of the null space of a factor-width-2 matrix depends
on the structure of the connected components of its underlying

7

8 ABSTRACT

graphs. Each connected component contributes at most one vec-
tor to the null space. We provide a combinatorial characteriza-
tion of the rank of each connected component, and a combinato-
rial characterization of a null vector if one exists. For symmetric
diagonally-dominant (SDD) matrices, we also present an efficient
combinatorial algorithm for constructing an orthonormal basis for
the null space. We show a close connection between gain graphs
and symmetric H-matrices with non-negative diagonals, which ex-
tends known results regarding the connection between undirected
graphs and Laplacian matrices, and between signed graphs and
SDD matrices. We show how to exploit these combinatorial al-
gorithms to reliably solve certain singular linear systems in finite-
precision arithmetic. These results were published in “Combinato-
rial Characterization of the Null Spaces of Symmetric H-Matrices”,
Linear Algebra and its Applications 392: 71–90 (2004) by Doron
Chen and Sivan Toledo.

(3) Obtaining Bounds on the Two Norm of a Matrix: We
show how two support theory tools, the splitting lemma and the
symmetric-product-support lemma, can be used to obtain new
bounds on the 2-norm of a real matrix. We derive six separate
algebraic bounds and analyze the combinatorial interpretations of
these bounds. These results were accepted for publication in Elec-
tronic Transactions on Numerical Analysis, “Obtaining Bounds on
the Two Norm of a Matrix from the Splitting Lemma” by Doron
Chen, John R. Gilbert and Sivan Toledo.

(4) Applications of Support Theory in Computer Graphics:
We introduce new applications of support theory in computer
graphics. In most support theory applications we are given a ma-
trix, and we then represent it as a graph in order to analyze or
precondition it. In this new application, however, the process is
reversed. We are given a graph which we want to compress. The
compression involves the use a Laplacian-like matrix which is ob-
tained from the connectivity graph.
We present an algebraic analysis of a mesh-compression technique
called high-pass quantization. In high-pass quantization, a rectan-
gular matrix based on the mesh topological Laplacian is applied to
the vectors of the Cartesian coordinates of a polygonal mesh. The
resulting vectors, called δ-coordinates, are then quantized. The
applied matrix is a function of the topology of the mesh and the
indices of a small set of mesh vertices (anchors), but not of the
location of the vertices. An approximation of the geometry can
be reconstructed from the quantized δ-coordinates and the spatial

ABSTRACT 9

locations of the anchors. We show how to algebraically bound the
reconstruction error that this method generates. We show that the
small singular value of the transformation matrix can be used to
bound both the quantization error and the rounding error, which is
due to the use of floating-point arithmetic. Furthermore, we prove
a bound on this singular value. The bound is a function of the
topology of the mesh and of the selected anchors. We also propose
a new anchor-selection algorithm, inspired by this bound. We show
experimentally that the method is effective and that the computed
upper bound on the error is not too pessimistic. These results were
accepted for publication in ACM Transactions on Graphics, “Alge-
braic Analysis of High-Pass Quantization” by Doron Chen, Daniel
Cohen-Or, Olga Sorkine, and Sivan Toledo.

Contents

Acknowledgments 5

Abstract 7

Chapter 1. Introduction 13
1.1. Factor Width 13
1.2. Null Spaces of Symmetric H-matrices 17
1.3. Obtaining Bounds on the Two Norm of a Matrix 19
1.4. Applications of Support Theory in Computer Graphics 21

Chapter 2. On Factor Width and Symmetric H-matrices 27
2.1. Introduction 27
2.2. The Factor Width of a Symmetric Matrix 27
2.3. Factor-Width-2 Matrices are H-Matrices 29
2.4. Bounding the Factor Width 30
2.5. Identifying Factor-Width-2 Matrices 34
2.6. Conclusions and Open Problems 35

Chapter 3. Combinatorial Characterization of the Null Spaces of
Symmetric H-Matrices 37

3.1. Introduction 37
3.2. Width-2 Factorization of H+ Matrices 38
3.3. Gain Graphs and Factor-Width-2 Matrices 39
3.4. The Null Space of Factor-Width-2 Matrices 42
3.5. An Efficient Algorithm for Computing the Null Space of an

H+ Matrix 45
3.6. Solving Singular SDD Linear Systems 46
3.7. Experimental Results 48
3.8. Conclusions and Open Problems 51

Chapter 4. Obtaining Bounds on the Two Norm of a Matrix from
the Splitting Lemma 57

4.1. Introduction 57
4.2. Background 59
4.3. The Symmetric Product Support Lemma Implies the Splitting

Lemma 61

11

12 CONTENTS

4.4. Splitting and Stretching 62
4.5. How to Split 67
4.6. Gram Bounds on the Two Norm 77
4.7. An Example 78
4.8. Conclusions 79

Chapter 5. Algebraic Analysis of High-Pass Quantization 81
5.1. Introduction 81
5.2. Background: Mesh compression 83
5.3. Background: High-pass quantization 83
5.4. Algebraic Analysis of k-Anchor Laplacians 89
5.5. The Effect of Anchor Points on Numerical Accuracy 98
5.6. Algorithmic issues and results 100
5.7. Conclusions 107

Bibliography 113

CHAPTER 1

Introduction

This chapter informally illustrates the main results of the thesis. The
aim of this chapter is to explain what the results are, rather than to explain
how we prove them. We use many small examples for clarification. Each
section describes the main results in one chapter of the thesis.

1.1. Factor Width

In Chapter 2 we define a matrix concept called factor width, a mea-
sure for the combinatorial complexity of symmetric positive semidefinite
(SPSD) matrices. This gives a hierarchy of matrix classes for SPSD ma-
trices. Factor-width-2 matrices are matrices that can be represented as
graphs. Factor-width-3 matrices are matrices that can be represented as
hypergraphs, such that each hyperedge connects three vertices. In general,
factor-width-k matrices are matrices that can be represented as hyper-
graphs, such that each hyperedge connects k vertices. This correspondence
between SPSD matrices and hypergraphs extends the well-known corre-
spondence between weighted graphs and symmetric diagonally-dominant
matrices, which has been exploited in many ways in the past.

A real symmetric diagonally-dominant (SDD) matrix A can always be
decomposed into a symmetric factorization A = UUT , where U has at most
two nonzeros per column (and in particular, all the nonzeros in a column
of U have the same absolute value) [13]. For example, consider the matrix

A =


 2 −1 0

−1 5 4
0 4 4


 .

Matrix A can be represented as A = UUT where

U =


 1 0 1

−1 2 0
0 2 0


 .

13

14 1. INTRODUCTION

This decomposition is obtained in the following way:

A =


 2 −1 0

−1 5 4
0 4 4


 =

=


 1 0 0

0 4 4
0 4 4


+


 1 −1 0

−1 1 0
0 0 0




=


 1 0 0

0 4 4
0 4 4


+


 1

−1
0


 · [1 −1 0

]

=


 1 0 0

0 0 0
0 0 0


+


 0 0 0

0 4 4
0 4 4


+


 1

−1
0


 · [1 −1 0

]

=


 1 0 0

0 0 0
0 0 0


+


 0

2
2


 · [0 2 2

]
+


 1

−1
0


 · [1 −1 0

]

=


 1

0
0


 · [1 0 0

]
+


 0

2
2


 · [0 2 2

]
+


 1

−1
0


 · [1 −1 0

]

=


 1 0 1

−1 2 0
0 2 0


 ·

 1 0 1

−1 2 0
0 2 0




T

.

Note that at each step of the decomposition we handle one off-diagonal
nonzero or the diagonal entry of a strictly diagonally-dominant row.

The nonzero structure of U is that of a vertex-edge incidence matrix
of the underlying graph1 of A; the nonzero structure of A itself is that of
a vertex-vertex adjacency matrix of the same graph. Figure 1.1.1 shows a
matrix A, its rectangular factor U and its underlying graph.

This relationship between symmetric diagonally-dominant matrices and
weighted graphs has been exploited in the past, among other things, to

• characterize graph properties, such as the size of balanced vertex
separators, by eigenvalues of the corresponding matrix [17, 31,
33, 34, 35, 47, 48, 54, 76, 77, 87];

• to bound the smallest nonzero eigenvalue of A using structures in
the graph [30, 34, 35, 49, 50, 62, 83];

1The underlying graph GA of an n-by-n symmetric matrix A is a weighted graph
GA = (VA, EA, w), where VA = {1, 2, . . . , n}, EA = {(i, j) : Aij �= 0}, and the weight of
an edge (i, j) is w(i, j) = −Aij .

1.1. FACTOR WIDTH 15

A =




11 −2 −5 −4
−2 13 −5 −6
−5 −5 17 −6 −1

−6 8 −2
−4 −1 12 −3 −4

−6 −2 −3 16 −5
−4 −5 15 −6

−6 6




U =




√
2

√
5

√
4

−√
2

√
5

√
6

−√
5 −√

5
√

6
√

1
−√

4 −√
6

√
2

−√
1

√
3

√
4

−√
6 −√

2 −√
3

√
5

−√
4 −√

5
√

6

−√
6




5

4 6

5

2

3

3

4 5

6

1 2

Figure 1.1.1. An SDD matrix A (top), its rectangular fac-
tor U (middle) and the graph GA of A (bottom). The vertices
are ordered top to bottom, left to right.

• to bound the generalized spectral condition number of a matrix
pencil in terms of embeddings of the corresponding graphs [9, 16,
42];

• to design preconditioners by sparsifying the corresponding
graph [9, 13, 93] or by constructing a related graph [42];

• to obtain combinatorial graph algorithms for computing the null
space of symmetric diagonally-dominant matrices [22].

We define the factor width of a matrix A as the smallest integer k such
that A has a symmetric factorization A = UUT with at most k nonzeros in
each column of U . We argue that the factor width is a good measure of the
“combinatorial complexity” of a matrix. A symmetric diagonally-dominant

16 1. INTRODUCTION

matrix is combinatorially simple in the sense that it has an incidence fac-
tor U that corresponds to a weighted undirected graph. A factor-width-3
matrix does not have such a factor, but it does have an incidence factor
that corresponds to a hypergraph with at most 3 vertices per edge.

Clearly, not all factor-width-2 matrices are diagonally dominant. For
instance [

1
2

]
· [1 2

]
=

[
1 2
2 4

]
is not diagonally dominant.

Also, it is clear that not all symmetric positive semi-definite matrices
have factor width 2. Let

A =


 1 1 1

1 1 1
1 1 1


 .

Matrix A can be represented as

A =


 1

1
1


 · [1 1 1

]
,

so its factor width is at most 3. Also, A cannot have a factor-width-2
representation: matrix A has rank-1, so any representation of A as A =
UUT must have the property that the columns of U are identical up to a
multiplicative constant. Therefore, without loss of generality U must have
a single column, and it is trivial to show that this column is the vector of
ones.

The main results of Chapter 2 are:

Theorem. A matrix has factor width at most two if and only if it
is a symmetric H+-matrix. We use H+ to denote H-matrices that have
non-negative diagonal.

Definition. Let dn(A) denote the symmetric scaling of A so that
the diagonal elements of the scaled matrix are all 1’s (except for diagonal
elements in zero rows of A, which remain zero).

Theorem. For any SPSD matrix A, the factor width of A is bounded
from below by �‖dn(A)‖2�.

We also proved a tighter lower bound (illustrated in figure 1.1.2):

Theorem. For any SPSD matrix A, the factor width of A is bounded
from below by �‖dn (|A|)‖2�. |A| denotes the matrix whose (i, j) entry is
|Aij|.

1.2. NULL SPACES OF SYMMETRIC H-MATRICES 17

A =

[
5 −3
−3 2

]
|A| =

[
5 3
3 2

]

dn (|A|) =

[
1 3√

10
3√
10

1

]
�‖dn (|A|)‖2� =

⌈∥∥∥∥
[

1 3√
10

3√
10

1

]∥∥∥∥
⌉

=

�1.9487� = 2

Figure 1.1.2. An example of a lower bound on the width factor.

Theorem. Matrix A has factor-width at most 2 if and only if it is
symmetric with non-negative diagonals, and satisfies ‖dn (|A|)‖2 ≤ 2.

The beauty of these bounds lies in that they link a discrete combinato-
rial measurement, namely the factor width of a matrix, with the norm of a
matrix, which is a continuous measurement. The results in Chapter 2 were
published in “On Factor Width and Symmetric H-matrices”, Linear Algebra
and its Applications 405: 239–248 (2005) by Erik G. Boman, Doron Chen,
Ojas Parekh and Sivan Toledo.

1.2. Null Spaces of Symmetric H-matrices

In Chapter 3 we characterize the structure of a basis for the null spaces
of factor-width-2 matrices (which we have shown to be the class of symmet-
ric H-matrices with non-negative diagonals, or symmetric H+-matrices).
The characterization relies on combinatorial properties of a graphs associ-
ated with these factor-width-2 matrices. We present combinatorial algo-
rithms for determining the rank and constructing an orthonormal basis for
the null space of a factor-width-2 matrix, given its factor-width-2 factor-
ization.

We investigate the close connection between symmetric H-matrices with
non-negative diagonals and gain graphs [79, 96] (previously called voltage
graphs [43, 44]). A gain graph is an undirected graph such that each edge e
can be viewed as two edges, one in each direction, with a different weight in
each direction. These weights are called gain, and they have the following
property: Let e be an edge connecting vertex i and vertex j. Then e has
two gains: a gain g from vertex i to vertex j, and a gain 1/g from vertex
j to vertex i.

The class of factor-width-2 matrices includes all the matrices that can be
factored into A = UUT , such that U has at most two nonzeros per column.
The graph associated with A is constructed as follows: we represent each
row of A as a vertex; each column u of U is represented by an edge. If u

18 1. INTRODUCTION

has a two nonzeros, α in the i-th position and β in the j-th position, then
we represent it as an edge connecting vertices i and j; the gain of this edge
is −β/α between i and j, and −α/β between j and i. For columns with a
single nonzero, we attach a half-arc, which is an edge with a single endpoint
and no gain; if u has a single nonzero in position i, then we represent it as
a half arc incident to vertex i.

As an example, consider A = UUT , where

U =




4 1
−1 1

8 2
2 −1 −3
−5 2

8 5
−4 5




.

The graph corresponding to this matrix is

1 3

2

4 7

5 6

half-a
rc

-0.5

0.25 -8

-2

4

-0
.1

25 2.
5

0.
4

-4

-0.25

0.
8

1.
25

0.2

5

Note that the nonzero structure of U can be viewed as the incidence
matrix of the underlying graph of A.

In Chapter 3 we show that the structure of the null space of a symmetric
H-matrix depends on the structure of the connected components of its
underlying graph. Each connected component contributes at most one
vector to the null space.

Whether or not a connected component contributes a vector to the null
space, depends on its balance. In order to define the balance of a connected
component, we need the following definitions: The gain of a directed path
or cycle is the product of the gains of the edges along the path or cycle. A
cycle is balanced if its gain is exactly +1. A connected component is called
balanced if it contains no half arcs and no unbalanced cycles. We have
shown that each balanced component contributes one vector to the null
space, whereas each unbalanced component has full rank. In our example,
the left connected component contains one cycle which is balanced and
contains no half arcs. As a result, the left component is balanced and
contributes one vector to the null space. The right component is unbalanced
and therefore has full-rank.

1.3. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX 19

We provide a combinatorial characterization of the null vectors of each
balanced connected component. It turns out that in order to construct
a null vector of a balanced component, we need to choose some arbitrary
vertex in the component. We call that vertex a root. Let v be the null
vector associated with the component. Then vj = 0 if and only if vertex j
is not in the component. For every vertex j in the connected component,
vj is the gain of a path between j and the root. This gain is well-defined,
because in a balanced connected component it does not matter which path
we choose between vertex j and the root; all paths must have the same
gain.

In our example, let us choose vertex 2 to be the root of the left connected
component. Then this component contributes the following vector to the
null space:




0.25
1

−0.125
0
0
0
0




.

The number of cycles in a graph is typically great; nevertheless, we
present an efficient combinatorial algorithm for determining the rank and
constructing an orthonormal basis for the null space of an factor-width-2
matrix, given its factor-width-2 factorization. We show how to exploit this
combinatorial algorithm to reliably solve certain singular linear systems in
finite-precision arithmetic. The results in this chapter 3 were published
in “Combinatorial Characterization of the Null Spaces of Symmetric H-
Matrices”, Linear Algebra and its Applications 392: 71–90 (2004) by Doron
Chen and Sivan Toledo.

1.3. Obtaining Bounds on the Two Norm of a Matrix

In Chapter 4, we prove several new bounds on the 2-norm of a general
rectangular real matrix. The bounds exploit the sparsity of W , and are
often tighter than other well-known bounds such as the Frobenius norm.
Let W be a k-by-m real matrix. We show that:

20 1. INTRODUCTION

x

x

x

x

x

xxx

x
x

x
x

x

x

x

x

x
x

xx x

Figure 1.3.1. An illustration of the bound ‖W‖2
2 ≤

maxj

∑
i : Wi,j �=0 ‖Wi,:‖2

2. The X-s in this figure denote nonze-
ros of W . The bound states that ‖W‖2

2 is bounded by the
maximum, over all the columns j of W , of the sum of the
squares of the 2-norms of all the rows in W which contain a
nonzero in the j-th column.

‖W‖2
2 ≤ max

j

∑
i : Wi,j �=0

‖Wi,:‖2
2 = max

j

∑
i : Wi,j �=0

m∑
c=1

W 2
i,c

‖W‖2
2 ≤ max

i

∑
j : Wi,j �=0

‖W:,j‖2
2 = max

i

∑
j : Wi,j �=0

k∑
r=1

W 2
r,j

‖W‖2
2 ≤ max

j

∑
i : Wi,j �=0

|Wi,j | ·
(

m∑
c=1

|Wi,c|
)

‖W‖2
2 ≤ max

i

∑
j : Wi,j �=0

|Wi,j| ·
(

k∑
r=1

|Wr,j|
)

‖W‖2
2 ≤ ∥∥WW T

∥∥
1

‖W‖2
2 ≤ ∥∥W T W

∥∥
1

The first bound states that the 2-norm of W squared, is bounded by
the maximum, over all the columns j of W , of the sum of the squares
of the 2-norms of all the rows in W which contain a nonzero in the j-th
column. Figure 1.3.1 illustrates this bound. This bound is clearly no worse
(and often much better) than the Frobenius bound which is the sum of the
square of the 2-norms of all the rows.

Although these bounds are general and apply to any matrix, the moti-
vation for the analysis that yielded them came from support theory. The
proofs of these bounds also use support-theory tools.

How are are norm bounds connected with support theory? Boman and
Hendrickson [16] and Boman, Chen, Hendrickson and Toledo [13] showed

1.4. APPLICATIONS OF SUPPORT THEORY IN COMPUTER GRAPHICS 21

that when an SDD matrix A is preconditioned by another SDD matrix B,
the convergence of the preconditioned iterative method can be bounded by
the product of the 2-norms of two matrices, W and Z. These matrices
are not uniquely defined, but an embedding of the edges of the graph of A
into paths in the graph of B defines a W , and an embedding of the edges
of GB in paths in GA defines a Z. When W is defined by an embedding,
well-known bounds on ‖W‖2 can be interpreted as combinatorial measures
of the quality of the embedding. For example, the Frobenius norm, which
bounds the 2-norm, is proportional to the average stretch of edges in the
embedding, for an appropriate definition of stretch [14].

When W is defined by an embedding, our new bounds on the 2-norm
can be interpreted as new combinatorial measures of the embedding. In
fact, the analysis that led to these new norm bounds was motivated by a
new combinatorial measure of embeddings that was used by Spielman and
Teng to bound convergence rates of a preconditioned iterative method.

The results in chapter 4 were accepted for publication in Electronic
Transactions on Numerical Analysis, “Obtaining Bounds on the Two Norm
of a Matrix from the Splitting Lemma” by Doron Chen, John R. Gilbert
and Sivan Toledo.

1.4. Applications of Support Theory in Computer Graphics

In Chapter 5 we use support theory tools to analyze a mesh-compression
technique called high-pass quantization [85]. In computer graphics, objects
are often represented as a three-dimensional mesh: a set of triangles that
share edges and vertices. Except on the boundary of the mesh, each edge
is shared by two triangles. The mesh is represented by a finite set of ver-
tices, a finite set of triangles, and geometrical information. The geometrical
information usually consists of Cartesian coordinates for each vertex. Ab-
stractly, we can view the mesh as a graph or hypergraph and several vectors
whose elements are associated with vertices, an x vector, a y vector, and a
z vector.

Mesh compression involves two problems that are usually solved sep-
arately: the mesh connectivity encoding and the geometry encoding.
While state-of-the-art connectivity encoding techniques are extremely ef-
fective [1, 51, 65, 91], compressing the geometry remains a challenge.
The raw geometry data usually comes in high-precision floating-point rep-
resentation. Such data cannot be significantly compressed using standard
compression techniques; therefore, most geometry encoding schemes involve
quantization, which introduces errors and causes certain loss of data.

22 1. INTRODUCTION

The quantization can be applied directly to the Cartesian coordinates,
or to some invertible transformation of them. In high-pass mesh quantiza-
tion, quantization is applied after the coordinates are transformed using a
transformation that belongs to a particular class of linear operators [85].

In Chapter 5 we present an algebraic analysis of the high-pass quanti-
zation technique. We show how to algebraically bound the reconstruction
error that this method generates. We show that the small singular value
of the transformation matrix can be used to bound both the quantization
error and the rounding error, which is due to the use of floating-point arith-
metic. Furthermore, we use support theory tools to prove a bound on this
singular value. We show experimentally that the method is effective and
that the computed upper bound on the error is not too pessimistic. The
results in chapter 5 were accepted for publication in ACM Transactions on
Graphics, “Algebraic Analysis of High-Pass Quantization” by Doron Chen,
Daniel Cohen-Or, Olga Sorkine, and Sivan Toledo.

We now use a simple two-dimensional version of high-pass mesh quan-
tization to illustrate the method and our analysis technique. Let m be a
closed polygon in the plane. When viewed as a mesh, the edges of the
polygon are faces of the mesh. Since the polygon is closed, the graph of
the mesh is a simple cycle. Each mesh point is associated with x and y
values. Applying quantization to the x and y values directly produces high-
frequency errors that can be visually displeasing, as shown in Figure 1.4.1.

To alleviate this, high-pass quantization first transforms the coordinates
using a Laplacian-like matrix. The transformed coordinates are called δ-
coordinates. The transformation works as follows. The δ coordinates of
mesh point i are

δ
(x)
i = 2xi − xi−1 − xi+1 = degree(i)

(
xi −

∑
j is a neighbor of i xj

degree(i)

)

and similarly for δ
(y)
i . The expression within the parenthesis is the distance

from the x coordinate of i to the average of its neighbors. When m approx-
imates a smooth curve c near point i, the average of the neighbors tends
to be a good predictor for xi, so the δ coordinate tends to be smaller than
the Cartesian coordinates. In matrix form, the transformation is

δ(x) =




2 −1 −1
−1 2 −1

−1 2
. . .

.
. . . 2 −1

−1 −1 2




x = Lx .

1.4. APPLICATIONS OF SUPPORT THEORY IN COMPUTER GRAPHICS 23

Quantization of Cartesian Coordinates

Figure 1.4.1. A polygon (black) representing a mesh, and
the polygon (red) that results from quantizing the x and y
coordinates of the polygon using 64 values.

The transformation matrix L is singular, because its row sums are exactly
0. We invert the transformation by specifying one more constraint, say the
original Cartesian coordinate of one mesh point, say x1. We call such a
point an anchor.

With a single anchor, the transformation is invertible, but ill condi-
tioned: the smallest singular value of the transformation is small, which
implies that the inverse has a large norm. This causes large reconstruction
errors, as shown in the example in Figure 1.4.2. To improve the condition-
ing of the transformation, we can add anchors. The δ-coordinates and the
Cartesian coordinates of the anchors define the original Cartesian coordi-
nates via the implicit equations

Lx = δ(x)

xk1 = bk1

...
xk�

= bk�
,

where k1, . . . , k� are the indices of the anchors. However, if we try to re-
construct an approximation for x given quantized δ coordinates, we cannot
use this system of equations, because in general it is inconsistent. Instead,
high-pass mesh quantization reconstructs approximate coordinates by solv-
ing this system in the least squares sense.

24 1. INTRODUCTION

Quantization of Delta Coordinates, 1 Anchor

Figure 1.4.2. A polygon (black) representing a mesh, and
the reconstruction of it (blue) from a quantization of the
δ-coordinates Lx and Ly, again using 64 values. The recon-
struction uses one anchor point, marked by a circle.

Quantization of Delta Coordinates, 4 Anchors

Figure 1.4.3. A polygon (black) representing a mesh, and
the reconstruction of it (blue) from a quantization of the
δ-coordinates. This time, the reconstruction uses 4 anchor
points, marked by circles.

1.4. APPLICATIONS OF SUPPORT THEORY IN COMPUTER GRAPHICS 25

Exact Mesh and 3 Reconstructions, Detail

Figure 1.4.4. The original polygon (black) and the three
reconstructions from quantized coordinates. The figure
shows only the leftmost part of the four polygons, to show
the qualitative difference in the errors.

We show in Chapter 5 that the quantization errors and the rounding
errors can be bounded by a function of the smallest singular value of the
coefficient matrix

L̃ =




2 −1 −1
−1 2 −1

−1 2
. . .

.
. . . 2 −1

−1 −1 2
1

1
· · · · · · · · · · · · · · · · · ·

1




of the least-squares problem. Furthermore, we also show how to bound
this singular value using combinatorial support arguments. Figure 1.4.3
uses the example polygon to show the reconstruction with 4 anchors. Fig-
ure 1.4.4 zooms in on a detail of the original polygon, showing the three
reconstructions.

CHAPTER 2

On Factor Width and Symmetric H-matrices1

2.1. Introduction

Symmetric positive definite and semidefinite (SPD and SPSD, respec-
tively) matrices arise frequently in applications and have been studied by
many authors [8, 60]. For instance, it is well known that a Cholesky de-
composition A = LLT , where L is lower triangular, exists for any SPD
matrix A. In this chapter we characterize SPSD matrices in terms of rect-
angular factorizations of the type A = V V T , where V is typically sparse
and may have more columns than rows.

We restrict our attention to real matrices in this chapter. In Section 2.2
we define the factor width of a symmetric matrix and show some basic
properties. In Section 2.3 we show our main result, that factor-width-2
matrices are precisely H+ matrices. We review a couple of known properties
of H-matrices in the process. In Section 2.4 we prove bounds on the factor
width, and show that a lower bound is exact for factor widths one and two.
Finally, in Section 2.6 we pose several open questions.

2.2. The Factor Width of a Symmetric Matrix

Definition 2.2.1. The factor width of a real symmetric matrix A is
the smallest integer k such that there exists a real (rectangular) matrix V
where A = V V T and each column of V contains at most k non-zeros.

For example, let

A =


 3 1 −1

1 2 −2
−1 −2 5


 , and let V =


1 1 0 1

0 1 1 0
0 0 −2 −1


 .

Then A has factor width at most two because A = V V T . It is easy to
see that a matrix has factor width one if and only if it is diagonal and
non-negative; hence, the factor width of A is two. The factor width is
independent of the ordering of the matrix since PAP T = (PV)(PV)T has
the same factor width as A = V V T for any permutation matrix P .

1The results in this chapter were published in “On Factor Width and Symmetric H-
matrices”, Linear Algebra and its Applications 405: 239–248 (2005) by Erik G. Boman,
Doron Chen, Ojas Parekh and Sivan Toledo.

27

28 2. ON FACTOR WIDTH AND SYMMETRIC H-MATRICES

It follows from well-known properties of diagonally dominant matrices
[5] that symmetric diagonally dominant matrices with non-negative diag-
onal have factor width two, which we also prove below. Recall that a real
matrix A is diagonally dominant if |aii| ≥

∑
j �=i |aij| for all i.

Proposition 2.2.2. If A is SPSD and diagonally dominant then A has
factor width at most two.

Proof. Let P = {(i, j)|i < j, aij > 0} and N = {(i, j)|i < j, aij < 0},
and let ei denote the ith unit vector. Then we can write A as a sum of
rank-1 matrices,

A =
n∑

i=1

(
aii −

∑
j �=i

|aij|
)

eie
T
i

+
∑

(i,j)∈P

aij(ei + ej)(ei + ej)
T

+
∑

(i,j)∈N

(−aij)(ei − ej)(ei − ej)
T .

For diagonally dominant matrices all the coefficients are non-negative, and
one can readily construct a V such that A = V V T from the expression
above where each column of V is of one of the types

√
aii −

∑
j �=i |aij | ei,√

aij (ei + ej), or
√−aij (ei − ej). �

Note that not all factor-width-two matrices are diagonally dominant, as
the matrix A in the beginning of this section shows. Any SPSD matrix of
order n has factor width at most n. A question arises: Are there matrices
of factor width k for all k ≤ n? The answer is yes.

Proposition 2.2.3. For any positive k ≤ n, there exist matrices of
order n with factor width k.

Proof. Let vk = (1, 1, . . . , 1, 0, . . . , 0)T , where there are k ones. Let
A = vkv

T
k . Clearly, the factor width of A is at most k. Since A has rank

one then A = vkv
T
k is the unique symmetric rank-one factorization, and

there cannot be any other factorization A = V̄ V̄ T with fewer nonzeros. �
We remark that the lemma above holds even if we restrict our attention

to full-rank matrices. A simple example is A = vkv
T
k + εI for sufficiently

small ε.
In conclusion, the concept of factor width defines a family of matrix

classes. Let FW (k) denote the set of matrices with factor width k or less.
Then FW (1) ⊂ FW (2) ⊂ · · · . It is easy to verify that FW (k) is a pointed
convex cone (see for instance, [10, Chapter 2]) for any k and FW (n) is
precisely the cone of SPSD matrices of order n.

2.3. FACTOR-WIDTH-2 MATRICES ARE H-MATRICES 29

2.3. Factor-Width-2 Matrices are H-Matrices

The importance of our study of the class of factor-width-2 matrices
stems from the fact, which we prove in this section, that this class is ex-
actly the class of H+ matrices (defined later in this section), which occur
frequently in engineering and scientific computation [8, 70].

The definition of H-matrices relies on M-matrices. In this thesis, we
allow both M- and H- matrices to be singular, which is a bit unusual but
convenient for us. Following [8], we have:

Definition 2.3.1. A real matrix A is an M-matrix if it is of the form
A = sI − B, where B ≥ 0 and s ≥ ρ(B), where ρ denotes the spectral
radius.

For symmetric matrices there is a simpler characterization.

Lemma 2.3.2. A real symmetric matrix A is an M-matrix if and only
if aij ≤ 0 for all i �= j and A is positive semidefinite.

Definition 2.3.3. A matrix A is defined to be an H-matrix if M(A) is
an M-matrix, where the comparison matrix M(A) of a matrix A is defined
by

(M(A))ij =

{
|aij |, i = j,

−|aij |, i �= j.

We use H+ to denote H-matrices that have non-negative diagonal. A
useful characteristic of nonsingular H-matrices (see for instance, [4, lemma
6.4]) is that they are generalized strictly diagonally dominant, defined as
follows:

Definition 2.3.4. A square matrix A is generalized (weakly) diagonally
dominant if there exists a positive vector y > 0 such that for every row i,

|aii| yi ≥
∑
j �=i

|aij| yj .

If strict inequality holds, we say A is strictly generalized diagonally domi-
nant.

The problem of finding such a vector y is equivalent to the problem of
finding a positive diagonal matrix D such that AD (or equivalently, DAD)
is diagonally dominant. This problem has been studied in [69, 70]; in gen-
eral y may be found by solving a linear feasibility problem, but potentially
faster iterative algorithms were proposed in the papers mentioned.

Theorem 2.3.5. A symmetric matrix A is an H-matrix if and only if
A is generalized (weakly) diagonally dominant.

30 2. ON FACTOR WIDTH AND SYMMETRIC H-MATRICES

This is a well-known equivalence (see, e.g., [8] for a proof for the non-
singular case). Now we are ready to prove our main result.

Theorem 2.3.6. A matrix has factor width at most two if and only if
it is a symmetric H+-matrix.

Proof. (⇐) Suppose that A is a symmetric H+-matrix. Then A is
generalized diagonally dominant, and hence there is a positive diagonal
matrix D such that Ã = DAD and Ã is diagonally dominant. We know
that diagonally dominant matrices have factor-width at most 2 by Propo-
sition 2.2.2. Hence Ã = V V T for some V with at most two non-zeros per
column. But A = D−1ÃD−1 = (D−1V)(D−1V)T , so A also has factor-
width 2. This concludes the first part of the proof.

(⇒) Suppose A has factor width two or less. A symmetric matrix A
is an H-matrix if and only if its comparison matrix M(A) is an M-matrix.
Given a factor-width-two factorization A = V V T , we can obtain a width-
two factorization of M(A) by simply flipping the sign of one nonzero in
each column of V that contains two nonzeros with the same sign. By this
factorization, M(A) is positive semidefinite. Because M(A) is a comparison
matrix, it has nonnegative diagonals and nonpositive off-diagonals. There-
fore, M(A) satisfies the conditions of Lemma 2.3.2, so it is an M-matrix
and hence A is an H-matrix. Since A is also SPSD, A must be in H+. �

One consequence of this theorem is that for any FW(2) matrix A =
V V T , there exists a positive diagonal D such that A = (DU)(DU)T , where
U has ≤ two nonzeros per column and entries of unit magnitude. However,
this does not imply that V = DU .

2.4. Bounding the Factor Width

We do not know if the factor width of a given matrix can be efficiently
computed, except in special cases. From our characterizations, it follows
that FW (k) matrices can be recognized in linear time for k = 1 and in
polynomial time for k = 2, but already recognition for k = 3 is of unknown
complexity and may be NP-hard.

In this section we derive several bounds that can be used to efficiently
estimate the factor width of a matrix.

One upper bound on the factor width is easy to obtain: the largest
number of nonzeros in a column of a Cholesky factor of PAP T for some
permutation matrix P . Many sparse matrices have a sparse Cholesky fac-
tor, and effective algorithms exist to find a permutation P that leads to a
sparse factor. We note, however, that this bound may be very loose. For
example, all the Cholesky factors of symmetric permutations of the Lapla-
cian of the complete graph Kn have n nonzeros in their first column, giving

2.4. BOUNDING THE FACTOR WIDTH 31

a trivial upper bound of n, even though the Laplacian matrix actually has
factor width 2.

The lower bounds that we present relate the factor width of a matrix A
to the 2-norm of a matrix derived from A. The derivations are computa-
tionally trivial. One of the bounds is tight for matrices with factor widths
one or two.

We use two tools to derive from A a matrix whose 2-norm lower bounds
the factor width of A. The first tool is diagonal normalization, or symmet-
ric diagonal scaling. The factor width of A is invariant under symmetric
diagonal scalings of the form DAD, where D is diagonal, but the norm is
not. If, however, we always symmetrically scale A so that the diagonal el-
ements of DAD are all 1’s (except for diagonal elements in zero rows of A,
which remain zero in DAD), then ‖DAD‖2 bounds from below the factor
width of A. The second tool is perhaps more surprising. We show that if
we also replace the elements of A by their absolute values, we get a tighter
lower bound.

Definition 2.4.1. Let A be an SPSD matrix. Let DA be the diagonal
matrix whose diagonal elements are those of A, and let D+

A be the Moore-
Penrose pseudo-inverse of DA, that is, (D+

A)ii = 1/(DA)ii for all i where
(DA)ii �= 0. The diagonal normalization dn(A) is the matrix

dn(A) =
(
D+

A

)1/2
A
(
D+

A

)1/2
.

Our lower bounds depend on the following lemma, which provides a
sufficient condition for a real function s of a matrix to be a lower bound
on factor width.

Lemma 2.4.2. Let s be a function which assigns a real value to an SPSD
matrix. Let s satisfy:

1) s(uuT) ≤ k for any column vector u with k nonzeros.
2) s(A + B) ≤ max(s(A), s(B)).

Then for any SPSD matrix A, the factor width of A is at least �s(A)�.

Proof. We prove the theorem by first showing that if the factor-width
of A is bounded by k, then s(A) ≤ k.

Let A be a matrix in FW (k) (A has factor width at most k). Let
A = UUT be a factor-width-k representation of A. The number of nonzeros
in a column u of U , which we denote by nnz(k), is at most k. For notational

32 2. ON FACTOR WIDTH AND SYMMETRIC H-MATRICES

convenience, let u ∈ U mean “u is a column of U”.

s(A) = s(UUT)

= s

(∑
u∈U

uuT

)

≤ max
u∈U

(
s(uuT)

)
≤ max

u∈U
(nnz(u))

≤ k .

We have shown that if the factor-width of A is at most k, then s(A) ≤ k.
Therefore, if s(A) > k then the factor-width of A is larger than k. Thus,
the factor width of A is greater or equal to �s(A)�. �

2.4.1. The Diagonal Normalization Bound. We now show that
the factor-width of an SPSD matrix A is bounded from below by
�‖dn(A)‖2�.

Theorem 2.4.3. For any SPSD matrix A, the factor width of A is
bounded from below by�‖dn(A)‖�.

In our proof we will use the two results below, which we state without
proofs since they both can be easily verified.

Lemma 2.4.4. Suppose a, b, c, d are non-negative and c > 0, d > 0.
Then

a + b

c + d
≤ max

(
a

c
,
b

d

)

Lemma 2.4.5. Let A be SPSD. Then

‖dn(A)‖ = λmax(A, DA) = max
x

xT Ax

xT DAx
,

where λ(A, B) denotes a generalized eigenvalue.

We are now in position to prove Theorem 2.4.3.

Proof. We define the function s1 to be s1(A) = ‖dn(A)‖2 and show
that s1 satisfies the conditions of Lemma 2.4.2. We begin with condition
1, and show that for any vector u with k nonzeros, s1(uuT) is exactly k.

Let u be a column vector with k nonzero entries. If u = 0, then
s1(uuT) = 0 = k. Otherwise, uuT is a rank-1 matrix. The matrix

dn(uuT) =
(
D+

uuT

)1/2
uuT

(
D+

uuT

)1/2
=
[(

D+
uuT

)1/2
u
] [(

D+
uuT

)1/2
u
]T

2.4. BOUNDING THE FACTOR WIDTH 33

also has rank-1, because (DuuT)ii = u2
i . The norm of dn(uuT) is the only

nonzero eigenvalue of
(
D+

uuT

)1/2
uuT

(
D+

uuT

)1/2. Let v be the sign vector of
u,

vi =




1 ui > 0,

−1 ui < 0,

0 ui = 0.

We now show that v is an eigenvector corresponding to the eigenvalue k.
We have (

D+
uuT

)
ii

=

{
u−2

i ui �= 0,

0 ui = 0,

so (
D+

uuT

)1/2
u = v .

Therefore, dn(uuT) = vvT , so dn(uuT)v = (vvT)v = v(vTv) = vk = kv.
All that remains is to prove that s1(A + B) ≤ max(s1(A), s1(B)).

s1(A + B) = ‖dn(A + B)‖2

= max
x

xT (A + B)x

xT (DA + DB)x

= max
x

xT Ax + xT Bx

xT DAx + xT DBx

≤ max
x

max

(
xT Ax

xT DAx
,

xT Bx

xT DBx

)

≤ max

(
max

y

yTAy

yTDAy
, max

z

zT Bz

zT DBz

)
= max (‖dn(A)‖2 , ‖dn(B)‖2)

= max(s1(A), s1(B)),

where we used Lemmas (2.4.4–2.4.5). �

2.4.2. A Tighter Lower Bound. The lower bound can be made
tighter. Let |A| denote the matrix whose i, j entry is |aij|.

Theorem 2.4.6. For any SPSD matrix A, the factor width of A is
bounded from below by �‖dn(|A|)‖2�.

Proof. Let s2(A) = �‖dn(|A|)‖2�. One can show that s2 satisfies the
first condition in Lemma 2.4.2 in the same way as for s1 (cf. proof of
Theorem 2.4.3). For the second condition, we only need to prove that

max
x

xT (|A + B|)x
xT (DA + DB)x

≤ max
y

yT (|A| + |B|)y
yT (DA + DB)y

34 2. ON FACTOR WIDTH AND SYMMETRIC H-MATRICES

because the rest follows from the previous proof. Without loss of generality,
we can assume that the vector x which maximizes

max
x

xT (|A + B|)x
xT (DA + DB)x

is non-negative. This is due to the fact that for each vector x,

xT (|A + B|)x
xT (DA + DB)x

≤ |x|T (|A + B|) |x|
|x|T (DA + DB) |x| .

Similarly, we can assume that the vector y which maximizes

max
y

yT (|A| + |B|)y
yT (DA + DB)y

is also non-negative.
Furthermore, for each x ≥ 0,

xT (|A + B|)x
xT (DA + DB)x

≤ xT (|A| + |B|)x
xT (DA + DB)x

.

We conclude that

max
x

xT (|A + B|)x
xT (DA + DB)x

= max
x≥0

xT (|A + B|)x
xT (DA + DB)x

≤ max
y≥0

yT (|A| + |B|)y
yT (DA + DB)y

= max
y

yT (|A| + |B|)y
yT (DA + DB)y

.

�

This second bound is tighter (or at least as tight) as our first bound
(Theorem 2.4.3). This follows from the fact that ‖A‖2 ≤ ‖|A|‖2 for any
SPSD A.

2.5. Identifying Factor-Width-2 Matrices

Since FW(2), the set of all matrices with factor width at most two, is
a subset of H-matrices, any algorithm to identify H-matrices (generalized
diagonally dominant matrices) can easily be adapted to recognize matrices
in FW (2). There are many such algorithms, see for instance, [69, 70].
Since FW(2) matrices are also SPSD, it may in fact be easier to identify
such matrices than general H-matrices.

2.6. CONCLUSIONS AND OPEN PROBLEMS 35

We show that we can use Theorem 2.4.6 to easily identify matrices with
factor-width at most 2. The following theorem shows that FW(2) is ex-
actly the set of symmetric matrices with non-negative diagonals satisfying
‖dn(|A|)‖ ≤ 2.

Theorem 2.5.1. Matrix A has factor-width at most 2 if and only if it
is symmetric with non-negative diagonals, and satisfies ‖dn(|A|)‖ ≤ 2.

Proof. (⇒) Let A have factor-width at most 2. Then A is symmetric
with non-negative diagonals. By Theorem 2.4.6, ‖dn(|A|)‖ ≤ 2.

(⇐) Let A be symmetric with non-negative diagonals satisfying
‖dn(|A|)‖ ≤ 2. Since ‖dn(|A|)‖ = maxx

xT |A|x
xT DAx

≤ 2, it follows that
xT (2DA − |A|)x ≥ 0 so 2DA − |A| is positive semidefinite. 2DA − |A|
is exactly A’s comparison matrix. Since A’s comparison matrix is symmet-
ric and positive semidefinite, then it is an M-matrix. Therefore A is an
H-matrix. Furthermore, A is symmetric with non-negative diagonals, and
therefore A is an H+-matrix. By Theorem 2.3.6, since A is an H+-matrix,
it has factor-width at most 2. �

This result is in fact just a special case of one of many known charac-
terizations of H-matrices:

Theorem 2.5.2. The following are equivalent:
(i) A is a non-singular H-matrix.
(ii) Let D = diag(A). Then ρ(|I − D−1A|) < 1.

This theorem was stated in a slightly different (more general) form for
M-matrices in [94, Thm. 1]. Note that this result holds for all H-matrices
(even non-symmetric matrices). Since we allow singular H-matrices, the
inequality in case (ii) should be modified to ρ(|I − D−1A|) ≤ 1. This
condition is then equivalent to Theorem 2.5.1 in the SPSD case.

We conclude that our lower bound (Theorem 2.5.1) is always tight for
factor width two. We do not know if the bound is tight for factor width
three. For large factor widths it is easy to construct examples where the
bound is not tight, that is, the factor width is strictly greater than the
lower bound.

2.6. Conclusions and Open Problems

We have defined factor width for symmetric matrices and characterized
the matrix classes FW (1) and FW (2). An obvious question is, does FW (k)
correspond to any known matrix class for other values of k? In particular,
what is FW (3)? We note that the finite element method naturally produces
matrices of low factor width since each element has a small number of
degrees of freedom. This indicates that the study of (low) factor width
may have practical applications.

36 2. ON FACTOR WIDTH AND SYMMETRIC H-MATRICES

Other open problems are the complexity of computing the factor width
(Section 2.4), and proving better upper bounds. It could be interesting
to study how many columns in V are needed to realize a factor width k
decomposition A = V V T . This number can be denoted the “factor width
k rank”.

Finally, we ask if there is any useful generalization of factor-width for
nonsymmetric matrices. A simple but naive choice is to consider factoriza-
tions A = UV T and count the nonzeros in columns of U and V . However,
with such a definition any matrix would have “factor width” one since any
nonzero aij in A can be represented by the scaled outer product aijeie

T
j .

CHAPTER 3

Combinatorial Characterization of the Null Spaces of
Symmetric H-Matrices1

3.1. Introduction

This chapter provides a combinatorial characterization of the null
spaces2 of three families of symmetric matrices: Symmetric diagonally-
dominant3 M-matrices (SDDM matrices), symmetric diagonally-dominant
matrices (SDD matrices) and symmetric H-matrices with non-negative di-
agonal entries (which we denote by H+ matrices). All SDDM matrices are
SDD matrices, and all SDD matrices are H+-matrices, but the converse
statements are not true.

The class of H+ matrices is exactly the class of factor-width-2 matri-
ces [15]. A matrix A is a factor-width-2 matrix if it can be represented
as A = UUT , such that each column of U contain at most two non-zeros
(U may be rectangular). We characterize the rank and null space of H+

matrices and of the SDDM and SDD special cases in terms of a width-2
factor U . Given an SDD matrix A, finding a width-2 factor is trivial. For
general H+ matrix, one can use the techniques discussed in Section 2.3 to
compute a width-2 factor.

The width-2 factor U of a matrix A can be viewed as an incidence matrix
for A’s underlying graph. When A is an SDDM matrix, its underlying graph
can be viewed as a weighted undirected graph. We show that when A is
an SDD matrix, its underlying graph is a signed graph (the term signed
graph is taken from [96]). We also show that when A is an H+ matrix,
its underlying graph is a gain graph (the term gain graph is also taken
from [96]; these were previously called voltage graphs [43, 44]).

The underlying graph of an H+ matrix is connected if and only if the
matrix is irreducible (does not have a nontrivial block diagonal form).

1The results in this chapter were published in “Combinatorial Characterization of
the Null Spaces of Symmetric H-Matrices”, Linear Algebra and its Applications 392:
71–90 (2004) by Doron Chen and Sivan Toledo.

2Throughout this chapter, wherever we refer to the characterization of the null space
of a matrix, we mean the characterization of a basis of the null space of that matrix.

3A matrix A is called diagonally dominant if aii ≥ ∑j �=i |aij |. Note that in our
definition, the diagonal entries of A are required to be non-negative.

37

38 3. NULL SPACES OF SYMMETRIC H-MATRICES

When A is reducible, its null space is the direct sum of the null spaces
of its diagonal blocks. We also refer to these null spaces as the null spaces
of the connected components of A’s graph. Therefore, we analyze the null
space of each connected component separately.

Section 2 defines the factor width of a matrix and explains how to find
a width-2 factorization of H+ matrices. Section 3 discusses the connection
between factor-width-2 matrices and gain graphs, and shows that the gain
graphic matroid is a special case of the vectorial matroid. Section 4 char-
acterizes the rank and null space of irreducible H+ matrices (and hence,
of H+ matrices in general). Section 5 describes an efficient algorithm to
compute the null space of an H+ matrix given its factor-width-2 represen-
tation. This algorithm can be used to efficiently check whether a gain graph
is balanced. Section 6 shows how to use our results to accurately determine
the rank of SDD matrices and how to solve singular linear systems whose
coefficient matrices are SDD. Section 7 contains two simple experimental
results. Section 8 contains conclusions and open problems.

3.2. Width-2 Factorization of H+ Matrices

This chapter analyzes the null spaces of H+ matrices, given their factor-
width-2 representation.

Factor-width-2 matrices generalize SDD and SDDM matrices: it is a
well-known result that an SDD matrix A can be factored into A = UUT

such that the columns of A are scaled edge vectors (either positive or neg-
ative) or half-arc vectors, defined as follows:

Definition 3.2.1. The positive edge vector 〈ij〉 has exactly two non-
zeros, 〈ij〉min(i,j) = 1 and 〈ij〉max(i,j) = −1. The negative edge vector 〉ij〈
also has two non-zeros, 〉ij〈i = 1 and 〉ij〈j = 1. The vertex vector 〈i〉
has exactly one nonzero, 〈i〉i = 1. All of these vectors are n-by-1 column
vectors, where n is the number of rows in U .

Therefore, SDD matrices are a special case of factor-width-2 matrices:
these matrices can be factored into UUT such that the columns of U contain
at most two non-zeros, and in those columns with exactly two non-zeros,
the non-zeros are of the same magnitude.

The importance of our study of the class of factor-width-2 matrices
stems from the fact that this class is exactly the class of symmetric H-
matrices with positive diagonals (H+ matrices) [15]. These matrices occur
frequently in engineering and scientific computation [8, 70]. Unfortunately,
the proof that the class of H+ matrices is the class of factor-width-2 matri-
ces is not constructive and does not provide an algorithm to obtain factor-
width-2 representations of non-diagonally-dominant H+ matrices.

3.3. GAIN GRAPHS AND FACTOR-WIDTH-2 MATRICES 39

A useful characteristic of nonsingular H-matrices (see for instance, [4,
lemma 6.4]) is that they are generalized diagonally dominant, defined as
follows:

Definition 3.2.2. A square matrix A is generalized diagonally domi-
nant if there is a positive vector y > 0 such that for every row i,

|aii| yi ≥
∑
j �=i

|aij| yj .

The problem of finding a such a vector y is equivalent to the prob-
lem of finding a positive diagonal matrix D such that DAD is diagonally-
dominant. By solving a linear program, a vector y can be found in
time polynomial in the dimension of A, but this is not efficient enough
for many applications. The vector y must satisfy the linear constraints
M(A)y ≥ 0, y ≥ 1, where M(A) is the comparison matrix of A,

[M(A)]ij =

{
+|aij| i = j
−|aij | i �= j

.

Given such a vector y or such a diagonal matrix D, one can immediately
obtain a factor-width-2 representation of A. Several authors proposed iter-
ative algorithms for finding y [68, 69, 70], but they prove no useful bounds
on the convergence rates or running times of these algorithms.

Transforming A into DAD is equivalent to an operation called switching
in gain graphs [79, 96], in which the gain g of an edge from i to j is
replaced by d−1

ii gdjj. The balance of cycles (discussed later) is invariant
under switching.

3.3. Gain Graphs and Factor-Width-2 Matrices

A gain graph is a weighted graph with the property that for each edge
connecting vertex i to vertex j, there is also an edge connecting vertex
j to vertex i. Because of this property, we consider gain graphs to be
undirected graphs, although each edge e connecting vertex i and vertex j
has two different weights, one in each direction. The weights in the graph
are called gain, and they have the following property: If the gain of an edge
connecting vertex i to vertex j is g, then the gain of the edge connecting
vertex j to vertex i is 1/g. In this chapter we deal with gain graphs over
� \ {0}. The gain of a directed path or cycle is the product of the gains of
the edges along the path or cycle. A cycle is balanced if its gain is exactly
+1. In addition to edges with gain, the edge-set of a gain graph may include
half-arcs, which have only one end point and no gain. As Zaslavsky puts
it, half-arcs “trail off into space” [96].

40 3. NULL SPACES OF SYMMETRIC H-MATRICES

Gain graphs (previously called voltage graphs [43, 44]) are a general-
ization of signed graphs [96]. A signed graph is a gain graph in which all
the gains are ±1. The notion of balance was introduced by Harary [55].

Gain graphs, like undirected unweighted graphs and like signed graphs,
induce a matroid. This was stated without a proof in [96]. A set of edges
is said to be independent if and only if each of its connected components
contains at most one cycle (and that one cycle is unbalanced) or one half-
arc, but not both.

In this section we prove that this is indeed a matroid by showing that
this is a special case of the vector matroid: Given a gain graph matroid,
we show how to choose a set of vectors, such that a subset of edges is inde-
pendent if and only if the corresponding vectors are linearly independent.
The vectors that we choose have at most two nonzeros. The matrix whose
columns are these vectors can be viewed as a generalized incidence matrix
of the gain graph. The set of these matrices is isomorphic, up to nonzero
column scaling, to the set of gain graphs. This establishes the connection
between gain graphs and width-2 factors.

We now define the vectors associated with the edges and half-arcs of
gain graphs. Let n be the number of vertices in the gain graph. For
each edge e connecting vertex i and vertex j with gain g from i to j (and
consequently gain 1/g from j to i), we attach an n-by-1 column vector
which contains two non-zeros: α in the i-th position and β in the j-th
position. We choose α and β so that β/α = −g. Note the direction we
choose for the edge does not affect our choice of vector: had we viewed the
same edge as having a gain 1/g from j to i, then we would have chosen a
vector such that α/β = −1/g, which is exactly the same property. Also
note that given a set of vectors, whether or not they are linearly dependent
is not affected by scaling. Therefore, we can choose any vector with the
property −β/α = g to represent edge e.

Definition 3.3.1. The generalized edge-vector〈i, j, α〉, α �= 0, corre-
sponding to an edge from i to j with gain α, is the n-vector with the value
1 in position i and the value −α in position j. The half-arc vector 〈i〉 has
exactly one nonzero, 〈i〉i = 1.

We now prove several simple lemmas about generalized edge vectors
and half-arc vectors.

Lemma 3.3.2. A generalized edge-vector representing an edge connect-
ing i and j, and a generalized edge-vector representing an edge connecting
j and k span a generalized edge-vector representing an edge connecting i
and k. The gain of the spanned edge is the product of the two gains.

Proof. 〈i, j, α1〉 + α1 〈j, k, α2〉 = 〈i, k, α1α2〉. �

3.3. GAIN GRAPHS AND FACTOR-WIDTH-2 MATRICES 41

Lemma 3.3.3. The generalized edge vectors corresponding to a directed
path of edges from vertex i to vertex j span a generalized edge vector rep-
resenting an edge connecting i and j. The gain of the spanned edge is the
product of the gains of the edges in the path.

Proof. This follows from the previous lemma by induction. �

Lemma 3.3.4. A generalized edge vector 〈i, j, α〉 and the half-arc vector
〈i〉 span vector 〈j〉.

Proof. − 1
α
〈i, j, α〉 + 1

α
〈i〉 = 〈j〉. �

Lemma 3.3.5. The following vectors

〈i1, i2, α1〉 , 〈i2, i3, α2〉 , . . . , 〈ik−1, ik, αk−1〉 , 〈ik, i1, αk〉
are linearly dependent if and only if Πk

j=1αj = 1.

Proof. Consider the following matrix:


1 −αk

−α1 1

−α2
. . .
. . . 1

−αk−1 1


 .

Its columns are linearly independent if and only if its determinant is zero.
By expanding about the first row, we find that det(A) = 1 − Πk

j=1αj. �

The previous lemma is a generalization of a result by Grossman, Kulka-
rni, and Schochetman [46, Theorem 2.1]. They analyzed the case were all
the edge vectors have gain −1.

Lemma 3.3.6. A cycle is balanced if and only if the vectors correspond-
ing to its edges are linearly dependent.

Proof. We assume, without loss of generality (with respect to scaling
of edge and half-arc vectors), that the vectors representing the edges are
unscaled generalized edge vectors, and apply the proof of the previous
lemma. �

The next theorem is the main result of this section, stating the connec-
tion between the balanced-cycles matroid of a gain graph, and the associ-
ated vectorial matroid.

Theorem 3.3.7. Given a gain graph, a subset of its edges is indepen-
dent if and only if the vectors corresponding to these edges are linearly
independent.

42 3. NULL SPACES OF SYMMETRIC H-MATRICES

Proof. (=⇒) Suppose that the edges are independent. By definition,
this means that each connected component contains at most one cycle (and
it is unbalanced) or half-arc, but not both. Suppose to the contrary that
the vectors corresponding to the edges are linearly dependent. Then the
zero vector can be represented as a linear combination of the vectors. Let
G∗ = (V, E∗) be the subgraph such that E∗ is the set of edges whose
coefficients in the linear combination are not zero. We may assume that
all the edges of E∗ belong to the same connected component, since linear
combinations of vectors in different connected component cannot cancel
each other out.

We first assume that the G∗ does not contain a half-arc. Since G∗ is
independent, it may contain at most one cycle, which is unbalanced. If i is
a leaf, only one generalized edge vector contains a non-zero in position i, so
this non-zero cannot be canceled out by the other edges in G∗. Therefore
subgraph G∗ cannot contain any leaves. Since there are no leaves, E∗ must
be a cycle. However, since the edges are independent, that cycle must be
unbalanced. By lemma 3.3.6, the vectors of the cycle edges are linearly
independent, a contradiction.

Now let us assume that G∗ does contain a half-arc. The edges of G∗

belong to one connected component, so G∗ cannot contain a cycle. G∗ is a
forest, so it must contain at least two leafs. At least one of those leafs is
not the end-point of the half-arc. If i is that leaf, only one vector contains
a non-zero in position i, so this non-zero cannot be canceled out by the
other edges in G∗, a contradiction.

(⇐=) Suppose that the vectors are linearly independent. By
lemma 3.3.6, a connected component cannot contain a balanced cycle. Sup-
pose a connected component contains an unbalanced cycle. We want to
show that no half-arc can exist in that connected component. Let i be a
vertex in that cycle. Let k be the length of the cycle. There are k vectors
corresponding to the edges of the cycle and they are linearly independent.
Therefore vector 〈i〉 is spanned. Suppose to the contrary that the con-
nected component contains a half-arc, whose endpoint is j. There is a path
between vertices i and j, so a generalized edge vector 〈i, j, α〉 (for some α)
can be spanned. Since 〈i, j, α〉, 〈i〉 and 〈j〉 span the zero vector, we have
found a non-trivial linear combination representation of the zero vector.
Therefore the vectors are linearly dependent, a contradiction. �

3.4. The Null Space of Factor-Width-2 Matrices

This section characterizes the null spaces of factor-width-2 matrices,
which are always symmetric and positive semi-definite, but not always di-
agonally dominant. Grossman, Kulkarni and Schochetman [45] analyzed a

3.4. THE NULL SPACE OF FACTOR-WIDTH-2 MATRICES 43

special case of this result where the factor-width-2 representation contains
only unscaled negative edge vectors.

The class of factor-width-2 matrices includes all the matrices that can be
factored into A = UUT , such that U has at most two nonzeros per column.
The columns of U may have entries that differ in absolute value, so they are
not scaled edge vectors. This class clearly does not include all symmetric
positive semi-definite matrices. For example, the matrix (1, 1, 1)T (1, 1, 1)
does not belong to this class.

The nonzero structure of U can be viewed as the incidence matrix of
the underlying graph GA of A = UUT , where the columns of U represent
edges and half-arcs and the rows represent vertices. The main theorem of
this section characterizes the null spaces of factor-width-2 matrices.

Theorem 3.4.1. The dimension of the null space is the number of con-
nected components that contain no half-arc vectors and no unbalanced cy-
cles. Furthermore, the null space of A is the direct sum of the gain vectors
(defined below) of the rank-deficient connected components.

We symmetrically permute the rows and columns of A into a block di-
agonal form, where each block A1, A2, . . . , Ak represents a connected com-
ponent in A’s underlying graph. Theorem 3.4.1 follows from the following
lemmas.

Lemma 3.4.2. Let Ai = UiU
T
i be an ni-by-ni matrix corresponding to a

connected component, such that at least one of the columns in Ui is a scaled
half-arc vector. Then Ai is full rank.

Proof. At least one of Ui’s vectors is a scaled half-arc vector. With-
out loss of generality, let us assume that Ui contains a column which is a
scaling of 〈1〉. Since there is a path between vertex 1 and each other vertex
in the connected component, it follows from Lemma 3.3.3 that for each
vertex j in the connected component, Ui spans 〈1, j, α〉 for some α �= 0. By
Lemma 3.3.4, this vector together with 〈1〉 span 〈j〉. Therefore, the follow-
ing ni vectors are spanned: 〈1〉 , 〈2〉 , . . . , 〈ni〉. These vectors are linearly
independent. Therefore Ai is full rank. �

Lemma 3.4.3. Let Ai = UiU
T
i correspond to a connected component

with an unbalanced cycle. Then Ai is full rank.

Proof. Without loss of generality, let us assume that vertex 1 is in the
unbalanced cycle. By lemma 3.3.6, the vectors of that cycle span 〈1〉. Since
there is a path between vertex 1 and each other vertex in the connected
component, by lemma 3.3.3 it follows that for each vertex j in the connected
component, a generalized edge-vector representing an edge from vertex 1
to vertex j is spanned. This vector along with 〈1〉 span 〈j〉 (lemma 3.3.4).

44 3. NULL SPACES OF SYMMETRIC H-MATRICES

Therefore, the following ni vectors are spanned: 〈1〉 , 〈2〉 , . . . , 〈ni〉. These
vectors are linearly independent. Therefore Ai is full rank. �

Lemma 3.4.4. Let Ai = UiU
T
i correspond to a connected component

such that all of the columns of Ui are scaled generalized edge vectors (no
scaled half-arc vectors), and such that all the cycles in the corresponding
connected component (if any) are balanced cycles. Then the rank of Ai is
ni − 1, and its null space is spanned by the gain vector (defined below) of
the connected component.

Proof. First let us consider a connected component containing no cy-
cles at all. In other words, Ui’s columns represent a tree. Matrix Ui is an
ni-by-(ni − 1) matrix, and so its rank is bounded by ni − 1. Since there is
a path between vertex 1 and each of the other vertices j in the connected
component we can conclude, as before, that a generalized edge vector, rep-
resenting an edge from vertex 1 to vertex j, is spanned. These ni−1 vectors
are linearly independent, and so the rank of Ai is exactly ni − 1.

Let yi be the ni-by-1 column vector that contains, in the j-th position,
the gain of the directed path from vertex j to vertex 1. We call yi the gain
vector. For each scaled generalized edge vector u = β 〈k1, k2, α〉 in U , the
ratio between the values of yi in positions k1 and k2 is +α. Therefore, for
each u ∈ U , vector u is orthogonal to yi.

We have found a vector yi which is orthogonal to each u ∈ Ui. Therefore:
uT yi =

−→
0 for each u ∈ Ui. Therefore: uuTyi =

−→
0 for each u ∈ Ui. Hence,

Aiy =
∑
u∈Ui

uuTyi =
−→
0 ,

i.e. vector y in the null space of Ai.
Now, let us allow cycles in our graph. Given our graph, let us arbitrarily

choose any spanning tree of the connected component. That tree has rank
ni − 1. Adding edges to the tree can only increase the rank. Let yi be the
gain vector defined above, with regard to the edges in the tree. As we have
shown, for each edge vector u corresponding to tree edge, uT yi = 0.

There are two possibilities:
1. The vectors corresponding to the non-tree edges are spanned by the

tree edges, in which case yi is orthogonal to each vector u ∈ Ui. Therefore
Aiyi = 0.

2. The vectors corresponding to the non-tree edges are not spanned by
the tree edges, in which case Ai is full rank.

Let us consider the edges outside our chosen tree. If one of these edges
closes an unbalanced cycle, Ai has full rank. If, on the other hand, all of
the cycles in the graph are balanced, then each non-tree edge is spanned by

3.5. ALGORITHM FOR COMPUTING THE NULL SPACE 45

any path of tree edges between its endpoints. In this case yi is orthogonal
to all of the vectors in Ui and is in Ai’s null space. �

We have shown that the null space of matrices UiU
T
i such that Ui’s

columns contain no half-arc vectors, and Ui’s graph is connected and con-
tains no unbalanced cycles, is spanned by the gain vector yi. The gain
vector yi contains, in the j-th position, the gain of a directed path between
vertex j and vertex 1. The vector yi is well-defined, since for each vertex j
the paths from vertex 1 to vertex j all have the same gain (otherwise there
would have been an unbalanced cycle in the graph).

The results in this section can be specialized in certain cases. If A is
diagonally dominant, its width-2 factorization can be computed in linear
time (linear in the number of nonzeros/edges). This factorization contains
only edges with gain ±1 (the corresponding edge vectors were denoted by
〈ij〉 and 〉ij〈 in [13]) and half-arcs. The gain graph corresponding to A is
called a signed graph [96], the gain of a path/cycle reduces to parity, and
the gain vector reduces to a parity vector, containing only ±1’s. Also note
that the gain of an edge in a signed graph is the same in both directions.

If A is both diagonally dominant and has only nonpositive off diago-
nals, all the edge vectors have gain 1. The gain graph corresponds to an
unweighted undirected graph. In this case, the gain graphic matroid re-
duces to a graphic matroid, in which a subset S of edges is independent
if and only if it is acyclic (see, for instance, [25]). All paths have gain 1,
which implies that any cycle in such a graph is balanced. Therefore, the
rank of a component is ni−1 if and only if it has no half arcs, and full rank
otherwise. The gain vector in such cases degenerates into a characteristic
vector with 1’s in the positions corresponding to the component’s vertices.

3.5. An Efficient Algorithm for Computing the Null Space of an
H+ Matrix

In this section we describe an efficient algorithm to compute the null
space of an H+ matrix given its width-2 factor. The amount of work that
the algorithm performs is linear in the number of edges and vertices.

The algorithm we describe can also be used to efficiently check whether
a gain graph is balanced. A gain graph G is called balanced if it contains
no half arcs and no unbalanced cycles.

By lemmas 3.4.2, 3.4.3 and 3.4.4, a connected component is balanced if
and only if it is rank deficient.

The algorithm works as follows. For each connected component, we
check whether it contains a half-arc. If so, then the connected component
is unbalanced and full-rank. If there is no half-arc, we choose some arbitrary
vertex in the component. We call that vertex a root. We then construct a

46 3. NULL SPACES OF SYMMETRIC H-MATRICES

spanning tree of the component using a depth-first traversal. In the process,
we can easily compute the gain of the path from each vertex to the root.
Let us denote the gain of the path between a vertex i and the root r by γ(i),
and call it the gain of the vertex. Then γ(r) = 1, and the gain of any other
vertex i is γ(i) = g(i, πi) · γ(πi) where πi denotes i’s parent in the tree, and
g(i, πi) denotes the gain of the edge (i, πi). Let y be the vector such that
for each vertex i in the connected component yi = γ(i), and for each vertex
j not in the connected component, yj = 0. If the connected component
is balanced, then y is the gain vector of that connected component, and
it is in the null space. To determine the rank, we inspect all the edges of
the component that are not in the tree. The gain of the path from i to j
through the spanning tree is γ(i)/γ(j). If (i, j) ∈ E and g(i, j) �= γ(i)/γ(j),
then (i, j) closes an unbalanced cycle and the component is full rank. If
there is no such edge and no half-arcs, the component is rank deficient and
y ∈ null(A).

If all the connected components are balanced, then the graph is bal-
anced.

3.6. Solving Singular SDD Linear Systems

We have shown how to compute an orthonormal basis for the null space
of a H+ matrix, given its width-2 factor. However, for most H+ matrices,
we do not know how to quickly obtain a width-2 factor (solving a linear
feasibility problem can be done in polynomial time, but is unlikely to be fast
enough for the applications we consider here). For SDD matrices, however,
a width-2 factorization can be computed in time linear in the number of
nonzeros in A. Therefore, for SDD matrices we can also compute the rank
and a basis for the null space in time linear in the number of nonzeros in
A.

In this section we show how to use the characterization and explicit
construction of the null space of an SDD matrix to solve linear systems
with SDD coefficient matrices. In particular, we show how to address the
following issues:

• Determining whether the SDD coefficient matrix A is singular.
• Determining whether a singular SDD linear system Ax = b is

consistent, that is, whether b is in the range of A.
• Finding the Cholesky factorization A = LLT , where L is lower

triangular, of a singular SDD matrix A.
• Using the Cholesky factorization of a singular SDD matrix to solve

a consistent linear system Ax = b or to find the least-squares
solution of an inconsistent linear system.

3.6. SOLVING SINGULAR SDD LINEAR SYSTEMS 47

• Using the Conjugate Gradient (CG) algorithm or the Minimum-
Residual (MINRES) algorithm to iteratively solve rank-deficient
least-squares problems.

The solutions that we propose to these problems are numerically stable and
accurate. What we are essentially proposing are combinatorial algorithms
that stabilize continuous fixed-precision algebraic computations.

Determining the rank of a general matrix is hard, in the sense that it
requires computing at least the small eigenvalues accurately, which is more
expensive than solving linear systems. Therefore, linear system solvers
usually do not and cannot reliably determine whether a linear system is
singular or not.

Our results imply that for general SDD matrices, singularity can be
reliably determined in almost linear time. First, we find the connected
components that have no negative cycle. This part of the computation
is completely sign-based and suffers no rounding errors. Next, we check
that each of these components (if any) has a strictly diagonally-dominant
row, which corresponds to a half-arc. If one or more components have no
negative cycle and no strictly diagonally-dominant rows, the matrix is sin-
gular. Determining the diagonal dominance of rows is subject to rounding
errors in the summation process. Since all the terms in the summation are
positive, however, it is possible to achieve perfect relative accuracy [58],
[59, Chapter 4]. In other words, our algorithm is very accurate and will
err only when a diagonal element is larger than the sum of the absolute
values of the offdiagonals in a row, but only by a factor of O(εmachine),
where εmachine ≈ 10−16 in double-precision IEEE floating-point arithmetic.
Note that simply requiring that a rank-determination algorithm be back-
ward stable is essentially useless: an algorithm that always returns the
dimension of the matrix is backward stable, since every matrix is close to
a full-rank matrix. Our algorithm provides accurate answers in the sense
that it always reports that singular matrices are singular, and only errs on
highly ill conditioned (very close to singular) matrices.

Given a linear system with a singular SDD coefficient matrix, it is often
useful (as we’ll show later) to determine whether the system is consistent.
That is, to determine whether b is in the range of A. We can easily and
stably determine this by computing the projection of b on the null space of
A. If the norm of the projection is large compared with the norm of b, then
b is not in the range of A, otherwise it is (or is close to the range space).
Given an orthonormal basis N for the null space of A (note that we always
compute an orthogonal basis, so all we need is to normalize the basis), the
projection is NNT b. Since the projection involves only multiplications by
orthonormal matrices, it is backward stable.

48 3. NULL SPACES OF SYMMETRIC H-MATRICES

The next two problems are addressed by a combination of our tech-
niques and the techniques proposed by Arbenz and Drmač [3]. They show
how to accurately compute the Cholesky factorization of a semidefinite ma-
trix whose null space is known, and how to use such factorizations to solve
consistent linear systems (in fact, their algorithms only require the nonzero
structure of the null space). Our contribution is the computation of a basis
for the null space of SDD matrices.

We also point out that one can solve square rank-deficient least-squares
problems min ‖Ax − b‖2 by projecting b orthogonally onto the range of A
and solving the singular but consistent linear system Ax̂ = (I − NNT)b.
The solution x̂ of this system of linear equations is the minimum-norm
least-squares solution that we seek. Projecting the right-hand-side onto
the range of A allows iterative solvers, such as CG [57] and MINRES [73],
to effectively solve the singular consistent system. These methods reliably
converge on consistent systems (and then the convergence does not depend
on the existence of the zero eigenvalue, only on the nonzero eigenvalues),
but they converge very slowly or fail to converge on inconsistent systems.
While iterative least-square solvers such as LSQR [74] can solve least-
squares problems without first projecting the right-hand side, they are
often slower than CG and MINRES. Therefore, projecting the right-hand
side onto the range of A, which requires a basis for the null space, can be
useful. The next section explores these issues experimentally.

3.7. Experimental Results

In the previous section we showed several applications of explicitly con-
structing the null space of an SDD matrix. In this section we describe
numerical experiments that demonstrate two of these applications. The
experiments were carried out using Matlab.

3.7.1. The rank of an SDD matrix. Algorithm 1 constructs an ill-
conditioned but full rank SDD matrix A that Matlab incorrectly classifies
as rank deficient. The graph of the matrix is a cycle of size 100, which is
exactly but not strictly diagonally dominant. The gain of 99 of the edges is
1 and the gain of the remaining edge is −1. Therefore, the gain of the cycle
is −1. This cycle is unbalanced and thus A has full rank no matter how
the edges are scaled. The matrix is constructed by computing A = UUT ,
where U is a scaled incidence matrix. The columns of U corresponding
to the positive edges are unscaled positive edge vectors, and the column
corresponding to the negative edge is scaled by 1.5 × 105.

The condition number of this matrix, as computed by Matlab, is ap-
proximately 4.56×1013. Matlab’s rank computation is based on comput-
ing the number of eigenvalues larger than n ‖A‖ εmachine, which in this case

3.7. EXPERIMENTAL RESULTS 49

Algorithm 1 A full-rank ill-conditioned SDD matrix. There is no
similarly-structured singular SDD matrix. In other words, A is full rank
for any nonzero column scaling of U .
n = 100;
U = zeros(n,n);
for i = 1:n-1

U(i,i) = 1;
U(i+1,i) = -1;

end
U(1,n) = 1.5e5;
U(n,n) = 1.5e5;
A = U*U’;
rank(A)

turns out to be 99. Making the scaling of the negative edge smaller leads
to 100 eigenvalues that pass the threshold, so Matlab reports the rank as
100; making the scaling larger leads to an even smaller reported rank.

This matrix is indeed ill conditioned, so it is very close to some singular
matrix. However, by our characterization of the rank of SDD matrices, we
know that no SDD matrix with this nonzero structure and with the same
element signs is singular. The nonzero structure and the element signs
imply that for all numerical element values (as long as diagonal dominance
is maintained), the signed graph of the matrix is a negative cycle, so the
matrix is nonsingular.

Therefore, if we know that the application in which the matrix arises
only produces SDD matrices and that the nonzero and sign structure is
accurate (not subject to numerical errors), then we can conclude that the
matrix is nonsingular. There is no singular SDD matrix with this nonzero
and sign structure, so the singular matrices in the neighborhood of our
matrix do not belong to this class. The algorithm that we described in
Section 5 determines correctly in linear time that A has full rank. The
algorithm computations are completely sign-based and suffer no rounding
errors.

3.7.2. Iteratively Solving Square Rank-Deficient Least-
Squares Problems. Our second experiment demonstrates the importance
of projecting the right hand side of a singular linear system onto the range
of the coefficient matrix before using Krylov-subspace linear-equation iter-
ative solvers with short recurrences.

50 3. NULL SPACES OF SYMMETRIC H-MATRICES

In this experiments we used a 400-by-400 SDD matrix A whose under-
lying graph is a regular 20-by-20 mesh. The matrix is diagonally dominant
but not strictly. The gain of the two edges connected to one of the corner
vertices of the mesh is −1, and the gain of all the other edges is 1. The
edge vectors are unscaled, so all the offdiagonal elements of A are either
0 or have absolute value 1. Every cycle that contains negative edges must
contain the corner vertex and the two negative edges incident to it. Since
all the cycles are balanced and there are no half-arcs in this graph, A is
rank deficient. The null space of A is spanned by a vector y that contains
1 in the corner vertex and −1 elsewhere.

We selected three random right-hand side vectors b with normal ele-
ment distributions (using Matlab’s randn routine), and solved the three
linear systems of the form Ax = b. We used four different Krylov-subspace
iterative solvers to solve each linear system, without preconditioning. The
iterative solvers were LSQR [74], a least-squares solver, and three linear-
equation solvers: Conjugate Gradients (CG) [57] (see also [40]), MIN-
RES [73], and GMRES [80] with no restarts. We invoked each linear solver
on each linear system twice: once with the original random b, and again
with an orthogonal projection (I−yyT)b of b onto the range of A. Thus, we
conducted a total of 3 × 4 × 2 = 24 experiments. (We actually conducted
more experiments with additional right-hand-sides and additional matrices
to ensure that we obtained representative results, but the results of the
additional experiments are not shown in this thesis; they were similar to
the results shown.)

The results of the experiments are presented in Figures 3.7.1, 3.7.2,
and 3.7.3. Each graph plots the norm of the residual as a function of
the number of iterations, as computed during the iteration by the iterative
algorithm itself. The residuals are not computed directly in every iteration;
they are updated, so they may become inaccurate. The graphs also show
the completion flag (0 implies convergence, other values imply breakdown)
and the 2-norms of the computed solution x̂ and of the true residual b−Ax̂.

The results do not vary qualitatively by the actual right-hand side b.
In all cases, all the linear solvers computed an accurate minimum-norm
residual-norm minimizer x̂ when they were required to solve the consistent
linear system Ax̂ = (I − yyT)b. (We verified that the solution is indeed
a minimum-norm minimizer using the pseudo inverse of A.) All the algo-
rithms converged to the desired accuracy, a reduction of the residual norm
by a factor of 106, within similar numbers of iterations, around 70, except
LSQR, which took over 260 iterations to converge.

3.8. CONCLUSIONS AND OPEN PROBLEMS 51

When the algorithms were required to solve the inconsistent system
Ax̂ = b, the behavior of LSQR did not change, but the behavior of the oth-
ers changed dramatically. The short-recurrence algorithms, CG and MIN-
RES, failed to produce a good residual-norm minimizer. GMRES, on the
other hand, returned a residual-norm minimizer x̂ when it stopped, but that
solution is not a minimum-norm solution (the code returns the approxima-
tion that minimizes the residual norm, not necessarily the approximation
from the last iteration). None of these three algorithms, including GMRES,
could detect convergence even when they achieved it, because no x̂ in the
Krylov subspaces (a subset of the range of A) can produce a small-enough
residual. CG always stopped when the direction vectors overflowed (exit
flag 4), while both MINRES and GMRES stopped when they stagnated.
The failure to detect convergence caused GMRES to run for much too long.

The fact that GMRES always computed a good solution suggests that
CG and MINRES suffer from loss of orthogonality in the direction vectors
when the linear system is inconsistent.

Clearly, solving a linear system with a right-hand side that is projected
onto the range of A allows the iterative linear solvers to detect convergence
more reliably than they otherwise would. Also, it appears that inconsistent
linear systems induce a loss of orthogonality and hence failure in short-
recurrence algorithms like CG and MINRES.

The iterative least-squares solver, LSQR, produced the same solution
whether the system was consistent or not, and within the same number
of iterations. However, it performs many more iterations (more than a
factor of 3 in this case) than the linear solvers when they solve a consistent
system.

There results demonstrate the utility of explicitly computing an or-
thonormal basis for the null space when solving square least-squares prob-
lems. Of the four solvers that we tested, one (LSQR) did not benefit from
projection onto the range, but it was slow. Another, GMRES, did compute
a residual-norm minimizer, but not a minimum-norm one, and it did not
detected convergence. It was also very slow due to full orthogonalization
in every step. The best solvers were the short-recurrence solvers, CG and
MINRES, when applied to a singular but consistent system; they were fast
and computed a minimum-norm residual-norm-minimizer.

3.8. Conclusions and Open Problems

The main results in this chapter are (1) a combinatorial characterization
of the null space of H+ matrices, which include SDD matrices, (2) efficient
algorithms, which rely on this combinatorial characterization, to construct
bases for the null spaces of such matrices. We have also demonstrated

52 3. NULL SPACES OF SYMMETRIC H-MATRICES

0 100 200 300
10

−1

10
0

10
1

10
2

LSQR, Random Right−Hand Side

flag=0
residual norm=1.89e−01
solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

−10

10
−5

10
0

10
5

LSQR, Right−Hand Side in range(A)

flag=0
residual norm=1.89e−01
solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

−10

10
0

10
10

10
20

GMRES, Random Right−Hand Side

flag=3
residual norm=1.89e−01
solution norm=5.09e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

GMRES, Right−Hand Side in range(A)

flag=0
residual norm=1.89e−01
solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80 100
10

−5

10
0

10
5

10
10

CG, Random Right−Hand Side

flag=4
residual norm=6.01e−01
solution norm=4.83e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

CG, Right−Hand Side in range(A)

flag=0
residual norm=1.89e−01
solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

10
2

MINRES, Random Right−Hand Side

flag=1
residual norm=7.02e+14
solution norm=6.33e+14

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

MINRES, Right−Hand Side in range(A)

flag=0
residual norm=1.89e−01
solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

Figure 3.7.1. The convergence of Krylov-subspace iterative
solvers on a 400-by-400 singular linear system. The coeffi-
cient matrix is an SDD matrix representing a 2D mesh. The
plots show (top to bottom) the convergence of LSQR, GM-
RES, CG, and MINRES. In each row, the plot on the left
shows the convergence when the right-hand side is random
and not in range(A), and the plot on the right shows the con-
vergence when the right-hand-side is projected orthogonally
onto range(A).

3.8. CONCLUSIONS AND OPEN PROBLEMS 53

0 100 200 300
10

−1

10
0

10
1

10
2

LSQR, Random Right−Hand Side

flag=0
residual norm=9.63e−01
solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

−5

10
0

10
5

LSQR, Right−Hand Side in range(A)

flag=0
residual norm=9.63e−01
solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300 400
10

−10

10
0

10
10

10
20

GMRES, Random Right−Hand Side

flag=3
residual norm=9.63e−01
solution norm=1.64e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

GMRES, Right−Hand Side in range(A)

flag=0
residual norm=9.63e−01
solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80 100
10

0

10
5

10
10

CG, Random Right−Hand Side

flag=4
residual norm=3.68e+00
solution norm=1.38e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

CG, Right−Hand Side in range(A)

flag=0
residual norm=9.63e−01
solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 50 100 150 200
10

−1

10
0

10
1

10
2

MINRES, Random Right−Hand Side

flag=3
residual norm=3.13e+02
solution norm=1.09e+16

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

MINRES, Right−Hand Side in range(A)

flag=0
residual norm=9.63e−01
solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

Figure 3.7.2. An experiment on an additional right-hand-side.

the utility of these combinatorial algorithms in a number of important
numerical-linear-algebra computations.

The chapter extends previous results in spectral graph theory in sev-
eral directions. First, we study spectral properties of signed and weighted

54 3. NULL SPACES OF SYMMETRIC H-MATRICES

0 100 200 300
10

−1

10
0

10
1

10
2

LSQR, Random Right−Hand Side

flag=0
residual norm=3.69e−01
solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

−5

10
0

10
5

LSQR, Right−Hand Side in range(A)

flag=0
residual norm=3.69e−01
solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 50 100 150 200
10

−10

10
0

10
10

10
20

GMRES, Random Right−Hand Side

flag=3
residual norm=3.69e−01
solution norm=8.19e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

GMRES, Right−Hand Side in range(A)

flag=0
residual norm=3.69e−01
solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 50 100 150 200
10

0

10
5

10
10

CG, Random Right−Hand Side

flag=3
residual norm=1.25e+00
solution norm=7.35e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

CG, Right−Hand Side in range(A)

flag=0
residual norm=3.69e−01
solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

−2

10
−1

10
0

10
1

10
2

MINRES, Random Right−Hand Side

flag=3
residual norm=1.56e+14
solution norm=5.00e+15

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

−5

10
0

10
5

MINRES, Right−Hand Side in range(A)

flag=0
residual norm=3.69e−01
solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

Figure 3.7.3. An experiment on an additional right-hand-side.

graphs, namely, the existence of zero eigenvalues. Previously, most of the
research in this area has focused on spectral properties of undirected un-
signed graphs, using their Laplacian matrices. Second, we study the struc-
ture of eigenvectors (those corresponding to zero eigenvalues), rather than

3.8. CONCLUSIONS AND OPEN PROBLEMS 55

estimate or bound eigenvalues. The structure of eigenvectors of Lapla-
cians are important in other applications, such as spectral partitioning of
graphs [48, 87], but in general Laplacian eigenvectors have not been stud-
ied much.

Support preconditioners exploit the simple isomorphism between
diagonally-dominant matrices and weighted undirected graphs or signed
graphs. This chapter shows that such matrices have very structured null
spaces. On the other hand, matrices that arise in applications such as finite-
element models of linear elasticity have null spaces which are more com-
plex; the dimension of these null spaces are 3 for two-dimensional problems
and 6 for three-dimensional problems. The results of this chapter indicate
that such finite-element matrices cannot be approximated by diagonally-
dominant matrices; it appears that these matrices cannot be represented
as weighted graphs. As a result, it is difficult to apply support theory
techniques to this family of finite-element problems.

The chapter raises a number of interesting questions. Perhaps the most
important one is whether a given H+ matrix can be efficiently factored
into width-2 factors. Several authors proposed iterative algorithms for this
problem [68, 69, 70], but there are no useful bounds on their convergence
or running time. Finally, more detailed characterizations of the eigenvectors
of matrices associated with graphs (such as Laplacians) would be useful in
some applications, such as quantization of mesh functions [85].

The results of this chapter are related to highly-accurate algorithms for
certain classes of ill-conditioned matrices [28, 29, 67]. These algorithms
solve accurately problems in which the input matrix is ill conditioned; the
problem is close to a singular problem. However, the input matrix has a spe-
cial structure, such as total nonnegativity or Vandermonde. On the mani-
fold of matrices with the same structure, the problem is not ill conditioned.
The algorithms solve the problem accurately using a matrix representation
that guarantees that all the intermediate matrices in the computation lie on
the same structured manifold. Our null-space algorithm for H+ matrices is
similar in that it relies on the factor-width-2 representation of the matrix,
a representation that guarantees that the matrix is on the manifold of H+

matrices.

CHAPTER 4

Obtaining Bounds on the Two Norm of a Matrix from
the Splitting Lemma1

4.1. Introduction

Support theory [9, 16] is a set of tools used to bound the condition
numbers of preconditioned systems. Support theory employs two devices
to bound the support of a preconditioner: one is the splitting lemma [9, 42],
and the other is the symmetric product support lemma [16]. In this chapter
we compare bounds which arise from these two tools, and introduce new
bounds.

Conjugate Gradient (CG) is a common iterative algorithm for solving
symmetric positive-definite linear systems Ax = b. Given a symmetric
positive-definite matrix A, the number of iterations needed to reduce the
norm of the residual by a constant factor is bounded by the spectral con-
dition number of A. The spectral condition number κ(A) is the ratio of
the extreme eigenvalues of A, κ(A) = λmax(A)/λmin(A). The convergence
of CG, as well as of many other iterative solvers, can often be improved by
use of a preconditioner B. When using a preconditioner, the number of it-
erations needed for convergence is bounded by the condition number of the
preconditioned system, which is the ratio of the extreme finite eigenvalues
of the matrix pencil (A, B), defined as follows.

Definition 4.1.1. The number λ is a finite generalized eigenvalue of
the matrix pencil (A, B) if there exists a vector x such that Ax = λBx and
Bx �= 0.

Support theory [9, 16] is a framework for bounding the condition num-
ber of definite and semidefinite preconditioned linear systems. In early
support-theory papers [9, 42], three main tools were used: the support
lemma, the splitting lemma and the congestion-dilation lemma. The sup-
port lemma showed how to bound the finite eigenvalues of (A, B) in terms
of a number σ(A, B) called the support of (A, B). The splitting lemma
shows that σ(A, B) ≤ maxi σ(Ai, Bi), where A =

∑
i Ai and B =

∑
i Bi.

1The results in this chapter were accepted for publication in Electronic Transactions
on Numerical Analysis, “Obtaining Bounds on the Two Norm of a Matrix from the
Splitting Lemma” by Doron Chen, John R. Gilbert and Sivan Toledo.

57

58 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

The congestion-dilation lemma showed how to directly bound σ(Ai, Bi)
when Ai and Bi are particularly simple: when the graph of Ai consists of
a single edge, and the graph of Bi is a simple path between that edge’s
endpoints2. In these early papers all the matrices involved had to be diago-
nally dominant, but that is irrelevant for our work. In essence, the splitting
lemma allowed a complex problem to be broken into simple parts, and the
congestion-dilation lemma allowed each part to be analyzed.

Boman and Hendrickson later presented support theory in a completely
algebraic framework, which does not refer to graphs, paths, and so on [16].
Their framework still used the support lemma, but they replaced much
of the rest with a single powerful lemma, the symmetric-product-support
lemma. This lemma shows that under suitable conditions on the null spaces
of A and B, the finite eigenvalues of the pencil (A, B) are bounded by ‖W‖2

2,
where U = V W , A = UUT , and B = V V T . To apply the lemma, one has to
construct a W satisfying these conditions, and to bound its 2-norm. They
also show that the bounds that were previously derived by the splitting and
congestion-dilation lemmas can be directly obtained by applying their new
lemma together with the norm bound ‖W‖2

2 ≤ ‖W‖1 ‖W‖∞. It seemed
that the splitting lemma was no longer useful.

However, recent results by Spielman and Teng again used the splitting
lemma [88, 89]. What, then, is the role of the splitting lemma in the
Boman-Hendrickson symmetric-product-support framework? This chapter
shows that in all its existing applications [9, 42, 88, 89], the splitting
lemma can be viewed as a mechanism to bound ‖W‖2

2 for a given W . We
also show that this bound is sometimes tighter than other easily-computed
bounds on ‖W‖2

2, such as ‖W‖2
F and ‖W‖1 ‖W‖∞.

We also show that certain regular splittings have useful combinatorial
interpretations. These interpretations can be exploited to construct and
analyze graph algorithms for constructing preconditioners, such as the al-
gorithms in [13, 42, 88, 89, 93]. In particular, one of these interpretations
was used, with a different proof, in [88].

Path embeddings have also been used to bound the smallest nonzero
eigenvalue of Laplacian matrices. To do so, one embeds the complete graph
in the target graph. Our bounds apply to embeddings of arbitrary graphs,
so they are more general. However, special cases of some of our bounds have
already been discovered in the more restricted case [30, 49, 50, 62, 83].

This chapter is organized as follows. The next section describes the
basic results of support theory. Section 4.3 proves the splitting lemma and
shows that the symmetric-product-support lemma implies it. Section 4.4

2The graph GA of an n-by-n symmetric matrix A is a weighted graph G = (V, E, w),
where V = {1, 2, . . . , n}, E = {(i, j) : Aij �= 0}, and the weight of an edge w(i, j) is
w(i, j) = −Aij .

4.2. BACKGROUND 59

describes our main technical tools, orthonormal stretchings and fractional
splittings. Section 4.5 proposes two splitting heuristics and shows that they
lead to new algebraic and combinatorial bounds on the 2-norm of a ma-
trix. Section 4.6 shows two additional bounds on the 2-norm. Section 4.7
quantifies the behavior of each one of the new norm bounds on an exam-
ple. In particular, the example shows that the different bounds can be
asymptotically different, some tight and some loose. Section 4.8 presents
our conclusions.

4.2. Background

This section provides key definitions and known lemmas that we use in
the rest of the chapter. We start with the definition of support and with
the support lemma.

4.2.1. Support.

Definition 4.2.1. The support σ(A, B) of a matrix pencil (A, B) is
the smallest number τ such that τB − A is positive semidefinite. If there
is no such number, we take σ(A, B) = ∞.

The importance of support numbers stems from the following lemma:

Lemma 4.2.2. (Support Lemma [42]) If λ is a finite generalized eigen-
value of (A, B) and B is positive semidefinite and null(A) ⊆ null(B), then
λ ≤ σ(A, B). When σ(A, B) is finite, the bound is tight.

Next, we state the key result in Boman and Hendrickson’s support
framework.

Lemma 4.2.3. (Symmetric-product-support lemma [16]) Suppose U ∈
R

n×k is in the range of V ∈ R
n×p. Then

σ
(
UUT , V V T

)
= min

W
‖W‖2

2 subject to V W = U .

4.2.2. Combinatorial Interpretations of Support Bounds.
Lemma 4.2.3 is often used after factoring the n-by-n coefficient matrix A

into A = UUT , where U is n-by-m and the preconditioner B into B = V V T ,
where V is n-by-k (note that there are no special conditions on V and U ;
they need not be triangular or orthogonal). Typically, the columns of U are
edge vectors [13], i.e. each column of U corresponds to one off-diagonal in
the matrix A. Similarly, each column of V corresponds to one off-diagonal
of B. This particular factorization is used when A and B are symmetric
diagonally-dominant (SDD) matrices. A matrix A that can be decomposed
into A = UUT where U has at most two nonzeros per column is called a
factor-width-2 matrix; the properties of such matrices have been explored

60 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

in [15, 22]. When A is factor-width-2 and has nonpositive offdiagonal
entries, it is often called a weighted Laplacian matrix.

When A is decomposed into A = UUT in this way, every column of U
corresponds to an edge in the graph GA of A or to a vertex in GA, and
similarly for B = V V T . In this case, any matrix W satisfying U = V W can
be seen as an embedding of GA in GB. Suppose that column j of U is an
edge vector in GA (otherwise it is a vertex vector). Then U:,j = V W:,j (we
use Matlab notation, in which a colon represents all the possible indices).
The nonzero entries in W:,j specify a set of edge and vertex vectors in V .
We say that the edge in GA is embedded into this set of edges and vertices
in GB. In some support preconditioners, the embedding is always of edges
into simple paths and vertices into single vertices [9, 42, 93]. In other
support preconditioners, some edges are embedded into up to two cycles
and up to two paths [13].

In fact, the analysis of the preconditioner usually goes in the other
direction. One first shows that given A and B, there exists a “good” em-
bedding of GA into GB. Then, from this embedding, one shows how to
construct W . Finally, some bound on ‖W‖2

2 is proven, and this bounds the
finite spectrum of the preconditioned system. Common bounds on ‖W‖2

2

that have been used in support preconditioners are ‖W‖2
2 ≤ ‖W‖1 ‖W‖∞,

which has been used implicitly in [9, 13, 42, 93], and ‖W‖2
2 ≤ ‖W‖2

F ,
which is used in [14]. In this setup, a good embedding is one that leads to
a small norm bound, that is, to a small value for ‖W‖1 ‖W‖∞ or ‖W‖2

F .
When W is an embedding of edges into simple paths and of vertices

into vertices, the two bounds ‖W‖2
2 ≤ ‖W‖1 ‖W‖∞ and ‖W‖2

2 ≤ ‖W‖2
F

have useful combinatorial interpretations. The first can be interpreted as
product of the worst dilation of a path times the worst congestion through
an edge of GB. Here the dilation of a path π between the endpoints of
an edge e ∈ GA is defined to be

∑
e′∈π |We′,e|. The congestion through an

edge e′ ∈ GB is defined to be
∑

e : e′∈π(e) |We′,e|, where π(e) is the path that
embeds e. The bound ‖W‖2

2 ≤ ‖W‖2
F can be interpreted as the sum of all

the dilations of all the paths, but with a different definition for dilation,∑
e′∈π W 2

e′,e.

4.2.3. The Splitting Lemma. We now state formally the Splitting
Lemma, which is the focus of this chapter.

Lemma 4.2.4. (The Splitting Lemma) Let A = A1+A2+. . .+Aq and let
B = B1+B2+. . .+Bq. If all Ai and Bi are symmetric positive semidefinite,
and if for each i, Ai is in the range of Bi, then σ(A, B) ≤ maxi σ(Ai, Bi).

Typically, this lemma is used by decomposing A into a sum of rank-
1 matrices, each corresponding to one off-diagonal, and by decomposing

4.3. SYMMETRIC PRODUCT SUPPORT IMPLIES SPLITTING LEMMA 61

B into path matrices, matrices that can be symmetrically permuted to a
tridiagonal form, and which have only one nonzero irreducible block.

In the rest of this chapter, we focus on symmetric positive semidefinite
matrices, but we do not assume that they are diagonally-dominant (unless
specified otherwise).

4.3. The Symmetric Product Support Lemma Implies the
Splitting Lemma

What is the relationship of the splitting lemma to the symmetric-
product-support lemma? In this section we begin the study of this question.
This section shows that the splitting lemma is weaker, in the sense that
the symmetric-product-support lemma implies the splitting lemma. The
following proof proves Lemma 4.2.4 using a straightforward application of
the symmetric-product support lemma.

Proof. Let Ai = UiU
T
i and Bi = ViV

T
i be arbitrary symmetric-

product decompositions of Ai and Bi. Such a decomposition always exists,
given our assumption that both matrices are symmetric positive semidefi-
nite. For example, we can use the scaled eigenvectors of Ai as the columns
of Ui, where the scaling is by the square root of the corresponding eigen-
value, and similarly for Bi. Let US be the concatenation of U1, U2, . . . , Uq

and VS be the concatenation of V1, V2, . . . , Vq. That is,

US =
(

U1 U2 U3 · · · Uq

)
,

and similarly for VS. Then USUT
S =

∑
i UiU

T
i =

∑
i Ai = A, and VSV T

S =
B.

By the assumption that Ai is in the range of Bi, the factor Ui must be
in the range of Vi. Therefore, there exists a Wi such that Ui = ViWi.

Let Ŵi be the minimizer of minWi
‖Wi‖2 subject to Ui = ViWi. By the

Symmetric-Product Support lemma, σ(Ai, Bi) =
∥∥∥Ŵi

∥∥∥2

2
.

Let

W =




Ŵ1

Ŵ2

. . .
Ŵq


 .

62 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

We claim that VSW = US.

VSW =
(

V1 V2 V3 · · · Vq

)



Ŵ1

Ŵ2

. . .
Ŵq




=
(

V1Ŵ1 V2Ŵ2 V3Ŵ3 · · · VqŴq

)
=
(

U1 U2 U3 · · · Uq

)
= US

The norm of W is equal to maxi

∥∥∥Ŵi

∥∥∥, so by the Symmetric-Product
Support Lemma it follows that

σ(A, B) ≤ ‖W‖2
2 = max

i

∥∥∥Ŵi

∥∥∥2

2
= max

i
σ(Ai, Bi) .

�

4.4. Splitting and Stretching

In this section we show a deeper connection between splitting and the
symmetric-product-support lemma. We begin by defining an operation
called orthonormal stretching, which allows us to obtain one symmetric-
product-support triplet from another. We then show that an important
class of splittings, the one which has been used almost exclusively in appli-
cations, can be interpreted as an orthonormal stretching. That is, splitting
is usually a way to obtain one symmetric-product-support triplet from an-
other, and in particular, to obtain a triplet in which computing ‖W‖2 is
easy.

4.4.1. Orthonormal Stretching. The orthonormal stretching of a
symmetric-product-support triplet (U, V, W) is a pair of matrices (S, W̃):
a k-by-k̃ matrix S with orthonormal rows (SST = I), and a matrix W̃ such
that W = SW̃ .

Why is stretching important for support theory? Because, as the next
lemma shows, the triplet (U, V S, W̃) is also a symmetric-product-support
triplet, because various norms of W̃ bound the corresponding norms of W

and because σ(UUT , V V T) ≤
∥∥∥W̃∥∥∥2

2
.

Therefore, orthonormal stretching is useful when it allows us to take a
symmetric-product-support triplet (U, V, W), for which bounding the norm
of W is difficult, and obtain a new triplet (U, V S, W̃), for which bounding
the norm of W̃ is easier. The norm of W̃ still bounds σ(UUT , V V T), which
in turn bounds the spectrum of the preconditioned linear system.

4.4. SPLITTING AND STRETCHING 63

Lemma 4.4.1. Let U = V W , and let S and W̃ be an orthonormal
stretching of (U, V, W), so W = SW̃ . Then, using the notation Ṽ = V S,
the following hold:

(1) Ṽ Ṽ T = V V T

(2) V = Ṽ ST

(3) U = Ṽ W̃

(4) ‖W‖2 ≤
∥∥∥W̃∥∥∥

2

(5) ‖W‖F ≤
∥∥∥W̃∥∥∥

F

(6) ‖W‖∞ ≤
√

k̃
∥∥∥W̃∥∥∥

∞
, where k̃ is the number of columns in S.

(7) ‖W‖1 ≤
√

k̃
∥∥∥W̃∥∥∥

1

Proof. Most of the claims are nearly trivial.
(1) Ṽ Ṽ T = (V S)(ST V T) = V (SST)V = V V T

(2) V = V I = V (SST) = (V S)ST = Ṽ ST

(3) U = V W = V (SW̃) = (V S)W̃ = Ṽ W̃

(4) ‖W‖2 =
∥∥∥SW̃

∥∥∥
2
≤ ‖S‖2

∥∥∥W̃∥∥∥
2

=
∥∥∥W̃∥∥∥

2
, because ‖S‖2 = 1.

(5) To show that ‖W‖F ≤
∥∥∥W̃∥∥∥

F
, we need only compare each column

of W to the corresponding column in W̃ . Let wj (w̃j) be column j

of W (of W̃). Then wj = Sw̃j, so ‖wj‖2 = ‖Sw̃j‖2 ≤ ‖S‖2 ‖w̃j‖2 =

‖w̃j‖2 . Since the norm of each column of W̃ is greater or equal to
the norm of the corresponding column of W , ‖W‖F ≤

∥∥∥W̃∥∥∥
F
.

(6) Since W = SW̃ , we have ‖W‖∞ =
∥∥∥SW̃

∥∥∥
∞

≤ ‖S‖∞
∥∥∥W̃∥∥∥

∞
.

We prove the claim by bounding the ∞-norm of S, ‖S‖∞ =

maxi

∑k̃
j=1 |Sij|. Each row in S is a size-k̃ vector with unit norm.

Let sum(v) be the sum of the absolute values of the entries of a
vector v. It is easy to show that the maximum of sum(v), over all
the vectors v with norm 1, is obtained when all the entries of v
are equal. The sum of the entries, for the maximal vector, is the
square root of the size of the vector. Therefore, for any row i of
S we have

∑k̃
j=1 |Sij | ≤

√
k̃, so ‖S‖∞ ≤

√
k̃, which proves the

claim.
(7) Let S ′ be a completion of S to a k̃-by-k̃ orthonormal matrix. Then

‖S‖1 ≤ ‖S ′‖1 because

‖S‖1 = max
j

k∑
i=1

|Sij | = max
j

k∑
i=1

∣∣S ′
ij

∣∣ ≤ max
j

k̃∑
i=1

∣∣S ′
ij

∣∣ = ‖S ′‖1 .

64 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

An equivalent argument to that of claim 6 shows that ‖S ′‖1 ≤ k̃,
which proves the claim.

�
But how do we find a useful orthonormal stretching (S, W̃), a stretching

for which the norm of W̃ is easy to bound? The next part of this section
shows that in many cases, splitting can be interpreted as such a stretching.

4.4.2. Orthonormal Stretching Via Fractional Splitting. In this
section we explain the connection between the orthonormal stretching and
splitting.

Definition 4.4.2. A splitting set for an n-by-m matrix U and an n-
by-k matrix V is a set D1, D2, . . . , Dm of k-row matrices satisfying

• ∑m
j=1 DjD

T
j = I, and

• for each j, U:,j is in the range of V Dj.

Lemma 4.4.3. Let D1, D2, . . . , Dm be a splitting set for U and V . Then
Aj = (U:,j) (U:,j)

T and Bj = (V Dj) (V Dj)
T is a splitting of A = UUT and

B = V V T in the sense of the splitting lemma. That is, A =
∑m

i=1 Ai,
B =

∑m
i=1 Bi, and each Ai is in the range of Bi.

Proof. Clearly A =
∑m

j=1 Aj . The sum of the Bj ’s satisfies
m∑

j=1

Bi =

m∑
j=1

(V Dj) (V Dj)
T

=

m∑
j=1

V DjD
T
j V T

= V

(
m∑

j=1

DjD
T
j

)
V T

= V V T

= B .

Since for each j, U:,j is in the range of V Dj , each Aj is in the range Bj . �
A splitting set can be difficult to construct, due to the second condition

in its definition. But a W satisfying U = V W offers an opportunity to
create a special family of splitting sets.

Definition 4.4.4. Let U be an n-by-m matrix, V an n-by-k matrix,
and W a k-by-m matrix such that U = V W . A fractional splitting set for
U , V , and W is a set of k-by-k diagonal matrices D1, D2, . . . , Dm satisfying
the following conditions.

4.4. SPLITTING AND STRETCHING 65

• The indices of the nonzero diagonal entries in Dj is the set
{i : Wi,j �= 0}.

• ∑m
j=1 DjD

T
j = I.

Lemma 4.4.5. A fractional splitting set is a splitting set.

Proof. We need to show that for each j, U:,j is in the range of V Dj .
Let D+

j be the Moore-Penrose pseudo-inverse of Dj. Since Dj is diagonal,
D+

j is also diagonal, with
(
D+

j

)
ii

=

{
(Dj)

−1
ii (Dj)ii �= 0

0 otherwise

(see, for instance, [40, Section 5.5.4]). The matrix DjD
+
j is diagonal with

zeros and ones on the diagonal, with ones in positions that correspond to
nonzeros in W:,j. Therefore, DjD

+
j W:,j = W:,j, so V DjD

+
j W:,j = V W:,j.

Therefore,
V Dj

(
D+

j W:,j

)
= V W:,j

= U:,j ,

which proves the claim. �
We now show that a fractional splitting set defines not only a splitting

of A and B, but also an orthonormal stretching of V and W . We begin by
showing how to derive S from the Dj’s.

Lemma 4.4.6. Let D1, D2, . . . , Dm be a splitting set. Then the concate-
nation S of the Dj’s, S =

(
D1 D2 D3 · · · Dm

)
has orthonormal rows

(the concatenation matrix S consists of the columns of D1 followed by the
columns of D2, and so on).

Proof. SST =
∑m

j=1 DjD
T
j = I. �

Clearly, the proof of the previous lemma only relies on one of the two
conditions that splitting sets must satisfy.

Next, we show how to construct W̃ . The example in the beginning of
Section 4.5 illustrates this construction.

Lemma 4.4.7. Let D1, D2, . . . , Dm be a fractional splitting set for some
U , V , and W , and let S be defined as in Lemma 4.4.6. Let

W̃:,j =
(

0 ; 0 ; · · · 0 ; D+
j W:,j ; 0 ; · · · 0 ; 0

)
,

where 0 denotes the k-by-1 zero vector. (We use the Matlab notation: a
semicolon denotes stacking blocks, so (A ; B) = (AT BT)T .) That is, in
the first column of W̃ the first k elements are D+

1 W:,1 and the rest are zeros.
The second column of W̃ starts with k zeros, then the elements of D+

2 W:,2,
followed by zeros, and so on. Then W = SW̃ .

66 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

Proof. We prove the lemma column by column,(
SW̃
)

:,j
= SW̃:,j

= (D1 D2 ··· Dj−1 Dj Dj+1 ··· Dm−1 Dm)




0
0
...
0

D+
j W:,j

0
...
0
0




=

(∑
i�=j

Di · 0
)

+ DjD
+
j W:,j

= 0 + W:,j .

�

An important benefit of using a fractional splitting to define an or-
thonormal stretching (S, W̃) is that the 2-norm of W̃ is easy to compute.

Lemma 4.4.8. Let (S, W̃) be an orthonormal stretching defined by a
fractional splitting as in Lemmas 4.4.6 and 4.4.7. Then∥∥∥W̃∥∥∥

2
=

m
max
j=1

∥∥∥W̃:,j

∥∥∥
2

.

Proof. By the construction of W̃ given in Lemma 4.4.7 it is clear that
its columns are orthogonal. �

In general, splittings and symmetric products are not isomorphic. A
splitting A =

∑
Ai and B =

∑
Bi does not define symmetric products

A = UUT and B = V V T , not even implicitly. Also, a symmetric-product-
support triplet does not define a splitting. But we have shown that an
important class of splittings does define an orthonormal stretching, a way
to get one symmetric-product-support triplet from another.

In most of the applications of the splitting lemma [9, 42, 88, 89], there
is also a symmetric-product representation of A and B, a representation
using edge and vertex vectors, and an implicit W . Furthermore, in these
applications, the splitting of A and B can almost always be interpreted as a
fractional splitting set D1, . . . , Dm of the symmetric-product factors U and
V . In all of these cases, the splitting can be interpreted as an orthonormal
stretching of a symmetric-product-support triplet.

Before we conclude this section, we show that for orthonormal stretch-
ings derived from fractional splitting sets, one of the norm-bounds on W̃
can be tightened.

4.5. HOW TO SPLIT 67

Lemma 4.4.9. Let (S, W̃) be an orthonormal stretching of (U, V, W),
derived from a fractional splitting set, as defined in Lemmas 4.4.6 and 4.4.7.
Then ‖W‖1 ≤

∥∥∥W̃∥∥∥
1
.

Proof. We show that ‖S‖1 ≤ 1. By definition, ‖S‖1 =

maxj

∑k
i=1 |Sij |. By the construction of S in Lemma 4.4.6, each column

of S is a column of one of the Dj’s. Each column of Dj has exactly one
nonzero. Because

∑
j DjD

T
j = I, that nonzero must be no larger than 1

in absolute value. Therefore, each column of S has exactly one nonzero
no larger than 1 in absolute value, which proves the claim that ‖S‖1 ≤ 1.
Therefore ‖W‖1 =

∥∥∥SW̃
∥∥∥

1
≤ ‖S‖1

∥∥∥W̃∥∥∥
1
≤
∥∥∥W̃∥∥∥

1
. �

Note that whenever each column of S has a single nonzero, ‖W‖1 ≤∥∥∥W̃∥∥∥
1
, even if W̃ was not derived from a fractional splitting set. In particu-

lar, the 1-norm bound given in the previous lemma may hold even when the
columns of W̃ are not orthogonal. When (S, W̃) are obtained from a frac-
tional splitting set, the bound ‖W‖2

2 ≤ ‖W‖1 ‖W‖∞ ≤
√

k̃
∥∥∥W̃∥∥∥

1

∥∥∥W̃∥∥∥
∞

is not particularly useful, because we can directly compute
∥∥∥W̃∥∥∥

2
. But in

more general cases this bound may be useful.

4.5. How to Split

The choice of Dj’s in a fractional splitting can have a profound influence
on how close

∥∥∥W̃∥∥∥
2

is to ‖W‖2. We use a fractional splitting because
∥∥∥W̃∥∥∥

2
is easy to compute and it bounds ‖W‖2. In this section we show that a
poor choice of Dj ’s can lead to

∥∥∥W̃∥∥∥
2

being so large that it teaches us
nothing about ‖W‖2. We also suggest two simple and efficient heuristics
to find splittings with a small

∥∥∥W̃∥∥∥. From one of these heuristics we obtain
two combinatorial bounds on support preconditioners; one of these bounds
was already suggested in a more general form by Spielman and Teng [88]
using an entirely different proof, and the other is new.

68 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

4.5.1. An Example. We first show that if the choice of splitting is
poor, then the resulting norm bound is useless. Let

A =


 2 −1 −1

−1 2 −1
−1 −1 2


 , U =


 1 0 1

−1 1 0
0 −1 −1




B =


 1 −1 0

−1 2 −1
0 −1 1


 , V =


 1 0

−1 1
0 −1


 .

To complete U and V to a symmetric-product-support triplet, we use

W =

(
1 0 1
0 1 1

)
.

The 2-norm of W is ‖W‖2 =
√

3.
We now split A and B using the following fractional support set,

D1 =

(
ε 0
0 0

)
, D2 =

(
0 0

0 1/
√

2

)
, D3 =

(√
1 − ε2 0

0 1/
√

2

)
,

where ε > 0 is small. Therefore,

S =
(

D1 D2 D3

)
=

(
ε 0 0 0

√
1 − ε2 0

0 0 0 1/
√

2 0 1/
√

2

)
.

We now construct W̃ according to lemma 4.4.7, starting with the pseudo-
inverses,

D+
1 =

(
1/ε 0
0 0

)
, D+

2 =

(
0 0

0
√

2

)
, D+

3 =

(
1/
√

1 − ε2 0

0
√

2

)
,

so

W̃ =




1/ε
0

0√
2

1/
√

1 − ε2√
2




.

For small ε,
∥∥∥W̃∥∥∥

2
= 1/ε is arbitrarily large, so it is not a useful bound on

‖W‖2 =
√

3.
Clearly, ε = 1/

√
2 is a better choice than a small ε, yielding a

∥∥∥W̃∥∥∥
2

= 2,
still not completely tight, but better. In this case, a fractional splitting can

4.5. HOW TO SPLIT 69

actually achieve
∥∥∥W̃∥∥∥

2
= ‖W‖2 =

√
3. Let

S =

(√
1/3 0 0 0

√
2/3 0

0 0 0
√

1/3 0
√

2/3

)
,

so

W̃ =




√
3

0
0√
3 √

3/2√
3/2




=




√
3 0 0

0 0 0
0 0 0

0
√

3 0

0 0
√

3/2

0 0
√

3/2




.

(We show W̃ twice, with and without all the zeros, to emphasize the struc-
ture of its columns.) Still, the ε-example shows that a poor splitting yields
useless bounds.

4.5.2. The Rowwise Heuristic. When W = SW̃ , row i in W is a
linear combination of a set of rows in W̃ , where the coefficients of the lin-
ear combinations come from row i in S. When (S, W̃) is an orthonormal
stretching derived from a fractional splitting set, the row sets that com-
bine to form rows of W are disjoint. This is a consequence of the fact
that columns in S have no more than a single nonzero. Therefore such
stretchings map disjoint sets of rows of W̃ to the rows of W .

The first heuristic that we propose finds a fractional splitting that en-
sures that the 2-norm of each nonzero row of W̃ that maps onto row i in
W is exactly ‖Wi,:‖2. This ensures, in a heuristic way, that W̃ is not too
large.

Here is another way to interpret this heuristic. Under an orthonor-
mal stretching derived from a fractional splitting set, each nonzero in W
is mapped into a nonzero in W̃ . The rowwise heuristic ensures that all
the nonzeros in W̃ that map to nonzeros in row i of W have the same
magnitude.

Lemma 4.5.1. Let us define m diagonal matrices, such that the (i, i)
value in the j-th matrix is

(Dj)i,i =
Wi,j

‖Wi,:‖2

.

Then the Dj’s are a fractional splitting set for W .

Proof. Clearly, the indices of the nonzero diagonal entries in Dj is the
set {i : Wi,j �= 0}.

We need to show that
∑m

j=1 DjD
T
j = I. A sum of diagonal matrices

is also diagonal. Therefore,
∑m

j=1 DjD
T
j =

∑m
j=1 D2

j is diagonal. We need

70 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

only show that each diagonal entry in
∑m

j=1 D2
j is 1. By definition, the (i, i)

entry in Dj is Wi,j/ ‖Wi,:‖2. The (i, i) entry in
∑m

j=1 D2
j is

m∑
j=1

W 2
i,j

‖Wi,:‖2
2

=
1

‖Wi,:‖2
2

·
m∑

j=1

W 2
i,j =

1

‖Wi,:‖2
2

· ‖Wi,:‖2
2 = 1 .

�

We now prove that this splitting preserves the 2-norm of rows in W .
We need the following notation: η(i, j) = (j − 1) · k + i (for 1 ≤ i ≤ k and
1 ≤ j ≤ m). Matrix S is a concatenation of the Dj matrices. Therefore, S
is a concatenation of m k-by-k matrices. η(i, j) is the index of the column
in S corresponding to the i-th column in Dj .

Lemma 4.5.2. Let W̃ be an orthonormal stretching of W derived using
the rowwise fractional-splitting heuristic. If Wi,j �= 0, then

∥∥∥W̃η(i,j),:

∥∥∥
2

=∣∣∣(D+
j W:,j

)
i

∣∣∣ = ‖Wi,:‖2. Therefore, the norm of each nonzero row in W̃ is
the norm of some row in W , and for each row in W , there is at least one
row with the same norm in W̃ .

Proof. Rows in W̃ have at most a single nonzero, when W̃ is con-
structed from a fractional splitting. Therefore, for each nonzero row, the
norm of a row is the absolute value of the single nonzero element in that
row (the norm of a zero row is zero). All nonzeros in column j of W̃
are entries of D+

j W:,j. Therefore, for each 1 ≤ i ≤ k and 1 ≤ j ≤ m,∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣∣(D+

j W:,j

)
i

∣∣∣ . If Wi,j �= 0, then (Dj)i,i = Wi,j/ ‖Wi,:‖2 �= 0.

Therefore
(
D+

j

)
i,i

= ‖Wi,:‖2 /Wi,j and thus:(
D+

j W:,j

)
i

=
(
D+

j

)
i,i
· Wi,j

=
‖Wi,:‖2

Wi,j
· Wi,j

= ‖Wi,:‖2 .

This proves the lemma, because∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣(D+

j W:,j)i

∣∣ = ‖Wi,:‖2 .

�

We now prove a new bound on ‖W‖2, a bound which we later show has
a useful combinatorial interpretation.

4.5. HOW TO SPLIT 71

Lemma 4.5.3. Let W be a k-by-m real matrix. Then

‖W‖2
2 ≤ max

j

∑
i : Wi,j �=0

‖Wi,:‖2
2 = max

j

∑
i : Wi,j �=0

m∑
c=1

W 2
i,c .

Proof. We stretch W orthonormally using the rowwise fractional-

splitting heuristic. Then ‖W‖2
2 ≤

∥∥∥W̃∥∥∥2

2
, and the columns of W̃ are or-

thogonal, so ∥∥∥W̃∥∥∥2

2
= max

j

∥∥∥W̃:,j

∥∥∥2

2
.

All that remains to show is that
∥∥∥W̃:,j

∥∥∥2

2
=
∑

i : Wi,j �=0

∑m
c=1 W 2

i,c.∥∥∥W̃:,j

∥∥∥2

2
=
∥∥D+

j W:,j

∥∥2

2

=

k∑
i=1

(
D+

j W:,j

)2
i

=
∑

i : Wi,j �=0

‖Wi, : ‖2
2 .

The last equality is by lemma 4.5.2. �

Lemma 4.5.4. Let W be a k-by-m real matrix. Then

‖W‖2
2 ≤ max

i

∑
j : Wi,j �=0

‖W:,j‖2
2 = max

i

∑
j : Wi,j �=0

k∑
r=1

W 2
r,j .

Proof. The previous lemma, applied to W T , proves the claim, since∥∥W T
∥∥

2
= ‖W‖2. �

4.5.3. A Combinatorial Interpretation and the Spielman-Teng
Bound. Given a symmetric-product-support triplet (U, V, W), a column
of W can be viewed as an embedding of a column of U into the columns of
V , since U:,j = V W:,j. The nonzero elements in the column of W specify a
generalized path in V that supports the column in U . When U and V have
at most two nonzeros per column, (that is, UUT and V V T have factor-
width 2), they can be viewed as the weighted incidence matrices of GUUT

and GV V T . In that case, a generalized path defined by a column of W is,
indeed, an edge set, although this edge set may not form a simple path.
We now define the dilation of a path that supports a column of U , and the
congestion caused by the paths that utilize a column of V .

72 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

Definition 4.5.5. Let (U, V, W) be a symmetric-product-support
triplet. We say that column i in V supports column j in U if Wi,j �= 0.
The 2-dilation of a column j in U is

dil2(U, V, W, j) = dil2(j) = ‖W:,j‖2
2 .

The 2-congestion of a column i in V is

cong2(U, V, W, i) = cong2(i) = ‖Wi,:‖2
2 .

These definitions, together with Lemmas 4.5.3 and 4.5.4, give the fol-
lowing results.

Lemma 4.5.6. Let (U, V, W) be a symmetric-product-support triplet.
Then

‖W‖2
2 ≤ max

j

∑
i supports j

cong2(i) .

The next lemma is a special case of the Spielman-Teng Support Theo-
rem [88, Theorem 2.1]. Their proof technique, however, is different. The
result stated in Lemma 4.5.6 is, to the best of our knowledge, new.

Lemma 4.5.7. Let (U, V, W) be a symmetric-product-support triplet.
Then

‖W‖2
2 ≤ max

i

∑
i supports j

dil2(j) .

4.5.4. The Frobenius Heuristic. Another approach to fractionally
splitting W is to minimize the Frobenius norm of W̃ . The Frobenius heuris-
tic defines m diagonal matrices, such that the (i, i) value in the j-th matrix
is

(Dj)i,i =

√|Wi,j|√∑m
c=1 |Wi,c|

.

Lemma 4.5.8. The preceding definition of the Dj’s defines a fractional
splitting set.

Proof. As in Lemma 4.5.1, we need to prove that
∑m

j=1 DjD
T
j = I.

Matrix
∑m

j=1 DjD
T
j =

∑m
j=1 D2

j , being the sum of diagonal matrices, is also
diagonal. We need only show that each diagonal entry in

∑m
j=1 D2

j is 1. By
definition, the (i, i) entry in Dj is

√|Wi,j|/
√∑m

c=1 |Wi,c|. The (i, i) entry
in
∑m

j=1 D2
j is

m∑
j=1

|Wi,j|∑m
c=1 |Wi,c| =

1∑m
c=1 |Wi,c| ·

m∑
j=1

|Wi,j | = 1 .

�

4.5. HOW TO SPLIT 73

Lemma 4.5.9. The Frobenius heuristic minimizes
∥∥∥W̃∥∥∥

F
over all frac-

tional splittings of W .

Proof. We prove the lemma in two steps. We first show that the
minimization problem can be broken up into k separate problems, each
involving one row of S and one row of W . We then show that the Frobenius
heuristic minimizes the contribution of each row to

∥∥∥W̃∥∥∥
F
, and is, hence,

an optimal Frobenius-norm minimization strategy.
The nonzero elements of W̃ are the nonzero elements of the vectors

D+
j W:,j for j = 1, . . . , m. The i-th element of the vector D+

j W:,j is(
D+

j

)
i,i

Wi,j . If Wi,j = 0 then
(
D+

j

)
i,i

Wi,j = 0, otherwise
(
D+

j

)
i,i

Wi,j =

Wi,j/ (Dj)i,i.
Therefore, the Frobenius norm of W̃ is

∥∥∥W̃∥∥∥2

F
=

m∑
j=1

∑
i:Wi,j �=0

(
Wi,j

(Dj)i,i

)2

.

In this double sum, the outer summation is over columns of W̃ , and inner
summation is over the nonzeros in a particular column. Each nonzero of
W appears exactly once in the summation. We can change the order of
summation so that we sum over rows of W ,

(4.5.1)
∥∥∥W̃∥∥∥2

F
=

k∑
i=1

m∑
j=1

Wi,j �=0

(
Wi,j

(Dj)i,i

)2

.

To minimize the Frobenius norm, we minimize this sum subject to the
constraints

m∑
j=1

Wi,j �=0

(Dj)
2
i,i = 1 for all i = 1, . . . , k .

Since we have a separate constraint for each one of the inner sums in
Equation 4.5.1 (for each row of W), the global minimum of the Frobenius
norm is achieved when each one of the inner sums is minimized.

We now turn to the second part of the proof, showing that the heuristic
does minimize each inner sum. The inner sum minimization is equivalent
to finding the vector (x1, . . . , xm) that minimizes

∑m
i=1(ci/xi)

2 subject to∑m
i=1 x2

i = 1. The vector c corresponds to the nonzero elements in the ith
row of W and the vector x to the corresponding elements of S. We prove

74 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

by induction on m that the minimum is (
∑

ci)
2 and that it is achieved at

xi =

√|ci|√∑m
j=1 |cj |

.

The inductive claim is actually slightly stronger. We prove that when the
constraint is replaced by

∑m
i=1 x2

i = z for some z > 0, the minimum is
z−1 (

∑
ci)

2 and that it is achieved at

xi =

√
z |ci|√∑m
j=1 |cj |

.

For m = 1 the only choice for x1 is x1 =
√

z and it is easy to verify
that the claim holds. Assume that the claim holds for m − 1. For any
value of 0 < xm <

√
z, the minimum of the sum

∑m−1
i=1 (ci/xi)

2 subject to∑m−1
i=1 x2

i = z − x2
m is, by the inductive claim, (z − x2

m)−1
(∑m−1

i=1 ci

)2
. The

total minimization problem, then, is to minimize

f (xm) =

(∑m−1
i=1 ci

)2
(z − x2

m)
+

c2
m

x2
m

subject to 0 < xm <
√

z. The derivative of this objective function with
respect to x2

m is

∂f

∂ (x2
m)

=

(∑m−1
i=1 ci

)2
(z − x2

m)2 − c2
m

(x2
m)2 .

It is easy to verify that the derivative vanishes at

xm =

√
z |cm|√∑m
j=1 |cj |

.

Clearly, this value of xm satisfies 0 < xm <
√

z, so it solves the constrained
minimization problem. Given this value of xm, we have

(z − x2
m) = z

(∑m−1
j=1 |cj |∑m
j=1 |cj |

)
.

By induction, for i < m, the optimal value of xi under the constraint∑m−1
i=1 x2

i = z − x2
m is achieved at

xi =

√
(z − x2

m) |ci|√∑m−1
j=1 |cj|

=

√
z |ci|√∑m
j=1 |cj |

.

This concludes the inductive claim and the entire proof. �

4.5. HOW TO SPLIT 75

An alternative way to prove the second part of the proof, proposed by
Dan Spielman, uses Lagrange multipliers.

Proof. The proof that the minimization problem can be broken into
k independent subproblems is the same as in the first proof. We now
show that xi =

√
|ci|/

∑
j |cj | is a minimizer of

∑m
j=1(cj/xj)

2 subject to∑m
j=1 x2

j = 1.

Let f(x1, . . . , xm, λ) =
∑m

j=1

(
cj

xj

)2

+ λ
(∑m

j=1 x2
j − 1

)
. The minimizer

satisfies

0 = ∂f
∂xi

= −2 · c2i
x3

i
+ 2λxi ,

0 = ∂f
∂λ

=
∑m

j=1 x2
j − 1 .

It follows that c2
i = λx4

i , therefore x2
i = |ci| /

√
λ. Since

∑m
j=1 x2

j = 1 it
follows that ∑m

j=1
|cj |√

λ
= 1

1√
λ

∑m
j=1 |cj| = 1√
λ =

∑m
j=1 |cj| .

Since x2
i = |ci| /

√
λ it follows that

x2
i = |ci|Pm

j=1|cj | ,

and thus

xi =

√
|ci|√Pm

j=1|cj |
.

�

Like the rowwise heuristic, the Frobenius heuristic also produces new
algebraic bounds on ‖W‖2. These bounds and their proofs were discovered
by Dan Spielman [86]. Before we state and prove the bounds, we prove an
auxiliary result.

Lemma 4.5.10. [86] Let W̃ be an orthonormal stretching of W de-
rived using the Frobenius fractional-splitting heuristic. If Wi,j �= 0, then∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣∣(D+

j W:,j

)
i

∣∣∣ =√|Wi,j | ·
√∑m

c=1 |Wi,c|.

Proof. As in lemma 4.5.2, for each 1 ≤ i ≤ k and 1 ≤
j ≤ m,

∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣∣(D+

j W:,j

)
i

∣∣∣ . If Wi,j �= 0, then (Dj)i,i =√|Wi,j |/
√∑m

c=1 |Wi,c| �= 0. Therefore
(
D+

j

)
i,i

=
√∑m

c=1 |Wi,c|/
√|Wi,j|

76 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

and thus: (
D+

j W:,j

)
i

=
(
D+

j

)
i,i
· Wi,j

=

√∑m
c=1 |Wi,c|√|Wi,j |

· Wi,j

=
√
|Wi,j| ·

√√√√ m∑
c=1

|Wi,c| .

This proves the lemma, because each row of W̃ has at most a single nonzero,
so ∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣(D+

j W:,j)i

∣∣ =√|Wi,j| ·
√√√√ m∑

c=1

|Wi,c| .

�
We now state and prove new bounds on ‖W‖2.

Lemma 4.5.11. [86] Let W be a k-by-m matrix. Then

‖W‖2
2 ≤ max

j

∑
i:Wi,j �=0

|Wi,j| ·
(

m∑
c=1

|Wi,c|
)

.

Proof. We stretch W orthonormally using the Frobenius fractional-

splitting heuristic. Then ‖W‖2
2 ≤

∥∥∥W̃∥∥∥2

2
, and the columns of W̃ are or-

thogonal, so ∥∥∥W̃∥∥∥2

2
= max

j

∥∥∥W̃:,j

∥∥∥2

2
.

All that remains to show is that
∥∥∥W̃:,j

∥∥∥2

2
=
∑

i:Wi,j �=0 |Wi,j|·(
∑m

c=1 |Wi,c|).
We have ∥∥∥W̃:,j

∥∥∥2

2
=
∥∥D+

j W:,j

∥∥2

2

=

k∑
i=1

(
D+

j W:,j

)2
i

=

k∑
i=1

|Wi,j| ·
(

m∑
c=1

|Wi,c|
)

=
∑

i:Wi,j �=0

|Wi,j| ·
(

m∑
c=1

|Wi,c|
)

.

The equality of the second and third lines is by lemma 4.5.10. �

4.6. GRAM BOUNDS ON THE TWO NORM 77

Lemma 4.5.12. [86] Let W be a k-by-m matrix. Then

‖W‖2
2 ≤ max

i

∑
j:Wi,j �=0

|Wi,j| ·
(

k∑
r=1

|Wr,j|
)

.

Proof. The previous lemma, applied to W T , proves the claim, since∥∥W T
∥∥

2
= ‖W‖2. �

The bounds in lemmas 4.5.3 and 4.5.11 are structurally similar. Both
bound ‖W‖2

2 using an expression of the form

‖W‖2
2 ≤ max

j

∑
i:Wi,j �=0

m∑
c=1

g (Wi,j , Wi,c) .

In lemmas 4.5.3 we have g (Wi,j , Wi,c) = W 2
i,c and in lemma 4.5.11 we have

g (Wi,j, Wi,c) = |Wi,j| · |Wi,c|. In both cases the maximum is over sums of
functions of the same nonzero elements of W . A similar relationship exists
between lemmas 4.5.4 and 4.5.12.

We note that there exist matrices W for which applying the Frobenius
heuristic gives a smaller

∥∥∥W̃∥∥∥
2

than the rowwise heuristic, and that there

are matrices for which the rowwise heuristic gives a smaller
∥∥∥W̃∥∥∥

2
. In

general, neither of the two is an optimal 2-norm minimization strategy.

4.6. Gram Bounds on the Two Norm

In this section we suggest two additional bounds on the 2-norm of W . In
one particular case, these two bounds are equivalent to the bounds proved
in Lemmas 4.5.6 and 4.5.7.

Lemma 4.6.1. For any matrix W ,

‖W‖2
2 ≤
∥∥WW T

∥∥
1

=
∥∥WW T

∥∥
∞ .

Proof. For all matrices W , ‖W‖2
2 =
∥∥WW T

∥∥
2
. For any matrix A, we

have ‖A‖2
2 ≤ ‖A‖1 ‖A‖∞. In particular,

∥∥WW T
∥∥2

2
≤ ∥∥WW T

∥∥
1

∥∥WW T
∥∥
∞.

Since WW T is symmetric,
∥∥WW T

∥∥
1

=
∥∥WW T

∥∥
∞. This concludes the

proof. �

Similarly,

Lemma 4.6.2. For any matrix W ,

‖W‖2
2 ≤
∥∥W T W

∥∥
1

=
∥∥W TW

∥∥
∞ .

78 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

Consider the case where A and B are symmetric and diagonally-
dominant matrices, and the weights of all the edges in A’s and B’s un-
derlying graphs are 1. Given an embedding of the edges of A into simple
paths in B, all the entries of W are either 0, 1 or −1. In this case, the
dilation of an edge is exactly the length of its supporting path. It is easy to
see that, in this case, the

∥∥WW T
∥∥

1
bound is the same as the bound given

in lemma 4.5.7. Similarly, the
∥∥W T W

∥∥
1

bound is the same as the bound
in lemma 4.5.6.

In more complex cases, however, the two norm bounds given in this
section are not equivalent to the bounds in Lemmas 4.5.6 and 4.5.7.

4.7. An Example

The example that we present in this section shows that the new norm
bound given in Lemma 4.5.6 is sometimes asymptotically tighter than all
the other norm bounds that we are aware of. In this example, Lemma 4.5.6
tightly bounds the two norm, while all the other bounds are asymptoti-
cally loose. In particular, the ‖W‖F -norm bound, the ‖W‖1 ‖W‖∞-norm
bound, the

∥∥WW T
∥∥

1
-norm bound and its equivalents, and the bound in

Lemma 4.5.4 are all loose.
Consider the 1-by-2 block matrix W = (W ′|I), where I is the (2m+3)-

by-(2m + 3) identity for some m, and where W ′ is the (2m + 3)-by-(m + 1)
matrix

W ′ =




√
m 1 · · · 1√
m √

m
. . . √

m√
m √

m
. . . √

m




.

The matrix W corresponds to an embedding of the edges of the graph
shown in Figure 4.7.1 onto paths in the same graph, but without the dashed
edges. Because the graph without the dashed edges is a tree, each edge in
the original graph is supported by exactly one simple path.

We can prove the following norm bounds on W . We omit the proofs.
• ‖W‖2

2 = 4m + 1.
• ‖W‖2

F = 2m2 + 6m + 3 = Θ(m2).
• ‖W‖1 ‖W‖∞ = (

√
m + m + 1)(3

√
m) = Θ(m1.5).

• ∥∥W TW
∥∥

1
= 3m + (m + 3)

√
m = Θ(m1.5).

4.8. CONCLUSIONS 79

m

√
m

1

1

1

1

1

1

1

√
m

√
m

√
m

√
m

√
m

√
m

1

Figure 4.7.1. A weighted graph GUUT with 2m+4 vertices
(m + 2 on the top and m + 2 on the bottom). The dashed
edges are in GUUT but not in GV V T . The edge weights given
are the nonzero coefficients of the corresponding columns of
U and V ; for example, the edge with weight m corresponds
to a column (m,−m, 0, . . . , 0)T in U .

• ∥∥WW T
∥∥

1
= 4m + 2m

√
m + 1 = Θ(m1.5).

• maxj

∑
i : Wi,j �=0 ‖Wi,:‖2

2 = 4m + 3 = Θ(m).
• maxi

∑
j : Wi,j �=0 ‖W:,j‖2

2 = ‖W ′‖2
F + 1 = 2m2 + 4m + 1 = Θ(m2).

• maxj

∑
i : Wi,j �=0 |Wi,j| · (

∑m
c=1 |Wi,c|) =

√
m(

√
m + m + 1) +

2
√

m(
√

m + 1) = Θ(m1.5).
• maxi

∑
j:Wi,j �=0 |Wi,j| ·

(∑k
r=1 |Wr,j|

)
=

√
m ·3√m+m(1+2

√
m)+

1 = Θ(m1.5).
For large m, none of these bounds on the 2-norm are tight, except for one,
4m + 3, which is not only asymptotically tight, but is off by only a small
additive constant.

4.8. Conclusions

We have shown that applying the splitting lemma to the analysis of
support-graph preconditioners can be viewed as a mechanism to bound the
norm of a matrix W . The mechanism works by orthonormally stretching
W into a larger matrix W̃ whose 2-norm bounds that of W but is easier to
compute.

In doing so, we have unified the “old-style” support theory, in which the
analysis of a preconditioner usually starts by splitting, and the “new-style”
support theory, which relies on the symmetric-product-support lemma, usu-
ally without splitting.

We also presented six new bounds on the 2-norm of the matrix, given
in Lemmas 4.5.3, 4.5.4, 4.5.11, 4.5.12, 4.6.1, and 4.6.2. One of the four
was already given by Spielman and Teng, but not in the form of a norm

80 4. OBTAINING BOUNDS ON THE TWO NORM OF A MATRIX

bound. Four of the new bounds have useful combinatorial interpretations.
Special cases of some of our new bounds were previously used to bound the
smallest nonzero eigenvalue of Laplacian matrices [30, 49, 50, 62, 83].

Viewing splitting as a way of bounding ‖W‖2 using
∥∥∥W̃∥∥∥

2
leads to

systematic splitting strategies that aim to minimize some other norm of
W̃ . We propose two such strategies in this chapter; one is a heuristic which
preserves in W̃ the 2-norm of rows of W , and another which minimizes the
Frobenius norm of W̃ . Both are analytically and computationally simple.

We have also shown that one of the new bounds can be asymptotically
tighter than all the other norm bounds that we are aware of. The problem
of ranking the bounds by tightness, or showing that they cannot be ranked,
remains open.

CHAPTER 5

Algebraic Analysis of High-Pass Quantization1

5.1. Introduction

High-pass mesh quantization is a compression technique for three-
‌dimensional polygonal meshes. This technique assumes that the connec-
tivity of the mesh has already been encoded, and that it is, therefore,
known to both the encoder and to the decoder. The goal of the tech-
nique is to compactly encode the coordinates of the vertices of the mesh.
High-pass quantization, which was recently proposed by Sorkine, Cohen-
Or, and Toledo [85], encodes the coordinates by applying a linear trans-
formation based on the mesh Laplacian to the coordinates and quantizing
the transformed coordinates. The decoder then applies another transfor-
mation to recover an approximation of the original coordinates from the
quantized transformed data. The advantage of encoding the transformed
coordinates lies in the fact that they can be aggressively quantized without
introducing visually disturbing errors. As shown in [85], the quantization
error is mostly comprised of low-frequency bands, while the high-frequency
components of the reconstructed surface are preserved. Since humans are
usually more sensitive to changes in lighting (or normals) and the local
high-frequency details of the surface, low-frequency errors are perceived as
less visible.

Applying the mesh Laplacian to the coordinate prior to quantization is
a bad idea. In high-pass quantization, we do not apply the Laplacian itself,
but rather a carefully constructed operator derived from it. The construc-
tion aims to control two aspects of the compression and decompression pro-
cess. First, the Laplacian is singular, and it tends to be ill conditioned on
large meshes. The singularity reflects the fact that Laplacian-transformed
coordinates do not prescribe the absolute positioning of the mesh in space;
this singularity is easy to handle. But the ill conditioning is more difficult
to handle. If not addressed, the ill conditioning leads to a decompression

1The results in this chapter were accepted for publication in ACM Transactions
on Graphics, “Algebraic Analysis of High-Pass Quantization” by Doron Chen, Daniel
Cohen-Or, Olga Sorkine, and Sivan Toledo. The results in section 5.6 are primarily due
to Sorkine and Cohen-Or. The results in sections 5.4 and 5.5 are primarily due to Chen
and Toledo.

81

82 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

operator with a large norm, which greatly amplifies even small quantiza-
tion errors. Our construction addresses the ill conditioning using so-called
anchor points in the mesh. Anchor points are mesh points whose original
coordinates are included in the encoded (transformed) mesh coordinates.
In this chapter we show how to estimate the condition of the Laplacian-
derived operator from the connectivity of the mesh and the identity of
the anchors. By adding anchors appropriately, we control the norm of the
quantization error.

The shape of the error is the other aspect of the compression process
that our construction aims to control. Laplacian coordinates, with or with-
out anchors, can be thought of as smoothness constraints that the decom-
pressor tries to satisfy. A small Laplacian coordinate at a mesh vertex
implies that the mesh is smooth around that vertex, and a large Laplacian
coordinate implies local roughness. Anchors add constraints on absolute
positioning of the anchor vertices to the decompression process. The key
to high-pass quantization is to use both smoothness and absolute posi-
tioning constraints at the anchors. This is what controls the shape of the
quantization error.

Sorkine et al. [85] presented the algebraic framework of high-pass quan-
tization, together with a partial argument that explained why it works well.
More specifically, that argument showed how the eigenvalues of the linear
transformations that the encoder and the decoder apply affect the quanti-
zation error. However, the analysis in [85] is incomplete: (1) the analysis
there only applies to one class of matrices (so-called k-anchor invertible
Laplacians) but not to the matrices that are actually used in the algorithm
(k-anchor rectangular Laplacians); (2) the eigenvalues of the transforma-
tions are not analyzed, and (3) the effect of rounding errors on encoding
and decoding is not analyzed. In this chapter we rectify the deficiencies
of [85]. In particular, we extend the analysis to show that the singular
values of rectangular Laplacians can bound the encoding error, we present
bounds on the eigenvalues and singular values of Laplacians, and we bound
the effect of rounding errors on the method. The bounds that we derive
for the singular/eigen values and for the encoding and rounding errors are
given in terms of topological properties of the mesh, so these bounds are
relatively easy to estimate. These topologically-derived bounds are also
useful for selecting anchors, the extra vertices whose coordinates are used
to decode the mesh.

We complement this analysis with a new anchor-selection algorithm and
with experimental results. The new algorithm selects anchor points so as
to minimize our theoretical error bound. The new experimental results
further strengthen the claims in [85] concerning the effectiveness of high-
pass quantization, and they show how our theoretical bounds relate to the

5.3. BACKGROUND: HIGH-PASS QUANTIZATION 83

actual encoding errors. It should be noted that the bounds on the condition
number of k-anchor rectangular Laplacians are useful for evaluating any
methods based on such matrices, such as mesh editing with differential
coordinates [71].

5.2. Background: Mesh compression

Mesh compression involves two problems that are usually solved, at
least conceptually, separately: the mesh connectivity encoding and the ge-
ometry encoding. While state-of-the-art connectivity encoding techniques
are extremely effective [1, 51, 65, 91], compressing the geometry remains
a challenge. The encoded geometry is, on average, at least five times larger
than the encoded connectivity, even when the coordinates are pre-quantized
to 10–12 bits. Finer quantization for higher precision increases the impor-
tance of effective geometry encoding even further.

Earlier works on geometry compression employed prediction-correction
coding of quantized vertex coordinates. Linear predictors are usually
used; the most common one is known as the parallelogram predictor [91].
The displacements are compressed by some entropy encoder. Chou and
Meng [23] use vector quantization instead to gain speed.

Recent compression methods represent the mesh geometry using effec-
tive bases, such as the spectral basis [63] which generalizes the Fourier basis
functions to irregular connectivity, or the wavelet basis [66]. The spectral
encoding of Karni and Gotsman [63] preserves the original connectivity of
the mesh, and relies on the fact that it is known both to the encoder and
the geometry decoder (this is also the case with the high-pass quantization
method). The mesh compression framework of Khodakovsky et al. [66]
requires semi-regular remeshing of the input mesh. While their method
achieves excellent compression ratios, it is not connectivity-lossless, which
thus puts this work in a somewhat different category. In many cases it is
desirable to preserve the original connectivity of the mesh, especially when
it carefully models certain features and is particularly adapted to the sur-
face geometry. For a recent survey on mesh compression techniques the
reader is referred to [2].

5.3. Background: High-pass quantization

This section reviews the high-pass mesh quantization method [85] that
this chapter analyzes.

Sorkine et al. [85] proposed a new approach to geometry quantization
that works for meshes with arbitrary connectivity. Instead of directly quan-
tizing the Cartesian coordinates, which may lead to errors that damage
the high-frequency details of the surface, they proposed to first transform

84 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

the coordinates to another space by applying the Laplacian operator as-
sociated with the mesh topology. The transformed coordinates are called
“δ-coordinates”. The quantization is applied to the δ-coordinates, and the
geometry of the mesh can be restored on the decoder side by solving a linear
least-squares system defined by the extended Laplacian matrix, which is de-
scribed later in this section. They showed that introducing high-frequency
errors by quantizing the δ-coordinates results in low-frequency errors in the
reconstructed Cartesian coordinates, and argued that low-frequency dis-
placements in the surface geometry are less noticeable to the human eye
than high-frequency displacements.

5.3.1. Quantization Errors under Linear Transformations.
Quantizing a vector x with continuous coefficients introduces an error qx,
where x+qx is the quantized vector. In this section we show how to control
the spectral behavior of the error using linear transformations. We assume
that a simple fixed-point quantization is used, so that the maximum quan-
tization error maxi |qi| is bounded by the expression 2−p(maxi xi−minj xj),
using p-bit quantized coefficients.

Suppose that instead of quantizing the input vector x, we first trans-
form x into a vector Ax using a nonsingular matrix A, and then quan-
tize Ax. We denote the quantization error by qAx, so that the new quan-
tized vector is Ax + qAx. The elements of the quantized vector are now
discrete, as are those of x+ qx. We can recover an approximation of x from
this representation, by multiplying the quantized vector by A−1:

A−1(Ax + qAx) = x + A−1qAx.

The error in this approximation is A−1qAx, and we will shortly see that
under certain conditions, it behaves quite differently than qx.

Assume that A has an orthonormal eigen-decomposition AU = UΛ,
where U is unitary and Λ is diagonal. This assumption is satisfied when A
is real and symmetric. Without loss of generality, we assume that |λ1| ≥
|λ2| ≥ · · · ≥ |λn|, where λi = Λii are the eigenvalues of A. Since the
processes we are concerned with are invariant to scaling A, we also assume
that |λ1| = 1. We express x as a linear combination of A’s orthonormal
eigenvectors, x = c1u1 + c2u2 + · · ·+ cnun, where ui are the columns of U .
We also have Ax = c1λ1u1 + c2λ2u2 + · · ·+ cnλnun. Similarly, since A−1U =
UΛ−1, we can express the quantization error as qAx = c′1u1+c′2u2+· · ·+c′nun,
so

A−1qAx = c′1λ
−1
1 u1 + c′2λ

−1
2 u2 + · · · + c′nλ−1

n un.

The transformation A is useful for quantization when three conditions
hold:

(1) For typical inputs x, the norm of Ax is much smaller than the
norm of x,

5.3. BACKGROUND: HIGH-PASS QUANTIZATION 85

(2) Quantization errors with large c′iλ
−1
i for large i (that is, with strong

representation for the last eigenvectors) are not disturbing,
(3) |λn| is not too small.

The first point is important since it implies that maxi |(Ax)i| � maxi |xi|,
which allows us to achieve a given quantization error with fewer bits. The
best choice of norm for this purpose is, of course, the max norm, but
algorithmically it is easiler to ensure that ‖Ax‖2 � ‖x‖2. In particular,
this ensures that maxi |(Ax)i| ≤ ‖Ax‖2 � ‖x‖2 ≤ √

n · maxi |xi|. Since
‖x‖2

2 =
∑

i c
2
i and ‖Ax‖2

2 =
∑

i c
2
i λ

2
i , the above condition occurs if and only

if the first ci’s are small compared to the last ones. In other words, the first
point holds if A, viewed as a filter, filters out strong components of typical
x’s.

The importance of the second and third points stems from the fact that
A−1 amplifies the components of qAx in the direction of the last eigenvectors.
If A has tiny eigenvalues, the amplification by a factor λ−1

i is significant
for large i. Even if the small eigenvalues of A are not tiny, the error may
be unacceptable. The quantization error A−1qAx always contains moderate
components in the direction of eigenvectors that correspond to the small
eigenvalues of A. When small error components in these directions distort
the signal perceptively, the error will be unacceptable. Therefore, the last
two points must hold for the quantization error to be acceptable.

It may seem that the norm of Ax is irrelevant to compression, since one
can shrink Ax by a simple scaling, which is clearly useless for compression.
The norm of Ax is relevant because we also demand that |λ1| = ‖A‖2 = 1.
The error is A−1qAx, so ‖A−1qAx‖ ≤ ‖A−1‖‖qAx‖. Making Ax small by
scaling A is useless, because it will shrink ‖qAx‖ but will expand ‖A−1‖ by
exactly the same factor. But making Ax small while maintaining ‖A‖2 = 1
is useful.

5.3.2. Laplacian Transformations. In the following, we discuss the
Laplacian matrix of the mesh and its variants and show that these linear
transformations work well as quantization transforms.

Let M be a given triangular mesh with n vertices. Each vertex i ∈ M is
conventionally represented using absolute Cartesian coordinates, denoted
by vi = (xi, yi, zi). We denote the relative or δ-coordinates of vi as follows:

δi = (δ
(x)
i , δ

(y)
i , δ

(z)
i) = divi −

d∑
k=1

vik ,

where di is the degree of vertex i and ik is i’s k th neighbor. The trans-
formation of the vector of absolute Cartesian coordinates to the vector of
relative coordinates can be represented by the matrix L = D − A, where
A is the mesh adjacency matrix and D is the diagonal matrix Dii = di.

86 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

The matrix L is called the Laplacian of the mesh [34]. Laplacians of
meshes have been extensively studied [24], primarily because their alge-
braic properties are related to the combinatorial properties of the meshes
they represent. The Laplacian is symmetric, singular and positive semidef-
inite. The singularity stems from the fact that the system Lx = δ has an
infinite number of solutions which differ from each other by a vector that is
constant on each connected component of the mesh. Thus, we can actually
recover x from δ if we know, in addition to δ, the Cartesian coordinate
of one xi in each connected component. We can formalize this method
by dropping from L the rows and columns that correspond to one vertex
in each connected component, called the anchor of the component. The
resulting matrix, which we call the basic invertible Laplacian, generates all
the δ’s that we need and is nonsingular. The next section explores other
nonsingular variants of the Laplacian.

To explain why variants of the Laplacian are effective quantization
transforms, we first have to introduce the notion of mesh frequencies (spec-
trum). The frequency of a real function x defined on the vertices of a mesh
M is the number of zero crossings along edges,

f(x) =
∑

(i,j)∈E(M)




1 xixj < 0

0 otherwise


 ,

where E(M) is the set of edges of M , so the summation is over adjacent
vertices. It turns out that for many classes of graphs, including 3D meshes,
eigenvectors of the Laplacian (and related matrices, such as our basic in-
vertible Laplacian) corresponding to large eigenvalues are high-frequency
mesh functions, and eigenvectors corresponding to small eigenvalues are
low-frequency mesh functions. In other words, when i � j, λi > λj and
f(ui) � f(uj). Furthermore, since 3D models are typically smooth, possi-
bly with some relatively small high-frequency perturbation, the coordinate
vectors x, y, and z often have a large low-frequency and a small high-
frequency content. That is, the first ci’s are often very small relative to the
last ones.

This behavior of the eigenvectors of Laplacians and of typical 3D models
implies that the first property we need for effective quantization holds,
namely, the 2-norm of Lx is typically much smaller than the norm of x, and
therefore the dynamic range of Lx is smaller than that of x. Laplacians also
satisfy the second requirement. As stated above, eigenvectors associated
with small eigenvalues are low-frequency functions that are typically very
smooth. When we add such smooth low-frequency errors to a 3D model,
large features of the model may slightly shift, scale, or rotate, but the local

5.3. BACKGROUND: HIGH-PASS QUANTIZATION 87

0 20 40 60 80 100
0

0.5

1

1.5
A Smooth Function and its Quantization

x
x + qx

x + L
–1q

Lx

0 20 40 60 80 100

10
6

10
 4

10
 2

10
0

Spectrum of Quantization Errors

Spectrum of L
–1q

Lx

Spectrum of q
x

(a) (b)

Figure 5.3.1. An example of quantization errors in a one-
dimensional mesh. The mesh here is a simple chain with
114 vertices (enumerated on the x-axis). (a) shows a smooth
function x defined on the mesh, its direct quantization, and
a Laplacian-transform quantization. The specific Laplacian
that we use here is the 2-anchor invertible Laplacian defined
in Section 5.3.3, with anchors at vertices 1 and 114. The
quantizations were performed with 20 discrete values uni-
formly distributed between the minimum and maximum ab-
solute values of the vectors. The direct error vector is smaller
in magnitude, but has a strong high-frequency oscillatory
nature, whereas the Laplacian-transformed error vector is
smooth. (b) explains this observation by plotting, on a log
scale, the spectrum of the two errors. We can see that the
direct quantization has moderate components in the direc-
tion of all eigenvectors of the Laplacian (i.e., all frequencies),
whereas the Laplacian-transformed error has strong compo-
nents in the direction of the smooth eigenvectors, but very
small components in the direction of high-frequency eigen-
vectors.

features and curvature are maintained. Thus, errors consisting mainly of
small-eigenvalue low-frequency eigenvectors are not visually disturbing.

However, simple Laplacian transformations do not satisfy our third re-
quirement. The small eigenvalue of a basic invertible Laplacian is typically
tiny; a good estimate for |λ−1

n | is the product of the maximum topological
distance of a vertex from the anchor vertex, and the number of vertices
in the mesh (assuming there is one connected component; otherwise the
maximum of this estimate over all components) [16, 50]. For a typical n-
vertex 3D mesh, the small eigenvalue is therefore likely to be Θ(n−1.5). This

88 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

causes large low-frequency errors which are clearly visible in the example
in Figure 5.3.1.

5.3.3. The k-anchor Laplacian. An effective way to increase the
small eigenvalue of a Laplacian is to add more anchor points. This section
analyzes the effect of two algorithm parameters on the magnitude and shape
of the quantization error. One parameter is the number and location of the
anchor points. The second parameter is the algorithm that transforms the
relative (or δ) coordinates to the original coordinates.

The relationship between the original coordinates x and the relative
coordinates δ is given, up to a shift, by the linear system of equations
Lx = δ. When we add anchors, we essentially add constraints to this
system of equations. Without loss of generality, we assume that the anchors
are x1, . . . , xk, the first k vertices of the mesh. For each anchor point xij ,
j = 1, . . . , k, we add the constraint xi = xi, where the left-hand side is
taken to be an unknown and the right-hand side a known constant.

It may seem strange that we do not immediately substitute the known
constant for the unknown, but the reason for this will become apparent
later. The full system of constraints that defines the relationship between
the absolute and relative coordinates is therefore

(5.3.1)
(

L
Ik×k 0

)
x =

(
Lx
x1:k

)
=

(
δ

x1:k

)
.

We denote this (n + k)-by-n matrix by L̃,

(5.3.2) L̃ =

(
L

Ik×k 0

)
,

and call it the k-anchor rectangular Laplacian.
With k anchors, the quantized representation of the mesh consists of

the quantized δ’s and of the absolute coordinates of the anchors. Since we
take k to be much smaller than n, there is no need to aggressively quantize
the coordinates of the anchors, but they can be quantized as well. The
quantized vector that represents the mesh is, therefore,

(5.3.3)
(

Lx + qLx

x1:k + qx1:k

)
=

(
Lx
x1:k

)
+ qL̃x = L̃x + qL̃x .

The matrix L̃ is rectangular and full rank. Suppose that we try to
recover an approximation x′ to x from L̃x + qL̃x. Trying to compute the
approximation x′ by “solving” the constraint system L̃x′ = L̃x + qL̃x for
x′ will fail, since this system is overdetermined, and therefore most likely
inconsistent. An approximation x′ can be computed in (at least) two ways.
The simplest is to eliminate the last k rows from the system. By adding
row n + j to row j, for j = 1, . . . , k and deleting row n + j, we obtain

5.4. ALGEBRAIC ANALYSIS OF k-ANCHOR LAPLACIANS 89

a square symmetric positive definite linear system of equations L̂x′ = b ,
which can be solved for x′. This transformation corresponds to multiplying
both sides of the system L̃x′ = L̃x + qL̃x by an n-by-(n + k) matrix

(5.3.4) J =

(
In×n

Ik×k

0

)
,

so
(5.3.5) L̂ = JL̃

and b = J(L̃x + qL̃x). We call L̂ the k-anchor invertible Laplacian.2
The second method to obtain an approximation x′ is to find the least-

square solution x′ to the full rectangular system L̃x′ ≈ L̃x + qL̃x. It turns
out that the norm of the quantization error is essentially the same in the
two approximation methods, but the shape of the error is not. The shape
of the error when using a least-squares solution to the rectangular system is
smoother and more visually pleasing than the shape of the error resulting
from the solution of the square invertible system.

5.4. Algebraic Analysis of k-Anchor Laplacians

The norm and shape of the quantization errors in high-pass quantiza-
tion depend on the spectrum and singular vectors of k-anchor Laplacians.
This section presents a detailed analysis of the spectrum of these matri-
ces. In particular, we prove bounds on their smallest and largest singular
values. We are mostly interested in the spectrum of the k-anchor rectan-
gular Laplacian, since we can directly relate these to the magnitude of the
quantization errors in high-pass quantization.

The section has two parts. The first part, consisting of Subsec-
tions 5.4.1–5.4.3, bounds the norm of the error in high-pass quantization.
The goal of this part of the section is to prove Lemma 5.4.9 and Theo-
rem 5.4.11. Lemma 5.4.9 shows that the norm of the error is related to the
smallest singular value of the rectangular k-anchor Laplacian. How small
can this singular value be? Theorem 5.4.11 essentially shows that if every
vertex in the graph is reasonably close to an anchor, then this singular
value cannot be small. We prove Theorem 5.4.11 by first proving a simi-
lar bound on the smallest eigenvalue of the invertible k-anchor Laplacian
(in Theorem 5.4.3; this proof is complicated), and then showing how the
small singular value of the rectangular Laplacian is related to the small
eigenvalue of the invertible Laplacian.

2This definition of the k-anchor invertible Laplacian is different than the definition
given in [85]. The definition that we use here makes the analysis somewhat simpler.
The difference is irrelevant to both the algorithms and the analysis, since the k-anchor
invertible Laplacian is not used in actual mesh encoding; it is only used as a technical
tool in the analysis of the k-anchor rectangular Laplacian.

90 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

The second part of the section consists of Subsection 5.4.4, which dis-
cusses the shape of the error.

5.4.1. The eigenvalues of L̂. In this subsection we show how to
bound from below the smallest eigenvalue of L̂. Bounding the small eigen-
value from below ensures that the transformation L̂ satisfies condition (3)
in Section 5.3.1.

The largest eigenvalue λmax(L̃) is at most 2dmax + 1, where dmax is the
maximal degree in the mesh [24]. This bound is less important than the
lower bound on the small eigenvalue, since it only ensures that the norm
of the transformed coordinates is never much larger than the norm of the
absolute coordinates; in fact, we expect the transformed norm to be much
smaller. We include the bound for completeness, and also to show that
even when our quantization method is not very effective, it does not cause
much harm either.

We first show that bounding the spectrum of L̂ proves a lower bound
on the quantization error x − x′. The bound is similar to the analysis of
the quantization error in Section 5.3, but it is not identical. The difference,
which turns out to be quite minor, stems from the fact that we now quantize
an (n + k)-vector, not an n-vector.

Lemma 5.4.1. The norm of the quantization error x−x′ resulting from
solving

L̂x′ = JL̃x′ = J(L̃x + qL̃x)

is bounded by ‖x − x′‖2 ≤
√

2λ−1
min(L̂)‖qL̃x‖2 .

Proof. We add the quantization error qL̃x to the right-hand side of
Equation 5.3.1, and multiply both sides by J ,

(5.4.1) JL̃x′ = J(L̃x + qL̃x) .

Because JL̃x′ = L̂x′, we can multiply both sides by L̂−1 to obtain

x′ = L̂−1J(L̃x + qL̃x) = L̂−1(L̂x + JqL̃x) = x + L̂−1JqL̃x ,

so
‖x − x′‖2 ≤ ‖L̂−1‖2‖J‖2‖qL̃x‖2 .

We now bound the first two factors in the right-hand-side product. Because
L̂ is symmetric positive definite,

‖L̂−1‖2 = λmax(L̂
−1) = 1/λmin(L̂) = λ−1

min(L̂) .

By the definition of the 1 and infinity norms,

‖J‖2
2 ≤ ‖J‖1‖J‖∞ = 1 · 2 = 2 ,

which completes the proof. �

5.4. ALGEBRAIC ANALYSIS OF k-ANCHOR LAPLACIANS 91

This lemma shows that to preserve the bound on the norm of x − x′,
the quantization error qx1:k

for the anchor points should be no larger than
the quantization error qLx of the relative coordinates.

We now bound the smallest eigenvalue of L̂. We express the lower bound
in terms of a set of paths in the mesh. Given a set of anchor points, we
assign each vertex a path to an anchor point. The bound uses the following
three metrics of the set of paths.

Definition 5.4.2. The dilation ϑ of the set of paths is the length,
in edges, of the longest path in the set. The congestion ϕ of the set is
the maximal number of paths that use a single edge in the mesh. The
contention � of the set is the maximal number of vertices whose paths
lead to a single anchor point. The maximum is taken over all vertices for
dilation, over all edges for congestion, and over all anchors for contention.

The smaller the dilation, congestion, and contention, the better the
bound on the small eigenvalue of L̂. Note that for a single set of anchor
points, we can assign many different sets of paths, some of which yield
tighter bounds than others. In addition, even the best set of paths does
not, in general, provide a completely tight bound. For more details, see [16].
But the dependence of the bound on the dilation, congestion and contention
does provide us with guidelines as to how to select the anchor points. The
next theorem is the main result of this subsection.

Theorem 5.4.3. The smallest eigenvalue of L̂ satisfies

λmin(L̂) ≥ 1

ϕ · ϑ+ �
.

We use the following strategy to prove this theorem. We will show
how to factor L̂ into L̂ = V V T . The eigenvalues of L̂ are the squares of
the singular values of V , so it suffices to bound the small singular value
of V . The factor V will have a special structure, in which each column
corresponds to one edge of the mesh or to one anchor point. We will then
use the given set of paths from vertices to anchor points, to construct a
matrix W such that V W = I, and show how the norm of W is related
to the path structure. The equation V W = I will allow us to relate the
2-norm of W , which we can bound using the path set, to the small singular
value of V , which we seek to bound.

The following definitions are used in the construction of the factor
V . For convenience, we repeat the definitions of edge-vectors and vertex-
vectors from Section 3.2.

Definition 5.4.4. The edge-vector 〈ij〉 in R
n is a vector with exactly

two non-zeros, 〈ij〉min(i,j) = 1 and 〈ij〉max(i,j) = −1. The vertex-vector 〈i〉
in R

n is a vector with exactly one non-zero, 〈i〉i = 1.

92 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

We associate an edge-vector 〈ij〉 with an edge connecting vertex i with
vertex j. The following lemma demonstrates one of the connection between
edges and their corresponding vectors.

Lemma 5.4.5. The edge-vectors of a simple path between vertices i and
j span the edge-vector 〈ij〉 with coefficients ±1.

The following lemma describes a factorization of k-anchor Laplacian
matrices:

Lemma 5.4.6. A k-anchor Laplacian matrix L̂ can be factored into L̂ =
V V T , such that V =

(
V1 V2

)
, where V2 is a matrix of unscaled edge-

vectors, each column corresponding to one non-zero off-diagonal in L̂, and
V1 is a matrix of vertex-vectors, each column corresponding to an anchor
point.

Proof. For each off-diagonal nonzero l̂ij = −1 (each edge of the mesh),
V has a column containing the edge vector 〈ij〉, and for each anchor j, V
has a vertex vector 〈j〉. The edge vectors constitute V2 and the vertex
vectors constitute V1. It is easy to verify that L̂ = V V T . For a more
detailed proof, see [13]. �

Given the above factorization, we bound the smallest singular value of
V . Our course of action in bounding the smallest singular value of V is
as follows: we shall find a matrix W ∈ Rm×n such that V W = In×n. As
the next lemma shows, the matrix G with the smallest 2-norm satisfying
V G = In×n is the Moore-Penrose pseudo-inverse G = V + of V [40, pages
257–258]. Therefore, any matrix W satisfying V W = In×n has the property
‖W‖ ≥ ‖V +‖. We shall then find an upper bound C on ‖W‖. Since
C ≥ ‖W‖ ≥ ‖V +‖ = 1

σmin(V)
we will be able to conclude that σmin(V) ≥ 1

C
.

We first prove a technical lemma concerning the pseudo-inverse (this result
is probably well-known, but we have not found it in the literature).

Lemma 5.4.7. Let V be a full-rank n-by-m real matrix, and let G be an
m-by-n real matrix such that V G = In×n. Then ‖G‖2 ≥ ‖V +‖2.

Proof. The singular values of V +V are n ones and m − n zeros, so
its 2-norm is 1. We now show that for any x with unit 2-norm we have
‖V +x‖2 ≤ ‖Gx‖2. Let c = ‖Gx‖2, and let y = Gx/c, so ‖y‖2 = 1. We have
Gx = cy, and multiplying V from the left on both sides we get x = Ix =
V Gx = cV y. Multiplying now from the left by V + we get V +x = cV +V y,
so ‖V +x‖2 = ‖cV +V y‖2 ≤ c ‖V +V y‖2 ≤ c ‖V +V ‖2 ‖y‖2 = c · 1 · 1 = c =
‖Gx‖2 . �

We are now ready to bound the singular values of V .

5.4. ALGEBRAIC ANALYSIS OF k-ANCHOR LAPLACIANS 93

Lemma 5.4.8. Given a k-anchor Laplacian L̂ with a factorization into
edge and vertex vectors L̂ = V V T as in Lemma 5.4.6, and a set of paths

Π = {πi = (i, i1, i2, . . . , j)|i = 1, . . . , n and j is an anchor} ,

we have
σmin(V) ≥ 1√

ϕ(Π) · ϑ(Π) + �(Π)
.

Proof. Finding a matrix W satisfying V W = In×n is equivalent to
finding a vector wi, for i = 1, . . . , n, such that V wi = ei, where ei = 〈i〉 is
the ith unit vector.

Let ji be the anchor endpoint of πi. It is easy to verify that

〈iji〉 = (−1)(i>ji)
∑

(�1,�2)∈πi

(−1)(�1>�2) 〈�1�2〉 .

(We use the convention that a boolean predicate such as (i > j) evaluates
to 1 if it is true and to 0 otherwise.) By Lemma 5.4.6, all the edge vectors
in the summation are columns of V . To obtain wi, it remains is to add or
subtract 〈ji〉, and perhaps to multiply by −1,

〈i〉 = (−1)(i>ji) 〈iji〉 + 〈ji〉 .

The last two equations together specify wi, which contains only 1’s, −1’s,
and 0’s.

Now that we have found, column by column, a matrix W such that
V W = In×n, we partition the rows of W such that

V W = (V1V2)

(
W1

W2

)
.

The rows of W1 correspond to the columns of V1, the vertex vectors in V ,
and the rows of W2 corresponds to the columns of V2, the edge vectors in
V . We will bound the norm of W by bounding separately the norms of W1

and of W2. We first bound ‖W1‖2:

‖W1‖2
2 ≤ ‖W1‖1 ‖W1‖∞

=

(
max

j

∑
i

|[W1]ij|
)(

max
i

∑
j

|[W1]ij |
)

= 1 · �(Π) .

The 1-norm of W1 is one since there is exactly one nonzero in each column
of i, in position ji, and its value is 1. The ∞-norm of W1 is the contention
of the path set, since each row of W1 corresponds to one anchor point, and
it appears with value 1 in each path (column) that ends in it. Therefore,
each row in W1 contains at most �(Π) 1’s, and the other entries are all 0.

94 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

Bounding ‖W2‖2 is similar. Each row in W2 corresponds to one edge of
the mesh and each column to a path in Π. Each edge is used in at most
ϕ(Π) paths, so ‖W2‖∞ = ϕ(Π). Each path contains at most ϑ(Π) edges,
so ‖W2‖1 = ϑ(Π). Therefore,

‖W‖2
2 = max

‖x‖2=1
‖Wx‖2

2

= max
‖x‖2=1

∥∥∥∥ W1x
W2x

∥∥∥∥
2

2

= max
‖x‖2=1

(‖W1x‖2
2 + ‖W2x‖2

2

)
≤ max

‖x1‖2=1
‖W1x1‖2

2 + max
‖x2‖2=1

‖W2x2‖2
2

= ‖W1‖2
2 + ‖W2‖2

2

≤ ϕ(Π) ϑ(Π) + �(Π) .

The bound on σmin(V) follows immediately from the bound on ‖W‖2 and
from the discussion preceding the statement of the lemma. �

Now we can conclude that λmin(L̂) ≥ 1
ϕ ·ϑ+

. This follows from two
facts: (1) in a symmetric positive definite matrix the singular values are
the same as the eigenvectors, therefore λmin(L̂) = σmin(L̂). (2) if L̂ = V V T

then the singular values of L̂ are the squares of the singular values of V
(this follows directly from V ’s SVD decomposition).

We can now easily prove Theorem 5.4.3:

Proof. λmin(L̂) = σmin(L̂) = σ2
min(V) ≥ 1

ϕ ·ϑ +

. �

5.4.2. Bounding the quantization error using the singular val-
ues of L̃. We now show that if we define x′ as the least-squares minimizer
of ‖L̃x′ − L̃x + qL̃x‖2, the norm of the error x − x′ can be bounded using
estimates on the singular values of L̃. The analysis below is equivalent to
the analysis in Lemma 5.4.1, but for the case of L̃, the k-anchor rectangu-
lar Laplacian rather than for the case of L̂, the square k-anchor invertible
Laplacian.

Lemma 5.4.9. Let x′ be the least-squares minimizer of ‖L̃x′−L̃x+qL̃x‖2.
The norm of the error x − x′ is bounded by

‖x − x′‖2 ≤ σ−1
min(L̃)‖qL̃x‖2 ,

where σmin(L̃) denotes the nth and smallest singular value of L̃.

5.4. ALGEBRAIC ANALYSIS OF k-ANCHOR LAPLACIANS 95

Proof. We express x′ in terms of the Moore-Penrose pseudo-inverse
L̃+ of L̃,

x′ = L̃+
(
L̃x + qL̃x

)
= x + L̃+qL̃x .

Therefore,

‖x − x′‖2 ≤ ‖L̃+‖2‖qL̃x‖2 = σ−1
min(L̃)‖qL̃x‖2 .

�

5.4.3. The singular values of L̃. The next step is to show that the
singular values of L̃ cannot be much smaller than the smallest eigenvalue
of L̂. In fact, we show that they are at most a factor of

√
2 smaller.

The proof of Lemma 5.4.1 shows that the 2-norm of J is at most
√

2.
It is easy to show that the norm is, in fact, exactly

√
2, and that all the

singular values of J are either 1 or
√

2. The next lemma shows that the√
2 bound on the norm of J ensures that σmin(L̃) ≥ λmin(L̂)/

√
2.

Lemma 5.4.10. Let A, B, and C be matrices such that AB = C. Then

σmin(B) ≥ σmin(C)

σmax(A)
.

Proof. Suppose for contradiction that

σmin(B) = ε < σmin(C)/σmax(A) .

Then there exist vectors x and y such that ‖x‖2 = ‖y‖2 = 1 and Bx = εy.
(x and y are the right and left singular vectors corresponding to σmin(B).)
Therefore,

‖Cx‖2 = ‖ABx‖2 = ‖Aεy‖2 = ε‖Ay‖2 ≤
≤ εσmax(A)‖y‖2 = εσmax(A) < σmin(C) ,

a contradiction. �

We can now prove the main theorem of this subsection.

Theorem 5.4.11.

σmin(L̃) ≥ λmin(L̂)√
2

.

Proof. Since JL̃ = L̂, by the previous lemma

σmin(L̃) ≥ σmin(L̂)

σmax(J)
=

σmin(L̂)√
2

=
λmin(L̂)√

2
.

�

96 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

A Smooth Function and Its Quantization

x
x+q

x

x+L−1q
Lx

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

Spectrum of Quantization Errors

Spectrum of L−1q
Ax

Spectrum of q
x

(a) (b)

Figure 5.4.1. The same mesh as in Figure 5.3.1, but with
an additional anchor point at vertex 86. The Laplacian here
is a 3-anchor invertible Laplacian with anchors at vertices
1, 86, and 114. The transformed quantization error is not
smooth at the anchor point, even though the vector x is
smooth there.

5.4.4. Singular vectors and the shape of the error. Why do we
propose to use a rectangular Laplacian rather than a square invertible one?
The reason lies in the shape of the quantization error that each method
generates. We have already seen that adding anchor points increases the
smallest singular value of both the invertible and the rectangular Lapla-
cians. Furthermore, in both cases the 2-norm of the error x−x′ is bounded
by

√
2λ−1

min(L̂) ‖qL̃x‖2, exactly the same bound. (The actual errors will dif-
fer and the norms will most likely differ, since the bounds are not tight,
but the bounds we proved are exactly the same.) We have found, however,
that the shape of the error is visually better when we obtain the approx-
imation x′ from the rectangular Laplacian. The main difference between
the two errors is that the rectangular approximation x′ is usually smooth
where x is smooth, but the invertible approximation is not. The invertible
approximation is almost always non-smooth at the anchors, where “spikes”
seem to always appear.

The crucial observation is that the k-anchor invertible Laplacian essen-
tially forces the error x − x′ to zero at the anchors, and allows the error
to grow as we get farther and farther away from the anchor points. When
we obtain x′ from solving a least-squares problem whose coefficient matrix
is L̃, x′ can differ from x everywhere, including at the anchor points. This
allows x′ to be smooth.

5.4. ALGEBRAIC ANALYSIS OF k-ANCHOR LAPLACIANS 97

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

A Smooth Function and Its Quantization

x
x+q

x

x+L−1q
Lx

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

Spectrum of Quantization Errors

Spectrum of L−1q
Ax

Spectrum of q
x

(a) (b)

Figure 5.4.2. The same mesh as in Figures 5.3.1 and 5.4.1.
The Laplacian here is a 3-anchor rectangular Laplacian with
anchors at vertices 1, 86, and 114. The transformed quanti-
zation error is smooth at the anchor point.

Formalizing this explanation is hard and is beyond the scope of this
chapter. The error x′ − x consists, in both cases, mainly of the singular
vectors of L̃ or L̂ that correspond to the smallest singular values. If these
singular vectors are smooth, the error x − x′ will be smooth, so x′ will
be smooth where x is smooth. Are these vectors smooth? The numerical
example in Figure 5.4.1 indicates that the relevant singular/eigen vectors
of L̂ are not smooth. The numerical example in Figure 5.4.2 indicates
that the singular vectors of L̃ that correspond to small singular values are
smooth.

In this chapter we do not attempt to prove these statements about the
shape of the singular vectors. In general, the singular vectors of Laplacian
and Laplacian-like matrices have not been researched as much as the singu-
lar values. It is generally believed that the vectors corresponding to small
singular values are indeed smooth. This belief underlies important algo-
rithms such as multigrid [20] and spectral separators [76]. Some additional
progress towards an understanding of the relationships between the graph
and the eigenvectors of its Laplacian were made recently by Ben-Chen and
Gotsman [7]. On the other hand, there is also research that indicates that
these vectors are not always well-behaved [50].

We leave the full mathematical analysis of the shape of the errors as an
open problem in this chapter; the empirical evidence shown in [85] supports
our claim.

98 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

5.5. The Effect of Anchor Points on Numerical Accuracy

So far we have analyzed the norm of the error assuming that x′

is the exact solution of L̂x′ = J(L̃x + qL̃x) or exact minimizer of∥∥∥L̃x′ − (L̃x + qL̃x)
∥∥∥

2
. Since we cannot determine x′ exactly using floating-

point arithmetic, what we actually obtain is an approximation x′′ to x′.
The total error x − x′′ depends on both x − x′ and x′ − x′′. In this sec-
tion we analyze the numerical error x′ − x′′, and show that it too depends
primarily on the small singular values of the coefficient matrices L̂ and L̃,
and hence on the anchor points. The results in this section rely on stan-
dard error bounds from numerical linear algebra. For details on these error
bounds, see for example [59] or [92]; the first reference is an encyclopedic
monograph, the second a readable textbook.

We assume that the approximation x′′ is obtained using a backward sta-
ble algorithm. For the invertible problem, this means that x′′ is the exact
solution of (L̂ + δL̂)x′′ = J(L̃x + qL̃x), where δL̂ is a small perturbation
such that ‖δL̂‖/‖L̂‖ = O(εmachine), where εmachine is a small constant de-
pending on the floating-point arithmetic, about 10−16 for double-precision
IEEE-754 arithmetic, which is now used on virtually all computers. For
the rectangular problem, backward stability means that x′′ is the exact
minimizer of (L̃ + δL̃)x′′ − (L̃x + qL̃x) for a similarly small perturbation.

Since L̂ is a symmetric positive-definite matrix and since L̃ is full rank,
most linear-equation solvers and most least-squares solvers are backward
stable when applied to them. This includes sparse direct Cholesky factor-
ization solvers for the square problem, sparse QR solvers for the rectangular
least-squares problem, and most iterative algorithms for these problems.

When we obtain an approximation x′′ using a backward stable algo-
rithm, the relative norm of the so-called forward error x′ − x′′ is bounded
by the condition number κ of the problem times εmachine,

(5.5.1)
‖x′′ − x′‖

‖x′‖ = O(κεmachine) .

For the invertible problem, the condition number is simply the condition
number of the coefficient matrix,

(5.5.2) κinv =
∥∥∥L̂∥∥∥∥∥∥L̂−1

∥∥∥ .

The norm in Equation (5.5.2) is the matrix norm induced by the vector
norm in Equation (5.5.1). When we use the 2-norm in Equations (5.5.2)
and (5.5.1), we have

κinv =
σmax(L̂)

σmin(L̂)
.

5.5. THE EFFECT OF ANCHOR POINTS ON NUMERICAL ACCURACY 99

The quantity σmax(L̂)/σmin(L̂) is called the spectral condition number of L̂

and is denoted by κ2(L̂) or simply κ2 when the matrix is clear from the
context.

The condition number of least-squares problems is a little more compli-
cated. We denote by θ the angle between the right-hand side (L̃x+q) (here
q = qL̃x) and its projection into the column space of L̃. Since L̃x is in this
column space, the size of tan θ is roughly proportional to ‖q‖2/‖L̃x‖, which
is proportional to how aggressive the quantization is. Therefore, tan θ will
be usually small. We denote by η the quantity

η =
‖L̃‖2‖x‖2

‖L̃x‖2

.

This quantity is bounded by 1 ≤ η ≤ κ2(L̃). In our case, unfortunately, η
will not be large, because L̃x contains some values of x, namely the anchors,
so its norm will not be much smaller than the norm of x. Given θ and η,
we can express the condition number of solving least squares problems,

κrect = κ2(L̃) +
κ2(L̃)2 tan θ

η
.

In our case, κ2(L̃) and κ2(L̂) depend only on the small eigenvalue of L̂,
which we have already shown to be strongly influenced by the anchor points.
Since σmax(L̂) = λmax(L̂) ≤ 2dmax + 1, where dmax is the maximal degree
of a vertex in the mesh, and since σmax(L̃) ≤ √

2λmax(L̂), in both cases the
largest singular value is bounded by a small constant, so κ(L) = O(λ−1

min(L̂))
for both L’s.

Theorem 5.5.1. Let λ = λmin(L̂), ε = εmachine, and q = qL̃x. The 2-
norm of the error x − x′′, when x′′ is computed from the invertible Laplacian
using a backward-stable algorithm, is bounded by

‖x − x′′‖2 ≤ O(λ−1‖q‖2 + λ−1ε‖x‖2 + λ−2ε‖q‖2) .

Proof. By Lemma 5.4.9, ‖x′‖2 = ‖x′ + x − x‖2 ≤ ‖x − x′‖2 + ‖x‖2 ≤
λ−1‖q‖2 + ‖x‖2 . The inequality and the discussion preceding the theorem
yield

‖x − x′′‖2 = ‖x − x′ + x′ − x′′‖2

≤ ‖x − x′‖ + ‖x′ − x′′‖2

≤ λ−1‖q‖2 + ‖x′ − x′′‖2 by Lemma 5.4.9
≤ λ−1‖q‖2 + O(κ2(L̂)ε‖x′‖2)

= λ−1‖q‖2 + O(λ−1ε(λ−1‖q‖2 + ‖x‖2))

= λ−1‖q‖2 + O(λ−1ε‖x‖2 + λ−2ε‖q‖2) .

100 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

�
We now state the corresponding theorem for the least squares case. The

proof, which we omit, is identical except for the expression of the condition
number.

Theorem 5.5.2. Let λ = λmin(L̂), ε = εmachine, and q = qL̃x. The
2-norm of the error x − x′′, when x′′ is computed from the rectangular
least-squares problem using a backward-stable algorithm, is bounded by

‖x − x′′‖2 ≤ O
(
λ−1‖q‖2 + λ−1ε‖x‖2 + λ−2 tan θε‖x‖2

η
+ λ−2ε‖q‖2 + λ−3 tan θε‖q‖2

η

)
.

‖x − x′′‖2 ≤ O

(
λ−1‖q‖2 + λ−1ε‖x‖2 +

λ−2 tan θε‖x‖2

η

+λ−2ε‖q‖2 +
λ−3 tan θε‖q‖2

η

)
One way of solving the least-squares problem is by constructing and

solving the so-called normal equations. This solution method relies on the
fact that the least-squares minimizer x′ is also the solution of the symmetric
positive-definite linear system L̃T L̃x′ = L̃T (L̃x + qL̃x). Even when the
normal equations are solved using a backward-stable algorithm, the whole
algorithm is not backward stable with respect to the original least-squares
problem. The computed solution satisfies only

‖x′′ − x′‖2

‖x′‖2

= O
(
κ2(L̂)2εmachine

)
.

Because the error bound is much larger in this case (and usually much larger
in practice), this method is usually not recommended. However, since in
our application we can control and estimate κ2(L̂) by adding anchor points,
we can ensure that even the normal-equations forward error is acceptable.

5.6. Algorithmic issues and results

Two algorithmic problems arise in the high-pass quantization method:
the anchor-selection problem, and the linear least-squares problem. This
section explains how these issues can be addressed and shows some exper-
imental results.

5.6.1. Evaluating the bound on σmin. In order to exploit the the-
oretical results presented in the previous section, we need an algorithm to
evaluate the lower bound on σmin, the smallest singular value of L̃. Given a
set of anchor vertices {a1, a2, ..., ak}, we are looking for some partition of all
the mesh vertices into k subsets, such that we can define the values ϕ, ϑ, �
(congestion, dilation and contention) reasonably. Since finding a partition

5.6. ALGORITHMIC ISSUES AND RESULTS 101

Eight mesh, 2718 vertices Feline mesh, 49864 vertices

Figure 5.6.1. Comparison of the congestion-dilation-
contention bound on σmin (see Theorem 5.4.11) with the ac-
tual value of σmin. The x-axis shows the number of anchors
used.

that strictly maximizes the bound in Theorem 5.4.11 does not seem feasible,
we use the following heuristic. We simultaneously grow patches of vertices
around the anchors by running k-source BFS. This algorithm produces a
rather balanced partition that keeps the values of ϑ and � small. After the
partition has been computed, the calculation of ϑ and � is straightforward.
To compute ϕ, we use the parent pointers stored for each vertex during the
BFS procedure. These pointers define the tree of paths from each vertex to
the root (source anchor vertex). Clearly, the most “loaded” edges are the
edges whose source vertex is the root. By counting the number of vertices
in the subtrees hanging on those edges, we obtain their edge loads, and
compute the maximum over all the k subsets.

We have compared the evaluation of the lower bound of σmin with the
real value of σmin on moderately-sized meshes. The accurate value of σmin

was computed in Matlab. Figure 5.6.1 shows two representative graphs
summarizing this experiment. The horizontal axis in the graphs represents
the number of anchor rows present in L̃. We incrementally added random
anchor vertices and plotted the value of σmin and the lower bound. As can
be seen from these graphs, the bound differs from the real value by 1.5–2.5
orders of magnitude and behaves consistently with the real σmin. We can
thus conclude that our theoretical bound is not too pessimistic and can be
used in practical algorithms for choosing the anchors, as discussed below.

5.6.2. Algorithms for placing anchor points. Sorkine et al. use
the following adaptive and greedy algorithm to select anchor points. They

102 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

begin by placing one random anchor point and generating a 1-anchor rect-
angular Laplacian, denoted by L̃1. They then use this matrix to transform
the coordinates, quantize the δ-coordinates, compute an approximation x′′

1,
and compute the error x − x′′

1. The second anchor is placed at the vertex
with the largest error, to yield L̃2. These iterations continue either until a
satisfactory error is attained, or until a given number k of anchors is placed.

The advantage of this scheme is that it directly attempts to minimize
the reconstruction error, rather than its bound. However, the first iter-
ations of the greedy algorithm may compute ineffective anchors, since in
the beginning, only a few anchors are used, and the matrix L̃ is thus ill-
conditioned. Therefore, the first reconstructed vectors x′′

i will contain very
high errors.

The congestion-dilation-contention bounds that we present in this chap-
ter suggest another anchor-selection scheme, one that aims to maximize the
lower bound on σmin. This scheme can be used to select enough effective
anchors to ensure reasonable conditioning of L̃, and more anchors can then
be added using the previous greedy algorithm.

As mentioned above, it is hard to strictly maximize the bound on σmin.
To choose anchors so as to make the bound expression larger, we again
propose a heuristic method. It selects the anchors one by one while mini-
mizing the value of ϑ. The method operates as follows. We start with one
randomly chosen anchor and compute its edge-distance from all the other
vertices in the mesh by running BFS. The furthest vertex is chosen as the
next anchor, and we proceed in the same manner. In the i-th iteration, we
have a set of i anchor vertices; we run i-source BFS from these vertices to
find the vertex that achieves the longest edge distance from an anchor (the
value of ϑ). This vertex is assigned as the (i+1)-th anchor. The procedure
stops when we reach a large enough value of the bound or after a prescribed
number of steps. It should be noted that actually there is no need to run
the complete i-source BFS in every step. It is enough to run (partial) BFS
from the last chosen anchor in order to update the distances. The front
propagation of the BFS procedure stops whenever we meet a vertex whose
old distance value is smaller than the distance that would be assigned by
the current BFS.

Figure 5.6.2 shows some steps of the above anchor-selection algorithm
on the Feline model. The anchors are well-spaced, which is favorable for
the congestion-dilation-contention bound. The graph in Figure 5.6.2 plots
the reconstruction max-norm as function of the number of anchors. The
red line denotes the values for anchors chosen with the bound-maximizing
scheme, while the blue line represents the greedy scheme used in [85].
As expected, the greedy scheme produces somewhat smaller errors since
it operates directly to minimize the max-norm error. However, on larger

5.6. ALGORITHMIC ISSUES AND RESULTS 103

10 anchors 50 anchors 200 anchors L∞ error comparison

Figure 5.6.2. Anchors on the Feline model chosen by the
bound-driven algorithm. The first three images display
stages of the incremental anchor selection procedure. The
even spacing of the anchors increases the lower bound on
σmin. The graph compares the L∞ reconstruction error for
anchors chosen with the greedy scheme as in [85] (in red)
and the bound-driven scheme (in blue), when using the same
level of δ-coordinates quantization (6 bits/coordinate).

meshes, the error bound minimization scheme gives an initial set of anchors
to make L̃ well-conditioned and thus provides a good starting point for the
greedy algorithm. Moreover, this scheme is much faster since it does not
require reconstruction of the Cartesian coordinates at each iteration.

After the anchor placement strategy has been fixed, the shape of the
mesh reconstructed with the high-pass quantization technique depends
mainly on two factors: the level of δ-coordinates quantization and the
amount of anchors. The Cartesian coordinates of the anchors should be
mildly quantized to preserve accuracy. Adding anchors to the representa-
tion is “cheap”: if B is the number of bits per coordinate (typically, between
12–14), then a single anchor requires 3B + log(n) bits (log(n) bits for the
index of the anchor vertex). As suggested by the theoretical bounds in The-
orems 5.4.3 and 5.4.11, we can keep the condition number of the system
(and hence the L2 error) constant by ensuring that the dilation, congestion,
and contention are bounded by a constant. When the number of anchors
is a constant fraction p of the number of mesh vertices n, the dilation,
congestion, and contention are usually bounded by a constant or grow very
slowly with n. As discussed in [85], for visually acceptable value of L2

error, p is rather small, up to 1%. This is due to the fact that the vi-
sual quality is more affected by the change of high-frequency details (e.g.
surface normals or the surface local smoothness properties), rather than
global low-frequency errors. Adding anchors to a fixed δ-quantization only
helps to make the low-frequency error smaller, but almost does not effect
the high-frequency error. On the other hand, adding more bit planes to
the δ-coordinates significantly reduces the high-frequency error, as well as

104 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

the low-frequency error (see the ‖qL̃x‖2 component of the L2 error bound
in Lemma 5.4.9). However, this is more expensive since adding a single bit
per δ-coordinate requires addition of n bits to the representation (prior to
entropy-coding).

The visual tables in Figures 5.7.1 and 5.7.2 demonstrate the effect of
adding anchors versus adding bits to the δ-coordinates. Each row in the
tables displays reconstructed models with varying number of anchors, for
a fixed δ-quantization level. As can be seen in the figures, the surface
smoothness properties vary in different rows, but not columns, while the
surface general “pose” (affected by low-frequency error) decreases both in
the rows (top to bottom, as more bits are added to the δ-coordinates) and
in the columns (left to right, as more anchors are added). This is also
supported numerically by the values of the Sq and Mq errors (see [85]). In
all the experiments, fixed quantization of 12 bits/coordinate was applied
to the positions of the anchor vertices. The file sizes given below each
reconstruction were obtained by arithmetic encoding of the quantized δ-
coordinates and the anchors.

It is important to note that state-of-the-art geometry encoding meth-
ods, such as the wavelet compression [66], employ zerotree encoding with a
clever bit allocation scheme that adapts to the local surface shape. We be-
lieve that adaptive encoding will benefit our geometry encoding scheme as
well; currently, we uniformly quantize the δ-coordinates of the entire mesh
and encode them with a standard arithmetic encoder, which does not fully
exploit the specific nature of the data. This rather naive compression is ob-
viously not optimal, as supported by the statistics in Table 5.6.3, where we
compare the file sizes of the models compressed by our method with those
of [66]. However, in contrast to [52, 66] and others, our method does not
require any remeshing. It would be appropriate to compare our method
with the spectral compression of [63], since the latter method also preserves
the original mesh connectivity, but currently, it is infeasible to apply this
method to meshes with more than a few thousands of vertices, because it
requires computing the eigenvectors of the mesh Laplacian matrix on both
the encoder and the decoder side.

5.6.3. Solving least-squares problems. Decompressing a mesh
function in the high-pass quantization method requires solving a linear
least-squares problem. Sorkine et al. discussed this important algorithmic
issue only briefly. To allow the reader a broader perspective on this issue,
we survey here state-of-the-art least-square solvers. We briefly mention
some key algorithms, provide some sample performance data, and explain
how the quantization and compression methods can be tailored to ensure
fast decompression. For a more complete discussion of algorithms for sparse
linear least-squares problems, see Björck’s monograph [11].

5.6. ALGORITHMIC ISSUES AND RESULTS 105

Number Relative wavelet Relative highpass
Model of vertices filesize (%) filesize (%)
Rabbit 107,522 0.354 0.895
Bunny 118,206 0.429 0.662
Horse 112,642 0.321 0.457
Venus 198,658 0.336 0.543
Feline 258,046 0.389 0.790

Figure 5.6.3. Comparison between our geometry encoding
and the wavelet encoder of [66]. The file sizes are displayed
in percents, relative to the uncompressed mesh geometry.
The models were compressed by both methods with approx-
imately the same visual error in the order of 10−4, so that
the compressed mesh is indistinguishable from the original.

Sparse least-squares solvers fall into two categories, direct and iterative.
Most direct solvers factor the coefficient matrix L̃ into a product of an
orthonormal matrix Q and an upper triangular matrix R, L̃ = QR. Once
the factorization is computed, the minimizer x̂ of

∥∥∥L̃x − b
∥∥∥

2
is found by

solving the triangular linear system of equations Rx̂ = QT b. This algorithm
is backward stable. The matrix R is typically very sparse, although not as
sparse as L̃; it is represented explicitly in such algorithms. In particular,
since in our case the meshes are almost planar graphs and have small vertex
separators, R is guaranteed to remain sparse [39]. The matrix Q is not as
sparse, but it is has a sparse representation as a product of elementary
orthogonal factors [36, 38]. To reduce the work and storage required for
the factorization, the columns of the input matrix L̃ are usually reordered
prior to the factorization [18, 27, 37, 56].

Another class of direct solvers, which is normally considered numerically
unstable, uses a triangular factorization of the coefficient matrix L̃T L̃ of
the so-called normal equations. Once triangular factor R is found (it is
mathematically the same R as in the L̃ = QR factorization), the minimizer
is found by solving two triangular linear systems of equations, RT (Rx̂) =
L̃T b. This procedure is faster than the QR procedure, but produces less
accurate solutions, because solving the normal equations is not backward
stable. However, the accuracy of the solutions depends on the condition
number of L̃ (ratio of extreme singular values), and as we have shown in
Section 5.5, the matrix L̃ is well-conditioned thanks to the anchors, so in
this case solving the normal-equations problem yields accurate solutions.

The running times and storage requirements of direct solvers can be
further reduced by cutting the mesh into patches, as proposed by Karni

106 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

and Gotsman [63], and solving on each patch separately. All the boundary
vertices are then considered anchors, to ensure that the solutions on differ-
ent patches are consistent. We believe that this optimization would usually
be unnecessary, and that problems involving entire meshes can be solved
efficiently, but we mention it as a way of handling extremely large cases.
Note that to ensure that the patches are consistent, the k-anchor invert-
ible Laplacian would need to be used here, not the k-anchor rectangular
Laplacian.

In all direct methods, the factorization is computed once and used to
solve for multiple mesh functions. Most of the time is spent in comput-
ing the factorization, and the cost of solving for a minimizer is negligible.
Therefore, the cost of decompression using these methods is almost in-
dependent of the number of mesh functions (x, y, z, and perhaps other
information, such as color).

Direct methods are fast. Table 5.6.4 records the solution times for the
models used in our experiments. The table shows the time to decompose
the coefficient matrix of the normal equations into its triangular factors,
and the subsequent solution time for one mesh function. For example,
computing the triangular factorization of the horse, a model with 19,851
vertices, took 0.9 seconds on a 2.4 GHz Pentium 4 computer, and solving
for a single mesh function took 0.032 seconds once the factorization has
been computed. The linear solver that we used for these experiments is
taucs version 2.2 [90], which uses internally two additional libraries, at-
las version 3.4.1 [95] and metis version 4.0 [64]. Taucs and metis were
compiled using the Intel C/C++ compiler version 7.1 for Linux, and at-
las was compiled using gcc version 2.95.2. The options to the compilers
included optimization options (-O3) and Pentium-4-specific instructions (-
xW for the Intel compiler and inlined assembly language in atlas). For
additional performance evaluations of taucs, see [78, 61]. We did not have
a code of similar performance for computing the sparse QR factorization,
but we estimate that it should be about 4–6 times slower.

Even though direct methods are fast, their running times usually scale
superlinearly with the size of the mesh. Iterative least-squares solvers,
which do not factor the coefficient matrix, sometimes scale better than
direct methods. Perhaps the most widely-used least-squares iterative solver
is LSQR, which is based on a Krylov bidiagonalization procedure [74, 75].
Other popular solvers include CGLS, a conjugate-gradients algorithm for
solving the normal equations [12, 32], and CRAIG, an error-minimization
bidiagonalization procedure [26]; see also [75, 82].

The convergence of these methods depends on the distribution of the
singular values of the coefficient matrix L̃, as well as on the initial ap-
proximation. In our case L̃ is always well-conditioned, so we can expect

5.7. CONCLUSIONS 107

Number of Factorization Solving
Model vertices (sec.) (sec.)
Eight 2,718 0.085 0.004
Twirl 5,201 0.098 0.006
Horse 19,851 0.900 0.032

Fandisk 20,111 1.091 0.040
Camel 39,074 2.096 0.073
Venus 50,002 3.402 0.112

Max Planck 100,086 7.713 0.240

Figure 5.6.4. Running times of solving the linear least-
squares systems for the different models. Most time is spent
on the factorization of the coefficient matrix, which can be
done during the transmission of the δ-coordinates. Solving
for a single mesh function (x, y or z) takes only a negligible
amount of time (see rightmost column). The experimental
setup is described in the text.

reasonably rapid convergence. Furthermore, the decoder knows the values
of the mesh function at the anchor vertices. By interpolating these val-
ues at non-anchor vertices, the decoder can quickly produce a good initial
approximation (note, however, that even at the anchor points, the known
values of the original mesh function need not coincide with the values of
the least-squares minimizer).

The iterative methods mentioned above can be accelerated by using a
preconditioner, (informally, an approximate inverse of L̃). The relationship
of our coefficient matrix L̃ to a graph Laplacian can probably be exploited
when constructing a preconditioner, since highly effective preconditioners
have been discovered for Laplacians. The most important classes of such
preconditioners are algebraic multigrid preconditioners [19], incomplete
Cholesky preconditioners [53, 72], and more recently, support precondi-
tioners [16, 21, 93]. For further information about iterative solvers and
preconditioning, see [4, 6, 11, 81].

5.7. Conclusions

In this chapter, we have shown that it is possible to rigorously bound
the error in a lossy compression method for three-dimensional meshes.
The chapter focuses on one particular compression method, that presented
by [85], but our analysis technique is probably applicable to a range of
methods using similar matrices. In particular, our analysis also sheds light
on the errors in a more recent compression method [84], in which the en-
coder does not send the δ-coordinates to the decoder at all, only the anchor

108 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

vertices. It is also useful for analyzing Laplacian-based mesh editing tech-
niques [71].

Our analysis bounds the total error generated by high-pass quantiza-
tion, both the quantization component of the error and the rounding com-
ponent. In other words, it accounts for the fact that the decoder uses
floating-point arithmetic to reconstruct the mesh. On the other hand, our
analysis does not cover the shape of the errors. Empirical results show that
the error is smooth, and therefore visually acceptable; these results are con-
sistent with other applications of the small eigenvectors of Laplacians.

Our analysis yields an error bound that is easy to compute, as we have
shown in Section 5.6.1. This leads to two algorithmic benefits, in addition
to the insight on why high-pass quantization works. First, it can be used
by an encoder to quickly encode a mesh to a prescribed error bound. That
is, the encoder can quantize the coordinates and then add anchors until
the computed error bound drops below a prescribed threshold. Since our
error bound is not tight, the actual error will usually be smaller than that
prescribed. The encoding might not be as economical as possible, but it
will be produced quickly and it will satisfy the prescribed error bound.
Second, the computed bound can drive the anchor selection algorithm, as
shown in Section 5.6.1.

We have used three algebraic techniques to prove our error bound. Two
of them are quite novel. Our bound on the small eigenvalue of an invertible
Laplacian is a relatively standard application of an area of combinatorial
matrix theory called support theory, but the technique of separating of W
into W1 and W2 is new. The main algebraic novelty in the chapter lies in the
application of support theory to the analysis of the spectrum of rectangular
matrices. The analysis of the rounding error is relatively straightforward.

Our research raises a number of interesting open problems for future
research.

(1) Can one rigorously analyze the behavior of the eigenvectors of the
Laplacian of 3D meshes? Our method works because for a vector
x of mesh coordinates, ‖Lx‖ tends to be much smaller than ‖x‖.
This happens because most of the energy of x is concentrated in
the subspace of Rn that is spanned by the eigenvectors of L that
correspond to small eigenvalues. But does this always happen?
The answer depends on the relationship between the eigenvectors
of the Laplacian and typical mesh-coordinate vectors. Ben-Chen
and Gotsman [7] have done the first step towards resolving this
question. They have shown that under certain probabilistic as-
sumptions on the shape of 3D meshes, most of the energy of the
mesh-coordinate vectors indeed lies in the subspaces spanned by
the small eigenvectors. Another analysis, done by Guattery and

5.7. CONCLUSIONS 109

Miller [50] in a different context, may provide another perspective
on the issue.

(2) Our bound on the small singular values of k-anchor Laplacian uses
a maximal congestion-dilation-contention metric on an embedding
of paths from all the vertices to the anchors. It is probably pos-
sible to derive other computable bounds that might sometimes be
tighter, such as a bound that depends on average dilation of this
embedding.

(3) Can one solve the least-squares problems that arise in our method
in time linear or almost linear in the size of the mesh? We
have demonstrated reasonably small running times even for large
meshes, but our solution method scales superlinearly. It would
be useful to find solution methods with better scaling. Alge-
braic multigrid methods can almost certainly solve the invert-
ible k-anchor Laplacian equations in O(n) work. We are not
yet sure whether algebraic multigrid methods can also effec-
tively solve the least-squares problem arising from the rectan-
gular Laplacian. Another direction might be an iterative solver,
such as LSQR or CGLS, coupled with an effective preconditioner.
In particular, it would be interesting to know whether graph-
theoretical preconditioners, such as support-tree [41, 42] and
support-graph [9, 13, 88, 93] preconditioners can be adapted to
this problem.

(4) Could weighted Laplacian matrices work better than unweighted
Laplacians? What is the best tradeoff between the quality of
the compression and the number of bits needed to represent the
weights of the weighted Laplacian?

110 5. ALGEBRAIC ANALYSIS OF HIGH-PASS QUANTIZATION

1 anchor 15 anchors 30 anchors 45 anchors
σmin bound 5.1 · 10−6 2.0 · 10−4 4.1 · 10−4 7.8 · 10−4

6 bits
Mq = 34.59 Mq = 1.82 Mq = 1.21 Mq = 0.92
Sq = 0.17 Sq = 0.15 Sq = 0.14 Sq = 0.14
5.87KB 5.95KB 6.04KB 6.13KB

7 bits
Mq = 21.25 Mq = 1.06 Mq = 0.71 Mq = 0.48
Sq = 0.11 Sq = 0.09 Sq = 0.09 Sq = 0.09
7.71KB 7.80KB 7.89KB 7.98KB

8 bits
Mq = 7.16 Mq = 0.49 Mq = 0.28 Mq = 0.21
Sq = 0.05 Sq = 0.05 Sq = 0.05 Sq = 0.05
9.45KB 9.53KB 9.62KB 9.71KB

9 bits
Mq = 2.55 Mq = 0.26 Mq = 0.15 Mq = 0.10
Sq = 0.02 Sq = 0.02 Sq = 0.02 Sq = 0.02
11.43KB 11.51KB 11.60KB 11.69KB

Figure 5.7.1. Visual table of quantization results for the
Twirl model (5201 vertices). See text for details.

5.7. CONCLUSIONS 111

20 anchors 60 anchors 200 anchors 400 anchors
σmin bound 7.8 · 10−6 5.7 · 10−5 3.7 · 10−4 8.3 · 10−4

2 bits
Mq = 15.44 Mq = 5.05 Mq = 2.26 Mq = 4.27
Sq = 0.10 Sq = 0.10 Sq = 0.09 Sq = 0.09
13.35KB 13.60KB 14.49KB 15.76KB

3 bits
Mq = 6.24 Mq = 2.54 Mq = 0.95 Mq = 0.63
Sq = 0.06 Sq = 0.06 Sq = 0.05 Sq = 0.05
23.97KB 24.23KB 25.12KB 26.39KB

4 bits
Mq = 2.60 Mq = 0.60 Mq = 0.28 Mq = 0.19
Sq = 0.02 Sq = 0.02 Sq = 0.02 Sq = 0.02
36.79KB 37.04KB 37.93KB 39.20KB

5 bits
Mq = 0.62 Mq = 0.22 Mq = 0.10 Mq = 0.07
Sq = 0.01 Sq = 0.01 Sq = 0.01 Sq = 0.01
51.09KB 51.34KB 52.23KB 53.50KB

Figure 5.7.2. Visual table of quantization results for the
Camel model (39074 vertices). See text for details.

Bibliography

[1] Pierre Alliez and Mathieu Desbrun. Valence-driven connectivity encoding for 3D
meshes. Computer Graphics Forum, 20(3):480–489, 2001.

[2] Pierre Alliez and Craig Gotsman. Recent advances in compression of 3D meshes. In
N.A. Dodgson, M.S. Floater, and M.A. Sabin, editors, Advances in Multiresolution
for Geometric Modelling, pages 3–26. Springer-Verlag, 2005.

[3] Peter Arbenz and Zlatko Drmač. On positive semidefinite matrices with known null
space. SIAM J. Matrix Anal. Appl., 24(1):132–149, 2002.

[4] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.
[5] G.P. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific J.

Math., 57(1):15–32, 1975.
[6] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. Philadeplphia, PA, 1993.

[7] Mirela Ben-Chen and Craig Gotsman. On the optimality of spectral compression
of mesh data. ACM Trans. Graph., 24(1):60–80, 2005.

[8] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sci-
ences. SIAM, Philadelphia, 1994.

[9] Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat Nguyen, and Sivan
Toledo. Support-graph preconditioners. Submitted to SIAM Journal on Matrix
Analysis and Applications, 29 pages, January 2001.

[10] Dennis S. Bernstein. Matrix Mathematics: theory, facts and formulas with applica-
tion to linear systems theory. Princeton University Press, 2005.

[11] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
1996.

[12] Å. Björck and T. Elfving. Accelerated projection methods for computing pseudoin-
verse solutions of systems of linear equations. BIT, 19:145–163, 1979.

[13] E. G. Boman, D. Chen, B. Hendrickson, and S. Toledo. Maximum weight basis
preconditioners. Numerical Linear Algebra with Applications, (11):695–721, 2004.

[14] Erik Boman and Bruce Hendrickson. On spanning tree preconditioners. Manuscript,
Sandia National Laboratories, 2001.

[15] Erik G. Boman, Doron Chen, Ojas Parekh, and Sivan Toledo. On the factor-width
and symmetric H-matrices. Linear Algebra and its Applications, (405):239–248,
2005.

[16] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning. SIAM
Journal on Matrix Analysis and Applications, 25(3):694–717, 2003.

[17] R. Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th
Annual Symposium on Foundations of Computer Science, pages 280–285, Los An-
geles, October 1987. IEEE.

113

114 BIBLIOGRAPHY

[18] Igor Brainman and Sivan Toledo. Nested-dissection orderings for sparse LU with
partial pivoting. SIAM Journal on Matrix Analysis and Applications, 23:998–112,
2002.

[19] A. Brandt, S. F. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse
matrix equations. In D. J. Evans, editor, Sparsity and its Applications, pages 257–
284. Cambridge University Press, 1984.

[20] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid
Tutorial. SIAM, Philadelphia, 2 edition, 2000.

[21] Doron Chen and Sivan Toledo. Vaidya’s preconditioners: Implementation and ex-
perimental study. Electronic Transactions on Numerical Analysis, 16:30–49, 2003.

[22] Doron Chen and Sivan Toledo. Combinatorial charaterization of the null spaces of
symmetric H-matrices. Linear Algebra and its Applications, (392):71–90, 2004.

[23] Peter H. Chou and Teresa H. Meng. Vertex data compression through vector quanti-
zation. IEEE Transactions on Visualization and Computer Graphics, 8(4):373–382,
2002.

[24] Fan R. K. Chung. Spectral Graph Theory. American Methematical Society, 1997.
[25] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. MIT Press and McGraw-Hill, 1990.
[26] E. J. Craig. The n-step iteration procedure. J. Math. Phys., 34:65–73, 1955.
[27] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. A col-

umn approximate minimum degree ordering algorithm. ACM Trans. Math. Softw.,
30(3):353–376, 2004.

[28] James Demmel and Plamen Koev. Accurate SVDs of polynomial vandermonde ma-
trices involving orthonormal polynomials. To appear in Linear Algebra Appl.

[29] James Demmel and Plamen Koev. The accurate and efficient solution of a to-
tally positive generalized vandermonde linear system. SIAM J. Matrix Anal. Appl.,
27(1):142–152, 2005.

[30] Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of markov
chains. Annals of Applied Probability, 1:36–61, 1991.

[31] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs.
IBM Journal of Research and Development, 17:420–425, 1973.

[32] T. Elfving. On the conjugate gradient method for solving linear least squares prob-
lems. Tech. Report LiTH-MAT-R-78-3, Linköping University, Sweden, 1978.

[33] J. Falkner, F. Rendl, and H. Wolkowicz. A computational study of graph partition-
ing. Mathematical Programming, 66:211–239, 1994.

[34] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23:298–305, 1973.

[35] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Mathematical Journal, 25:619–633, 1975.

[36] J. A. George and M. T. Heath. Solution of sparse linear least squares problems
using Givens rotations. Linear Algebra Appl., 34:69–83, 1980.

[37] J. A. George and E. G. Ng. On row and column orderings for sparse least squares
problems. SIAM J. Numer. Anal., 20:326–344, 1983.

[38] J. A. George and E. G. Ng. Orthogonal reduction of sparse matrices to upper
triangular form using Householder transformations. SIAM J. Sci. Statist. Comput.,
7:460–472, 1986.

[39] J. A. George and E. G. Ng. On the complexity of sparse QR and LU factorization
of finite-element matrices. SIAM J. Sci. Statist. Comput., 9:849–861, 1988.

BIBLIOGRAPHY 115

[40] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition, 1996.

[41] K.D. Gremban, G.L. Miller, and M. Zagha. Performance evaluation of a parallel
preconditioner. In 9th International Parallel Processing Symposium, pages 65–69,
Santa Barbara, April 1995. IEEE.

[42] Keith D. Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diago-
nally Dominant Linear Systems. PhD thesis, School of Computer Science, Carnegie
Mellon University, October 1996. Technical Report CMU-CS-96-123.

[43] Jonathan L. Gross. Voltage graphs. Discrete Mathematics, 9:239–246, 1974.
[44] Jonathan L. Gross and Thomas W. Tucker. Generating all graph coverings by

permutation voltage assignments. Discrete Mathematics, 18:273–283, 1977.
[45] Jerrold W. Grossman, Devadatta M. Kulkarni, and Irwin E. Schochetman. Al-

gebraic graph theory without orientation. Linear Algebra and its Applications,
212/213:289–307, 1994.

[46] Jerrold W. Grossman, Devadatta M. Kulkarni, and Irwin E. Schochetman. On the
minors of an incidence matrix and its Smith Normal Form. Linear Algebra and its
Applications, 218(1–3):213–224, 1995.

[47] S. Guattery and G. Miller. On the performance of spectral graph partitioning meth-
ods. pages 233–242, January 1995.

[48] Stephen Guattery. On the quality of spectral separators. SIAM J. Matrix Anal.
Appl., 19(3):701–719, 1998.

[49] Stephen Guattery, Tom Leighton, and Gary L. Miller. The path resistance method
for bounding the smallest nontrivial eigenvalue of a Laplacian. Combinatorics, Prob-
ability, and Computing, 8:441–460, 1999.

[50] Stephen Guattery and Gary L. Miller. Graph embeddings and Laplacian eigenval-
ues. SIAM Journal on Matrix Analysis and Applications, 21:703–723, 2000.

[51] Stefan Gumhold. New bounds on the encoding of planar triangulations. Techni-
cal Report WSI–2000–1, Wilhelm-Schickard-Institut für Informatik, University of
Tübingen, Germany, January 2000.

[52] Igor Guskov, Kiril Vidimc̆e, Wim Sweldens, and Peter Schröder. Normal meshes.
In Proceedings of ACM SIGGRAPH 2000, pages 95–102, 2000.

[53] I. Gustafsson. A class of first-order factorization methods. BIT, 18:142–156, 1978.
[54] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning and

clustering. volume 11, pages 1074–1085, 1992.
[55] F. Harary. On the notion of balance of a signed graph. Michigan Math., 2:143–146,

1953–1954.
[56] P. Heggernes and P. Matstoms. Finding good column orderings for sparse QR factor-

izations. Tech. Report LiTH-MAT-1996-20, Department of Mathematics, Linköping
University, Sweden, 1996.

[57] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear sys-
tems. National Bureau of Standards Jounal of Research, 49:409–436, 1952.

[58] Nicholas J. Higham. The accuracy of floating point summation. SIAM J. Sci. Com-
put., 14(4):783–799, 1993.

[59] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 2 edition, 2002.

[60] R.D. Hill and S.R. Waters. On the cone of positive semidefinite matrices. Lin. Alg.
Appl., 90:81–88, 1987.

116 BIBLIOGRAPHY

[61] Dror Irony, Gil Shklarski, and Sivan Toledo. Parallel and fully recursive multifrontal
supernodal sparse Cholesky. Future Generation Computer Systems, 20(3):425–440,
2004.

[62] Nabil Kahale. A semidefinite bound for mixing rates of Markov chains. Random
Structures and Algorithms, 11:299–313, 1997.

[63] Zachi Karni and Craig Gotsman. Spectral compression of mesh geometry. In Pro-
ceedings of ACM SIGGRAPH 2000, pages 279–286, July 2000.

[64] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20:359–392,
1998.

[65] Andrei Khodakovsky, Pierre Alliez, Mathieu Desbrun, and Peter Schröder. Near-
optimal connectivity encoding of 2-manifold polygon meshes. Graph. Models,
64(3/4):147–168, 2002.

[66] Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. Progressive geometry
compression. In Proceedings of ACM SIGGRAPH 2000, pages 271–278, 2000.

[67] Plamen Koev. Accurate eigenvalues and SVDs of totally nonnegative matrices.
SIAM J. Matrix Anal. Appl., 27(1):1–23, 2005.

[68] Toshiyuki Kohno, Hiroshi Niki, Hideo Sawami, and Yi-Ming Gao. An iterative test
for H-matrix. Journal of Computational and Applied Mathematics, 115:349–355,
2000.

[69] Bishan Li, Lei Li, Masunore Harada, Hiroshi Niki, and Michal J. Tsatsomeros. An
iterative criterion for H-matrices. Linear Algebra and its Applications, 271:179–190,
1998.

[70] Lei Li. On the iterative criterion for generalized diagonally dominant matrices.
SIAM J. Matrix Anal. Appl., 24:17–24, 2002.

[71] Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Christian Rössl, and
Hans-Peter Seidel. Differential coordinates for interactive mesh editing. In Proceed-
ings of Shape Modeling International, pages 181–190, 2004.

[72] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix. Mathemathics of
Computation, 31:148–162, 1977.

[73] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12:617–629, 1975.

[74] C. C. Paige and M. A. Saunders. Algorithm 583 LSQR: Sparse linear equations and
sparse least squares. ACM Trans. Math. Software, 8:195–209, 1982.

[75] C. C. Paige and M. A. Saunders. LSQR. An algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Software, 8:43–71, 1982.

[76] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with eigen-
vectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11:430–452,
1990.

[77] F. Rendl and H. Wolkowicz. A projection technique for partitioning the nodes of a
graph. Annals of Operations Research, 58:155–180, 1995.

[78] Vladimir Rotkin and Sivan Toledo. The design and implementation of a new out-of-
core sparse Cholesky factorization method. ACM Trans. Math. Software, 30(1):19–
46, 2004.

[79] Konstantin Rybnikov and Thomas Zaslavsky. Criteria for balance in abelian gain
graphs with applications to geometry. 2002.

[80] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

BIBLIOGRAPHY 117

[81] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-
pany, 1996.

[82] M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG.
BIT, 35:588–604, 1995.

[83] Alistair Sinclair. Improved bounds for mixing rates of Markov chains and multi-
commodity flow. Combinatorics, Probability, and Computing, 1:351–370, 1992.

[84] Olga Sorkine, Daniel Cohen-Or, Dror Irony, and Sivan Toledo. Geometry-aware
bases for shape approximation. IEEE Transactions on Visualization and Computer
Graphics, 11(2):171–180, 2005.

[85] Olga Sorkine, Daniel Cohen-Or, and Sivan Toledo. High-pass quantization for mesh
encoding. In Proceedings of the Eurographics/ACM SIGGRAPH symposium on Ge-
ometry processing, pages 42–51, 2003.

[86] Daniel A. Spielman. Private communication. March 2005.
[87] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar

graphs and finite element meshes. In IEEE Symposium on Foundations of Com-
puter Science, pages 96–105, 1996.

[88] Daniel A. Spielman and Shang-Hua Teng. Solving sparse, symmetric, diagonally-
dominant linear systems in time o(m1.31). In Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, pages 416–427, Cambridge, MA,
October 2003.

[89] Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. July 2004. Preprint.

[90] Sivan Toledo. Taucs: A Library of Sparse Linear Solvers, version 2.2. Tel-Aviv
University, Available online at http://www.tau.ac.il/~stoledo/taucs/, September
2003.

[91] Costa Touma and Craig Gotsman. Triangle mesh compression. In Graphics Inter-
face ’98, pages 26–34, June 1998.

[92] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. SIAM, Philadel-
phia, 2000.

[93] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant
matrices by constructing good preconditioners. Unpublished manuscript. A talk
based on the manuscript was presented at the IMA Workshop on Graph Theory
and Sparse Matrix Computation, October 1991, Minneapolis.

[94] R. S. Varga. On recurring theorems on diagonal dominance. Lin. Alg. Appl., 13:1–9,
1976.

[95] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical op-
timization of software and the ATLAS project. Technical report, Computer Science
Department, University Of Tennessee, 2000.

[96] Thomas Zaslavsky. Signed graphs. Discrete Appl. Math., 4:47–74, 1982.

±µ

Exact Mesh and 3 Reconstructions, Detail

¯ÂÈ‡‰ Æquantization Â¯·Ú˘ δ–‰ ˙ÂËÈ„¯Â‡Â˜Ó ÌÈ¯ÂÊÁÈ˘‰ ‰˘ÂÏ˘Â ®¯ÂÁ˘·© È¯Â˜Ó‰ ÔÂ‚ÈÏÂÙ‰ ∫∑ ¯ÂÈ‡
Æ˙Â‡È‚˘· È˙ÂÎÈ‡‰ Ï„·‰‰ ˙‡ ˙Â‡¯‰Ï È„Î ¨ÌÈÂ‚ÈÏÂÙ‰ ˙Ú·¯‡ Ï˘ ¯˙ÂÈ· ÈÏ‡Ó˘‰ ˜ÏÁ‰ ˙‡ ˜¯ ‰‡¯Ó

±¥

Quantization of Delta Coordinates, 4 Anchors

˙ÂËÈ„¯Â‡Â˜ Ï˘ quantization–Ó ®˜Â¯È·© ÂÏ˘ ¯ÂÊÁÈ˘Â ¨‚È¯˘‰ ˙‡ ‚ˆÈÈÓ˘ ®¯ÂÁ˘·© ÔÂ‚ÈÏÂÙ ∫∂ ¯ÂÈ‡
ÆÏÂ‚ÈÚ· ÌÈÓÂÒÓ‰ ¨ÌÈ‚ÂÚ 4–· ˘ÂÓÈ˘ ‰˘ÂÚ ¯ÂÊÁÈ˘‰ ¨ÌÚÙ‰ Æδ–‰

ÌÂ˜Ó· Æ˙ÈËËÒÈÒÂ˜ ‰È‡ ‡È‰ ÈÏÏÎ ÔÙÂ‡· ÔÎ˘ ˙‡Ê ˙Â‡ÂÂ˘Ó ˙Î¯ÚÓ· ˘Ó˙˘‰Ï ÏÎÂ ‡Ï ¨δ–‰
˙Î¯ÚÓ Ï˘ ÔÂ¯˙ÈÙ ˙ÂÚˆÓ‡· ˙Â·¯Â˜Ó ˙ÂËÈ„¯Â‡Â˜ ˙¯ÊÁ˘Ó high-pass mesh quantization ¨˙‡Ê

Æ®least squares© ÌÈ˙ÂÁÙ ÌÈÚÂ·È¯ Ï˘ Ô·ÂÓ· ˙Â‡ÂÂ˘Ó‰
È„È–ÏÚ ÌÂÒÁÏ Ô˙È ÏÂ‚ÈÚ‰ ˙Â‡È‚˘ ˙‡Â ‰ÈˆÊÈË‡ÂÂ˜Ó ˙ÂÚ·Â‰ ˙Â‡È‚˘‰ ˙‡˘ ÌÈ‡¯Ó Â‡ µ ˜¯Ù·

ÌÈÓ„˜Ó‰ ˙ˆÈ¯ËÓ Ï˘ ¯˙ÂÈ· ÔË˜‰ È¯ÏÂ‚ÈÒ‰ Í¯Ú‰ Ï˘ ‰Èˆ˜ÂÙ

L̃ =




2 −1 −1

−1 2 −1

−1 2
. . .

.
. . . 2 −1

−1 −1 2

1

1

· · · · · · · · · · · · · · · · · ·
1




‰ÎÈÓ˙ ÈÂÚÈË ˙ÂÚˆÓ‡· ‰Ê È¯ÏÂ‚ÈÒ Í¯Ú ÌÂÒÁÏ ÍÈ‡ ÌÈ‡¯Ó Â‡ ¨ÛÒÂ· ÆÌÈ˙ÂÁÙ‰ ÌÈÚÂ·È¯‰ ˙ÈÈÚ· Ï˘
‰‡¯Ó 7 ¯ÂÈ‡ ÆÌÈ‚ÂÚ ‰Ú·¯‡· ˘ÂÓÈ˘ ÍÂ˙ È¯Â˜Ó‰ ÔÂ‚ÈÏÂÙ‰ Ï˘ ¯ÂÊÁÈ˘ ‰‡¯Ó 6 ¯ÂÈ‡ ÆÌÈÈ¯ÂËÈ·ÓÂ˜

ÆÌÈ·Â¯È˜‰ ˙˘ÂÏ˘ Ï˘Â È¯Â˜Ó‰ ÔÂ‚ÈÏÂÙ‰ Ï˘ ·È¯˜˙

±≥

Quantization of Delta Coordinates, 1 Anchor

˙ÂËÈ„¯Â‡Â˜ Ï˘ quantization–Ó ®ÏÂÁÎ·© ÂÏ˘ ¯ÂÊÁÈ˘Â ¨‚È¯˘‰ ˙‡ ‚ˆÈÈÓ˘ ®¯ÂÁ˘·© ÔÂ‚ÈÏÂÙ ∫µ ¯ÂÈ‡
ÆÏÂ‚ÈÚ· ÔÓÂÒÓ‰ ¨„„Â· Ô‚ÂÚ· ˘ÂÓÈ˘ ‰˘ÂÚ ¯ÂÊÁÈ˘‰ ÆÌÈÎ¯Ú 64–· ˘ÂÓÈ˘ ÍÂ˙ ·Â˘ ¨Ly – Â Lx ¨δ–‰

‰ÈˆÓ¯ÂÙÒ¯Ë‰ ¨˙ÈÂÈˆÈ¯ËÓ‰ ‰˙¯Âˆ· Æ˙ÂÈÊË¯˜ ˙ÂËÈ„¯Â‡Â˜Ó ¯˙ÂÈ ˙ÂË˜ ˙ÂÈ‰Ï ˙ÂËÂ δ ˙ÂËÈ„¯Â‡Â˜
‡È‰

δ(x) =




2 −1 −1

−1 2 −1

−1 2
. . .

.
. . . 2 −1

−1 −1 2




x = Lx .

ÍÂÙ‰Ï Ô˙È Æ0 ˜ÂÈ„· ‡Â‰ ˙Â¯Â˘‰ ÏÎ ÌÂÎÒ˘ ÔÂÈÎ ¨˙È¯ÏÂ‚ÈÒ ‡È‰ L ‰ÈˆÓ¯ÂÒ¯Ë‰ ˙ˆÈ¯ËÓ
Ï˘ Ï˘ ˙È¯Â˜Ó‰ ˙ÈÊË¯˜‰ ‰ËÈ„¯Â‡Â˜‰ Ï˘ÓÏ ¨ÛÒÂ „Á‡ ıÂÏÈ‡ ˙ÙÒÂ‰ È„È–ÏÚ ˙‡Ê ‰ÈˆÓ¯ÂÙÒ¯Ë

ÆÔ‚ÂÚ ˙‡ÊÎ ‰„Â˜Ï ÌÈ‡¯Â˜ Â‡ Æx1 Ï˘ÓÏ ¨‚È¯˘‰ È„Â˜„Â˜Ó „Á‡
Í¯Ú‰ ∫®ill-conditioned© ‰ÚÂ¯‚ ‰ÈÈ˙‰ ˙ÏÚ· Ï·‡ ¨‰ÎÈÙ‰ ‰ÈˆÓ¯ÂÙÒ¯Ë‰ ¨„„Â· Ô‚ÂÚ ˘È ¯˘‡Î
˙ÈÎÙÂ‰‰ ‰ÈˆÓ¯ÂÙÒ¯Ë‰ Ï˘ ‰Ó¯Â‰˘ ÊÓ¯Ó˘ ‰Ó ¨ÔË˜ ‡Â‰ ‰ÈˆÓ¯ÂÙÒ¯Ë‰ Ï˘ ¯˙ÂÈ· ÔË˜‰ È¯ÏÂ‚ÈÒ‰
Ï˘ ‰ÈÈ˙‰‰ ˙‡ ¯Ù˘Ï È„Î Æµ ¯ÂÈ‡· ˙Â‡¯Ï Ô˙È˘ ÈÙÎ ¨·Â¯È˜· ‰ÏÂ„‚ ‰‡È‚˘Ï Ì¯Â‚ ‰Ê ÆÏÂ„‚ ‡Â‰
Ï˘ ˙ÂÈÊË¯˜‰ ˙ÂËÈ„¯Â‡Â˜‰ ÌÚ „ÁÈ δ–‰ ˙ÂËÈ„¯Â‡Â˜ ÆÌÈ‚ÂÚ „ÂÚ ÌÈÙÈÒÂÓ Â‡ ¨‰ÈˆÓ¯ÂÙÒ¯Ë‰

˙Â‡ÂÂ˘Ó‰ ˙ÂÚˆÓ‡· ˙ÂÈ¯Â˜Ó‰ ˙ÂËÈ„¯Â‡Â˜‰ ˙‡ ˙Â¯È„‚Ó ÌÈ‚ÂÚ‰

Lx = δ(x)

xk1
= bk1

...

xk�
= bk�

,

˙ÂËÈ„¯Â‡Â˜ Ô˙È‰· x – Ï ·Â¯È˜ ¯ÊÁ˘Ï ‰Ò Ì‡ ¨ÌÏÂ‡ ÆÌÈ‚ÂÚ‰ Ï˘ ÌÈÒ˜„È‡‰ Ì‰ k1, . . . , k� Ô‰·

±≤

Quantization of Cartesian Coordinates

˙ÂËÈ„¯Â‡Â˜ Ï˘ quantization–Ó Ú·Â˘ ®ÌÂ„‡·© ÔÂ‚ÈÏÂÙÂ ¨‚È¯˘‰ ˙‡ ‚ˆÈÈÓ˘ ®¯ÂÁ˘·© ÔÂ‚ÈÏÂÙ ∫¥ ¯ÂÈ‡
ÆÌÈÎ¯Ú 64 – · ˘ÂÓÈ˘ ÍÂ˙ ÔÂ‚ÈÏÂÙ‰ Ï˘ y – ‰Â x – ‰

‰ÈˆÓ¯ÂÙÒ¯Ë È‰˘ÂÊÈ‡ ÏÚ Â‡ ¨˙ÂÈÊË¯˜‰ ˙ÂËÈ„¯Â‡Â˜‰ ÏÚ ˙Â¯È˘È Úˆ·Ï Ô˙È ‰ÈˆÊÈË‡ÂÂ˜‰ ˙‡
˙ÂËÈ„¯Â‡Â˜‰˘ ¯Á‡Ï ‰ÈˆÊÈË‡ÂÂ˜‰ ˙‡ ÌÈÚˆ·Ó ¨high-pass mesh quantization – · ÆÔ‰Ï˘ ‰ÎÈÙ‰

Æ[85] ÌÈÈ¯‡ÈÏ ÌÈ¯ÂË¯ÙÂ‡ Ï˘ ˙ÓÈÈÂÒÓ ‰˜ÏÁÓÏ ˙ÎÈÈ˘‰ ‰ÈˆÓ¯ÂÙÒ¯Ë Â¯·Ú
ÌÂÒÁÏ Ô˙È „ˆÈÎ ÌÈ‡¯Ó Â‡ ÆHigh-Pass Quantization Ï˘ È¯·‚Ï‡ ÁÂ˙È ÌÈ‚ÈˆÓ ÂÁ‡ µ ˜¯Ù·
È¯ÏÂ‚ÈÒ‰ Í¯Ú· ˘Ó˙˘‰Ï Ô˙È ÈÎ ÌÈ‡¯Ó Â‡ ÆÂÊ ‰ÒÈÁ„ ˙ËÈ˘· ˘ÂÓÈ˘Ó ˙Ú·Â˘ ‰‡È‚˘‰ ˙‡ ˙È¯·‚Ï‡
¨ÏÂ‚ÈÚ‰ ˙‡È‚˘ ˙‡ ÌÂÒÁÏ È„Î Ô‰Â ·Â¯È˜‰ ˙‡È‚˘ ˙‡ ÌÂÒÁÏ È„Î Ô‰ ‰ÈˆÓ¯ÂÙÒ¯Ë‰ ˙ˆÈ¯ËÓ Ï˘ ÔË˜‰
È„Î ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÏÎ· ÌÈ˘Ó˙˘Ó Â‡ ¨ÛÒÂ· Æfloating point ˙˜ÈËÓ˙È¯‡· ˘ÂÓÈ˘Ó ˙Ú·Â‰
ÏÚ ÔÂÈÏÚ‰ ÌÒÁ‰˘Â ¨˙È·ÈË˜Ù‡ ‡È‰ ˙‡Ê ‰ËÈ˘˘ ˙ÈÈÂÒÈ ÌÈ‡¯Ó Â‡ Æ‰Ê È¯ÏÂ‚ÈÒ Í¯Ú ÏÚ ÌÒÁ ÁÈÎÂ‰Ï
ACM Transactions on Graphics, – · ÌÂÒ¯ÈÙÏ ÂÏ·˜˙‰ µ ˜¯Ù· ˙Â‡ˆÂ˙‰ ÆÈ„Ó ÈÓÈÒÙ ÂÈ‡ ‰‡È‚˘‰
Doron Chen, Daniel Cohen-Or, Olga ˙‡Ó “Algebraic Analysis of High-Pass Quantization”

ÆSorkine, and Sivan Toledo
‰ËÈ˘ ÌÈ‚„‰Ï È„Î high-pass mesh quantization Ï˘ ˙È„ÓÈÓ–Â„ ‰Ò¯È‚· ÂÈ˘ÎÚ ÌÈ˘Ó˙˘Ó Â‡
˙Â˙˘˜‰ ¨‚È¯˘ Ï‡Î ÂÈÏ‡ ÒÁÈÈ˙ Ì‡ Æ¯Â˘ÈÓ· ¯Â‚Ò ÔÂ‚ÈÏÂÙ m ‡‰È ÆÂÏ˘ ‰ÊÈÏ‡‰ ˙˜ÈÎË ˙‡Â ˙‡Ê
‚È¯˘· „Â˜„Â˜ ÏÎÏ ÆËÂ˘Ù Ï‚ÚÓ ‡Â‰ ‚È¯˘‰ Ï˘ Û¯‚‰ ¨¯Â‚Ò ÔÂ‚ÈÏÂÙ‰˘ ÔÂÈÎ Æ‚È¯˘‰ Ï˘ ˙Â‡Ù Ô‰ ÂÏ˘
ÔÈ‡˘ ¨‰Â·‚ ¯„˙· ˙Â‡È‚˘Ï Ì¯Â‚ y – Â x ÈÎ¯Ú ÏÚ ˙Â¯È˘È ‰ÈˆÊÈË‡ÂÂ˜ ˙ÏÚÙ‰ Æy – Â x ÈÎ¯Ú ÌÈÓÈ‡˙Ó

Æ4 ¯ÂÈ‡· ˙Â‡¯Ï Ô˙È˘ ÈÙÎ ¨ÔÈÚÏ ˙ÂÓÈÚ
Ï˘ ‰ÈˆÓ¯ÂÙÒ¯Ë ‰ÏÈÁ˙ ˙Úˆ·Ó high-pass quantization ¨˙‡Ê ‰ÈÈÚ·Ó ÚÓÈ‰Ï ˙Ó ÏÚ
˙Â‡¯˜ ‰ÈˆÓ¯ÂÙÒ¯Ë Â¯·Ú˘ ˙ÂËÈ„¯Â‡Â˜‰ ÆÔ‡ÈÒÏÙÏ–˙ÈÈÂÓ„ ‰ˆÈ¯ËÓ ˙ÂÚˆÓ‡· ˙ÂËÈ„¯Â‡Â˜‰

‡È‰ i „Â˜„Â˜ Ï˘ δ–‰ ˙ËÈ„¯Â‡Â˜ ∫‰‡·‰ ‰¯Âˆ· ˙ÏÚÂÙ ‰ÈˆÓ¯ÂÙÒ¯Ë‰ Æδ–˙ÂËÈ„¯Â‡Â˜

δ
(x)
i = 2xi − xi−1 − xi+1 = degree(i)


xi −

∑
j is a neighbor of i

xj

degree(i)




Ï˘ ÚˆÂÓÓ‰ ÔÈ·Ï i Ï˘ x – ‰ ˙ËÈ„¯Â‡Â˜ ÔÈ· ˜Á¯Ó‰ ‡Â‰ ÌÈÈ¯‚ÂÒ· ÈÂËÈ·‰ Æδ(y)
i ¯Â·Ú ‰ÓÂ„ ÔÙÂ‡·Â

ÔÎÏÂ ¨xi ˙‡ ·ÂË ‡·Ï ‰ËÂ ÂÈÎ˘ Ï˘ ÚˆÂÓÓ‰ ¨i „Â˜„Â˜Ï ÍÂÓÒ c ‰˜ÏÁ ‰ÓÂ˜Ú ·¯˜Óm ¯˘‡Î ÆÂÈÎ˘

±±

x

x

x

x

x

xxx

x
x

x
x

x

x

x

x

x
x

xx x

ÌÈÂ˘ ÌÈ¯·È‡ ÌÈ‚ˆÈÈÓ ¯ÂÈ‡· ÌÈ–X–‰ Æ‖W‖2
2 ≤ maxj

∑
i:Wi,j �=0 ‖Wi,:‖2

2 ÌÒÁ‰ Ï˘ ‰Ó‚„‰ ∫≥ ¯ÂÈ‡

ÌÂÎÒ Ï˘ ¨W Ï˘ j ˙Â„ÂÓÚ‰ ÏÎ ÏÚ ¨ÌÂÓÈÒ˜Ó‰ È„È–ÏÚ ‰ÓÂÒÁ ‖W‖2
2 ÈÎ Ú·Â˜ ÌÒÁ‰ ÆW – · ÒÙ‡Ó

Æj – ‰ ‰„ÂÓÚ· ÒÙ‡Ó ‰Â˘ Í¯Ú ˙ÂÏÈÎÓ˘W ˙Â¯Â˘ Ï˘ 2–˙ÂÓ¯Â‰ ÈÚÂ·È¯

ÌÂÎÒ ‡Â‰˘ ÒÂÈ·Â¯Ù ÌÒÁÓ ®¯˙ÂÈ ·ÂË ˙Â·Â¯˜ ÌÈ˙ÈÚÏÂ© ¯˙ÂÈ ÚÂ¯‚ ÂÈ‡ ‰Ê ÌÒÁ ÈÎ ¯Â¯· Æ‰Ê ÌÒÁ ÌÈ‚„Ó
Æ˙Â¯Â˘‰ ÏÎ Ï˘ 2–‰ ˙ÂÓ¯Â Ï˘ ÌÈÚÂ·È¯‰

‰·È‰˘ ‰ÊÈÏ‡Ï ‰Èˆ·ÈËÂÓ‰ ¨‰ˆÈ¯ËÓ ÏÎ ÏÚ ÌÏÈÚÙ‰Ï Ô˙È˘Â ¨ÌÈÈÏÏÎ Ì‰ ‰Ï‡ ÌÈÓÒÁ˘ ˙Â¯ÓÏ
Æ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÏÎ· ˙Â˘Ó˙˘Ó ‰Ï‡ ÌÈÓÒÁ Ï˘ ˙ÂÁÎÂ‰‰ ¨ÔÎ ÂÓÎ Æ‰ÎÈÓ˙‰ ˙¯Â˙Ó ‰ÚÈ‚‰ Ì˙Â‡
¨Chen ¨Boman Ì‚Â ¨[16] Hendrickson – Â Boman ø‰ÎÈÓ˙‰ ˙¯Â˙Ï ÌÈ¯Â˘˜ ˙ÂÓ¯Â ÈÓÒÁ ÍÈ‡
È„È–ÏÚ SDD ˙ˆÈ¯ËÓÏ preconditioning ÌÈÚˆ·Ó ¯˘‡Î˘ Â‡¯‰ [13] Toledo – Â Hendrickson
È˙˘ Ï˘ ˙ÂÓ¯Â‰ ˙ÏÙÎÓ È„È–ÏÚ ÌÂÒÁ È·ÈË¯ËÈ‡ Ì˙È¯Â‚Ï‡ Ï˘ ˙ÂÒÎ˙‰‰ ·ˆ˜ ¨˙¯Á‡ SDD ˙ˆÈ¯ËÓ
Ï˘ Û¯‚‰ ˙Â˙˘˜ Ï˘ embedding Ï·‡ ¨„ÈÁÈ ÔÙÂ‡· ˙Â¯„‚ÂÓ ÔÈ‡ ÂÏ‡ ˙ÂˆÈ¯ËÓ ÆZ – Â W ¨˙ÂˆÈ¯ËÓ
ÌÈÏÂÏÒÓ ÍÂ˙Ï GB ˙Â˙˘˜ Ï˘ embedding – Â ¨W ˙‡ ·ËÈ‰ ‰¯È„‚Ó B Ï˘ Û¯‚· ÌÈÏÂÏÒÓ ÍÂ˙Ï A

ÌÈÚÂ„È ÌÈÓÒÁ ˘¯ÙÏ Ô˙È ¨embedding È„È–ÏÚ ˙¯„‚ÂÓ W ¯˘‡Î ÆZ ˙‡ ·ËÈ‰ ‰¯È„‚Ó GA – ·
˙‡ ˙ÓÒÂÁ˘ ¨ÒÂÈ·Â¯Ù ˙Ó¯Â ¨Ï˘ÓÏ Æembedding – ‰ ˙ÂÎÈ‡ Ï˘ ÌÈÈ¯ÂËÈ·ÓÂ˜ ÌÈ„„ÓÎ ‖W‖2 ÏÚ
Ï˘ ‰ÓÈ‡˙Ó ‰¯„‚‰ ¯Â·Ú ¨embedding – · ˙Â˙˘˜ Ï˘ ÚˆÂÓÓ‰ stretch – Ï ˙ÈÏÂÈˆ¯ÂÙÂ¯Ù ¨2–˙Ó¯Â

Æ[14] stretch
ÌÈ„„ÓÎ 2–˙Ó¯Â ÏÚ ÂÏ˘ ÌÈ˘„Á‰ ÌÈÓÒÁ‰ ˙‡ ˘¯ÙÏ Ô˙È ¨embedding È„È–ÏÚ ˙¯„‚ÂÓW ¯˘‡Î
„„ÓÓ ‰Ú· ‰Ï‡ ÌÈÓÒÁÏ ‰ÏÈ·Â‰˘ ‰ÊÈÏ‡Ï ‰Èˆ·ÈËÂÓ‰ ¨‰˘ÚÓÏ Æembedding – ‰ Ï˘ ÌÈÈ¯ÂËÈ·ÓÂ˜
˙ÂÒÎ˙‰‰ ·ˆ˜ ˙‡ ÌÂÒÁÏ È„Î Teng – Â Spielman Â˘Ó˙˘‰ Â· embeddings Ï˘ ˘„Á È¯ÂËÈ·ÓÂ˜

Æpreconditioners – · ˙Â˘Ó˙˘Ó˘ ˙ÂÈ·ÈË¯ËÈ‡ ˙ÂËÈ˘ Ï˘
Electronic Transactions on Numerical Analysis, – · ÌÂÒ¯ÈÙÏ ÂÏ·˜˙‰ ¥ ˜¯Ù· ˙Â‡ˆÂ˙‰
Doron ˙‡Ó “Obtaining Bounds on the Two Norm of a Matrix from the Splitting Lemma”

ÆChen, John R. Gilbert and Sivan Toledo

˙·˘ÁÂÓÓ ‰˜ÈÙ¯‚· ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÓÂ˘ÈÈ

˙‡¯˜‰ ÌÈ‚È¯˘ Ï˘ ‰ÒÈÁ„ ˙˜ÈÎË Á˙Ï ˙Ó–ÏÚ ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÏÎ· ÌÈ˘Ó˙˘Ó Â‡ µ ˜¯Ù·
ÌÈ‚È¯˘ È„È–ÏÚ ˙Â·Â¯˜ ÌÈ˙ÈÚÏ ÌÈ‚ˆÂÈÓ ÌÈÓˆÚ ¨˙·˘ÁÂÓÓ ‰˜ÈÙ¯‚· Æ[85] high-pass quantization
– ‰ ÏÚ ‰Ï‡Ï Ë¯Ù ¨˙˘˜ ÏÎ ÆÌÈ„Â˜„Â˜Â ˙Â˙˘˜ ÌÈ˜ÏÂÁ‰ ÌÈ˘ÏÂ˘Ó Ï˘ ‰ˆÂ·˜ ∫ÌÈÈ„ÓÈÓ–˙Ï˙
Ï˘ ˙ÈÙÂÒ ‰ˆÂ·˜ ¨ÌÈ„Â˜„Â˜ Ï˘ ˙ÈÙÂÒ ‰ˆÂ·˜ È„È–ÏÚ ‚ˆÂÈÓ ‚È¯˘‰ ÆÌÈ˘ÏÂ˘Ó È˘Ï ˙ÎÈÈ˘ ¨boundary
ÏÎ Ï˘ ˙ÂÈÊË¯˜‰ ˙ÂËÈ„¯Â‡Â˜‰Ó ¨ÏÏÎ Í¯„· ¨·Î¯ÂÓ È¯ËÓÂ‡È‚‰ Ú„ÈÓ‰ ÆÈ¯ËÓÂ‡È‚ Ú„ÈÓÂ ¨ÌÈ˘ÏÂ˘Ó
˙ÂËÈ„¯Â‡Â˜‰ Ï˘ ÌÈ¯ÂË˜ÂÂ ÛÒÂ·Â Û¯‚–¯ÙÈ‰ Â‡ Û¯‚Î ‚È¯˘‰ ˙‡ ˙Â‡¯Ï Ô˙È ¨Ë˘ÙÂÓ ÔÙÂ‡· Æ„Â˜„Â˜

Æz ¯ÂË˜ÂÂÂ y ¯ÂË˜ÂÂ ¨x ¯ÂË˜ÂÂ ¨‚È¯˘‰ È„Â˜„Â˜ Ï˘ ˙ÂÈÊË¯˜‰
„Â„È˜Â ˙ÂÈ¯Â˘È˜‰ „Â„È˜ ∫„¯Ù· ˙Â¯˙Ù ÏÏÎ–Í¯„·˘ ˙ÂÈÚ· È˙˘· ‰ÎÂ¯Î ÌÈ‚È¯˘ ˙ÒÈÁ„
¨[1, 51, 65, 91] „‡Ó ÌÈÈ·ÈË˜Ù‡ Ì‰ ˙ÂÈ¯Â˘È˜‰ ˙ÒÈÁ„Ï ÌÈÓ„˜˙Ó ÌÈÓ˙È¯Â‚Ï‡˘ „ÂÚ· Æ‰È¯ËÓÂ‡È‚‰
floating-point ‚ÂˆÈÈ· ÏÏÎ–Í¯„· ÚÈ‚Ó ÈÓÏÂ‚‰ È¯ËÓÂ‡È‚‰ Ú„ÈÓ‰ Æ¯‚˙‡ ‰¯˙Â ‰È¯ËÓÂ‡È‚‰ ˙ÒÈÁ„
‰È¯ËÓÂ‡È‚‰ „Â„È˜ ˙ÂËÈ˘ ·Â¯ ¨ÍÎÈÙÏ ª˙ÂÏÈ‚¯ ‰ÒÈÁ„ ˙ÂËÈ˘· ‰ÊÎ Ú„ÈÓ ÒÂÁ„Ï ¯˘Ù‡ È‡ Æ‰Â·‚ ˜ÂÈ„·
˙Â‡È‚˘Ï Ì¯Â‚˘ ‰Ó ¨¯˙ÂÈ ‰ÎÂÓ ˜ÂÈ„ ˙Ó¯· ‚ÂˆÈÈ ¯ÓÂÏÎ ¨®quantization© ‰ÈˆÊÈË‡ÂÂ˜· ˙Â˘Ó˙˘Ó

ÆÚ„ÈÓ‰Ó ˜ÏÁ „Â·È‡ÏÂ

±∞

ÔÊÂ‡Ó ÂÈ‡ ÈÓÈ‰ ·ÈÎ¯‰ ÆÔÈÚ¯‚‰ ·Á¯ÓÏ „Á‡ ¯ÂË˜ÂÂ Ì¯Â˙Â ÔÊÂ‡Ó ‡Â‰ ÈÏ‡Ó˘‰ ·ÈÎ¯‰ ¨ÍÎÓ ‰‡ˆÂ˙Î
Æ‰‡ÏÓ Â˙‚¯„ ÔÎÏÂ

˙Ó–ÏÚ˘ ¯·˙ÒÓ ÆÔÊÂ‡Ó ˙Â¯È˘˜ ·ÈÎ¯ ÏÎ Ï˘ ÔÈÚ¯‚‰ ¯ÂË˜ÂÂ Ï˘ È¯ÂËÈ·ÓÂ˜ ÔÂÈÙÈ‡ ÌÈ‚ÈˆÓ Â‡
‡‰È Æ˘¯Â˘ ‰Ê „Â˜„Â˜Ï ‡¯˜ Æ·ÈÎ¯· È‡¯˜‡ „Â˜„Â˜ ¯ÂÁ·Ï ÂÈÏÚ ¨ÔÊÂ‡Ó ·ÈÎ¯ Ï˘ ÔÈÚ¯‚ ¯ÂË˜ÂÂ ˙Â·Ï
·ÈÎ¯· j „Â˜„Â˜ ÏÎÏ Æ·ÈÎ¯· ÂÈ‡ j „Â˜„Â˜ Ì‡ ˜¯Â Ì‡ vj = 0 ÈÊ‡ Æ·ÈÎ¯Ï ÌÈ‡˙Ó‰ ÔÈÚ¯‚‰ ¯ÂË˜ÂÂ v
˙Â¯È˘˜ ·ÈÎ¯· ÔÎ˘ ¨·ËÈ‰ ¯„‚ÂÓ ‰Ê‰ ÁÂÂ¯‰ Æ˘¯Â˘‰ ÔÈ·Ï j ÔÈ· ÏÂÏÒÓ Ï˘ ÁÂÂ¯‰ ‡Â‰ vj ¨˙Â¯È˘˜‰

ÆÁÂÂ¯‰ Â˙Â‡ ˘È ÌÈÏÂÏÒÓ‰ ÏÎÏ ª˘¯Â˘‰ ÔÈ·Ï j „Â˜„Â˜ ÔÈ· ¯Á· ÏÂÏÒÓ ‰ÊÈ‡ ‰˘Ó ‡Ï ÔÊÂ‡Ó
Ì¯Â˙ ‰Ê ·ÈÎ¯ ÈÊ‡ ÆÈÏ‡Ó˘‰ ˙Â¯È˘˜‰ ·ÈÎ¯ Ï˘ ˘¯Â˘‰ ˙ÂÈ‰Ï 2 „Â˜„Â˜· ¯Á· ‡·‰ ¨ÂÏ˘ ‡Ó‚Â„·

∫‡·‰ ¯ÂË˜ÂÂ‰ ˙‡ ÔÈÚ¯‚Ï


0.25

1

−0.125

0

0

0

0




.

È¯ÂËÈ·ÓÂ˜ Ì˙È¯Â‚Ï‡ ÌÈ‚ÈˆÓ Â‡ ¨˙‡Ê ˙Â¯ÓÏ ª„‡Ó ·¯ ÈÒÂÙÈË ÔÙÂ‡· ‡Â‰ Û¯‚· ÌÈÏ‚ÚÓ‰ ¯ÙÒÓ
¯ÂË˜Ù ·ÁÂ¯ ÌÚ ‰ˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚‰ ·Á¯ÓÏ ÈÏÓ¯ÂÂ˙¯Â‡ ÒÈÒ· ˙Â·Ï È„ÎÂ ‰‚¯„‰ ˙‡ ÚÂ·˜Ï È„Î ÏÈÚÈ
¯Â˙ÙÏ È„Î ‰Ê È¯ÂËÈ·ÓÂ˜ Ì˙È¯Â‚Ï‡ ÏˆÏ „ˆÈÎ ÌÈ‡¯Ó Â‡ Æ‰Ï˘ 2 ¯ÂË˜Ù ·ÁÂ¯ ˜Â¯ÈÙ Ô˙È‰· ¨2
ÂÓÒ¯ÂÙ ≥ ˜¯Ù· ˙Â‡ˆÂ˙‰ Æfinite-precision ˙˜ÈËÓ˙È¯‡· ˙ÂÓÈÂÒÓ ˙ÂÈ¯ÏÂ‚ÈÒ ˙ÂÈ¯‡ÈÏ ˙ÂÎ¯ÚÓ
“Combinatorial Characterization of the Null Spaces of Symmetric H-Matrices”, Linear – ·

ÆDoron Chen and Sivan Toledo ˙‡Ó Algebra and its Applications 392: 71–90 (2004)

‰ˆÈ¯ËÓ Ï˘ 2–˙Ó¯Â ÏÚ ÌÈÓÒÁ

ÌÈÏˆÓ ÂÏ‡‰ ÌÈÓÒÁ‰ Æ˙È˘ÓÓ ˙È·ÏÓ ‰ˆÈ¯ËÓ Ï˘ 2–˙Ó¯Â ÏÚ ÌÈÓÒÁ ¯ÙÒÓ ÌÈÁÈÎÂÓ Â‡ ¥ ˜¯Ù·
ÒÂÈ·Â¯Ù ˙Ó¯Â ÔÂ‚Î ÌÈ¯Á‡ ÌÈÚÂ„È ÌÈÓÒÁÓ ¯˙ÂÈ ÌÈ˜Â„‰ ˙Â·Â¯˜ ÌÈ˙ÈÚÏ Ì‰Â ¨W Ï˘ ˙ÂÏÈÏ„‰ ˙‡

∫ÈÎ ÌÈ‡¯Ó Â‡ Æm ÏÚ k Ï„Â‚· ‰ˆÈ¯ËÓW ‡‰˙ Æ®Frobenius©

‖W‖2
2 ≤ max

j

∑

i:Wi,j �=0

‖Wi,:‖2
2 = max

j

∑

i:Wi,j �=0

m∑

c=1

W2
i,c

‖W‖2
2 ≤ max

i

∑

j:Wi,j �=0

‖W:,j‖2
2 = max

i

∑

j:Wi,j �=0

k∑

r=1

W2
r,j

‖W‖2
2 ≤ max

j

∑

i:Wi,j �=0

|Wi,j| ·

 m∑

c=1

|Wi,c|




‖W‖2
2 ≤ max

i

∑

j:Wi,j �=0

|Wi,j| ·

 k∑

r=1

|Wr,j|




‖W‖2
2 ≤

∥∥∥WWT
∥∥∥

1

‖W‖2
2 ≤

∥∥∥WTW
∥∥∥

1

Ï˘ j ˙Â„ÂÓÚ‰ ÏÎ ÏÚ ¨ÌÂÓÈÒ˜Ó‰ È„È–ÏÚ ‰ÓÂÒÁ ¨ÚÂ·È¯·W Ï˘ 2–‰Ó¯Â‰˘ Ú·Â˜ ÔÂ˘‡¯‰ ÌÒÁ‰
≥ ¯ÂÈ‡ Æj – ‰ ‰„ÂÓÚ· ÒÙ‡Ó ‰Â˘ Í¯Ú ˙ÂÏÈÎÓ˘W ˙Â¯Â˘ Ï˘ 2–˙ÂÓ¯Â‰ ÈÚÂ·È¯ ÌÂÎÒ Ï˘ Ï˘ ¨W

π

˙ÂÈ¯ËÓÈÒ H–˙ÂˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚ È·Á¯Ó

È‰ÂÊ Â‡¯‰˘ ÈÙÎ˘© 2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚‰ È·Á¯Ó Ï˘ ‰·Ó‰ ˙‡ ÌÈÈÈÙ‡Ó Â‡ ≥ ˜¯Ù·
ÏÚ ÒÒ·˙Ó ÔÂÈÙÈ‡‰ Æ®˙ÂÈ¯ËÓÈÒ H+ ˙ÂˆÈ¯ËÓ Â‡ ¨ÌÈÈÏÈÏ˘–È‡ ÔÂÒÎÏ‡ È¯·È‡ ÌÚ H ˙ÂˆÈ¯ËÓ ˙ÁÙ˘Ó
ÌÈÓ˙È¯Â‚Ï‡ ÌÈ‚ÈˆÓ Â‡ Æ2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓÏ ÌÈÓÈ‡˙Ó‰ ÌÈÙ¯‚‰ Ï˘ ˙ÂÈ¯ÂËÈ·ÓÂ˜ ˙ÂÂÎ˙
ÌÚ ˙ÂˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚‰ ·Á¯ÓÏ ÈÏÓ¯ÂÂ˙¯Â‡ ÒÈÒ· ˙Â·ÏÂ ‰‚¯„‰ ˙‡ ·˘ÁÏ ÌÈÏ‚ÂÒÓ‰ ÌÈÈ¯ÂËÈ·ÓÂ˜

ÆÔ‰Ï˘ 2 ¯ÂË˜Ù ·ÁÂ¯ ˜Â¯ÈÙ Ô˙È‰· ¨2 ¯ÂË˜Ù ·ÁÂ¯
gain ÔÈ·Ï ÌÈÈÏÈÏ˘–È‡ ÔÂÒÎÏ‡ È¯·È‡ ÌÚ ˙ÂÈ¯ËÓÈÒ H–˙ÂˆÈ¯ËÓ ÔÈ· ˜Â„‰‰ ¯˘˜‰ ˙‡ ÌÈ¯˜ÂÁ Â‡
˙Â‡¯Ï Ô˙È Â·˘ ÔÂÂÎÓ ‡Ï Û¯‚ ‡Â‰ gain Û¯‚ Æ®[43, 44] voltage graphs ¯·Ú· Â‡¯˜˘© [79, 96] graphs
ÌÈÁÂÂ¯ ÌÈ‡¯˜ ‰Ï‡ ˙ÂÏ˜˘Ó ÆÔÂÂÈÎ ÏÎ· ÌÈÂ˘ ˙ÂÏ˜˘Ó ÌÚ ¨ÔÂÂÈÎ ÏÎ· ˙Á‡ ¨˙Â˙˘˜ „ÓˆÎ e ˙˘˜ ÏÎ
È˘ ˘È e – Ï ÈÊ‡ Æj „Â˜„Â˜ ÌÚ i „Â˜„Â˜ ˙¯·ÁÓ‰ ˙˘˜ e ‡‰˙ ∫‰‡·‰ ‰ÂÎ˙‰ ˙‡ Ô‰Ï ˘ÈÂ ¨®gains©

Æi – Ï j – Ó 1/g ÁÂÂ¯Â ¨j – Ï i – Ó g ÁÂÂ¯ ∫ÌÈÁÂÂ¯
¨A = UUT – Î Ô‚Èˆ‰Ï Ô˙È˘ ˙ÂˆÈ¯ËÓ‰ ÏÎ ˙‡ ˙ÏÏÂÎ 2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ Ï˘ ‰˜ÏÁÓ‰
‰¯Âˆ· ‰· A – Ï ÌÈ‡˙Ó‰ Û¯‚‰ ÆÒÙ‡Ó ÌÈÂ˘‰ ÌÈ¯·È‡ È˘ ¯˙ÂÈ‰ ÏÎÏ ˘È U Ï˘ ‰„ÂÓÚ ÏÎ·˘ ÍÎ
α ¨ÒÙ‡Ó ÌÈÂ˘ ÌÈ¯·È‡ È˘ ˘È u – · Ì‡ Æ˙˘˜ È„È–ÏÚ ˙‚ˆÂÈÓ U ‰ˆÈ¯ËÓ· u ‰„ÂÓÚ ÏÎ ∫‰‡·‰
−β/α ‰È‰È ÂÊ ˙˘˜ Ï˘ ÁÂÂ¯‰ ªj „Â˜„Â˜Ï i „Â˜„Â˜ ÔÈ· ˙˘˜Î Â˙Â‡ ‚Èˆ Ê‡ ¨j ÌÂ˜ÈÓ· β – Â i ÌÂ˜ÈÓ·
˙˘˜ ÂÊ˘ ¨˙˘˜–ÈˆÁ ÌÈ‡˙ ÒÙ‡Ó ‰Â˘ „Á‡ ¯·È‡ ÌÚ ˙Â„ÂÓÚÏ Æi – Ï j ÔÈ· −α/β – Â ¨j – Ï i ÔÈ·
ÂÏ ÌÈ‡˙ Ê‡ ¨i – ‰ ÌÂ˜ÈÓ· ÒÙ‡Ó ‰Â˘ „Á‡ Í¯Ú ˘È u – Ï Ì‡ ªÁÂÂ¯ ‡ÏÏÂ „·Ï· ˙Á‡ ‰ˆ˜ ˙„Â˜ Ì‡

Æi – ‰ ˜Â˜„Â˜· ‰ÏÁ˘ ˙˘˜–ÈˆÁ
¯˘‡Î A = UUT ÁÈ ¨‡Ó‚Â„Ï

U =




4 1

−1 1

8 2

2 −1 −3

−5 2

8 5

−4 5




.

‡Â‰ ˙‡Ê ‰ˆÈ¯ËÓÏ ÌÈ‡˙Ó‰ Û¯‚‰

1 3

2

4 7

5 6

half-a
rc

-0.5

0.25 -8

-2

4

-0
.1

25 2.
5

0.
4

-4

-0.25

0.
8

1.
25

0.2

5

ÆA – Ï ÌÈ‡˙Ó‰ Û¯‚‰ Ï˘ ‰ÏÈÁ‰ ˙ˆÈ¯ËÓÎ U Ï˘ nonzeros – ‰ ‰·Ó ˙‡ ˙Â‡¯Ï Ô˙È ÈÎ ·Ï ÂÓÈ˘
È·ÈÎ¯ Ï˘ ‰·Ó· ÈÂÏ˙ ˙È¯ËÓÈÒ H–˙ˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚‰ ·Á¯Ó Ï˘ ‰·Ó‰˘ ÌÈ‡¯Ó Â‡ ≥ ˜¯Ù·

ÆÔÈÚ¯‚‰ ·Á¯ÓÏ „Á‡ ¯ÂË˜ÂÂ ¯˙ÂÈ‰ ÏÎÏ Ì¯Â˙ ˙Â¯È˘˜ ·ÈÎ¯ ÏÎ Æ‰Ï ÌÈ‡˙Ó‰ Û¯‚‰ Ï˘ ˙Â¯È˘˜‰
ÔÂÊÈ‡· ÈÂÏ˙ ‰Ê ¨ÔÎ·Â ø‡Ï Â‡ ÔÈÚ¯‚‰ ·Á¯ÓÏ ¯ÂË˜ÂÂ Ì¯Â˙ ‡Â‰ Ì‡‰ ¨ÌÈÈÂÒÓ ˙Â¯È˘˜ ·ÈÎ¯ Ô˙È‰·
Â‡ ÔÂÂÎÓ ÏÂÏÒÓ Ï˘ ÁÂÂ¯‰ ∫˙Â‡·‰ ˙Â¯„‚‰Ï ÌÈ˜Â˜Ê Â‡ ¨˙Â¯È˘˜ ·ÈÎ¯ Ï˘ ÔÂÊÈ‡ ¯È„‚‰Ï ˙Ó–ÏÚ ÆÂÏ˘
ÂÏ˘ ÁÂÂ¯‰ Ì‡ ÔÊÂ‡Ó ‡Â‰ Ï‚ÚÓ ÆÏ‚ÚÓ‰ Â‡ ÏÂÏÒÓ‰ Í¯Â‡Ï ˙Â˙˘˜‰ Ï˘ ÌÈÁÂÂ¯‰ ˙ÏÙÎÓ ‡Â‰ Ï‚ÚÓ
Ì‰ Â· ÌÈÏ‚ÚÓ‰ ÏÎ Ì‚Â ˙Â˙˘˜–È‡ˆÁ ÏÈÎÓ ÂÈ‡ ‡Â‰ Ì‡ ÔÊÂ‡Ó ‡¯˜ ˙Â¯È˘˜ ·ÈÎ¯ Æ+1 ˜ÂÈ„· ‡Â‰
‰‚¯„ ˘È ÔÊÂ‡Ó ‡Ï ·ÈÎ¯ ÏÎÏ˘ „ÂÚ· ¨ÔÈÚ¯‚‰ ·Á¯ÓÏ „Á‡ ¯ÂË˜ÂÂ Ì¯Â˙ ÔÊÂ‡Ó ·ÈÎ¯ ÏÎ ÈÎ Â‡¯‰ ÆÌÈÊÂ‡Ó
Æ˙Â˙˘˜–È‡ˆÁ ÏÈÎÓ ÂÈ‡Â ÔÊÂ‡Ó ‡Â‰˘ „Á‡ Ï‚ÚÓ ÏÈÎÓ ÈÏ‡Ó˘‰ ˙Â¯È˘˜‰ ·ÈÎ¯ ¨ÂÏ˘ ‡Ó‚Â„· Æ‰‡ÏÓ

∏

A =

[
5 −3

−3 2

]
|A| =

[
5 3

3 2

]

dn (|A|) =

[
1 3√

10
3√
10

1

]
�‖dn (|A|)‖2� =

⌈∥∥∥∥∥
[

1 3√
10

3√
10

1

]∥∥∥∥∥
⌉

=

�1.9487� = 2

Æ¯ÂË˜Ù‰ ·ÁÂ¯ ÏÚ ÔÂ˙Á˙ ÌÒÁÏ ‡Ó‚Â„ ∫≤ ¯ÂÈ‡

Æ˙ÈÂÒÎÏ‡ ˙ËÏÂ˘ ‰È‡
¨‡Ó‚Â„Ï Æ2 ¯ÂË˜Ù ·ÁÂ¯ ˘È ‰ˆÁÓÏ ˙ÂÈ·ÂÈÁ‰ ˙ÂÈ¯ËÓÈÒ‰ ˙ÂˆÈ¯ËÓ‰ ÏÎÏ ‡Ï˘ ¯Â¯· ¨ÔÎ ÂÓÎ

A =




1 1 1

1 1 1

1 1 1


 .

∫ÍÎ ‚Èˆ‰Ï Ô˙È A ‰ˆÈ¯ËÓ ˙‡

A =




1

1

1


 ·

[
1 1 1

]
,

∫2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ‚ÂˆÈÈ ˙ÂÈ‰Ï ÏÂÎÈ ‡Ï A – Ï ¨ÔÎ ÂÓÎ Æ3 ¯˙ÂÈ‰ ÏÎÏ ‡Â‰ ‰Ï˘ ¯ÂË˜Ù‰ ·ÁÂ¯ ÔÎÏ
„Ú ˙Â‰Ê U Ï˘ ˙Â„ÂÓÚ‰ ÏÎ˘ ÌÈÈ˜Ï ·ÈÈÁ A = UUT – Î A Ï˘ ‚ÂˆÈÈ ÏÎ ÔÎÏ ¨1 ‡È‰ A Ï˘ ‰‚¯„‰
‡È‰ ÂÊ ‰„ÂÓÚ˘ ˙Â‡¯‰Ï Ï˜Â ¨˙„„Â· ‰„ÂÓÚ ˘È U – · ¨˙ÂÈÏÏÎ‰ ˙Ï·‚‰ ÈÏ· ¨ÔÎÏ ÆÚÂ·˜· ‰ÏÙÎÓ È„Î

Æ1 ‰¯ÙÒ‰Ó ˜¯ ˙·Î¯ÂÓ‰ ‰„ÂÓÚ
∫Ô‰ 2 ˜¯Ù Ï˘ ˙ÂÈÊÎ¯Ó‰ ˙Â‡ˆÂ˙‰

H+ ÔÂÓÈÒ‰ Æ˙È¯ËÓÈÒ H+–˙ˆÈ¯ËÓ ‡È‰ Ì‡ ˜¯Â Ì‡ ÌÈÈ˙˘ ¯˙ÂÈ‰ ÏÎÏ ¯ÂË˜Ù ·ÁÂ¯ ˘È ‰ˆÈ¯ËÓÏ
ÆÌÈÈÏÈÏ˘–È‡ ÔÂÒÎÏ‡ È¯·È‡ ÌÚ H–˙ÂˆÈ¯ËÓ ‚ˆÈÈÓ

ÍÎÏ ‡È·Ó˘ ¨A Ï˘ ˙Â„ÂÓÚ‰Â ˙Â¯Â˘‰ Ï˘ È¯ËÓÈÒ‰ scaling – ‰ ˙‡ ÔÓÒÓ dn(A) ∫‰¯„‚‰
ÌÈ¯‡˘˘ ¨A Ï˘ ˙ÂÒÙÂ‡Ó ˙Â¯Â˘ Ï˘ ÔÂÒÎÏ‡‰ È¯·È‡ „·ÏÓ© 1 ÌÏÂÎ ÂÈ‰ÈA Ï˘ ÔÂÒÎÏ‡‰ ÏÚ ÌÈ¯·È‡‰˘

Æ®ÒÙ‡
Æ�‖dn(A)‖�2 È„È–ÏÚ ‰ËÓÏÓ ÌÂÒÁ A Ï˘ ¯ÂË˜Ù‰ ·ÁÂ¯ ¨A SPSD ‰ˆÈ¯ËÓ ÏÎÏ ∫ËÙ˘Ó

∫®≤ ¯ÂÈ‡· ‰ÚÈÙÂÓ ‰Ê ÌÒÁÏ ‡Ó‚Â„© ¯˙ÂÈ ˜Â„‰ ÌÒÁ Ì‚ ÂÁÎÂ‰
ÔÂÓÈÒ‰ Æ�‖dn (|A|)‖�2 È„È–ÏÚ ‰ËÓÏÓ ÌÂÒÁ A Ï˘ ¯ÂË˜Ù‰ ·ÁÂ¯ ¨A SPSD ‰ˆÈ¯ËÓ ÏÎÏ ∫ËÙ˘Ó

Æ|Aij| ‡Â‰ (i, j) ¯·È‡‰ ‰·˘ ‰ˆÈ¯ËÓ‰ ˙‡ ‚ˆÈÈÓ |A|

ÔÂÒÎÏ‡ È¯·È‡ ÌÚ ˙È¯ËÓÈÒ ‡È‰ Ì‡ ˜¯Â Ì‡ 2 ¯˙ÂÈ‰ ÏÎÏ ¯ÂË˜Ù ·ÁÂ¯ ˘È A ‰ˆÈ¯ËÓÏ ∫ËÙ˘Ó
Æ�‖dn (|A|)‖�2 ≤ 2 ˙ÓÈÈ˜ÓÂ ÌÈÈÏÈÏ˘–È‡

ÌÚ ¨¯ÂË˜Ù‰ ·ÁÂ¯ ¯ÓÂÏÎ ¨„È„· È¯ÂËÈ·ÓÂ˜ „„Ó ˙Â¯˘Â˜ Ô‰˘ ÍÎÓ ˙Ú·Â ÂÏ‡‰ ˙Â‡ˆÂ˙‰ Ï˘ ÈÙÂÈ‰
“On Factor Width and Symmetric – · ÂÓÒ¯ÂÙ ≤ ˜¯Ù· ˙Â‡ˆÂ˙‰ ÆÛÈˆ¯ „„Ó ‡Â‰˘ ¨‰ˆÈ¯ËÓ Ï˘ ‰Ó¯Â
Erik G. Boman, ˙‡Ó H-matrices”, Linear Algebra and its Applications 405: 239–248 (2005)

ÆDoron Chen, Ojas Parekh and Sivan Toledo

∑

A =




11 −2 −5 −4

−2 13 −5 −6

−5 −5 17 −6 −1

−6 8 −2

−4 −1 12 −3 −4

−6 −2 −3 16 −5

−4 −5 15 −6

−6 6




U =




√
2

√
5

√
4

−
√

2
√

5
√

6

−
√

5 −
√

5
√

6
√

1

−
√

4 −
√

6
√

2

−
√

1
√

3
√

4

−
√

6 −
√

2 −
√

3
√

5

−
√

4 −
√

5
√

6

−
√

6




5

4 6

5

2

3

3

4 5

6

1 2

ÌÈ˙Óˆ‰ Æ®‰ËÓÏ© GA ‰Ï˘ Û¯‚‰Â ®ÚˆÓ‡·© U ‰Ï˘ È·ÏÓ‰ ˜Â¯ÈÙ‰ ¨®‰ÏÚÓÏ© A SDD ˙ˆÈ¯ËÓ ∫± ¯ÂÈ‡
ÆÔÈÓÈÏ Ï‡Ó˘ÓÂ ‰ËÓÏ ‰ÏÚÓÏÓ ÌÈ¯ÙÒÂÓÓ

∂

=




1 0 0

0 4 4

0 4 4


 +




1

−1

0


 ·

[
1 −1 0

]

=


 1 0 0

0 0 0

0 0 0


 +


 0 0 0

0 4 4

0 4 4


 +


 1

−1

0


 ·

[
1 −1 0

]

=




1 0 0

0 0 0

0 0 0


 +




0

2

2


 ·

[
0 2 2

]
+




1

−1

0


 ·

[
1 −1 0

]

=




1

0

0


 ·

[
1 0 0

]
+




0

2

2


 ·

[
0 2 2

]
+




1

−1

0


 ·

[
1 −1 0

]

=




1 0 1

−1 2 0

0 2 0


 ·




1 0 1

−1 2 0

0 2 0




T

.

Ï˘ „Á‡ ÔÂÒÎÏ‡ Í¯Ú· Â‡ ÔÂÒÎÏ‡Ï ıÂÁÓ „Á‡ Í¯Ú· ÌÈÏÙËÓ Â‡ ˜Â¯ÈÙ‰ Ï˘ „Úˆ ÏÎ· ÈÎ ·Ï ÂÓÈ˘
Æ˘ÓÓ ˙ÈÂÒÎÏ‡ ˙ËÏÂ˘ ‡È‰˘ ‰¯Â˘

ÌÈ‡˙Ó‰ Û¯‚‰ Ï˘ ®incidence matrix© ‰ÏÈÁ‰ ˙ˆÈ¯ËÓ Ï˘ ‰Ê ‡Â‰ U Ï˘ nonzeros – ‰ ‰·Ó
Â˙Â‡ Ï˘ ®adjacency matrix© ˙ÂÈÂÎÈÓÒ ˙ˆÈ¯ËÓ Ï˘ ÂÊ ‡È‰ ‰ÓˆÚ A Ï˘ nonzeros – ‰ ‰·Ó ªA– Ï

Æ‰Ï ÌÈ‡˙Ó‰ Û¯‚‰ ˙‡Â U ‰Ï˘ È·ÏÓ ˜Â¯ÈÙ ¨A ‰ˆÈ¯ËÓ ‰‡¯Ó 1 ¯ÂÈ‡ ÆÛ¯‚‰
¨¯·Ú· ˙Â·¯ ÌÈÓÚÙ ‰ÏˆÂ ÌÈÏ˜˘ÂÓÓ ÌÈÙ¯‚Â ˙ÈÂÒÎÏ‡–˙ÂËÏÂ˘ ˙ÂÈ¯ËÓÈÒ ˙ÂˆÈ¯ËÓ ÔÈ· ‰Ó‡˙‰‰

∫ÏÈ·˘· ¯‡˘‰ ÔÈ·

‰ˆÈ¯ËÓ‰ Ï˘ ÌÈÈÓˆÚ ÌÈÎ¯Ú ˙ÂÚˆÓ‡· ¨ÔÊÂ‡Ó ÌÈ˙Óˆ „È¯ÙÓ Ï„Â‚ ÔÂ‚Î ¨Û¯‚‰ Ï˘ ˙ÂÂÎ˙ ÔÈÈÙ‡Ï •
ª[17, 31, 33, 34, 35, 47, 48, 54, 76, 77, 87] ‰ÓÈ‡˙Ó‰

Æ[30, 34, 35, 49, 50, 62, 83] Û¯‚· ÌÈ·Ó ˙ÂÚˆÓ‡· A Ï˘ ÔË˜‰ ÈÓˆÚ‰ Í¯Ú‰ ˙‡ ÌÂÒÁÏ •
˙ÂÚˆÓ‡· ˙ÂˆÈ¯ËÓ ‚ÂÊ Ï˘ ÏÏÎÂÓ‰ ®condition number© ‰ÈÈ˙‰‰ ¯ÙÒÓ ˙‡ ÌÂÒÁÏ •

ª[9, 16, 42] Ì‰Ï ÌÈÓÈ‡˙Ó‰ ÌÈÙ¯‚‰ Ï˘ embeddings

Û¯‚ ˙ÈÈ· È„È–ÏÚ Â‡ [9, 13, 93] ÌÈ‡˙Ó‰ Û¯‚‰ Ï˘ ÏÂÏÈ„ È„È–ÏÚ preconditioners ˙Â·Ï •
ª[42] ÂÈÏ‡ ¯Â˘˜‰

–˙ÂËÏÂ˘ ˙ÂÈ¯ËÓÈÒ ˙ÂˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚‰ ·Á¯Ó ·Â˘ÈÁÏ ÌÈÈ¯ÂËÈ·ÓÂ˜ ÌÈÙ¯‚ ÈÓ˙È¯Â‚Ï‡ ÔÎ˙Ï •
Æ[22] ˙ÈÂÒÎÏ‡

A – Ï ˘È˘ ÍÎ k ¯˙ÂÈ· ÔË˜‰ ÈÚ·Ë‰ ¯ÙÒÓ‰ ˙ÂÈ‰Ï A ‰ˆÈ¯ËÓ Ï˘ ¯ÂË˜Ù‰ ·ÁÂ¯ ˙‡ ÌÈ¯È„‚Ó Â‡
Â‡ ÆÒÙ‡Ó ÌÈÂ˘‰ ÌÈ¯·È‡ k ¯˙ÂÈ‰ ÏÎÏ ˘È U Ï˘ ‰„ÂÓÚ ÏÎ·˘ ÍÎ A = UUT È¯ËÓÈÒ ˜Â¯ÈÙ
˙È¯ËÓÈÒ ‰ˆÈ¯ËÓ Æ‰ˆÈ¯ËÓ Ï˘ ¢˙È¯ÂËÈ·ÓÂ˜‰ ˙Â·Î¯ÂÓ¢‰ ¯Â·Ú ·ÂË „„Ó ‡Â‰ ¯ÂË˜Ù‰ ·ÁÂ¯ ÈÎ ÌÈÚÂË
ÆÔÂÂÎÓ–‡Ï Ï˜˘ÂÓÓ Û¯‚Ï ‰ÓÈ‡˙Ó˘U ‰ÏÁ‰ ˙ˆÈ¯ËÓ ‰Ï ˘È˘ ‰ÈÁ·‰Ó ‰ËÂ˘Ù ‡È‰ ˙ÈÂÒÎÏ‡–˙ËÏÂ˘
Â·˘ Û¯‚–¯ÙÈ‰Ï ‰ÓÈ‡˙Ó˘ U ‰ÏÁ‰ ˙ˆÈ¯ËÓ Ô‰Ï ˘È Ï·‡ ¨‰ÊÎ ˜Â¯ÈÙ ÔÈ‡ 3 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓÏ

Æ˙˘˜–¯ÙÈ‰ ÏÎ· ÌÈ„Â˜„Â˜ 3 ¯˙ÂÈ‰–ÏÎÏ ˘È
¨‡Ó‚Â„Ï Æ˙ÈÂÒÎÏ‡ ˙ÂËÏÂ˘ 2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ‰ ÏÎ ‡Ï ÈÎ ¯Â¯·

[
1

2

]
·
[

1 2
]

=

[
1 2

2 4

]

¯Èˆ˜˙

ÂÏÏ‰ ˙Â‡ˆÂ˙‰ ÏÎ Æ‰ÏÈÏ„ ˙È¯‡ÈÈÏ ‰¯·‚Ï‡· ˙ÂÈÓ˙È¯Â‚Ï‡Â ˙ÂÈ¯·‚Ï‡ ˙Â‡ˆÂ˙ ‰‚ÈˆÓ ˙‡Ê ‰Ê˙
Æ®Support Theory© ‰ÎÈÓ˙‰ ˙¯Â˙· ˘ÂÓÈ˘ ˙Â˘ÂÚ

¨˙Â‡ˆÂ˙‰ Ô‰ ‰Ó ˙‡ ¯È·Ò‰Ï ‡È‰ ˜¯Ù‰ ˙¯ËÓ Æ‰Ê˙‰ Ï˘ ˙ÂÈ¯˜ÈÚ‰ ˙Â‡ˆÂ˙‰ ˙‡ ÌÈ‚„Ó ‰Ê ˜¯Ù
˙‡ ¯‡˙Ó ÛÈÚÒ ÏÎ Æ‰˘ÁÓ‰ Í¯ÂˆÏ ˙Â·¯ ˙ÂË˜ ˙Â‡Ó‚Â„· ÌÈ˘Ó˙˘Ó Â‡ ÆÔ˙Â‡ ÂÁÎÂ‰ ÍÈ‡ ‡ÏÂ

Æ‰Ê˙· „Á‡ ˜¯Ù Ï˘ ˙ÂÈ¯˜ÈÚ‰ ˙Â‡ˆÂ˙‰

¯ÂË˜Ù ·ÁÂ¯

˙È¯ÂËÈ·ÓÂ˜‰ ˙Â·Î¯ÂÓÏ „„Ó ¨®factor width© ¯ÂË˜Ù ·ÁÂ¯ Ì˘· ÈÂÈˆÈ¯ËÓ ‚˘ÂÓ ÌÈ¯È„‚Ó Â‡ ≤ ˜¯Ù·
˙Â˜ÏÁÓ Ï˘ ‰ÈÎ¯¯È‰ ÂÏ Ô˙Â ‰Ê ‚˘ÂÓ Æ®SPSD ˙ÂˆÈ¯ËÓ© ‰ˆÁÓÏ ˙ÂÈ·ÂÈÁ ˙ÂÈ¯ËÓÈÒ ˙ÂˆÈ¯ËÓ Ï˘
˙ÂˆÈ¯ËÓ ÆÌÈÙ¯‚Î Ô‚ˆÈÈÏ Ô˙È˘ ˙ÂˆÈ¯ËÓ Ô‰ 2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ ÆSPSD ˙ÂˆÈ¯ËÓ ¯Â·Ú ˙ÂˆÈ¯ËÓ
¯˙ÂÈ‰ ÏÎÏ ˙¯·ÁÓ ˙˘˜–¯ÙÈ‰ ÏÎ˘ ÍÎ ¨ÌÈÙ¯‚–¯ÙÈ‰Î Ô‚ˆÈÈÏ Ô˙È˘ ˙ÂˆÈ¯ËÓ Ô‰ 3 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ
¨ÌÈÙ¯‚–¯ÙÈ‰Î Ô‚ˆÈÈÏ Ô˙È˘ ˙ÂˆÈ¯ËÓ Ô‰ k ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ ¨ÈÏÏÎ ÔÙÂ‡· ÆÌÈ„Â˜„Â˜ ‰˘ÂÏ˘
‡È‰ ÌÈÙ¯‚–¯ÙÈ‰Ï SPSD ˙ÂˆÈ¯ËÓ ÔÈ· ‰Ó‡˙‰‰ ÆÌÈ„Â˜„Â˜ k ¯˙ÂÈ‰ ÏÎÏ ˙¯·ÁÓ ˙˘˜–¯ÙÈ‰ ÏÎ˘ ÍÎ
‰· ‰˘Ú˘ ¨˙ÈÂÒÎÏ‡–˙ÂËÏÂ˘ ˙ÂÈ¯ËÓÈÒ ˙ÂˆÈ¯ËÓÂ ÌÈÏ˜˘ÂÓÓ ÌÈÙ¯‚ ÔÈ· ‰ÚÂ„È ‰Ó‡˙‰ Ï˘ ‰ÏÏÎ‰

Æ¯·Ú· ·¯ ˘ÂÓÈ˘
È¯ËÓÈÒ ˜Â¯ÈÙ A ®SDD ‰ˆÈ¯ËÓ© ˙ÈÂÒÎÏ‡–˙ËÏÂ˘ ˙È¯ËÓÈÒ ˙È˘ÓÓ ‰ˆÈ¯ËÓ ˜¯ÙÏ Ô˙È „ÈÓ˙
ÌÈÂ˘‰ ÌÈ¯·È‡‰ ÏÎ ¨Ë¯Ù·Â© ÒÙ‡Ó ÌÈÂ˘ ÌÈ¯·È‡ È˘ ¯˙ÂÈ‰ ÏÎÏ ˘È U Ï˘ ˙Â„ÂÓÚÏ˘ ÍÎ ¨A = UUT

‰ˆÈ¯ËÓ· ÂËÈ·‰ ¨‡Ó‚Â„Ï Æ[13] ®ÔÓÈÒ È„Î „Ú ÌÈ‰Ê U Ï˘ ‰„ÂÓÚ· ÒÙ‡Ó

A =




2 −1 0

−1 5 4

0 4 4


 .

¯˘‡Î A = UUT– Î ‚Èˆ‰Ï Ô˙È A ‰ˆÈ¯ËÓ ˙‡

U =


 1 0 1

−1 2 0

0 2 0


 .

∫‰‡·‰ Í¯„· ·˘ÂÁÓ ‰Ê ˜Â¯ÈÙ

A =




2 −1 0

−1 5 4

0 4 4


 =

=


 1 0 0

0 4 4

0 4 4


 +


 1 −1 0

−1 1 0

0 0 0




µ

¥

Electronic Transactions – · ÌÂÒ¯ÈÙÏ ÂÏ·˜˙‰ ÂÏ‡ ˙Â‡ˆÂ˙ Æ‰Ï‡ ÌÈÓÒÁ Ï˘ ˙È¯ÂËÈ·ÓÂ˜‰
on Numerical Analysis, “Obtaining Bounds on the Two Norm of a Matrix from the

ÆDoron Chen, John R. Gilbert and Sivan Toledo ˙‡Ó Splitting Lemma”

‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈ˘„Á ÌÈÓÂ˘ÈÈ ÌÈ‚ÈˆÓ Â‡ ∫˙·˘ÁÂÓÓ ‰˜ÈÙ¯‚· ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÓÂ˘ÈÈ Æ¥
Â‡Â ¨‰ˆÈ¯ËÓ ÂÏ ˙˙È ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÓÈÈ˜‰ ÌÈ˘ÂÓÈ˘‰ ·Â¯· Æ˙·˘ÁÂÓÓ ‰˜ÈÙ¯‚·
¨‰Ê ÌÂ˘ÈÈ· Æpreconditioning ‰Ï Úˆ·Ï ˙Ó–ÏÚ Â‡ ‰˙Â‡ Á˙Ï ˙Ó–ÏÚ Û¯‚Î ‰˙Â‡ ÌÈ‚ˆÈÈÓ
˘ÂÓÈ˘ ‰˘ÂÚ ‰ÒÈÁ„‰ ÆÒÂÁ„Ï ÂÂˆ¯·˘ Û¯‚ ÂÏ Ô˙È ‰Ê ‰¯˜Ó· ÆÍÂÙ‰ ‡Â‰ ÍÈÏ‰˙‰ ¨˙‡Ê ˙ÓÂÚÏ

Æ˙Â¯È˘˜‰ Û¯‚Ó ˙Ú·Â˘ Ô‡ÈÒÏÙÏ ˙ÈÂÓ„ ‰ˆÈ¯ËÓ·
ÆHigh-Pass Quantization ˙‡¯˜‰ ÌÈ‚È¯˘ ˙ÒÈÁ„ ˙ËÈ˘ Ï˘ È¯·‚Ï‡ ÁÂ˙È ÌÈÚˆ·Ó ÂÁ‡
ÏÚ ˙ÏÚÙÂÓ ‚È¯˘‰ Ï˘ Ô‡ÈÒÏÙÏ‰ ÏÚ ˙ÒÒÂ·Ó˘ ˙È·ÏÓ ‰ˆÈ¯ËÓ ¨High-Pass Quantization – ·
ÌÈ‡¯˜˘ ¨ÌÈÏ·˜˙Ó‰ ÌÈ¯ÂË˜ÂÂ‰ ˙‡ Æ‚È¯˘‰ È„Â˜„Â˜ Ï˘ ˙ÂÈÊË¯˜‰ ˙ÂË‡È„¯Â‡Â˜‰ Ï˘ ¯ÂË˜ÂÂ‰
‚È¯˘‰ Ï˘ ‰È‚ÂÏÂÙÂË‰Ó ˙¯Ê‚ ˙ÏÚÙÂÓ˘ ‰ˆÈ¯ËÓ‰ Æ¯˙ÂÈ ÍÂÓ ˜ÂÈ„· ÌÈ‚ˆÈÈÓ ¨δ–˙ÂË‡È„¯Â‡Â˜
ÌÈ˙Óˆ Ï˘ ˙ÂË‡È„¯Â‡Â˜‰Ó ‡Ï Ï·‡ ¨®ÌÈ‚ÂÚ© ‚È¯˘· ÌÈ˙Óˆ Ï˘ ‰Ë˜ ‰ˆÂ·˜ Ï˘ ÌÈÒ˜„È‡‰ÓÂ
Ï˘ È·Á¯Ó‰ ÌÂ˜ÈÓ‰ÓÂ ˙Â·¯Â˜Ó‰ δ–‰ ˙ÂËÈ„¯Â‡Â˜Ó ‰È¯ËÓÂ‡È‚‰ Ï˘ ·Â¯È˜ Ï·˜Ï Ô˙È Æ‰Ï‡
ÆÂÊ ‰ÒÈÁ„ ˙ËÈ˘· ˘ÂÓÈ˘Ó ˙Ú·Â˘ ‰‡È‚˘‰ ˙‡ ˙È¯·‚Ï‡ ÌÂÒÁÏ Ô˙È „ˆÈÎ ÌÈ‡¯Ó Â‡ ÆÌÈ‚ÂÚ‰
ÌÂÒÁÏ È„Î Ô‰ ‰ÈˆÓ¯ÂÙÒ¯Ë‰ ˙ˆÈ¯ËÓ Ï˘ ÔË˜‰ È¯ÏÂ‚ÈÒ‰ Í¯Ú· ˘Ó˙˘‰Ï Ô˙È ÈÎ ÌÈ‡¯Ó Â‡
floating ˙˜ÈËÓ˙È¯‡· ˘ÂÓÈ˘Ó ˙Ú·Â‰ ¨ÏÂ‚ÈÚ‰ ˙‡È‚˘ ˙‡ ÌÂÒÁÏ È„Î Ô‰Â ·Â¯È˜‰ ˙‡È‚˘ ˙‡
Ï˘ ‰È‚ÂÏÂÙÂË‰ Ï˘ ‰Èˆ˜ÂÙ ‡Â‰ ÌÒÁ‰ Æ‰Ê È¯ÏÂ‚ÈÒ Í¯Ú ÏÚ ÌÒÁ ÌÈ‡¯Ó Â‡ ¨ÛÒÂ· Æpoint
Æ‰Ê ÌÒÁ ÔÈË˜‰Ï „ÚÂ˘ ¨ÌÈ‚ÂÚ ˙¯ÈÁ·Ï Ì˙È¯Â‚Ï‡ Ì‚ ÌÈÚÈˆÓ Â‡ ÆÂ¯Á·˘ ÌÈ‚ÂÚ‰ Ï˘Â ‚È¯˘‰
ÂÈ‡ ‰‡È‚˘Ï Â·˘ÈÁ˘ ÔÂÈÏÚ‰ ÌÒÁ‰ ÈÎÂ ¨ÏÈÚÈ ‡Â‰ ‰Ê Ì˙È¯Â‚Ï‡ ÈÎ ˙ÈÈÂÒÈ ‰¯Âˆ· ÌÈ‡¯Ó Â‡
ACM Transactions on Graphics, “Algebraic – · ÌÂÒ¯ÈÙÏ ÂÏ·˜˙‰ ÂÏ‡ ˙Â‡ˆÂ˙ ÆÈ„Ó ÈÓÈÒÙ
Doron Chen, Daniel Cohen-Or, Olga Sorkine, ˙‡Ó Analysis of High-Pass Quantization”

Æand Sivan Toledo

˙ÈˆÓ˙

˙Â˘ÂÚ ÂÏÏ‰ ˙Â‡ˆÂ˙‰ ÏÎ Æ‰ÏÈÏ„ ˙È¯‡ÈÈÏ ‰¯·‚Ï‡· ˙ÂÈÓ˙È¯Â‚Ï‡Â ˙ÂÈ¯·‚Ï‡ ˙Â‡ˆÂ˙ ‰‚ÈˆÓ ˙‡Ê ‰Ê˙
˙Ó–ÏÚ ¯Â˜Ó· Â„ÚÂ ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÏÎ‰˘ ˙Â¯ÓÏ Æ®Support Theory© ‰ÎÈÓ˙‰ ˙¯Â˙· ˘ÂÓÈ˘
¨preconditioning Â¯·Ú˘ ˙ÂÈ¯‡ÈÈÏ ˙ÂÎ¯ÚÓ Ï˘ ®condition numbers© ‰È˙‰‰ È¯ÙÒÓ ˙‡ ÌÂÒÁÏ
˙¯Â˙· ÌÈÓÂ˘ÈÈ ˘È ˙‡Ê ‰„Â·Ú· ˙Â‡ˆÂ˙Ï ÆÌÈ¯Á‡ ÌÈ˘ÂÓÈ˘ Ï˘ ÔÂÂ‚Ó ˘È ‰Ï‡ ÌÈÏÎÏ ÈÎ ÌÈ‡¯Ó Â‡
˘Ó˙˘‰Ï Ô˙È „ˆÈÎ ÌÈ‡¯Ó Â‡ ¨Ï˘ÓÏ Æ˙ÂÈ‡ÓˆÚ ˙ÂÈ¯·‚Ï‡ ˙Â‡ˆÂ˙Î Ì‚ Ô˙Â‡ ˙Â‡¯Ï Ô˙È Í‡ ¨‰ÎÈÓ˙‰
ÌÈ‡¯Ó Â‡ ÆÈ‰˘ÏÎ ˙È·ÏÓ ˙È˘ÓÓ ‰ˆÈ¯ËÓ Ï˘ 2–˙Ó¯Â ÏÚ ÌÈ˘„Á ÌÈÓÒÁ ‚È˘‰Ï È„Î ‰ÎÈÓ˙‰ ˙¯Â˙·
Æ˙ÂÈ¯ÏÂ‚ÈÒ ˙ÂÈ¯‡ÈÈÏ ˙ÂÎ¯ÚÓ ÔÂ¯˙Ù·Â ˙·˘ÁÂÓÓ ‰˜ÈÙ¯‚· ‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈ˘„Á ÌÈ˘ÂÓÈ˘ Ì‚

∫ÌÈÈ¯˜ÈÚ ÌÈ‡˘Â ‰Ú·¯‡ ˙‡Ê ‰Ê˙·

˙Â·Î¯ÂÓÏ „„Ó ¨®factor width© ¯ÂË˜Ù ·ÁÂ¯ Ì˘· ÈÂÈˆÈ¯ËÓ ‚˘ÂÓ ÌÈ¯È„‚Ó Â‡ ∫¯ÂË˜Ù ·ÁÂ¯ Æ±
symmetric positive semi- ˙ÂˆÈ¯ËÓ© ‰ˆÁÓÏ ˙ÂÈ·ÂÈÁ ˙ÂÈ¯ËÓÈÒ ˙ÂˆÈ¯ËÓ Ï˘ ˙È¯ÂËÈ·ÓÂ˜‰
ÆSPSD ˙ÂˆÈ¯ËÓ ¯Â·Ú ˙ÂˆÈ¯ËÓ ˙Â˜ÏÁÓ Ï˘ ‰ÈÎ¯¯È‰ ÂÏ Ô˙Â ‰Ê ‚˘ÂÓ Æ®SPSD Â‡ ¨definite
Ô‰ 3 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ ÆÌÈÙ¯‚Î Ô‚ˆÈÈÏ Ô˙È˘ ˙ÂˆÈ¯ËÓ Ô‰ 2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ
ÆÌÈ„Â˜„Â˜ ‰˘ÂÏ˘ ¯˙ÂÈ‰ ÏÎÏ ˙¯·ÁÓ ˙˘˜–¯ÙÈ‰ ÏÎ˘ ÍÎ ¨ÌÈÙ¯‚–¯ÙÈ‰Î Ô‚ˆÈÈÏ Ô˙È˘ ˙ÂˆÈ¯ËÓ
ÏÎ˘ ÍÎ ¨ÌÈÙ¯‚–¯ÙÈ‰Î Ô‚ˆÈÈÏ Ô˙È˘ ˙ÂˆÈ¯ËÓ Ô‰ k ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ˙ÂˆÈ¯ËÓ ¨ÈÏÏÎ ÔÙÂ‡·
ÌÚ ˙ÂÈ¯ËÓÈÒ‰ ˙ÂˆÈ¯ËÓ‰ ˙ˆÂ·˜ ÈÎ ÌÈÁÈÎÂÓ Â‡ ÆÌÈ„Â˜„Â˜ k ¯˙ÂÈ‰ ÏÎÏ ˙¯·ÁÓ ˙˘˜–¯ÙÈ‰
ÌÈÁÈÎÂÓ Â‡ ÆÌÈÈ·ÂÈÁ–È‡ ÌÈÈÂÒÎÏ‡ ÌÈ¯·È‡ ÌÚ H–˙ÂˆÈ¯ËÓ ˙ˆÂ·˜ ˜ÂÈ„· ‰Ê‡È‰ 2 ¯ÂË˜Ù ·ÁÂ¯
˙Â‡ˆÂ˙ Æ2 ¯˙ÂÈ‰ ÏÎÏ ¯ÂË˜Ù È·ÁÂ¯ ¯Â·Ú ˜Â„‰ ‡Â‰˘ „Á‡ ÌÒÁ ÏÏÂÎ ¨¯ÂË˜Ù‰ ·ÁÂ¯ ÏÚ ÌÈÓÒÁ
“On Factor Width and Symmetric H-matrices”, Linear Algebra and ¯Ó‡Ó· ÂÓÒ¯ÂÙ ÂÏ‡
Erik G. Boman, Doron Chen, Ojas Parekh ˙‡Ó its Applications 405: 239–248 (2005)

Æand Sivan Toledo

ÌÚ ˙ÂˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚‰–È·Á¯Ó ‰·Ó ˙‡ ÌÈÈÈÙ‡Ó Â‡ ∫˙ÂÈ¯ËÓÈÒ H–˙ÂˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚ È·Á¯Ó Æ≤
‰·Ó· ÈÂÏ˙ 2 ¯ÂË˜Ù ·ÁÂ¯ ÌÚ ‰ˆÈ¯ËÓ Ï˘ ÔÈÚ¯‚‰ ·Á¯Ó Ï˘ ‰·Ó‰˘ ÌÈ‡¯Ó Â‡ Æ2 ¯ÂË˜Ù ·ÁÂ¯
¯ÂË˜ÂÂ ¯˙ÂÈ‰ ÏÎÏ Ì¯Â˙ ˙Â¯È˘˜ ·ÈÎ¯ ÏÎ Æ‰ˆÈ¯ËÓÏ ÌÈ‡˙Ó‰ Û¯‚‰ Ï˘ ˙Â¯È˘˜‰ È·ÈÎ¯ Ï˘
È¯ÂËÈ·ÓÂ˜ ÔÂÈÙ‡Â ¨˙Â¯È˘˜ ·ÈÎ¯ ÏÎ Ï˘ ‰‚¯„‰ Ï˘ È¯ÂËÈ·ÓÂ˜ ÔÂÈÙ‡ ÌÈ˜ÙÒÓ Â‡ ÆÔÈÚ¯‚Ï „Á‡
˙ÂÈ¯ËÓÈÒ ˙ÂˆÈ¯ËÓ ¯Â·Ú ÆÌÈÈ˜ ‰ÊÎ ¯ÂË˜ÂÂ Ì‡ ¨ÔÈÚ¯‚Ï Ì¯Â˙ ˙Â¯È˘˜‰–·ÈÎ¯˘ ¯ÂË˜ÂÂ‰ Ï˘
Ì‚ ÌÈ‚ÈˆÓ Â‡ ¨®SDD Â‡ ¨symmetric diagonally-dominant ˙ÂˆÈ¯ËÓ© ˙ÈÂÒÎÏ‡–˙ÂËÏÂ˘
¯˘˜ ÌÈ‡¯Ó Â‡ ÆÔÈÚ¯‚‰ ·Á¯Ó ¯Â·Ú ÈÏÓ¯ÂÂ˙¯Â‡ ÒÈÒ· ˙ÈÈ·Ï ÏÈÚÈ È¯ÂËÈ·ÓÂ˜ Ì˙È¯Â‚Ï‡
ÏÈÏÎÓ˘ ¨ÌÈÈ·ÂÈÁ–È‡ ÌÈÈÂÒÎÏ‡ ÌÈ¯·È‡ ÌÚ ˙ÂÈ¯ËÓÈÒ H–˙ÂˆÈ¯ËÓ ÔÈ·Ï gain graphs ÔÈ· ˜Â„‰
signed ÔÈ· ¯˘˜ÏÂ ¨Ô‡ÈÒÏÙÏ ˙ÂˆÈ¯ËÓ ÔÈ·Ï ÌÈÂÂÎÓ ‡Ï ÌÈÙ¯‚ ÔÈ· ¯˘˜Ï ˙ÂÚ‚Â‰ ˙ÂÚÂ„È ˙Â‡ˆÂ˙
–ÏÚ ‰Ï‡ ÌÈÈ¯ÂËÈ·ÓÂ˜ ÌÈÓ˙È¯Â‚Ï‡ ÏˆÏ Ô˙È „ˆÈÎ ÌÈ‡¯Ó Â‡ ÆSDD ˙ÂˆÈ¯ËÓÏ graphs
finite-precision© ÈÙÂÒ ˜ÂÈ„ ˙˜ÈËÓ˙È¯‡· ˙ÂÓÈÂÒÓ ˙ÂÈ¯ÏÂ‚ÈÒ ˙ÂÈ¯‡ÈÈÏ ˙ÂÎ¯ÚÓ ¯Â˙ÙÏ ˙Ó
“Combinatorial Characterization of the Null ¯Ó‡Ó· ÂÓÒ¯ÂÙ ÂÏ‡ ˙Â‡ˆÂ˙ Æ®arithmetic
Spaces of Symmetric H-Matrices”, Linear Algebra and its Applications 392: 71–90

ÆDoron Chen and Sivan Toledo ˙‡Ó (2004)

¨‰ÎÈÓ˙‰ ˙¯Â˙ Ï˘ ÌÈÏÎ È˘· ˘Ó˙˘‰Ï Ô˙È „ˆÈÎ ÌÈ‡¯Ó Â‡ ∫‰ˆÈ¯ËÓ Ï˘ 2–˙Ó¯Â ÏÚ ÌÈÓÒÁ Æ≥
ÏÚ ÌÈ˘„Á ÌÈÓÒÁ ‚È˘‰Ï È„Î ¨symmetric-product-support lemma – ‰Â splitting lemma – ‰
˙ÂÚÓ˘Ó‰ ˙‡ ÂÁ˙ÈÂ ÌÈÂ˘ ÌÈÈ¯·‚Ï‡ ÌÈÓÒÁ ‰˘È˘ Â‚˘‰ Â‡ Æ˙È˘ÓÓ ‰ˆÈ¯ËÓ Ï˘ 2–˙Ó¯Â

≥

≤

J

TELAVIVUNIVERSITY@אוניברסיטתתל-אביבJ
J
JשJריימונדJובברליJסאקלר"עJהפקולטהJלמדעיםJמדויקים

JהספרJלמדעיJהמחשב-בית
J
J
J
J

JיישומיםJאלגברייםJואלגוריתמיים
JשלJתורתJהתמיכה

J
J
J
J
J
JתוארJקבלתJלשםJלפילוסופיה"חיבורJדוקטור"J
Jמאת
J

JדורוןJחן
J
J
J
J
J

JעבודהJזאתJנעשתהJבהדרכתוJשל
JסיוןJטולדו.Jפרופ

J
J
J

Jאביב-הוגשJלסנאטJשלJאוניברסיטתJתל
J2005Jספטמבר

