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Abstract. The splitting lemma is one of the two main tools of support theory, a framework for bounding the
condition number of definite and semidefinite preconditioned linear systems. The splitting lemma allows the analysis
of a complicated system to be partitioned into analyses of simpler systems. The other tool is the symmetric-product-
support lemma, which provides an explicit spectral bound on a preconditioned matrix.

The symmetric-product-support lemma shows that under suitable conditions on the null spaces of � and � , the
finite eigenvalues of the pencil �����	��
 are bounded by ������� , where ������ , ��������� , and ��������� . To
apply the lemma, one has to construct a  satisfying these conditions, and to bound its � -norm.

In this paper we show that in all its existing applications, the splitting lemma can be viewed as a mechanism to
bound ���� �� for a given  . We also show that this bound is sometimes tighter than other easily-computed bounds
on ���� �� , such as ���� �� and ���� �!�����" . The paper shows that certain regular splittings have useful algebraic
and combinatorial interpretations. In particular, we derive six separate algebraic bounds on the � -norm of a real
matrix; to the best of our knowledge, these bounds are new.

Key words. matrix norm bounds, two-norm, norm bounds for sparse matrices, splitting lemma, support theory,
support preconditioning
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1. Introduction. Support theory [1, 5] is a set of tools used to bound the condition num-
bers of preconditioned systems. Support theory employs two devices to bound the support
of a preconditioner: one is the splitting lemma [1, 9], and the other is the symmetric product
support lemma [5]. In this paper we compare bounds which arise from these two tools, and
introduce new bounds.

Conjugate Gradient (CG) is a common iterative algorithm for solving symmetric positive-
definite linear systems #%$'&)( . Given a symmetric positive-definite matrix # , the number
of iterations needed to reduce the norm of the residual by a constant factor is bounded by
the spectral condition number of # . The spectral condition number *,+-#/. is the ratio of the
extreme eigenvalues of # , *,+-#/.�&10!2�3�45+6#/.�78052�9 :;+6#/. . The convergence of CG, as well as of
many other iterative solvers, can often be improved by use of a preconditioner < . When using
a preconditioner, the number of iterations needed for convergence is bounded by the condi-
tion number of the preconditioned system, which is the ratio of the extreme finite eigenvalues
of the matrix pencil +-#>=�<?. , defined as follows.

DEFINITION 1.1. The number 0 is a finite generalized eigenvalue of the matrix pencil+-#>=�<@. if there exists a vector $ such that #%$A&10;<>$ and <>$�B&DC .
Support theory [1, 5] is a framework for bounding the condition number of definite and

semidefinite preconditioned linear systems. In early support-theory papers [1, 9], three main
tools were used: the support lemma, the splitting lemma and the congestion-dilation lemma.
The support lemma showed how to bound the finite eigenvalues of +6#E= <?. in terms of a
number F�+-#E= <?. called the support of +-#E= <?. . The splitting lemma shows that F�+6#E= <?.HGIKJML5N F�+6# N =�< N . , where #O&QP N # N and <R&QP N < N . The congestion-dilation lemma showedS

Received October 6, 2004. Accepted for publication June 6, 2005. Recommended by B. Hendrickson. This
research was supported in part by an IBM Faculty Partnership Award, by grants 572/00 and 848/04 from the Israel
Science Foundation (founded by the Israel Academy of Sciences and Humanities), and by grant 2002261 from the
United-States-Israel Binational Science Foundation.�

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (mycroft@tau.ac.il,
stoledo@tau.ac.il).�

University of California, Santa Barbara, CA 93106-5110 (gilbert@cs.ucsb.edu).

28



ETNA
Kent State University 
etna@mcs.kent.edu

BOUNDS ON THE TWO NORM OF A MATRIX FROM THE SPLITTING LEMMA 29

how to directly bound F�+-# N =�< N . when # N and < N are particularly simple: when the graph
of # N consists of a single edge, and the graph of < N is a simple path between that edge’s
endpoints1. In these early papers all the matrices involved had to be diagonally dominant, but
that is irrelevant for our paper. In essence, the splitting lemma allowed a complex problem
to be broken into simple parts, and the congestion-dilation lemma allowed each part to be
analyzed.

Boman and Hendrickson later presented support theory in a completely algebraic frame-
work, which does not refer to graphs, paths, and so on [5]. Their framework still used
the support lemma, but they replaced much of the rest with a single powerful lemma, the
symmetric-product-support lemma. This lemma shows that under suitable conditions on the
null spaces of # and < , the finite eigenvalues of the pencil +-#E= <?. are bounded by TVUWTYXX ,
where Z)&\[EU , #\&WZ>Z^] , and <_&\[>[>] . To apply the lemma, one has to construct aU satisfying these conditions, and to bound its ` -norm. They also show that the bounds that
were previously derived by the splitting and congestion-dilation lemmas can be directly ob-
tained by applying their new lemma together with the norm bound TaUWT XX G\TVUWTcb�TVUWTed .
It seemed that the splitting lemma was no longer useful.

However, recent results by Spielman and Teng again used the splitting lemma [14, 16].
What, then, is the role of the splitting lemma in the Boman-Hendrickson symmetric-product-
support framework? This paper shows that in all its existing applications [1, 9, 14, 16], the
splitting lemma can be viewed as a mechanism to bound TeUWT XX for a given U . We also show
that this bound is sometimes tighter than other easily-computed bounds on TeUWTcXX , such asTVUWT Xf and TeUWTab�TeUWTVd .

We also show that certain regular splittings have useful combinatorial interpretations.
These interpretations can be exploited to construct and analyze graph algorithms for con-
structing preconditioners, such as the algorithms in [3, 9, 14, 16, 17]. In particular, one of
these interpretations was used, with a different proof, in [14].

Path embeddings have also been used to bound the smallest nonzero eigenvalue of Lapla-
cian matrices. To do so, one embeds the complete graph in the target graph. Our bounds apply
to embeddings of arbitrary graphs, so they are more general. However, special cases of some
of our bounds have already been discovered in the more restricted case [7, 10, 11, 12, 13].

This paper is organized as follows. The next section describes the basic results of support
theory. Section 3 proves the splitting lemma and shows that the symmetric-product-support
lemma implies it. Section 4 describes our main technical tools, orthonormal stretchings and
fractional splittings. Section 5 proposes two splitting heuristics and shows that they lead to
new algebraic and combinatorial bounds on the ` -norm of a matrix. Section 6 shows two
additional bounds on the ` -norm. Section 7 quantifies the behavior of each one of the new
norm bounds on an example. In particular, the example shows that the different bounds can
be asymptotically different, some tight and some loose. Section 8 presents our conclusions.

2. Background. This section provides key definitions and known lemmas that we use
in the rest of the paper. We start with the definition of support and with the support lemma.

2.1. Support. DEFINITION 2.1. The support F�+6#E= <?. of a matrix pencil +6#E=�<@. is the
smallest number g such that g5<ih�# is positive semidefinite. If there is no such number, we
take F�+6#E=�<@.�&Qj .

The importance of support numbers stems from the following lemma:
LEMMA 2.2. (Support Lemma [9]) If 0 is a finite generalized eigenvalue of +-#E= <?. and< is positive semidefinite and null +-#k.ml null +-<@. , then 0�GnF�+-#>=�<@. . When F�+-#E= <?. is finite,

1The graph o�p of an q -by- q symmetric matrix � is a weighted graph or�s�t�!�	uv�xw�
 , where �y�za{ �	�c�}|�|}|��6q�~ , u�� z ���	�t�c
e�M�,� �/����a~ , and the weight of an edge w����	���e
 is w����	���c
5������� � .
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the bound is tight.
Next, we state the key result in Boman and Hendrickson’s support framework.
LEMMA 2.3. (Symmetric-product-support lemma [5]) Suppose Z������!�5� is in the

range of [������!��� . ThenF���ZEZ ] =�[E[ ]�� & I@���� TVUWT XX subject to [>U�&OZ��
2.2. Combinatorial Interpretations of Support Bounds. Lemma 2.3 is often used af-

ter factoring the � -by- � coefficient matrix # into #_& ZEZE] , where Z is � -by- ¡ and the
preconditioner < into <¢&£[?[E] , where [ is � -by- ¤ (note that there are no special con-
ditions on [ and Z ; they need not be triangular or orthogonal). Typically, the columns ofZ are edge vectors [3], i.e. each column of Z corresponds to one off-diagonal in the ma-
trix # . Similarly, each column of [ corresponds to one off-diagonal of < . This particular
factorization is used when # and < are symmetric diagonally-dominant (SDD) matrices. A
matrix # that can be decomposed into #_&¥ZEZE] where Z has at most two nonzeros per
column is called a factor-width-2 matrix; the properties of such matrices have been explored
in [4, 6]. When # is factor-width-2 and has nonpositive offdiagonal entries, it is often called
a weighted Laplacian matrix.

When # is decomposed into #R&�ZEZE] in this way, every column of Z corresponds to
an edge in the graph ¦E§ of # or to a vertex in ¦E§ , and similarly for <R&O[?[>] . In this case,
any matrix U satisfying Z¨&1[>U can be seen as an embedding of ¦?§ in ¦ª© . Suppose that
column « of Z is an edge vector in ¦E§ (otherwise it is a vertex vector). Then Z¬¯® °^&¨[?U±¬¯® °
(we use Matlab notation, in which a colon represents all the possible indices). The nonzero
entries in U²¬¯® ° specify a set of edge and vertex vectors in [ . We say that the edge in ¦?§
is embedded into this set of edges and vertices in ¦>© . In some support preconditioners, the
embedding is always of edges into simple paths and vertices into single vertices [1, 9, 17]. In
other support preconditioners, some edges are embedded into up to two cycles and up to two
paths [3].

In fact, the analysis of the preconditioner usually goes in the other direction. One first
shows that given # and < , there exists a “good” embedding of ¦ § into ¦ © . Then, from this
embedding, one shows how to construct U . Finally, some bound on TeUWT XX is proven, and
this bounds the finite spectrum of the preconditioned system. Common bounds on TaUWT XX that
have been used in support preconditioners are TeUWT XX GRTaUWT b TaUWT d , which has been used
implicitly in [1, 3, 9, 17], and TaUWT XX G³TeUWT Xf , which is used in [2]. In this setup, a good
embedding is one that leads to a small norm bound, that is, to a small value for TVUWT´b�TaUWTad
or TVUWT Xf .

When U is an embedding of edges into simple paths and of vertices into vertices, the
two bounds TaUWTVXX G£TaUWTeb�TaUWTVd and TVUWTaXX G£TVUWTVXf have useful combinatorial inter-
pretations. The first can be interpreted as product of the worst dilation of a path times the
worst congestion through an edge of ¦>© . Here the dilation of a path µ between the end-
points of an edge ¶��n¦E§ is defined to be PO·�¸-¹8º^» U · ¸ ® · » . The congestion through an edge¶Y¼ª�½¦ª© is defined to be PO· ¬ ·}¸x¹8º¿¾t·�ÀÁ» U · ¸ ® · » , where µ�+-¶M. is the path that embeds ¶ . The

bound TVUWT XX GRTeUWT Xf can be interpreted as the sum of all the dilations of all the paths, but
with a different definition for dilation, P1· ¸ ¹8º U X· ¸ ® · .

2.3. The Splitting Lemma. We now state formally the Splitting Lemma, which is the
focus of this paper.

LEMMA 2.4. (The Splitting Lemma) Let #R&i# bÂ # X Â �a�e� Â #kÃ and let <)&R< b�Â< X Â �a�e� Â <^Ã . If all # N and < N are symmetric positive semidefinite, and if for each Ä , # N is
in the range of < N , then F�+-#>=�<?.vG IKJML N F�+-# N = < N . .
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Typically, this lemma is used by decomposing # into a sum of rank- Å matrices, each
corresponding to one off-diagonal, and by decomposing < into path matrices, matrices that
can be symmetrically permuted to a tridiagonal form, and which have only one nonzero irre-
ducible block.

In the rest of this paper, we focus on symmetric positive semidefinite matrices, but we do
not assume that they are diagonally-dominant (unless specified otherwise).

3. The Symmetric Product Support Lemma Implies the Splitting Lemma. What
is the relationship of the splitting lemma to the symmetric-product-support lemma? In this
section we begin the study of this question. This section shows that the splitting lemma is
weaker, in the sense that the symmetric-product-support lemma implies the splitting lemma.
The following proof proves Lemma 2.4 using a straightforward application of the symmetric-
product support lemma.

Proof. Let # N &QZ N Zª]N and < N &O[ N [E]N be arbitrary symmetric-product decompositions
of # N and < N . Such a decomposition always exists, given our assumption that both matrices
are symmetric positive semidefinite. For example, we can use the scaled eigenvectors of # N
as the columns of Z N , where the scaling is by the square root of the corresponding eigen-
value, and similarly for < N . Let Z�Æ be the concatenation of Z b =�Z X =e�a�a�a=�Z�Ã and [ÇÆ be the
concatenation of [ b =�[ X =a�e�a�V=�[!Ã . That is,Z�ÆA& � Z b Z X Z�ÈÊÉeÉaÉËZ�Ã � =
and similarly for [ÇÆ . Then Z�ÆÇZª]Æ & P N Z N Z^]N & P N # N &O# , and [ÇÆÌ[E]Æ &O< .

By the assumption that # N is in the range of < N , the factor Z N must be in the range of [ N .
Therefore, there exists a U N such that Z N &O[ N U N .

Let ÍU N be the minimizer of IH��� �vÎ TVU N T X subject to Z N &Ï[ N U N . By the Symmetric-

Product Support lemma, F�+-# N = < N .�&\ÐÐÐ ÍU N ÐÐÐ XX .

Let

UÑ&
ÒÓÓÓÔ

ÍU b ÍU X . . . ÍU�Ã
ÕaÖÖÖ× �

We claim that [ÇÆÇU�&1Z�Æ .

[ÇÆÇU�&W� [ b [ X [;È ÉaÉaÉØ[ÇÃ �
ÒÓÓÓÔ

ÍU b ÍU X . . . ÍU±Ã
Õ ÖÖÖ×

& � [ b ÍU b [ X ÍU X [ È ÍU ÈÙÉaÉeÉØ[ Ã ÍU Ã �&W� Z b Z X Z�ÈÊÉaÉaÉØZ�Ã �&OZ�Æ
The norm of U is equal to IKJML5N ÐÐÐ ÍU N ÐÐÐ , so by the Symmetric-Product Support Lemma it

follows that F�+-#>=�<@.mG>TVUWTaXX = IHJ´L¿N ÐÐÐ ÍU N ÐÐÐ XX & IKJML5N F�+6# N =�< N . .
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4. Splitting and Stretching. In this section we show a deeper connection between split-
ting and the symmetric-product-support lemma. We begin by defining an operation called or-
thonormal stretching, which allows us to obtain one symmetric-product-support triplet from
another. We then show that an important class of splittings, the one which has been used
almost exclusively in applications, can be interpreted as an orthonormal stretching. That is,
splitting is usually a way to obtain one symmetric-product-support triplet from another, and
in particular, to obtain a triplet in which computing TVUWT X is easy.

4.1. Orthonormal Stretching. The orthonormal stretching of a symmetric-product-
support triplet +	Zv= [�= U½. is a pair of matrices +6Ú�=/ÛU½. : a ¤ -by- Û¤ matrix Ú with orthonormal
rows ( Ú�Ú�]�&ÝÜ ), and a matrix ÛU such that U�&1Ú'ÛU .

Why is stretching important for support theory? Because, as the next lemma shows, the
triplet +	Zv= [EÚ�= ÛU½. is also a symmetric-product-support triplet, because various norms of ÛU
bound the corresponding norms of U and because F�+ÞZEZ>]�=�[>[ª]�.GßÐÐÐ ÛUÏÐÐÐ XX .

Therefore, orthonormal stretching is useful when it allows us to take a symmetric-product-
support triplet +	Zv= [�= U½. , for which bounding the norm of U is difficult, and obtain a new
triplet +ÞZm= [?Ú�= ÛU½. , for which bounding the norm of ÛU is easier. The norm of ÛU still boundsF�+	Z>Z^]�=�[>[E]à. , which in turn bounds the spectrum of the preconditioned linear system.

LEMMA 4.1. Let Z¨&Ý[>U , and let Ú and ÛU be an orthonormal stretching of +	Zm=�[�=�U½. ,
so UÑ&OÚ'ÛU . Then, using the notation Û[i&1[>Ú , the following hold:

1. Û['Û[>]á&O[?[E]
2. [i&rÛ[EÚ�]
3. Z¨&rÛ[âÛU
4. TaUWT X GßÐÐÐ ÛUÏÐÐÐ X
5. TaUWT f G ÐÐÐ ÛU ÐÐÐ f
6. TaUWTadâG¨ã Û¤ ÐÐÐ ÛU ÐÐÐ d , where Û¤ is the number of columns in Ú .

7. TaUWTeb/G ã Û¤ ÐÐÐ ÛU ÐÐÐ bProof. Most of the claims are nearly trivial.
1. Û[ Û[>]á&i+	[>Ú�.a+6Ú�]à[E]à.�&Ý[ä+6Ú�Ú�]à.�[i&1[>[>]
2. [i&O[EÜ@&Ý[ä+6Ú�Ú�],.�&R+6[?Ú�.�Ú�]á&yÛ[>Ú�]
3. Z¨&Ý[>U�&1[å+6ÚæÛU½.�&i+	[>Ú�.vÛUÑ&rÛ[\ÛU
4. TaUWT X &WÐÐÐ Ú'ÛUÏÐÐÐ X G¨TaÚ%T X ÐÐÐ ÛUÏÐÐÐ X &WÐÐÐ ÛUÏÐÐÐ X , because TaÚ%T X &iÅ .

5. To show that TeUWT f G ÐÐÐ ÛU ÐÐÐ f , we need only compare each column of U to the

corresponding column in ÛU . Let ç ° ( Ûç ° ) be column « of U (of ÛU ). Then ç ° &Ú Ûç ° , so Tèç ° T X &éTVÚ Ûç ° T X G�TaÚ%T X T Ûç ° T X &éT Ûç ° T X � Since the norm of each
column of ÛU is greater or equal to the norm of the corresponding column of U ,TaUWT f G ÐÐÐ ÛU ÐÐÐ f .

6. Since U &£Ú'ÛU , we have TaUWTadê& ÐÐÐ Ú'ÛU ÐÐÐ d GrTeÚ%TVd ÐÐÐ ÛU ÐÐÐ d . We prove the

claim by bounding the j -norm of Ú , TVÚ%Tcds& IKJML N P¨ë�°�ì b » Ú N ° » . Each row in Ú
is a size- Û¤ vector with unit norm. Let sum +-í¿. be the sum of the absolute values of
the entries of a vector í . It is easy to show that the maximum of sum +xí�. , over all
the vectors í with norm Å , is obtained when all the entries of í are equal. The sum
of the entries, for the maximal vector, is the square root of the size of the vector.
Therefore, for any row Ä of Ú we have P¨ë�°�ì b » Ú N ° » G ã Û¤ , so TVÚ%Ted£G ã Û¤ , which
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proves the claim.
7. Let Ú�¼ be a completion of Ú to a Û¤ -by- Û¤ orthonormal matrix. Then TVÚ%TYb@GâTVÚ�¼ÞTeb

becauseTaÚ%Tab%& IHJ´L° �î N ì b » Ú N ° » & IKJ´L° �î N ì bðïï Ú ¼N ° ïï G IKJML° ë�î N ì bvïï Ú ¼N ° ïï &RTaÚ ¼ Tcbá�
An equivalent argument to that of claim 6 shows that TaÚ�¼ÞTab>G Û¤ , which proves the
claim.

But how do we find a useful orthonormal stretching +6Ú�=kÛU½. , a stretching for which the
norm of ÛU is easy to bound? The next part of this section shows that in many cases, splitting
can be interpreted as such a stretching.

4.2. Orthonormal Stretching Via Fractional Splitting. In this section we explain the
connection between the orthonormal stretching and splitting.

DEFINITION 4.2. A splitting set for an � -by- ¡ matrix Z and an � -by- ¤ matrix [ is a
set ñ b =�ñ X =e�a�a�a=�ñHò of ¤ -row matrices satisfyingó P ò°�ì bÌñ>°eñå]° &DÜ , andó for each « , Z ¬¯® ° is in the range of [Eñ ° .

LEMMA 4.3. Let ñ b = ñ X =a�e�a�V= ñ ò be a splitting set for Z and [ . Then # ° &R+	Z ¬ô® ° .�+	Z ¬¯® ° . ]
and <%°A&r+	[Eñ>°c.Á+6[>ñ>°c. ] is a splitting of #Ï&ÏZ>Z^] and <r&Ï[?[E] in the sense of the
splitting lemma. That is, #O& P òN ì bÁ# N , <R& P òN ì bÁ< N , and each # N is in the range of < N .

Proof. Clearly #O& P ò°�ì bÌ#m° . The sum of the <%° ’s satisfiesòî°�ì b < N & òî°�ì b +6[Eñ>°c.Á+	[Eñ>°c. ]
& òî°�ì b [Eñ ° ñ ]° [ ]
&1[ ÒÔ òî°�ì b ñ ° ñ ]° Õ× [ ]
&1[>[ ]&O<\�

Since for each « , Z�¬¯® ° is in the range of [>ñ>° , each #m° is in the range <%° .
A splitting set can be difficult to construct, due to the second condition in its definition.

But a U satisfying Z¨&Ý[?U offers an opportunity to create a special family of splitting sets.
DEFINITION 4.4. Let Z be an � -by- ¡ matrix, [ an � -by- ¤ matrix, and U a ¤ -by- ¡

matrix such that Zr&_[>U . A fractional splitting set for Z , [ , and U is a set of ¤ -by- ¤
diagonal matrices ñ b = ñ X =a�e�a�V= ñHò satisfying the following conditions.ó The indices of the nonzero diagonal entries in ñ ° is the set õeÄ�ö;U N ® ° B&OC�÷ .ó P ò°�ì bÌñ ° ñå]° &DÜ .

LEMMA 4.5. A fractional splitting set is a splitting set.
Proof. We need to show that for each « , Z ¬¯® ° is in the range of [>ñ ° . Let ñäø° be the

Moore-Penrose pseudo-inverse of ñ@° . Since ñ>° is diagonal, ñäø° is also diagonal, with�	ñ ø° � N�N &Wù +-ñ>°c.�ú bN�N +-ñ>°c. N�N B&OCC otherwise
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(see, for instance, [8, Section 5.5.4]). The matrix ñ ° ñäø° is diagonal with zeros and ones
on the diagonal, with ones in positions that correspond to nonzeros in U ¬¯® ° . Therefore,ñ>°eñåø° U²¬ô® °/&ÝU²¬¯® ° , so [Eñ>°eñåø° U²¬¯® °ð&1[>U²¬¯® ° . Therefore,[Eñ ° � ñ ø° U ¬¯® ° � &1[>U ¬ô® °&QZ�¬¯® °k=
which proves the claim.

We now show that a fractional splitting set defines not only a splitting of # and < , but
also an orthonormal stretching of [ and U . We begin by showing how to derive Ú from theñ>° ’s.

LEMMA 4.6. Let ñ b =�ñ X =a�a�e�V=�ñ ò be a splitting set. Then the concatenation Ú of theñ ° ’s, Ú'&_� ñ b ñ X ñ È ÉaÉeÉéñ ò � has orthonormal rows (the concatenation matrixÚ consists of the columns of ñ b followed by the columns of ñ X , and so on).
Proof. Ú�Ú�]á&OP ò°�ì bÁñ>°añå]° &OÜ .
Clearly, the proof of the previous lemma only relies on one of the two conditions that

splitting sets must satisfy.
Next, we show how to construct ÛU . The example in the beginning of Section 5 illustrates

this construction.
LEMMA 4.7. Let ñ b =�ñ X =e�a�e�a=�ñHò be a fractional splitting set for some Z , [ , and U ,

and let Ú be defined as in Lemma 4.6. LetÛU²¬¯® °ð&)� CHû¥C@û¢ÉaÉeÉüCHû¥ñåø° U²¬¯® °^û¥CHûýÉaÉaÉéCHû¥C � =
where C denotes the ¤ -by- Å zero vector. (We use the Matlab notation: a semicolon denotes
stacking blocks, so +6#þûH<@.K&y+-# ] < ] . ] .) That is, in the first column of ÛU the first ¤
elements are ñäøb U²¬¯® b and the rest are zeros. The second column of ÛU starts with ¤ zeros,
then the elements of ñ øX U±¬¯® X , followed by zeros, and so on. Then UÑ&1ÚDÛU .

Proof. We prove the lemma column by column,ÿ Ú'ÛU�� ¬ô® ° &ÝÚéÛU±¬¯® °

&W� ñ b ñ X ÉaÉeÉüñ>° ú b ñ>° ñ>° ø b ÉaÉaÉüñHò ú b ñHò �
ÒÓÓÓÓÓÓÓÓÓÓÓÓÓÓÔ

CC
...Cñ ø° U²¬¯® °C
...CC

Õ ÖÖÖÖÖÖÖÖÖÖÖÖÖÖ×
& ÒÔ î N��ìÇ° ñ N ÉeC Õ× Â ñ>°añ ø° U²¬ô® °&DC Â U ¬ô® ° �
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An important benefit of using a fractional splitting to define an orthonormal stretching+6Ú�=ðÛU½. is that the ` -norm of ÛU is easy to compute.
LEMMA 4.8. Let +	Ú�=/ÛU½. be an orthonormal stretching defined by a fractional splitting

as in Lemmas 4.6 and 4.7. Then ÐÐÐ ÛUÏÐÐÐ X & òIKJ´L°�ì b ÐÐÐ ÛU²¬¯® °;ÐÐÐ X �
Proof. By the construction of ÛU given in Lemma 4.7 it is clear that its columns are

orthogonal.
In general, splittings and symmetric products are not isomorphic. A splitting #O& P # N

and <r& P < N does not define symmetric products #Ï& ZEZE] and <þ&Ï[?[E] , not even
implicitly. Also, a symmetric-product-support triplet does not define a splitting. But we have
shown that an important class of splittings does define an orthonormal stretching, a way to
get one symmetric-product-support triplet from another.

In most of the applications of the splitting lemma [9, 1, 14, 16], there is also a symmetric-
product representation of # and < , a representation using edge and vertex vectors, and an
implicit U . Furthermore, in these applications, the splitting of # and < can almost always
be interpreted as a fractional splitting set ñ b =e�a�a�a=�ñ ò of the symmetric-product factors Z
and [ . In all of these cases, the splitting can be interpreted as an orthonormal stretching of a
symmetric-product-support triplet.

Before we conclude this section, we show that for orthonormal stretchings derived from
fractional splitting sets, one of the norm-bounds on ÛU can be tightened.

LEMMA 4.9. Let +6Ú�=/ÛU½. be an orthonormal stretching of +ÞZm=�[�=�U½. , derived from a

fractional splitting set, as defined in Lemmas 4.6 and 4.7. Then TaUWTebkG ÐÐÐ ÛU ÐÐÐ b .
Proof. We show that TaÚðTebnG Å . By definition, TeÚ%Teb�& IKJ´L ° P �N ì b » Ú N ° » . By the

construction of Ú in Lemma 4.6, each column of Ú is a column of one of the ñ@° ’s. Each
column of ñ>° has exactly one nonzero. Because P ° ñ>°eñå]° &\Ü , that nonzero must be no
larger than Å in absolute value. Therefore, each column of Ú has exactly one nonzero no
larger than Å in absolute value, which proves the claim that TVÚ%TYbåG\Å . Therefore TeUWTab?&ÐÐÐ Ú'ÛU ÐÐÐ b G½TVÚ%Teb ÐÐÐ ÛU ÐÐÐ b G ÐÐÐ ÛU ÐÐÐ b .

Note that whenever each column of Ú has a single nonzero, TaUWTYbáG ÐÐÐ ÛU ÐÐÐ b , even ifÛU was not derived from a fractional splitting set. In particular, the Å -norm bound given
in the previous lemma may hold even when the columns of ÛU are not orthogonal. When+6Ú�=ðÛU½. are obtained from a fractional splitting set, the bound TaUWT XX GýTeUWT b TaUWT d Gã Û¤ ÐÐÐ ÛU ÐÐÐ b ÐÐÐ ÛU ÐÐÐ d is not particularly useful, because we can directly compute ÐÐÐ ÛU ÐÐÐ X . But in
more general cases this bound may be useful.

5. How to Split. The choice of ñ@° ’s in a fractional splitting can have a profound influ-

ence on how close ÐÐÐ ÛUÏÐÐÐ X is to TVUWT X . We use a fractional splitting because ÐÐÐ ÛUÏÐÐÐ X is easy to

compute and it bounds TaUWT X . In this section we show that a poor choice of ñ@° ’s can lead toÐÐÐ ÛU ÐÐÐ X being so large that it teaches us nothing about TeUWT X . We also suggest two simple and

efficient heuristics to find splittings with a small ÐÐÐ ÛUÏÐÐÐ . From one of these heuristics we ob-
tain two combinatorial bounds on support preconditioners; one of these bounds was already
suggested in a more general form by Spielman and Teng [14] using an entirely different proof,
and the other is new.
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5.1. An Example. We first show that if the choice of splitting is poor, then the resulting
norm bound is useless. Let#Q& ÒÔ ` hªÅÙhªÅhªÅ ` hªÅhªÅÊhªÅ `

Õ× =�Z¨& ÒÔ Å C ÅhªÅ Å CC hªÅÙhªÅ
Õ×

<�& ÒÔ ÅÊhªÅ ChªÅ ` hªÅC hªÅ Å
Õ× = [i& ÒÔ Å ChªÅ ÅC hªÅ

Õ× �
To complete Z and [ to a symmetric-product-support triplet, we useUÑ&�� Å C ÅC ÅÙÅ�� �
The ` -norm of U is TVUWT X &�� 	 .

We now split # and < using the following fractional support set,ñ b &
��� CCÙC� = ñ X &
� C CC ÅM7 � ` � = ñ È &�� � Åvh � X CC ÅY7 � ` � =
where ��� C is small. Therefore,Ú²& �Kñ b ñ X ñ È � &�� � CÙC C � Åvh � X CC CÙC ÅM7 � ` C ÅY7 � ` � �
We now construct ÛU according to lemma 4.7, starting with the pseudo-inverses,ñåøb & � ÅY7 � CC C�� = ñåøX & � C CC � ` � = ñåøÈ & � ÅY7 � Åvh � X CC � ` � =
so

ÛUÑ&
ÒÓÓÓÓÓÓÔ

ÅY7 �C C� ` ÅM7 � Åvh � X� `
Õ ÖÖÖÖÖÖ× �

For small � , ÐÐÐ ÛU ÐÐÐ X &½ÅM7 � is arbitrarily large, so it is not a useful bound on TVUWT X & � 	 .
Clearly, � &ýÅM7�� ` is a better choice than a small � , yielding a ÐÐÐ ÛU ÐÐÐ X &þ` , still not

completely tight, but better. In this case, a fractional splitting can actually achieve ÐÐÐ ÛU ÐÐÐ X &TaUWT X &�� 	 . Let Ú±& � ã ÅY7�	 CÙC C ã ` 7�	 CC CÙC ã ÅY7�	 C ã ` 7�	 � =
so

ÛUÑ&
ÒÓÓÓÓÓÓÔ
� 	C C� 	 ã 	�78`ã 	�78`

Õ ÖÖÖÖÖÖ× &
ÒÓÓÓÓÓÓÔ
� 	 C CC C CC C CC � 	 CC C ã 	�7´`C C ã 	�7´`

Õ ÖÖÖÖÖÖ× �



ETNA
Kent State University 
etna@mcs.kent.edu

BOUNDS ON THE TWO NORM OF A MATRIX FROM THE SPLITTING LEMMA 37

(We show ÛU twice, with and without all the zeros, to emphasize the structure of its columns.)
Still, the � -example shows that a poor splitting yields useless bounds.

5.2. The Rowwise Heuristic . When Ué&1ÚæÛU , row Ä in U is a linear combination of
a set of rows in ÛU , where the coefficients of the linear combinations come from row Ä in Ú .
When +6Ú�= ÛU½. is an orthonormal stretching derived from a fractional splitting set, the row sets
that combine to form rows of U are disjoint. This is a consequence of the fact that columns
in Ú have no more than a single nonzero. Therefore such stretchings map disjoint sets of rows
of ÛU to the rows of U .

The first heuristic that we propose finds a fractional splitting that ensures that the ` -norm
of each nonzero row of ÛU that maps onto row Ä in U is exactly TeU N ® ¬6T X . This ensures, in a
heuristic way, that ÛU is not too large.

Here is another way to interpret this heuristic. Under an orthonormal stretching derived
from a fractional splitting set, each nonzero in U is mapped into a nonzero in ÛU . The
rowwise heuristic ensures that all the nonzeros in ÛU that map to nonzeros in row Ä of U have
the same magnitude.

LEMMA 5.1. Let us define ¡ diagonal matrices, such that the +xÄ�=�Ä}. value in the « -th
matrix is +6ñ ° . N ® N & U N ® °TVU N ® ¬6T X �

Then the ñ>° ’s are a fractional splitting set for U .
Proof. Clearly, the indices of the nonzero diagonal entries in ñ@° is the set õaÄ�ö!U N ® °@B&OC�÷ .
We need to show that P ò°�ì bÁñ ° ñå]° &ßÜ . A sum of diagonal matrices is also diagonal.

Therefore, P ò°�ì bÁñ ° ñå]° &£P ò°�ì b ñ X° is diagonal. We need only show that each diagonal
entry in P ò°�ì b ñ X° is Å . By definition, the +-Ä =�Ä}. entry in ñ?° is U N ® °M7vTaU N ® ¬-T X . The +xÄ�=�Ä}. entry
in P ò°�ì bÁñ X° is òî°�ì b U XN ® °TVU N ® ¬	T XX & ÅTaU N ® ¬6T XX É òî°�ì b U XN ® ° & ÅTVU N ® ¬	T XX É�TVU N ® ¬	T XX &¨Åª�

We now prove that this splitting preserves the ` -norm of rows in U . We need the fol-
lowing notation: �Ì+-Ä�=	«¿.>&r+�«åhOÅc.É�¤ Â Ä (for Å�G\Ä?GW¤ and ÅáG¨« G\¡ ). Matrix Ú is
a concatenation of the ñ ° matrices. Therefore, Ú is a concatenation of ¡_¤ -by- ¤ matrices.�Á+xÄ�=	«¿. is the index of the column in Ú corresponding to the Ä -th column in ñH° .

LEMMA 5.2. Let ÛU be an orthonormal stretching of U derived using the rowwise
fractional-splitting heuristic. If U N ® °æB&£C , then ÐÐÐ ÛU�� ¾ N ® ° À ® ¬ ÐÐÐ X & ïïï � ñåø° U²¬¯® ° � N ïïï &ýTaU N ® ¬6T X .

Therefore, the norm of each nonzero row in ÛU is the norm of some row in U , and for each
row in U , there is at least one row with the same norm in ÛU .

Proof. Rows in ÛU have at most a single nonzero, when ÛU is constructed from a frac-
tional splitting. Therefore, for each nonzero row, the norm of a row is the absolute value
of the single nonzero element in that row (the norm of a zero row is zero). All nonzeros in
column « of ÛU are entries of ñäø° U±¬¯® ° . Therefore, for each ÅáG)ÄKG³¤ and Å�GR«'G)¡ ,ÐÐÐ ÛU�� ¾ N ® ° À ® ¬ ÐÐÐ X & ïïï �Þñåø° U ¬ô® ° � N ïïï . If U N ® ° B&\C , then +6ñ ° . N ® N &\U N ® ° 7vTVU N ® ¬ T X B&�C . Therefore
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38 D. CHEN, J. R. GILBERT, AND S. TOLEDO�	ñåø° � N ® N &ßTVU N ® ¬ T X 78U N ® ° and thus:� ñ ø° U²¬ô® ° � N & � ñ ø° � N ® N ÉeU N ® °& TaU N ® ¬6T XU N ® ° ÉYU N ® °&ßTaU N ® ¬ T X �
This proves the lemma, becauseÐÐÐ ÛU�� ¾ N ® ° À ® ¬ ÐÐÐ X & ïï +6ñåø° U²¬ô® °c. N ïï &ßTaU N ® ¬-T X �

We now prove a new bound on TaUWT X , a bound which we later show has a useful combi-
natorial interpretation.

LEMMA 5.3. Let U be a ¤ -by- ¡ real matrix. Then

TaUWT XX G IKJML° îN ¬ �vÎ�� � �ì�� TVU N ® ¬ T XX & IHJ´L° îN ¬ �vÎ�� � �ì�� òî � ì b U XN ® � �
Proof. We stretch U orthonormally using the rowwise fractional-splitting heuristic.

Then TaUWTVXX G ÐÐÐ ÛU ÐÐÐ XX , and the columns of ÛU are orthogonal, so

ÐÐÐ ÛU ÐÐÐ XX & IHJ´L° ÐÐÐ ÛU ¬¯® °;ÐÐÐ XX �
All that remains to show is that ÐÐÐ ÛU±¬¯® ° ÐÐÐ XX & P N ¬ � Î�� � �ì�� P ò � ì bÁU XN ® � .

ÐÐÐ ÛU±¬¯® ° ÐÐÐ XX & ÐÐ ñåø° U²¬¯® ° ÐÐ XX& �î N ì b � ñ ø° U²¬¯® ° � XN& îN ¬ �%Î�� � �ì�� TVU N ®-¬ÁTèXX �
The last equality is by lemma 5.2.

LEMMA 5.4. Let U be a ¤ -by- ¡ real matrix. Then

TVUWT XX G IKJMLN î° ¬ �vÎ�� � �ì�� TVU ¬¯® ° T XX & IHJ´LN î° ¬ �%Î�� � �ì�� �î ì b U X ® ° �
Proof. The previous lemma, applied to Ui] , proves the claim, since ÐÐ U¨] ÐÐ X &)TaUWT X .

5.3. A Combinatorial Interpretation and the Spielman-Teng Bound. Given a
symmetric-product-support triplet +	Zv= [�= U½. , a column of U can be viewed as an embedding
of a column of Z into the columns of [ , since Z¬¯® °?&ß[>U±¬¯® ° . The nonzero elements in the
column of U specify a generalized path in [ that supports the column in Z . When Z and
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BOUNDS ON THE TWO NORM OF A MATRIX FROM THE SPLITTING LEMMA 39[ have at most two nonzeros per column, (that is, ZEZE] and [>[>] have factor-width ` ),
they can be viewed as the weighted incidence matrices of ¦"!#!�$ and ¦&%'%($ . In that case,
a generalized path defined by a column of U is, indeed, an edge set, although this edge set
may not form a simple path. We now define the dilation of a path that supports a column ofZ , and the congestion caused by the paths that utilize a column of [ .

DEFINITION 5.5. Let +	Zv= [�= U½. be a symmetric-product-support triplet. We say that
column Ä in [ supports column « in Z if U N ® °HB&ÝC . The 2-dilation of a column « in Z is

dil X +	Zm=�[�=�U²=	«¿.�& dil X +�«¿.�&ßTVU±¬¯® °�T XX �
The 2-congestion of a column Ä in [ is

cong X +ÞZm=�[�=�U²=�Ä}.�& cong X +-Ä�.�&ßTVU N ® ¬ TèXX �
These definitions, together with Lemmas 5.3 and 5.4, give the following results.
LEMMA 5.6. Let +	Zm=�[�=�U½. be a symmetric-product-support triplet. ThenTVUWT XX G IKJML° îN

supports ° cong X +xÄ}.�
The next lemma is a special case of the Spielman-Teng Support Theorem [14, Theo-

rem 2.1]. Their proof technique, however, is different. The result stated in Lemma 5.6 is, to
the best of our knowledge, new.

LEMMA 5.7. Let +	Zm=�[�=�U½. be a symmetric-product-support triplet. ThenTeUWT XX G IKJ´LN îN
supports ° dil X +�«¿.�

5.4. The Frobenius Heuristic. Another approach to fractionally splitting U is to min-
imize the Frobenius norm of ÛU . The Frobenius heuristic defines ¡ diagonal matrices, such
that the +xÄ�=�Ä}. value in the « -th matrix is

+	ñ ° . N ® N & ã » U N ® ° »ã P ò � ì b » U N ® � » �
LEMMA 5.8. The preceding definition of the ñ@° ’s defines a fractional splitting set.
Proof. As in Lemma 5.1, we need to prove that P ò°�ì bÁñ>°eñå]° &OÜ . Matrix P ò°�ì bÁñ>°añå]° &P ò°�ì bÌñ X° , being the sum of diagonal matrices, is also diagonal. We need only show that each

diagonal entry in P ò°�ì b ñ X° is Å . By definition, the +xÄ�=�Ä�. entry in ñ?° is ã » U N ® ° » 7 ã P ò � ì b » U N ® � » .
The +xÄ�=�Ä}. entry in P ò°�ì b ñ X° isòî°�ì b » U N ® ° »P ò � ì b�» U N ® � » & ÅP ò � ì b�» U N ® � » É òî°�ì b » U N ® ° » &½Åª�

LEMMA 5.9. The Frobenius heuristic minimizes ÐÐÐ ÛUÏÐÐÐ f over all fractional splittings ofU .
Proof. We prove the lemma in two steps. We first show that the minimization problem

can be broken up into ¤ separate problems, each involving one row of Ú and one row of U .
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We then show that the Frobenius heuristic minimizes the contribution of each row to ÐÐÐ ÛU ÐÐÐ f ,
and is, hence, an optimal Frobenius-norm minimization strategy.

The nonzero elements of ÛU are the nonzero elements of the vectors ñAø° U ¬¯® ° for «�&Å8=e�a�e�V=�¡ . The Ä -th element of the vector ñAø° U±¬¯® ° is �6ñåø° � N ® N U N ® ° . If U N ® °R&�C then�	ñåø° � N ® N U N ® °/&ÝC , otherwise �	ñåø° � N ® N U N ® °ð&1U N ® °M7v+xñ>°c. N ® N .
Therefore, the Frobenius norm of ÛU is

ÐÐÐ ÛU ÐÐÐ Xf & òî°�ì b îN ¬ � Î�� � �ì��*) U N ® °+-ñ>°c. N ® N,+ X �
In this double sum, the outer summation is over columns of ÛU , and inner summation is
over the nonzeros in a particular column. Each nonzero of U appears exactly once in the
summation. We can change the order of summation so that we sum over rows of U ,

ÐÐÐ ÛU ÐÐÐ Xf & �î N ì b òî°�ì b�vÎ�� � �ì�� ) U N ® °+6ñ>°c. N ® N + X � (5.1)

To minimize the Frobenius norm, we minimize this sum subject to the constraintsòî°�ì b� Î�� � �ì�� +6ñE°c. XN ® N &½Å for all Ä�&¨Å =a�e�a�a=�¤å�
Since we have a separate constraint for each one of the inner sums in Equation 5.1 (for each
row of U ), the global minimum of the Frobenius norm is achieved when each one of the
inner sums is minimized.

We now turn to the second part of the proof, showing that the heuristic does minimize
each inner sum. The inner sum minimization is equivalent to finding the vector +-$ b =a�a�e�V=�$ ò .
that minimizes P òN ì b8+.- N 7Y$ N . X subject to P òN ì bÁ$ XN & Å . The vector - corresponds to the
nonzero elements in the Ä th row of U and the vector $ to the corresponding elements of Ú .
We prove by induction on ¡ that the minimum is +�P
- N .�X and that it is achieved at$ N & ã » - N »/ P ò°�ì b » - ° » �
The inductive claim is actually slightly stronger. We prove that when the constraint is replaced
by P òN ì bÌ$ XN &10 for some 0 � C , the minimum is 0 ú b +ÞP
- N . X and that it is achieved at$ N & ã 0 » - N »/ P ò°�ì b » - ° » �
For ¡¢& Å the only choice for $ b is $ b & � 0 and it is easy to verify that the claim holds.
Assume that the claim holds for ¡rh¨Å . For any value of C32Ï$Áò42 � 0 , the minimum
of the sum P ò ú bN ì b�+.- N 7Y$ N . X subject to P ò ú bN ì bÝ$ XN &�0?h $ Xò is, by the inductive claim, +.0?h$ Xò . ú b ÿ P ò ú bN ì b5- N � X . The total minimization problem, then, is to minimize6 +-$ ò .�& ÿ P ò ú bN ì b1- N � X+70ªh±$ Xò . Â - Xò$ Xò
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subject to C"2 $ ò 2 � 0 . The derivative of this objective function with respect to $ Xò is8 68 +x$ Xò . & ÿ P ò ú bN ì b5- N � X+.0ªh±$ Xò . X h - Xò+-$ Xò . X �
It is easy to verify that the derivative vanishes at

$ÇòQ& ã 0 » - ò »/ P ò°�ì b » - ° » �
Clearly, this value of $Çò satisfies C92¨$!ò:2 � 0 , so it solves the constrained minimization
problem. Given this value of $Ìò , we have

+.0Eh�$ Xò .�&;0 ) P ò ú b°�ì b » - ° »P ò°�ì b�» - ° » + �
By induction, for Ä<2'¡ , the optimal value of $ N under the constraint P ò ú bN ì bæ$ XN &;0^h�$ Xò is
achieved at $ N & ã +70ªh�$ Xò . » - N »/ P ò ú b°�ì b » - ° » & ã 0 » - N »/ P ò°�ì b » - ° » �
This concludes the inductive claim and the entire proof.

An alternative way to prove the second part of the proof, proposed by Dan Spielman,
uses Lagrange multipliers.

Proof. The proof that the minimization problem can be broken into ¤ independent sub-
problems is the same as in the first proof. We now show that $ N & / » - N » 7 P ° » - ° » is a

minimizer of P ò°�ì b +.- ° 7M$ ° . X subject to P ò°�ì bÌ$ X° &¨Å .

Let
6 +x$ b =e�a�e�V=�$Çò?=�0!.�& P ò°�ì b ÿ � �= � � X Â 0 ÿ P ò°�ì bÌ$ X° hnÅ � . The minimizer satisfiesC & >@?> = Î & hð`/É �BAÎ=DCÎ Â ` 05$ N =C & >@?>@E & P ò°�ì bÁ$ X° h'Å^�

It follows that - XN &Ý0;$GF N , therefore $ XN & » - N » 7 � 0 . Since P ò°�ì bÁ$ X° &iÅ it follows thatP ò°�ì bIH � � HJ E & ÅbJ E P ò°�ì b » - ° » & Å� 0 & P ò°�ì b » - ° » �
Since $ XN & » - N » 7 � 0 it follows that $ XN & H � Î HKML�7NPO H � � H =
and thus $ N & � H � Î H� KML�7NPO H � � H �
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Like the rowwise heuristic, the Frobenius heuristic also produces new algebraic bounds
on TaUWT X . These bounds and their proofs were discovered by Dan Spielman [15]. Before we
state and prove the bounds, we prove an auxiliary result.

LEMMA 5.10. [15] Let ÛU be an orthonormal stretching of U derived using the Frobe-
nius fractional-splitting heuristic. If U N ® °KB&DC , then ÐÐÐ ÛU�� ¾ N ® ° À ® ¬ ÐÐÐ X & ïïï � ñ ø° U±¬¯® ° � N ïïï & ã » U N ® ° » Éã P ò � ì b » U N ® � » .

Proof. As in lemma 5.2, for each Å¨GêÄ G�¤ and Å½Gs«WGê¡ , ÐÐÐ ÛU�� ¾ N ® ° À ® ¬ ÐÐÐ X &ïïï � ñåø° U²¬¯® ° � N ïïï . If U N ® °\B& C , then +-ñ>°c. N ® N & ã » U N ® ° » 7 ã P ò � ì b » U N ® � » B& C . Therefore� ñåø° � N ® N & ã P ò � ì b » U N ® � » 7 ã » U N ® ° » and thus:

� ñäø° U±¬¯® ° � N & � ñåø° � N ® N ÉeU N ® °& ã P ò � ì b » U N ® � »ã » U N ® ° » ÉeU N ® °
& / » U N ® ° » ÉRQSST òî � ì b » U N ® � » �

This proves the lemma, because each row of ÛU has at most a single nonzero, so

ÐÐÐ ÛU�� ¾ N ® ° À ® ¬ ÐÐÐ X & ïï +6ñåø° U ¬ô® ° . N ïï & / » U N ® ° » É�QSST òî � ì b » U N ® � » �
We now state and prove new bounds on TaUWT X .

LEMMA 5.11. [15] Let U be a ¤ -by- ¡ matrix. Then

TVUWT XX G IKJ´L° îN ¬ �%Î�� � �ì#� » U N ® ° » É ) òî � ì b » U N ® � » + �
Proof. We stretch U orthonormally using the Frobenius fractional-splitting heuristic.

Then TaUWTVXX G ÐÐÐ ÛU ÐÐÐ XX , and the columns of ÛU are orthogonal, so

ÐÐÐ ÛU ÐÐÐ XX & IHJ´L° ÐÐÐ ÛU²¬¯® ° ÐÐÐ XX �
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All that remains to show is that ÐÐÐ ÛU²¬¯® ° ÐÐÐ XX &OP N ¬ �%Î�� � �ì#� » U N ® ° » É +ÞP ò � ì b » U N ® � » . . We have

ÐÐÐ ÛU ¬¯® ° ÐÐÐ XX & ÐÐ ñ ø° U ¬¯® ° ÐÐ XX& �î N ì b �6ñäø° U±¬¯® ° � XN
& �î N ì b » U N ® ° » É ) òî � ì b » U N ® � » +
& îN ¬ �%Î�� � �ì#� » U N ® ° » É ) òî � ì b » U N ® � » + �

The equality of the second and third lines is by lemma 5.10.
LEMMA 5.12. [15] Let U be a ¤ -by- ¡ matrix. Then

TVUWT XX G IKJMLN î°�¬ �%Î�� � �ì�� » U N ® ° » É ) �î  ì b » U  ® ° » + �
Proof. The previous lemma, applied to Ui] , proves the claim, since ÐÐ U¨] ÐÐ X &)TVUWT X .

The bounds in lemmas 5.3 and 5.11 are structurally similar. Both bound TaUWT XX using an
expression of the form

TVUWT XX G IHJ´L° îN ¬ � Î�� � �ì�� òî � ì bVU +	U N ® ° =�U N ® � .ä�
In lemma 5.3 we have U +	U N ® ° = U N ® � .^&WU XN ® � and in lemma 5.11 we have U +6U N ® ° = U N ® � .^&» U N ® ° » É » U N ® � » . In both cases the maximum is over sums of functions of the same nonzero
elements of U . A similar relationship exists between lemmas 5.4 and 5.12.

We note that there exist matrices U for which applying the Frobenius heuristic gives
a smaller ÐÐÐ ÛUÏÐÐÐ X than the rowwise heuristic, and that there are matrices for which the row-

wise heuristic gives a smaller ÐÐÐ ÛUÏÐÐÐ X . In general, neither of the two is an optimal ` -norm
minimization strategy.

6. Gram Bounds on the Two Norm. In this section we suggest two additional bounds
on the ` -norm of U . In one particular case, these two bounds are equivalent to the bounds
proved in Lemmas 5.6 and 5.7.

LEMMA 6.1. For any matrix U ,TeUWT XX G ÐÐ U½U ] ÐÐ b & ÐÐ U½U ] ÐÐ d �
Proof. For all matrices U , TaUWT XX & ÐÐ U½U¨] ÐÐ X . For any matrix # , we have TV#?T XX GTè#?Tcb�TV#@Tad . In particular, ÐÐ U½U¨] ÐÐ XX G ÐÐ U½U¨] ÐÐ b ÐÐ U½U¨] ÐÐ d . Since U½U¨] is symmetric,ÐÐ U½U¨] ÐÐ b & ÐÐ U½U¨] ÐÐ d . This concludes the proof.
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Similarly,
LEMMA 6.2. For any matrix U ,TVUWT XX G ÐÐ U ] U ÐÐ b & ÐÐ U ] U ÐÐ d �
Consider the case where # and < are symmetric and diagonally-dominant matrices, and

the weights of all the edges in # ’s and < ’s underlying graphs are Å . Given an embedding of
the edges of # into simple paths in < , all the entries of U are either C , Å or hªÅ . In this case,
the dilation of an edge is exactly the length of its supporting path. It is easy to see that, in
this case, the ÐÐ U½U¨] ÐÐ b bound is the same as the bound given in lemma 5.7. Similarly, theÐÐ U¨]àU ÐÐ b bound is the same as the bound in lemma 5.6.

In more complex cases, however, the two norm bounds given in this section are not
equivalent to the bounds in Lemmas 5.6 and 5.7.

7. An Example. The example that we present in this section shows that the new norm
bound given in Lemma 5.6 is sometimes asymptotically tighter than all the other norm bounds
that we are aware of. In this example, Lemma 5.6 tightly bounds the two norm, while
all the other bounds are asymptotically loose. In particular, the TVUWT f -norm bound, theTaUWT b TaUWT d -norm bound, the ÐÐ U½U ] ÐÐ b -norm bound and its equivalents, and the bound in
Lemma 5.4 are all loose.

Consider the Å -by- ` block matrix U &)+6Ui¼ » Ü�. , where Ü is the +	`M¡ Â 	 . -by- +	`M¡ Â 	�.
identity for some ¡ , and where U ¼ is the +6`M¡ Â 	�. -by- +x¡ Â Åc. matrix

U ¼ &
ÒÓÓÓÓÓÓÓÓÓÓÓÓÓÓÔ

� ¡ Å ÉeÉaÉ Å� ¡ � ¡
. . . � ¡� ¡ � ¡
. . . � ¡

Õ ÖÖÖÖÖÖÖÖÖÖÖÖÖÖ×
�

The matrix U corresponds to an embedding of the edges of the graph shown in Figure 7.1
onto paths in the same graph, but without the dashed edges. Because the graph without the
dashed edges is a tree, each edge in the original graph is supported by exactly one simple
path.

We can prove the following norm bounds on U . We omit the proofs.ó TaUWT XX &1W ¡ Â Å .ó TaUWT Xf &1`M¡ X ÂYX ¡ Â 	ª&�Z@+x¡ X . .ó TaUWTeb�TaUWTVd\&R+ � ¡ Â ¡ Â Åc.V+7	 � ¡�.�&�Z@+-¡ b\[ ] . .ó ÐÐ U¨]àU ÐÐ b &1	8¡ Â +x¡ Â 	 . � ¡Ï&5Z@+-¡ b\[ ] . .ó ÐÐ U½U¨] ÐÐ b &3W ¡ Â `M¡ � ¡ Â Å/&�Z@+x¡ b^[ ] . .ó�IKJML ° P N ¬ �vÎ�� � �ì�� TaU N ® ¬ T XX &1W ¡ Â 	E&�Z@+x¡�. .ó�IKJML N P °8¬ � Î�� � �ì�� TaU²¬¯® °�T XX &ßTaU ¼ T Xf Â Å/&O`M¡ X Â W ¡ Â Å/&�Z@+x¡ X . .ó�IKJML ° P N ¬ �vÎ�� � �ì�� » U N ® ° » Éè+ÞP ò � ì b » U N ® � » .�& � ¡±+ � ¡ Â ¡ Â Åc. Â ` � ¡±+ � ¡ Â Åc.�&Z@+x¡ b\[ ] . .
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FIG. 7.1. A weighted graph o`_G_ $ with �^aYb"c vertices ( aYbK� on the top and adbK� on the bottom). The
dashed edges are in o`_G_ $ but not in ofege $ . The edge weights given are the nonzero coefficients of the corre-
sponding columns of � and � ; for example, the edge with weight a corresponds to a column �haE� �#aE�	�c��|}|�|}�	�V
 �
in � .

ó�IKJML�N P °�¬ �%Î�� � �ì#� » U N ® ° » É ÿ P � ì b » U  ® ° » �R& � ¡rÉi	 � ¡ Â ¡²+}Å Â ` � ¡�. Â Å±&Z@+x¡ b^[ ] . .
For large ¡ , none of these bounds on the ` -norm are tight, except for one, W8¡ Â 	 , which is
not only asymptotically tight, but is off by only a small additive constant.

8. Conclusions. We have shown that applying the splitting lemma to the analysis of
support-graph preconditioners can be viewed as a mechanism to bound the norm of a matrixU . The mechanism works by orthonormally stretching U into a larger matrix ÛU whose` -norm bounds that of U but is easier to compute.

In doing so, we have unified the “old-style” support theory, in which the analysis of a
preconditioner usually starts by splitting, and the “new-style” support theory, which relies on
the symmetric-product-support lemma, usually without splitting.

We also presented six new bounds on the ` -norm of the matrix, given in Lemmas 5.3, 5.4,
5.11, 5.12, 6.1, and 6.2. One of the four was already given by Spielman and Teng, but not in
the form of a norm bound. Four of the new bounds have useful combinatorial interpretations.
Special cases of some of our new bounds were previously used to bound the smallest nonzero
eigenvalue of Laplacian matrices [7, 10, 11, 12, 13].

Viewing splitting as a way of bounding TaUWT X using ÐÐÐ ÛU ÐÐÐ X leads to systematic splitting

strategies that aim to minimize some other norm of ÛU . We propose two such strategies in this
paper; one is a heuristic which preserves in ÛU the ` -norm of rows of U , and another which
minimizes the Frobenius norm of ÛU . Both are analytically and computationally simple.

We have also shown that one of the new bounds can be asymptotically tighter than all the
other norm bounds that we are aware of. The problem of ranking the bounds by tightness, or
showing that they cannot be ranked, remains open.

Acknowledgements. Thanks to the three anonymous referees for numerous corrections,
suggestions and comments. Lemmas 5.11 and 5.12 were discovered by one of the referees,
who turned out to be Dan Spielman; he also suggested the alternative proof of Lemma 5.9.
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