
Linear Algebra and its Applications 392 (2004) 71–90
www.elsevier.com/locate/laa

Combinatorial characterization of the null spaces
of symmetric H-matrices�

Doron Chen, Sivan Toledo ∗

Tel-Aviv University, School of Computer Science, Tel-Aviv 69978, Israel

Received 22 January 2004; accepted 30 May 2004

Submitted by S. Friedland

Abstract

We characterize the structure of null spaces of symmetric diagonally dominant (SDD)
matrices and symmetric H-matrices with non-negative diagonal entries. We show that the
structure of the null space of a symmetric SDD matrix or H-matrix A depends on the structure
of the connected components of its underlying graph. Each connected component contributes
at most one vector to the null space. This paper provides a combinatorial characterization of
the rank of each connected component, and a combinatorial characterization of a null vector
if one exists. For SDD matrices, we also present an efficient combinatorial algorithm for
constructing an orthonormal basis for the null space.

The paper also shows a close connection between gain graphs and H-matrices, which
extends known results regarding the connection between undirected graphs and Laplacian
matrices, and between signed graphs and SDD matrices.

We show how to exploit these combinatorial algorithms to reliably solve certain singular
linear systems in finite-precision arithmetic.
© 2004 Elsevier Inc. All rights reserved.

AMS classification: 05C22; 05C50; 65F10; 65F15

Keywords: Combinatorial matrix theory; Signed graphs; Gain graphs; Factor width; Null space; Matroids;
Singular linear systems

�This research was supported in part by an IBM Faculty Partnership Award, by grant 572/00 from the
Israel Science Foundation (founded by the Israel Academy of Sciences and Humanities), and by grant
2002261 from the United-States-Israel Binational Science Foundation.∗ Corresponding author.

E-mail addresses: stoledo@tau.ac.il (S. Toledo), mycroft@tau.ac.il (D. Chen).

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.05.016

www.elsevier.com/locate/laa
mailto:stoledo@tau.ac.il
mailto:mycroft@tau.ac.il

72 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

1. Introduction

This paper provides a combinatorial characterization of the null spaces of three
families of symmetric matrices: Symmetric diagonally dominant 1M-matrices
(SDDM matrices), symmetric diagonally dominant matrices (SDD matrices) and
symmetric H-matrices with non-negative diagonal entries (which we denote by H+
matrices). All SDDM matrices are SDD matrices, and all SDD matrices are H+
matrices, but the converse statements are not true.

The class of H+ matrices is exactly the class of factor-width-2 matrices [5]. A
matrix A is a factor-width-2 matrix if it can be represented as A = UUT, such that
each column of U contain at most two non-zeros (U may be rectangular). We char-
acterize the rank and null space of H+ matrices and of the SDDM and SDD special
cases in terms of a width-2 factor U . Given an SDD matrix A, finding a width-2
factor is trivial. There are no known efficient algorithms for computing a width-2
factor for a general H+ matrix, even though a factor always exists.

The width-2 factor U of a matrix A can be viewed as an incidence matrix for
A’s underlying graph. When A is an SDDM matrix, its underlying graph can be
viewed as a weighted undirected graph. We show that when A is an SDD matrix,
its underlying graph is a signed graph (the term signed graph is taken from [26]).
We also show that when A is an H+ matrix, its underlying graph is a gain graph
(the term gain graph is also taken from [26]; these were previously called voltage
graphs [8,9]).

The underlying graph of an H+ matrix is connected if and only if the matrix is
irreducible (does not have a non-trivial block diagonal form). When A is reducible,
its null space is the direct sum of the null spaces of its diagonal blocks. We also refer
to these null spaces as the null spaces of the connected components of A’s graph.
Therefore, we analyze the null space of each connected component separately.

Section 2 defines the factor width of a matrix and explains how to find a width-2
factorization of H+ matrices. Section 3 discusses the connection between factor-
width-2 matrices and gain graphs, and shows that the gain graphic matroid is a spe-
cial case of the vectorial matroid. Section 4 characterizes the rank and null space of
irreducible H+ matrices (and hence, of H+ matrices in general). Section 5 describes
an efficient algorithm to compute the null space of an H+ matrix given its factor-
width-2 representation. This algorithm can be used to efficiently check whether a
gain graph is balanced. Section 6 shows how to use our results to accurately deter-
mine the rank of SDD matrices and how to solve singular linear systems whose
coefficient matrices are SDD. Section 7 contains two simple experimental results.
Section 8 contains conclusions and open problems.

1 A matrix A is called diagonally dominant if aii �
∑

j /=i |aij |. Note that in our definition, the dia-
gonal entries of A are required to be non-negative.

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 73

2. Width-2 factorization of H+ matrices

This paper analyzes the null spaces of H+ matrices, given their so called factor-
width-2 representation. In order to define the term factor-width-2, we begin with a
more general definition:

Definition 2.1. We say that a real symmetric matrix A has factor-width-k, if there
exists a rectangular matrix U such that A = UUT and each column of U contains
at most k non-zeros. If, in addition, there is no V with fewer than k non-zeros per
column such that A = VV Twe say that the factor width is exactly k.

In particular, we say that a real symmetric matrix A has factor-width-2, if there
exists a rectangular matrix U such that A = UUT and each column of U contains at
most two non-zeros. Factor-width-2 matrices generalize SDD and SDDM matrices:
it is a well-known result that an SDD matrix A can be factored into A = UUT such
that the columns of A are scaled edge vectors (either positive or negative) or half-arc
vectors, defined as follows:

Definition 2.2. The positive edge vector 〈ij〉 has exactly two non-zeros,
〈ij〉min(i,j) = 1 and 〈ij〉max(i,j) = −1. The negative edge vector 〉ij〈 also has two
non-zeros, 〉ij〈i= 1 and 〉ij〈j= 1. The vertex vector 〈i〉 has exactly one non-zero,
〈i〉i = 1. All of these vectors are n-by-1 column vectors, where n is the number of
rows in U .

Therefore, SDD matrices are a special case of factor-width-2 matrices: these
matrices can be factored into UUT such that the columns of U contain at most two
non-zeros, and in those columns with exactly two non-zeros, the non-zeros are of the
same magnitude.

The importance of our study of the class of factor-width-2 matrices stems from
the fact that this class is exactly the class of symmetric H-matrices with positive
diagonals (H+ matrices) [5]. These matrices occur frequently in engineering and
scientific computation [3,19]. Unfortunately, the proof that the class of H+ matrices
is the class of factor-width-2 matrices is not constructive and does not provide an
algorithm to obtain factor-width-2 representations of non-diagonally dominant H+
matrices.

A useful characteristic of non-singular H-matrices (see for instance, [2, Lemma
6.4]) is that they are generalized diagonally dominant, defined as follows:

Definition 2.3. A square matrix A is generalized diagonally dominant if there is a
positive vector y > 0 such that for every row i,

|aii |yi �
∑
j /=i

|aij |yj.

74 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

The problem of finding a such a vector y is equivalent to the problem of finding
a positive diagonal matrix D such that DAD is diagonally dominant. By solving a
linear program, a vector y can be found in time polynomial in the dimension of A,
but this is not efficient enough for many applications. The vector y must satisfy the
linear constraints M(A)y � 0, y � 1, where M(A) is the comparison matrix of A,

[M(A)]ij =
{+|aij |, i = j,

−|aij |, i /= j.

Given such a vector y or such a diagonal matrix D, one can immediately obtain
a factor-width-2 representation of A. Several authors proposed iterative algorithms
for finding y [17–19], but they prove no useful bounds on the convergence rates or
running times of these algorithms.

Transforming A into DAD is equivalent to an operation called switching in gain
graphs [22,26], in which the gain g of an edge from i to j is replaced by d−1

ii gdjj .
The balance of cycles (discussed later) is invariant under switching.

3. Gain graphs and factor-width-2 matrices

A gain graph is an undirected graph such that each edge e can be viewed as two
edges, one in each direction, with a different weight in each direction. These weights
are called gain, and they have the following property: Let e be an edge connecting
vertex i and vertex j . Then e has two gains: a gain g from vertex i to vertex j , and
a gain 1/g from vertex j to vertex i. In this paper we deal with gain graphs over

 \ {0}. The gain of a directed path or cycle is the product of the gains of the edges
along the path or cycle. A cycle is balanced if its gain is exactly +1. In addition to
edges with gain, the edge-set of a gain graph may include half-arcs, which have only
one end point and no gain. As Zaslavsky puts it, half-arcs “trail off into space” [26].

Gain graphs (previously called voltage graphs [8,9]) are a generalization of signed
graphs [26]. A signed graph is a gain graph in which all the gains are ±1. The notion
of balance was introduced by Harary [13].

Gain graphs, like undirected unweighted graphs and like signed graphs, induce a
matroid. This was stated without a proof in [26]. A set of edges is said to be inde-
pendent if and only if each of its connected components contains at most one cycle
(and that one cycle is unbalanced) or one half-arc, but not both.

In this section we prove that this is indeed a matroid by showing that this is a
special case of the vector matroid: Given a gain graph matroid, we show how to
choose a set of vectors, such that a subset of edges is independent if and only if
the corresponding vectors are linearly independent. The vectors that we choose have
at most two non-zeros. The matrix whose columns are these vectors can be viewed
as a generalized incidence matrix of the gain graph. The set of these matrices is
isomorphic, up to non-zero column scaling, to the set of gain graphs. This establishes
the connection between gain graphs and width-2 factors.

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 75

We now define the vectors associated with the edges and half-arcs of gain graphs.
Let n be the number of vertices in the gain graph. For each edge e connecting vertex
i and vertex j with gain g from i to j (and consequently gain 1/g from j to i), we
attach an n-by-1 column vector which contains two non-zeros: α in the ith position
and β in the j th position. We choose α and β so that β/α = −g. Note the direction
we choose for the edge does not affect our choice of vector: had we viewed the
same edge as having a gain 1/g from j to i, then we would have chosen a vector
such that α/β = −1/g, which is exactly the same property. Also note that given a
set of vectors, whether or not they are linearly dependent is not affected by scal-
ing. Therefore, we can choose any vector with the property −β/α = g to represent
edge e.

Definition 3.1. The generalized edge-vector 〈i, j, α〉, α /= 0, corresponding to an
edge from i to j with gain α, is the n-vector with the value 1 in position i and the
value −α in position j . The half-arc vector 〈i〉 has exactly one non-zero, 〈i〉i = 1.

We now prove several simple lemmas about generalized edge vectors and half-arc
vectors.

Lemma 3.2. A generalized edge-vector representing an edge connecting i and j,

and a generalized edge-vector representing an edge connecting j and k span a
generalized edge-vector representing an edge connecting i and k. The gain of the
spanned edge is the product of the two gains.

Proof. 〈i, j, α1〉 + α1〈j, k, α2〉 = 〈i, k, α1α2〉. �

Lemma 3.3. The generalized edge vectors corresponding to a directed path of edges
from vertex i to vertex j span a generalized edge vector representing an edge con-
necting i and j. The gain of the spanned edge is the product of the gains of the edges
in the path.

Proof. This follows from the previous lemma by induction. �

Lemma 3.4. A generalized edge vector 〈i, j, α〉 and the half-arc vector 〈i〉 span
vector 〈j〉.

Proof. − 1
α
〈i, j, α〉 + 1

α
〈i〉 = 〈j〉. �

Lemma 3.5. The following vectors

〈i1, i2, α1〉, 〈i2, i3, α2〉, . . . , 〈ik−1, ik, αk−1〉, 〈ik, i1, αk〉

are linearly dependent if and only if
∏k

j=1 αj = 1.

76 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

Proof. Consider the following matrix:

1 −αk
−α1 1

−α2
. . .
. . . 1

−αk−1 1

.

Its columns are linearly independent if and only if its determinant is zero. By
expanding about the first row, we find that det(A) = 1 − ∏k

j=1 αj . �

The previous lemma is a generalization of a result by Grossman, Kulkarni, and
Schochetman [11, Theorem 2.1]. They analyzed the case were all the edge vectors
have gain −1.

Lemma 3.6. A cycle is balanced if and only if the vectors corresponding to its edges
are linearly dependent.

Proof. We assume, without loss of generality (with respect to scaling of edge and
half-arc vectors), that the vectors representing the edges are unscaled generalized
edge vectors, and apply the proof of the previous lemma. �

The next theorem is the main result of this section, stating the connection between
the balanced-cycles matroid of a gain graph, and the associated vectorial matroid.

Theorem 3.7. Given a gain graph, a subset of its edges is independent if and only
if the vectors corresponding to these edges are linearly independent.

Proof. (�⇒) Suppose that the edges are independent. By definition, this means
that each connected component contains at most one cycle (and it is unbalanced)
of half-arc, but not both. Suppose to the contrary that the vectors corresponding
to the edges are linearly dependent. Then the zero vector can be represented as a
linear combination of the vectors. Let G∗ = (V ,E∗) be the subgraph such that E∗
is the set of edges whose coefficients in the linear combination are not zero. We
may assume that all the edges of E∗ belong to the same connected component, since
linear combinations of vectors in different connected component cannot cancel each
other out.

We first assume that the G∗ does not contain a half-arc. Since G∗ is indepen-
dent, it may contain at most one cycle, which is unbalanced. If i is a leaf, only one
generalized edge vector contains a non-zero in position i, so this non-zero cannot be
canceled out by the other edges in G∗. Therefore subgraph G∗ cannot contain any
leaves. Since there are no leaves, E∗ must be a cycle. However, since the edges are

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 77

independent, that cycle must be unbalanced. By Lemma 3.6, the vectors of the cycle
edges are linearly independent, a contradiction.

Now let us assume that G∗ does contain a half-arc. The edges of G∗ belong to one
connected component, so G∗ cannot contain a cycle. G∗ is a forest, so it must contain
at least two leafs. At least one of those leafs is not the end-point of the half-arc. If i
is that leaf, only one vector contains a non-zero in position i, so this non-zero cannot
be canceled out by the other edges in G∗, a contradiction.

(⇐�) Suppose that the vectors are linearly independent. By Lemma 3.6, a con-
nected component cannot contain a balanced cycle. Suppose a connected component
contains an unbalanced cycle. We want to show that no half-arc can exist in that
connected component. Let i be a vertex in that cycle. Let k be the length of the cycle.
There are k vectors corresponding to the edges of the cycle and they are linearly inde-
pendent. Therefore vector 〈i〉 is spanned. Suppose to the contrary that the connected
component contains a half-arc, whose endpoint is j . There is a path between vertices
i and j , so a generalized edge vector 〈i, j, α〉 (for some α) can be spanned. Since
〈i, j, α〉, 〈i〉 and 〈j〉 span the zero vector, we have found a non-trivial linear combi-
nation representation of the zero vector. Therefore the vectors are linearly dependent,
a contradiction. �

4. The null space of factor-width-2 matrices

This section characterizes the null spaces of factor-width-2 matrices, which are
always symmetric and positive semi-definite, but not always diagonally dominant.
Grossman, Kulkarni and Schochetman [10] analyzed a special case of this result
where the factor-width-2 representation contains only unscaled negative edge vec-
tors.

The class of factor-width-2 matrices includes all the matrices that can be fac-
tored into A = UUT, such that U has at most two non-zeros per column. The col-
umns of U may have entries that differ in absolute value, so they are not scaled
edge vectors. This class clearly does not include all symmetric positive semi-def-
inite matrices. For example, the matrix (1, 1, 1)T(1, 1, 1) does not belong to this
class.

The non-zero structure of U can be viewed as the incidence matrix of the under-
lying graph GA of A = UUT, where the columns of U represent edges and half-
arcs and the rows represent vertices. The main theorem of this characterizes the null
spaces of factor-width-2 matrices.

Theorem 4.1. The dimension of the null space is the number of connected compo-
nents that contain no half-arc vectors and no unbalanced cycles. Furthermore, the
null space of A is the direct sum of the gain vectors (defined below) of the rank-
deficient connected components.

78 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

We symmetrically permute the rows and columns of A into a block diagonal form,
where each block A1, A2, . . . , Ak represents a connected component in A’s under-
lying graph. Theorem 4.1 follows from the following lemmas.

Lemma 4.2. Let Ai = UiU
T
i be an ni-by-ni matrix corresponding to a connected

component, such that at least one of the columns in Ui is a scaled half-arc vector.
Then Ai is full rank.

Proof. At least one of Ui’s vectors is a scaled half-arc vector. Without loss of gen-
erality, let us assume that Ui contains a column which is a scaling of 〈1〉. Since
there is a path between vertex 1 and each other vertex in the connected component,
it follows from Lemma 3.3 that for each vertex j in the connected component, Ui

spans 〈1, j, α〉 for some α /= 0. By Lemma 3.4, this vector together with 〈1〉 span 〈j〉.
Therefore, the following ni vectors are spanned: 〈1〉, 〈2〉, . . . , 〈ni〉. These vectors are
linearly independent. Therefore Ai is full rank. �

Lemma 4.3. Let Ai = UiU
T
i correspond to a connected component with an unbal-

anced cycle. Then Ai is full rank.

Proof. Without loss of generality, let us assume that vertex 1 is in the unbalanced
cycle. By Lemma 3.6, the vectors of that cycle span 〈1〉. Since there is a path between
vertex 1 and each other vertex in the connected component, by Lemma 3.3 it follows
that for each vertex j in the connected component, a generalized edge-vector repre-
senting an edge from vertex 1 to vertex j is spanned. This vector along with 〈1〉 span
〈j〉 (Lemma 3.4). Therefore, the following ni vectors are spanned: 〈1〉, 〈2〉, . . . , 〈ni〉.
These vectors are linearly independent. Therefore Ai is full rank. �

Lemma 4.4. Let Ai = UiU
T
i correspond to a connected component such that all of

the columns of Ui are scaled generalized edge vectors (no scaled half-arc vectors),
and such that all the cycles in the corresponding connected component (if any) are
balanced cycles. Then the rank of Ai is ni − 1, and its null space is spanned by the
gain vector (defined below) of the connected components.

Proof. First let us consider a connected component containing no cycles at all. In
other words, Ui’s columns represent a tree. Matrix Ui is an ni-by-(ni − 1) matrix,
and so its rank is bounded by ni − 1. Since there is a path between vertex 1 and
each of the other vertices j in the connected component we can conclude, as before,
that a generalized edge vector, representing an edge from vertex 1 to vertex j , is
spanned. These ni − 1 vectors are linearly independent, and so the rank of Ai is
exactly ni − 1.

Let yi be the ni-by-1 column vector that contains, in the j th position, the gain
of the directed path from vertex j to vertex 1. We call yi the gain vector. For each
scaled generalized edge vector u = β 〈k1, k2, α〉 in U , the ratio between the values

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 79

of yi in positions k1 and k2 is +α. Therefore, for each u ∈ U , vector u is orthogonal
to yi .

We have found a vector yi which is orthogonal to each u ∈ Ui . Therefore: uTyi =−→
0 for each u ∈ Ui . Therefore: uuTyi = −→

0 for each u ∈ Ui . Hence,

Aiy =
∑
u∈Ui

uuTyi = −→
0 ,

i.e. vector y in the null space of Ai .
Now, let us allow cycles in our graph. Given our graph, let us arbitrarily choose

any spanning tree of the connected component. That tree has rank ni − 1. Adding
edges to the tree can only increase the rank. Let yi be the gain vector defined above,
with regard to the edges in the tree. As we have shown, for each edge vector u

corresponding to tree edge, uTyi = 0.
There are two possibilities:

1. The vectors corresponding to the non-tree edges are spanned by the tree edges, in
which case yi is orthogonal to each vector u ∈ Ui . Therefore Aiyi = 0.

2. The vectors corresponding to the non-tree edges are not spanned by the tree edges,
in which case Ai is full rank.

Let us consider the edges outside our chosen tree. If one of these edges closes an
unbalanced cycle, Ai has full rank. If, on the other hand, all of the cycles in the graph
are balanced, then each non-tree edge is spanned by any path of tree edges between
its endpoints. In this case yi is orthogonal to all of the vectors in Ui and is in Ai’s
null space. �

We have shown that the null space of matrices UiU
T
i such that Ui’s columns

contain no half-arc vectors, and Ui’s graph is connected and contains no unbalanced
cycles, is spanned by the gain vector yi . The gain vector yi contains, in the j th
position, the gain of a directed path between vertex j and vertex 1. The vector
yi is well-defined, since for each vertex j the paths from vertex 1 to vertex j all
have the same gain (otherwise there would have been an unbalanced cycle in the
graph).

The results in this section can be specialized in certain cases. If A is diagonally
dominant, its width-2 factorization can be computed in linear time (linear in the num-
ber of non-zeros/edges). This factorization contains only edges with gain ±1 (the
corresponding edge vectors were denoted by 〈ij〉 and 〉ij〈 in [4]) and half-arcs. The
gain graph corresponding to A is called a signed graph [26], the gain of a path/cycle
reduces to parity, and the gain vector reduces to a parity vector, containing only
±1’s. Also note that the gain of an edge in a signed graph is the same in both direc-
tions.

If A is both diagonally dominant and has only non-positive off diagonals, all the
edge vectors have gain 1. The gain graph corresponds to an unweighted undirected

80 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

graph. In this case, the gain graphic matroid reduces to a graphic matroid, in which
a subset S of edges is independent if and only if it is acyclic (see, for instance, [6]).
All paths have gain 1, which implies that any cycle in such a graph is balanced.
Therefore, the rank of a component is ni − 1 if and only if it has no half arcs, and
full rank otherwise. The gain vector in such cases degenerates into a characteristic
vector with 1’s in the positions corresponding to the component’s vertices.

5. An efficient algorithm for computing the null space of an H+ matrix

In this section we describe an efficient algorithm to compute the null space of an
H+ matrix given its width-2 factor. The amount of work that the algorithm performs
is linear in the number of edges and vertices.

The algorithm we describe can also be used to efficiently check whether a gain
graph is balanced. A gain graph G is called balanced if it contains no half arcs and
no unbalanced cycles.

By Lemmas 4.2–4.4, a connected component is balanced if and only if it is rank
deficient.

The algorithm works as follows. For each connected component, we check whether
it contains a half-arc. If so, then the connected component is unbalanced and full–
rank. If there is no half-arc, we choose some arbitrary vertex in the component. We
call that vertex a root. We then construct a spanning tree of the component using a
depth-first traversal. In the process, we can easily compute the gain of the path from
each vertex to the root. Let us denote the gain of the path between a vertex i and
the root r by γ (i), and call it the gain of the vertex. Then γ (r) = 1, and the gain of
any other vertex i is γ (i) = g(i, πi) · γ (πi) where πi denotes i’s parent in the tree,
and g(i, πi) denotes the gain of the edge (i, πi). Let y be the vector such that for
each vertex i in the connected component yi = γ (i), and for each vertex j not in the
connected component, yj = 0. If the connected component is balanced, then y is the
gain vector of that connected component, and it is in the null space. To determine
the rank, we inspect all the edges of the component that are not in the tree. The gain
of the path from i to j through the spanning tree is γ (i)/γ (j). If (i, j) ∈ E and
g(i, j) /= γ (i)/γ (j), then (i, j) closes an unbalanced cycle and the component is
full rank. If there is no such edge and no half-arcs, the component is rank deficient
and y ∈ null(A).

If all the connected components are balanced, then the graph is balanced.

6. Solving singular SDD linear systems

We have shown how to compute an orthonormal basis for the null space of a H+
matrix, given its width-2 factor. However, for most H+ matrices, we do not how to
quickly obtain a width-2 factor (solving a linear feasibility problem can be done in

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 81

polynomial time, but is unlikely to be fast enough for the applications we consider
here). For SDD matrices, however, a width-2 factorization can be computed in time
linear in the number of non-zeros in A. Therefore, for SDD matrices we can also
compute the rank and a basis for the null space in time linear in the number of
non-zeros in A.

In this section we show how to use the characterization and explicit construction
of the null space of an SDD matrix to solve linear systems with SDD coefficient
matrices. In particular, we show how to address the following issues:

• Determining whether the SDD coefficient matrix A is singular.
• Determining whether a singular SDD linear system Ax = b is consistent, that is,

whether b is in the range of A.
• Finding the Cholesky factorization A = LLT, where L is lower triangular, of a

singular SDD matrix A.
• Using the Cholesky factorization of a singular SDD matrix to solve a consistent

linear system Ax = b or to find the least-squares solution of an inconsistent linear
system.

• Using the Conjugate Gradient (CG) algorithm or the Minimum-Residual (MIN-
RES) algorithm to iteratively solve rank-deficient least-squares problems.

The solutions that we propose to these problems are numerically stable and accu-
rate. What we are essentially proposing are combinatorial algorithms that stabilize
continuous fixed-precision algebraic computations.

Determining the rank of a general matrix is hard, in the sense that it requires
computing at least the small eigenvalues accurately, which is more expensive than
solving linear systems. Therefore, linear system solvers usually do not and cannot
reliably determine whether a linear system is singular or not.

Our results imply that for general SDD matrices, singularity can be reliably deter-
mined in almost linear time. First, we find the connected components that have no
negative cycle. This part of the computation is completely sign-based and suffers no
rounding errors. Next, we check that each of these components (if any) has a strictly
diagonally dominant row, which corresponds to a half-arc. If one or more compo-
nents have no negative cycle and no strictly diagonally dominant rows, the matrix is
singular. Determining the diagonal dominance of rows is subject to rounding errors
in the summation process. Since all the terms in the summation are positive, how-
ever, it is possible to achieve perfect relative accuracy [15], [16, Chapter 4]. In other
words, our algorithm is very accurate and will err only when a diagonal element is
larger than the sum of the absolute values of the offdiagonals in a row, but only by
a factor of O(εmachine), where εmachine ≈ 10−16 in double-precision IEEE floating-
point arithmetic. Note that simply requiring that a rank-determination algorithm be
backward stable is essentially useless: an algorithm that always returns the dimension
of the matrix is backward stable, since every matrix is close to a full-rank matrix. Our
algorithm provides accurate answers in the sense that it always reports that singular

82 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

matrices are singular, and only errs on highly ill conditioned (very close to singular)
matrices.

Given a linear system with a singular SDD coefficient matrix, it is often useful (as
we’ll show later) to determine whether the system is consistent. That is, to determine
whether b is in the range of A. We can easily and stably determine this by computing
the projection of b on the null space of A. If the norm of the projection is large
compared with the norm of b, then b is not in the range of A, otherwise it is (or
is close to the range space). Given an orthonormal basis N for the null space of A
(note that we always compute an orthogonal basis, so all we need is to normalize the
basis), the projection is NNTb. Since the projection involves only multiplications by
orthonormal matrices, it is backward stable.

The next two problems are addressed by a combination of our techniques and the
techniques proposed by Arbenz and Drmač [1]. They show how to accurately com-
pute the Cholesky factorization of a semidefinite matrix whose null space is known,
and how to use such factorizations to solve consistent linear systems (in fact, their
algorithms only require the non-zero structure of the null space). Our contribution is
the computation of a basis for the null space of SDD matrices.

We also point out that one can solve square rank-deficient least-squares problems
min ‖Ax − b‖2 by projecting b orthogonally onto the range of A and solving the sin-
gular but consistent linear system Ax̂ = (I − NNT)b. The solution x̂ of this system
of linear equations is the minimum-norm least-squares solution that we seek. Project-
ing the right-hand-side onto the range of A allows iterative solvers, such as CG [14]
and MINRES [20], to effectively solve the singular consistent system. These methods
reliably converge on consistent systems (and then the convergence does not depend
on the existence of the zero eigenvalue, only on the non-zero eigenvalues), but they
converge very slowly or fail to converge on inconsistent systems. While iterative
least-square solvers such as LSQR [21] can solve least-squares problems without first
projecting the right-hand side, they are often slower than CG and MINRES. There-
fore, projecting the right-hand side onto the range of A, which requires a basis for
the null space, can be useful. The next section explores these issues experimentally.

7. Experimental results

In the previous section we showed several applications of explicitly constructing
the null space of an SDD matrix. In this section we describe numerical experiments
that demonstrate two of these applications. The experiments were carried out using
MATLAB.

7.1. The rank of an SDD matrix

Algorithm 1 constructs an ill-conditioned but full rank SDD matrix A that MAT-
LAB incorrectly classifies as rank deficient. The graph of the matrix is a cycle of

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 83

size 100, which is exactly but not strictly diagonally dominant. The gain of 99 of
the edges is 1 and the gain of the remaining edge is −1. Therefore, the gain of the
cycle is −1. This cycle is unbalanced and thus A has full rank no matter how the
edges are scaled. The matrix is constructed by computing A = UUT, where U is a
scaled incidence matrix. The columns of U corresponding to the positive edges are
unscaled positive edge vectors, and the column corresponding to the negative edge
is scaled by 1.5 × 105.

The condition number of this matrix, as computed by MATLAB, is approximately
4.56 × 1013. MATLAB’s rank computation is based on computing the number of ei-
genvalues larger than n‖A‖εmachine, which in this case turns out to be 99. Making the
scaling of the negative edge smaller leads to 100 eigenvalues that pass the threshold,
so MATLAB reports the rank as 100; making the scaling larger leads to an even
smaller reported rank.

This matrix is indeed ill conditioned, so it is very close to some singular matrix.
However, by our characterization of the rank of SDD matrices, we know that no SDD
matrix with this non-zero structure and with the same element signs is singular. The
non-zero structure and the element signs imply that for all numerical element values
(as long as diagonal dominance is maintained), the signed graph of the matrix is a
negative cycle, so the matrix is non-singular.

Therefore, if we know that the application in which the matrix arises only pro-
duces SDD matrices and that the non-zero and sign structure is accurate (not subject
to numerical errors), then we can conclude that the matrix is non-singular. There
is no singular SDD matrix with this non-zero and sign structure, so the singular
matrices in the neighborhood of our matrix do not belong to this class. The algorithm
that we described in Section 5 determines correctly in linear time that A has full
rank. The algorithm computations are completely sign-based and suffer no rounding
errors.

Algorithm 1. A full-rank ill-conditioned SDD matrix. There is no similarly struc-
tured singular SDD matrix. In other words, A is full rank for any non-zero column
scaling of U .

n = 100;
U = zeros(n,n);
for i = 1:n-1

U(i,i)=1;
U(i+1,i)=-1;

end
U(1,n)=1.5e5;
U(n,n)=1.5e5;
A=U*U’;
rank(A)

84 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

7.2. Iteratively solving square rank-deficient least-squares problems

Our second experiment demonstrates the importance of projecting the right hand
side of a singular linear system onto the range of the coefficient matrix before using
Krylov-subspace linear-equation iterative solvers with short recurrences.

In this experiments we used a 400-by-400 SDD matrix A whose underlying graph
is a regular 20-by-20 mesh. The matrix is diagonally dominant but not strictly. The
gain of the two edges connected to one of the corner vertices of the mesh is −1,
and the gain of all the other edges is 1. The edge vectors are unscaled, so all the
offdiagonal elements of A are either 0 or have absolute value 1. Every cycle that
contains negative edges must contain the corner vertex and the two negative edges
incident to it. Since all the cycles are balanced and there are no half-arcs in this
graph, A is rank deficient. The null space of A is spanned by a vector y that contains
1 in the corner vertex and −1 elsewhere.

We selected three random right-hand side vectors b with normal element distri-
butions (using MATLAB’s randn routine), and solved the three linear systems of
the form Ax = b. We used four different Krylov-subspace iterative solvers to solve
each linear system, without preconditioning. The iterative solvers were LSQR [21], a
least-squares solver, and three linear-equation solvers: Conjugate Gradients (CG) [14]
(see also [7]), MINRES [20], and GMRES [23] with no restarts. We invoked each
linear solver on each linear system twice: once with the original random b, and
again with an orthogonal projection (I − yyT)b of b onto the range of A. Thus,
we conducted a total of 3 × 4 × 2 = 24 experiments. (We actually conducted more
experiments with additional right-hand-sides and additional matrices to ensure that
we obtained representative results, but the results of the additional experiments are
not shown in this paper; they were similar to the results shown.)

The results of the experiments are presented in Figs. 1–3. Each graph plots the
norm of the residual as a function of the number of iterations, as computed during
the iteration by the iterative algorithm itself. The residuals are not computed directly
in every iteration; they are updated, so they may become inaccurate. The graphs also
show the completion flag (0 implies convergence, other values imply breakdown)
and the 2-norms of the computed solution x̂ and of the true residual b − Ax̂.

The results do not vary qualitatively by the actual right-hand side b. In all cases,
all the linear solvers computed an accurate minimum-norm residual-norm minimizer
x̂ when they were required to solve the consistent linear system Ax̂ = (I − yyT)b.
(We verified that the solution is indeed a minimum-norm minimizer using the pseudo
inverse of A.) All the algorithms converged to the desired accuracy, a reduction of
the residual norm by a factor of 106, within similar numbers of iterations, around 70,
except LSQR, which took over 260 iterations to converge.

When the algorithms were required to solve the inconsistent system Ax̂ = b, the
behavior of LSQR did not change, but the behavior of the others changed dramati-
cally. The short-recurrence algorithms, CG and MINRES, failed to produce a good
residual-norm minimizer. GMRES, on the other hand, returned a residual-norm min-

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 85

0 100 200 300
10

–1

10
0

10
1

10
2

LSQR, Random RightHand Side

flag=0

residual norm=1.89e–01

solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

–10

10
–5

10
0

10
5

LSQR, Right–Hand Side in range(A)

flag=0

residual norm=1.89e–01

solution norm=4.42e+01

Iterations
R

el
at

iv
e

re
si

du
al

 n
or

m

0 100 200 300
10

–10

10
0

10
10

10
20

GMRES, Random Right–Hand Side

flag=3

residual norm=1.89e–01

solution norm=5.09e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

10
0

10
5

GMRES, Right–Hand Side in range(A)

flag=0

residual norm=1.89e–01

solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80 100
10

–5

10
0

10
5

10
10

CG, Random Right–Hand Side

flag=4

residual norm=6.01e–01

solution norm=4.83e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

–5

–5

10
0

10
5

CG, Right–Hand Side in range(A)

flag=0

residual norm=1.89e–01

solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 200 400 600 800 1000
10

–2

10
–1

10
0

10
1

10
2

MINRES, Random Right–Hand Side

flag=1

residual norm=7.02e+14

solution norm=6.33e+14

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

–5

10
0

10
5

MINRES, Right–Hand Side in range(A)

flag=0

residual norm=1.89e–01

solution norm=4.42e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

Fig. 1. The convergence of Krylov-subspace iterative solvers on a 400-by-400 singular linear system. The
coefficient matrix is an SDD matrix representing a 2D mesh. The plots show (top to bottom) the conver-
gence of LSQR, GMRES, CG, and MINRES. In each row, the plot on the left shows the convergence
when the right-hand side is random and not in range(A), and the plot on the right shows the convergence
when the right-hand-side is projected orthogonally onto range(A).

86 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

0 100 200 300
10

–1

10
0

10
1

10
2

LSQR, Random Right–Hand Side

flag=0

residual norm=9.63e–01

solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

–5

10
0

10
5

LSQR, Right–Hand Side in range(A)

flag=0

residual norm=9.63e–01

solution norm=1.03e+02

Iterations
R

el
at

iv
e

re
si

du
al

 n
or

m

0 100 200 300 400
10

–10

10
0

10
10

10
20

GMRES, Random Right–Hand Side

flag=3

residual norm=9.63e–01

solution norm=1.64e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

–5

10
0

10
5

GMRES, Right–Hand Side in range(A)

flag=0

residual norm=9.63e–01

solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80 100
10

0

10
5

10
10

CG, Random Right–Hand Side

flag=4

residual norm=3.68e+00

solution norm=1.38e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

–5

10
0

10
5

CG, Right–Hand Side in range(A)

flag=0

residual norm=9.63e01

solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 50 100 150 200
10

–1

10
0

10
1

10
2

MINRES, Random Right–Hand Side

flag=3

residual norm=3.13e+02

solution norm=1.09e+16

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

5

10
0

10
5

MINRES, Right–Hand Side in range(A)

flag=0

residual norm=9.63e–01

solution norm=1.03e+02

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

Fig. 2. An experiment on an additional right-hand-side.

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 87

0 100 200 300
10

–1

10
0

10
1

10
2

LSQR, Random Right–Hand Side

flag=0

residual norm=3.69e–01

solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

–5

10
0

10
5

LSQR, Right–Hand Side in range(A)

flag=0

residual norm=3.69e–01

solution norm=6.53e+01

Iterations
R

el
at

iv
e

re
si

du
al

 n
or

m

0 50 100 150 200
10

–10

10
0

10
10

10
20

GMRES, Random Right–Hand Side

flag=3

residual norm=3.69e–01

solution norm=8.19e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

–5

10
0

10
5

GMRES, Right–Hand Side in range(A)

flag=0

residual norm=3.69e–01

solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 50 100 150 200
10

0

10
5

10
10

CG, Random Right–Hand Side

flag=3

residual norm=1.25e+00

solution norm=7.35e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

–5

10
0

10
5

CG, Right–Hand Side in range(A)

flag=0

residual norm=3.69e–01

solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 100 200 300
10

–2

10
–1

10
0

10
1

10
2

MINRES, Random Right–Hand Side

flag=3

residual norm=1.56e+14

solution norm=5.00e+15

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

0 20 40 60 80
10

–5

10
0

10
5

MINRES, Right–Hand Side in range(A)

flag=0

residual norm=3.69e–01

solution norm=6.53e+01

Iterations

R
el

at
iv

e
re

si
du

al
 n

or
m

Fig. 3. An experiment on an additional right-hand-side.

88 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

imizer x̂ when it stopped, but that solution is not a minimum-norm solution (the
code returns the approximation that minimizes the residual norm, not necessarily
the approximation from the last iteration). None of these three algorithms, includ-
ing GMRES, could detect convergence even when they achieved it, because no x̂

in the Krylov subspaces (a subset of the range of A) can produce a small-enough
residual. CG always stopped when the direction vectors overflowed (exit flag 4),
while both MINRES and GMRES stopped when they stagnated. The failure to detect
convergence caused GMRES to run for much too long.

The fact that GMRES always computed a good solution suggests that CG and
MINRES suffer from loss of orthogonality in the direction vectors when the linear
system is inconsistent.

Clearly, solving a linear system with a right-hand side that is projected onto the
range of A allows the iterative linear solvers to detect convergence more reliably
than they otherwise would. Also, it appears that inconsistent linear systems induce
a loss of orthogonality and hence failure in short-recurrence algorithms like CG and
MINRES.

The iterative least-squares solver, LSQR, produced the same solution whether the
system was consistent or not, and within the same number of iterations. However, it
performs many more iterations (more than a factor of 3 in this case) than the linear
solvers when they solve a consistent system.

There results demonstrate the utility of explicitly computing an orthonormal basis
for the null space when solving square least-squares problems. Of the four solvers
that we tested, one (LSQR) did not benefit from projection onto the range, but it
was slow. Another, GMRES, did compute a residual-norm minimizer, but not a min-
imum-norm one, and it did not detected convergence. It was also very slow due to full
orthogonalization in every step. The best solvers were the short-recurrence solvers,
CG and MINRES, when applied to a singular but consistent system; they were fast
and computed a minimum-norm residual-norm-minimizer.

8. Conclusions and open problems

The main results in this paper are (1) a combinatorial characterization of the null
space of H+ matrices, which include SDD matrices, (2) efficient algorithms, which
rely on this combinatorial characterization, to construct bases for the null spaces of
such matrices. We have also demonstrated the utility of these combinatorial algo-
rithms in a number of important numerical-linear-algebra computations.

The paper extends previous results in spectral graph theory in several directions.
First, we study spectral properties of signed and weighted graphs, namely, the exis-
tence of zero eigenvalues. Previously, most of the research in this area has focused
on spectral properties of undirected unsigned graphs, using their Laplacian matrices.
Second, we study the structure of eigenvectors (those corresponding to zero eigen-
values), rather than estimate or bound eigenvalues. The structure of eigenvectors

D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90 89

of Laplacians are important in other applications, such as spectral partitioning of
graphs [12,25], but in general Laplacian eigenvectors have not been studied much.

The paper raises a number of interesting questions. Perhaps the most important
one is whether a given H+ matrix can be efficiently factored into width-2 factors.
Several authors proposed iterative algorithms for this problem [17–19], but there
are no useful bounds on their convergence or running time. Finally, more detailed
characterizations of the eigenvectors of matrices associated with graphs (such as
Laplacians) would be useful in some applications, such as quantization of mesh func-
tions [24].

Acknowledgments

Thanks to Erik G. Boman and to Ojas Parekh for numerous comments on drafts
of this manuscript.

References

[1] P. Arbenz, Z. Drmač, On positive semidefinite matrices with known null space, SIAM J. Matrix
Anal. Appl. 24 (1) (2002) 132–149.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994.
[3] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.
[4] E.G. Boman, D. Chen, B. Hendrickson, S. Toledo, Maximum weight basis preconditioners, Numer.

Linear Algebra Appl., in press (doi:10.1002/nla.343).
[5] E.G. Boman, D. Chen, O. Parekh, S. Toledo, On factor width and symmetric H-matrices, submitted

for publication.
[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press and McGraw-Hill,

1990.
[7] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, 1996.
[8] J.L. Gross, Voltage graphs, Discrete Math. 9 (1974) 239–246.
[9] J.L. Gross, T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Dis-

crete Math. 18 (1977) 273–283.
[10] J.W. Grossman, D.M. Kulkarni, I.E. Schochetman, Algebraic graph theory without orientation, Lin-

ear Algebra Appl. 212/213 (1994) 289–307.
[11] J.W. Grossman, D.M. Kulkarni, I.E. Schochetman, On the minors of an incidence matrix and its

Smith Normal Form, Linear Algebra Appl. 218 (1–3) (1995) 213–224.
[12] S. Guattery, On the quality of spectral separators, SIAM J. Matrix Anal. Appl. 19 (3) (1998) 701–

719.
[13] F. Harary, On the notion of balance of a signed graph, Michigan Math. 2 (1953–1954) 143–146.
[14] M. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Natl. Bureau

Stand. J. Res. 49 (1952) 409–436.
[15] N.J. Higham, The accuracy of floating point summation, SIAM J. Sci. Comput. 14 (4) (1993) 783–

799.
[16] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 1996.
[17] T. Kohno, H. Niki, H. Sawami, Y.-M. Gao, An iterative test for H-matrix, J. Comput. Appl. Math.

115 (2000) 349–355.

90 D. Chen, S. Toledo / Linear Algebra and its Applications 392 (2004) 71–90

[18] B. Li, L. Li, M. Harada, H. Niki, M.J. Tsatsomeros, An iterative criterion for H-matrices, Linear
Algebra Appl. 271 (1998) 179–190.

[19] L. Li, On the iterative criterion for generalized diagonally dominant matrices, SIAM J. Matrix Anal.
Appl. 24 (2002) 17–24.

[20] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J.
Numer. Anal. 12 (1975) 617–629.

[21] C.C. Paige, M.A. Saunders, Algorithm 583. LSQR: Sparse linear equations and sparse least squares,
ACM Trans. Math. Software 8 (1982) 195–209.

[22] K. Rybnikov, T, Zaslavsky, Criteria for balance in abelian gain graphs with applications to geometry,
submitted for publication.

[23] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856–869.

[24] O. Sorkine, D. Cohen-Or, S. Toledo, High-pass quantization for mesh encoding, in: Proceedings of
ACM/Eurographics Symposium on Geometry Processing, Aachen, Germany, 2003.

[25] D.L. Spielman, S.-H. Teng, Spectral partitioning works: Planar graphs and finite element meshes,
in: IEEE Symposium on Foundations of Computer Science, 1996, pp. 96–105.

[26] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47–74.

	Introduction
	Width-2 factorization of H+ matrices
	Gain graphs and factor-width-2 matrices
	The null space of factor-width-2 matrices
	An efficient algorithm for computing the null space of an H+ matrix
	Solving singular SDD linear systems
	Experimental results
	The rank of an SDD matrix
	Iteratively solving square rank-deficient least-squares problems

	Conclusions and open problems
	Acknowledgments
	References

