
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2004; 11:695–721 (DOI: 10.1002/nla.343)

Maximum-weight-basis preconditioners

Erik G. Boman1;†, Doron Chen2;‡, Bruce Hendrickson1;§ and Sivan Toledo2;∗;¶

1Sandia National Labs; Albuquerque; NM 87185-1111; U.S.A.
2School of Computer Science; Tel-Aviv University; Tel-Aviv 69978; Israel

SUMMARY

This paper analyses a novel method for constructing preconditioners for diagonally dominant symmetric
positive-de�nite matrices. The method discussed here is based on a simple idea: we construct M by
simply dropping o�diagonal non-zeros from A and modifying the diagonal elements to maintain a certain
row-sum property. The preconditioners are extensions of Vaidya’s augmented maximum-spanning-tree
preconditioners. The preconditioners presented here were also mentioned by Vaidya in an unpublished
manuscript, but without a complete analysis.
The preconditioners that we present have only O(n+ t2) nonzeros, where n is the dimension of the

matrix and 16t6n is a parameter that one can choose. Their construction is e�cient and guarantees
that the condition number of the preconditioned system is O(n2=t2) if the number of nonzeros per row
in the matrix is bounded by a constant.
We have developed an e�cient algorithm to construct these preconditioners and we have implemented

it. We used our implementation to solve a simple model problem; we show the combinatorial structure
of the preconditioners and we present encouraging convergence results. Copyright ? 2004 John Wiley
& Sons, Ltd.

KEY WORDS: sparse linear solvers; preconditioning; support theory; support preconditioners; maximum-
weight bases; matroids

1. INTRODUCTION

This paper analyses a novel method for constructing preconditioners for diagonally dominant
symmetric matrices with positive diagonal entries. A good preconditioner should balance two
con�icting objectives. It should approximate the matrix well and it should be easy to factor.
For symmetric positive-de�nite matrices, a good approximation is one that results in clustered

∗Correspondence to: S. Toledo, School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
†E-mail: eboman@cs.sandia.gov
‡E-mail: mycroft@tau.ac.il
§E-mail: bah@cs.sandia.gov
¶E-mail: stoledo@tau.ac.il

Contract=grant sponsor: U.S. DOE; contract=grant number: DE-AC-94AL85000
Contract=grant sponsor: Israel Science Foundation; contract=grant number: 572=00 and 9060=99
Contract=grant sponsor: University Research Fund of Tel-Aviv University

Received 3 June 2001
Published online 20 May 2004 Revised 25 March 2002
Copyright ? 2004 John Wiley & Sons, Ltd. Accepted 29 September 2002

696 E. G. BOMAN ET AL.

eigenvalues for the preconditioned system M−1=2AM−1=2, where M is the preconditioner and A
is the matrix. The method discussed here is based on a simple idea: we construct M by simply
dropping o�diagonal non-zeros from A and modifying the diagonal elements to maintain a
certain row-sum property. The trick, of course, is to drop non-zeros in a way that makes M
easier to factor than A but still clusters the eigenvalues.
The preconditioners that we analyse in this paper were proposed about a decade ago by

Pravin Vaidya in an unpublished manuscript [1] which he presented in a scienti�c meeting.
In that manuscript, Vaidya proposed the overall idea of dropping elements of A to form M ,
sketched a method for analysing such preconditioners and proposed a family of precondition-
ers. The preconditioners that he proposed are based on a construction called a maximum-
weight basis, and are parametrized by a single parameter t that controls how many non-zeros
are dropped. When the matrices are not only diagonally dominant with positive diagonals and
symmetric, but have only non-positive o�diagonals, the maximum-weight basis corresponds
to a maximum spanning tree of the graph of the matrix. This special case received quite a
bit of attention. The theory required to analyse maximum-spanning-tree preconditioners was
developed by Gremban et al. [2, 3] and by Bern et al. [4], and the performance of the precon-
ditioners in practice was investigated by Chen and Toledo [5, 6] (Vaidya’s manuscript contains
no proofs and no experimental results). The more general case was never fully analysed.
We note that Gremban [3] showed that any linear system with an n-by-n symmetric diago-

nally dominant coe�cient matrix can be solved by solving a related system with a 2n-by-2n
symmetric diagonally dominant coe�cient matrix with non-positive o�-diagonals. This trans-
formation allows one to apply Vaidya’s maximum-spanning-tree preconditioners to all diago-
nally dominant symmetric matrices. This transformation has several drawbacks compared to
the method presented in this paper. The larger 2n-by-2n matrices are likely to lead to slower
solution times since vector–vector and matrix–vector operations take longer and the factor of
the matrix is likely to �ll more. Also, the transformation does not preserve graph properties
that may be relevant to performance, such as planarity (but it does preserve vertex separators;
a size s separator in the original matrix corresponds to a 2s separator in the larger matrix).
A more detailed comparison of the two approaches is beyond the scope of this paper.
This paper analyses maximum-weight-basis (MWB) preconditioners. It turns out that the

analysis is quite complex, much more so than the special case of maximum spanning trees.
We also present an e�cient algorithm for constructing MWB preconditioners. The algorithm,
too, is non-trivial and requires a sophisticated data structure to ensure its e�ciency. Unlike
previous analysis of preconditioners based on Vaidya’s dropping idea [2–4, 7], our analysis is
based not on graph embeddings, but on an algebraic generalization developed by Boman and
Hendrickson [8]. We have implemented the preconditioner and the paper presents a numerical
example that shows that it is e�ective in practice. This example is only meant to illustrate the
structure of the preconditioner and its performance; it is not a thorough experimental study.
Vaidya’s unpublished work has led to research in several directions. Some of the research

provided proofs for Vaidya’s claims. Gremban et al. proved some of the basic spectral lem-
mas [2, 3], Bern et al. proved a few more lemmas and analysed maximum-spanning-tree
preconditioners [4], Reif analysed Vaidya’s proposed recursive preconditioners, in which M
is not factored completely [9], and this paper analyses Vaidya’s MWB preconditioners. Other
research focused on applying Vaidya’s analysis technique to other preconditioners. Guattery
used the technique to analyse a class of incomplete-factorization preconditioners [7], and Bern
et al. used the technique to analyse another class of incomplete-factorization preconditioners,

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 697

as well as a simple multilevel preconditioner. Finally, some of the research uses Vaidya’s tech-
niques to design new preconditioners. Gremban et al. proposed a cheap-to-factor hierarchical
preconditioner for diagonally dominant positive-de�nite symmetric matrices [2, 3] and Howle
and Vavasis extended Gremban’s preconditioners to complex symmetric linear systems [10].
Maximum-weight-basis preconditioners are algorithmically di�erent from incomplete-

factorization preconditioners, but their analysis is closely related to the analysis of incomplete-
factorization preconditioners. Algorithmically, MWB preconditioners are constructed by �rst
dropping elements from A and modifying its diagonal to form the preconditioner M , and
then factoring M using a direct complete-factorization method. Incomplete-factorization pre-
conditioners, on the other hand, implicitly construct M =LU (or M =LDLT, etc.), where the
factors L and U are sparse and formed by dropping non-zero entries during the factorization
process. In essence, MWB preconditioners are constructed by a complete factorization of an
incomplete matrix M , whereas incomplete-factorzation preconditioners are constructed by an
incomplete factorization process applied to the complete matrix A.
The spectral analyses of the two classes of preconditioners, however, are closely related.

The literature on spectral analyses of incomplete-factorization preconditioners is extensive.
While we cannot fully survey it, we note in the next paragraphs a few key results from this
literature that are closely related to this paper. Some spectral results in the literature are very
general, in that they apply not only to incomplete-factorization preconditioners, but to a very
large class of preconditioners.
In general, the results on spectral analysis of incomplete-factorization preconditioners can

be classi�ed as follows:

• General algebraic eigenvalue bounds that depend only on the spectrum of A. Such results
are applicable to MWB preconditioners as well. For example, Lemma 2.3 below is
essentially a special case of the much more general [11, Theorem 10.1] (except that [11,
Theorem 10.1] assumes that the preconditioner is positive de�nite, whereas Lemma 2.3
only requires semi-de�niteness). The result [11, Theorem 10.1] provides not only bounds
on extremal eigenvalues, but on all eigenvalues, and not only upper bounds, but lower
bounds as well.

• Algebraic eigenvalue bounds that depend on matrices arising in the incomplete-factoriza-
tion process, such as References [12–14]. These results are not directly applicable to
MWB precoditioners, which are not constructed by such a process.

• Algebraic eigenvalue-bounds for block-incomplete-factorization preconditioners that de-
pend on the number of blocks in the matrix partitioning, such as References [13, 15].
These, too, are not directly applicable to MWB preconditioners, in which there is no
natural partitioning into blocks.

• PDE-related bounds. These results assume that the algebraic system of equations arises
from a discretization of a PDE. The results typically utilize the more general alge-
braic bounds mentioned in the previous items, in order to relate the condition number
of the preconditioned problem to quantitative properties of the underlying PDE and
its discretization. For example, References [16–18] show that for di�erence equations
for elliptic PDEs, certain point-incomplete-factorization preconditioners achieve condi-
tion number O(h−1), where h is the mesh spacing. Other dependencies on the PDE and
its discretization might include the coe�cients of the PDE, the shape of the domain, and
so on.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

698 E. G. BOMAN ET AL.

Some of the spectral bounds assume that the matrix is perturbed prior to its incomplete
factorization, which leads to slightly di�erent row sums for M than for A. Early results, such
as References [16–18], depended on these perturbation, but later the unperturbed variants
were shown to be equally e�ective [19–21]. For further details regarding spectral analysis
of preconditioners, see the monograph [11], the survey [13], the papers cited above, and the
papers [13, 15, 18, 22–28].
Let us frame our results in this context. Our eigenvalue bounds, like those of Vaidya [1],

depend on relationships between the graph of A and the graph of M ; they do not depend di-
rectly on the eigenvalues of A, on matrices arising in the factorization process, or on a block
partitioning of A and M . When applied to second-order discretization of elliptic PDEs in two
dimensions, Vaidya’s preconditioners and MWB preconditioners perform theoretically slightly
better than modi�ed and relaxed-modi�ed point incomplete factorization preconditioners. The
latter achieve condition number O(h−1), which translates to an O(n1:25) work to solve a sys-
tem with n unknowns (O(h−0:5)=O(n0:25) iterations, each requiring O(n) work). Vaidya and
MWB preconditioners can solve such problems in O(n1:20) work, as explained towards the
end of Section 8, and more fully, in References [4, 6]. (The O(n1:20) work bound is a proven
bound.) For similar problems in three dimensions, incomplete-factorization preconditioners
perform better. This comparison shows that the relationship between incomplete-factorization
preconditioners and MWB preconditioners is quite complex. With respect to diagonal pertur-
bation, our results, as well as Vaidya’s results, do not use perturbations at all. It is quite
possible that the techniques developed to analyse perturbations in incomplete-factorization
preconditioners would be applicable to MWB preconditioners as well.
The rest of the paper is structured as follows. Section 2 presents technical tools that we use

in the analysis of the preconditioners. In Section 3 we show that whenever we form a precon-
ditioner for a diagonally dominant symmetric matrix by symmetrically dropping non-zeros and
modifying diagonal elements appropriately, the small eigenvalue of the preconditioned matrix
is at least 1. Section 4 shows how to represent A as a sum of rank-1 matrices A=

∑m
k=1 uku

T
k ,

where each rank-1 matrix corresponds to one edge of GA, the underlying graph of A. The
vectors uk , which we call scaled edge vectors, play a prominent role in this paper. The next
section, Section 5, characterizes the structure of independent sets of edge vectors. Section
6 uses this characterization to prove that if the preconditioner M corresponds to an inde-
pendent set of edge vectors that maximizes the sum of the scaling factors of the vectors,
then the large eigenvalue of the preconditioned matrix is at most 4nm, where n is the di-
mension of A and m is the number of non-zeros in the strictly upper triangular part of A.
Finding the set of vectors that maximizes this sum is conceptually simple, since the vectors
form a combinatorial structure known as a matroid. There exists a generic algorithm that
�nds a maximum-weight basis in any matroid and it turns out that the set of vectors that
we seek form such a basis. The generic algorithm requires an e�cient subroutine for deter-
mining whether a given vector is dependent on an independent set of vectors. We present
an e�cient independence-testing algorithm in Section 7. Section 8 shows how to augment
a MWB preconditioner with additional non-zeros from A, in a way that guarantees a reduc-
tion in the condition number. More speci�cally, we show how to add O(t2) non-zeros to
M so that the total number of non-zeros is bounded by O(n+ t2) and so that the condition
number drops to O(n2=t2), when the number of non-zeros per row in A is bounded by a
constant. (Reif shows a construction that overcomes the need to bound the number of non-
zeros per row [9].) Section 9 presents a numerical example. We present a simple class of

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 699

diagonally dominant symmetric matrices and construct augmented-MWB preconditioners for
them. We graphically show the phases of the construction algorithm on a small matrix. We also
show that augmented-MWB preconditioners perform well compared to modi�ed incomplete
Cholesky preconditioners on a large matrix. We conclude the paper with a summary of our
results.

2. BACKGROUND

This section presents technical tools that we use in the analysis of the preconditioners.
The number of iterations of the conjugate-gradients method for the solution of systems

of linear equations Ax= b is bounded above by the square root of the spectral condition
number �(A) of A. (To reduce the norm of the residual by a constant factor.) The condition
number is the ratio of the extreme eigenvalues of A, �(A)= �max(A)=�min(A). The Conjugate
Gradient method can be used to solve consistent linear systems with a singular coe�cient
matrix A when a basis for the null space of A is known. In such cases, the number of
iterations is proportional to square root of the ratio of the extreme positive eigenvalues. When
a preconditioner M is used in the conjugate-gradients method, the number of iterations is
proportional to the square root of the ratio of the extreme �nite generalized eigenvalues of
the pair (A;M), de�ned below.

De�nition 2.1
The number � is a �nite generalized eigenvalue of the matrix pencil (A;M) if there exists a
vector x such that Ax= �Mx and Mx �=0. We denote the set of �nite generalized eigenvalues
by �f(A;M).
Henceforth whenever we refer to an “eigenvalue” of a matrix pencil, we mean a �nite

generalized eigenvalue.

To bound the amount of work in the Preconditioned Conjugate Gradient method, we need
to bound the �nite eigenvalues of (A;M). We need to prove two bounds: an upper bound on
max �f(A;M) and a lower bound on min �f(A;M). We will prove the upper bound directly
and the lower bound by proving an upper bound on max �f(M;A)=1=min �f(A;M). We
therefore only need to show how to prove upper bounds on the �f(A;M), since the lower
bound is proved in essentially the same way for the matrix pencil (M;A).

De�nition 2.2
The support �(A;M) of a matrix pencil (A;M) is the smallest number � such that �M −A is
positive semide�nite. If there is no such number, we take �(A;M)=∞.
The importance of support numbers stems from the following lemma, on which all of the

analyses of Vaidya’s preconditioners and follow-up preconditioners are based.

Lemma 2.3 (Support lemma [3])
If �∈ �f(A;M) and M is positive semide�nite and null(A)⊆ null(M), then �6�(A;M).
The bound given in the Support Lemma is tight if �(A;M) is �nite.
The support lemma allows us to bound the spectrum of a matrix pencil by showing that

�A−M is positive semide�nite. One way to do so is to split �A−M into a sum of matrices and

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

700 E. G. BOMAN ET AL.

to show that each term is positive semide�nite. The next lemma, which was used implicitly
by Vaidya and proved by Gremban [3], states this formally.

Lemma 2.4 (Splitting lemma)
Let Q=Q1 +Q2 + · · ·+Qm. If Q1; Q2; : : : ; Qm are all positive semide�nite, then Q is positive
semide�nite.

In previous research, the main tool that was used to prove that the terms of a splitting are
positive semide�nite was the so-called Congestion-Dilation Lemma [4]. In this paper we use
an algebraic generalization of the Congestion-Dilation Lemma, which is due to Boman and
Hendrickson.

Lemma 2.5 (Rank-1 support lemma [8])
If u∈Rn×1 is in the range of V ∈Rn×k , then �(uuT; VV T)= minwTw subject to Vw= u.

Our analysis relies on the connection between matrices and graphs, which we now de�ne
formally.

De�nition 2.6
The underlying graph GA=(VA; EA) of an n-by-n symmetric matrix A=(aij) is a weighted
undirected graph whose vertex set is VA= {1; 2; : : : ; n} and whose edge set is EA= {(i; j) : i �= j
and aij �=0}. The weight of an edge (i; j) is −aij.

Although de�ning the weight of an edge to be the negative of aij may seem odd, it turns
out to be useful in the context of this paper.

3. BOUNDING THE SMALLEST EIGENVALUE

This section analyses a certain class of preconditioners for diagonally dominant symmet-
ric matrices. The graph GM of the preconditioner M is a subgraph of the graph GA of A,
nonzero o�-diagonals in M have the same values as in A, and diagonal elements in M are
set up in a way that preserves a generalized row-sum property. For this class of precondi-
tioners, we prove that the smallest eigenvalue of the pencil (A;M) is at least 1. That is,
�max(M;A)61.
The preconditioners that we analyse must preserve the generalized row-sums that we de�ne

below.

De�nition 3.1
The row-weight of row i of matrix A is aii −

∑
j �=i |aij|.

We analyse preconditioners whose row weights equal the row weights of A. If the row
weights are nonzero, we subtract from both A and M a diagonal matrix D so that the row
weights in A−D and M−D are all zero. Clearly, if (A−D)−(M−D) is positive semide�nite,
then A−M is positive semide�nite. Thus, we can assume without loss of generality that the
row weights in A and M are zero.
The next lemma proves that the small eigenvalue of the pencil is at least 1.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 701

Lemma 3.2
If A is a diagonally dominant matrix with positive diagonal entries and M is a preconditioner
whose underlying graph is a subgraph of GA, and whose row-weights are the same as A’s,
then �max(M;A)61.

Proof
Lemma 2.3 shows that if A−M is positive semide�nite, then �max(M;A)61. A and M have
the same row weights,

aii −
∑
j �=i
|aij|=mii −

∑
j �=i
|mij|

so

aii −mii=
∑
j �=i
|aij| −

∑
j �=i
|mij|=

∑
j �=i
(|aij| − |mij|)

The matrix M may contain zeros in positions where A contains non-zeros, but all of M ’s
non-zeros are non-zeros in A (with the same values). Since

aii −mii=
∑

j;mij=0
|aij|=

∑
j �=i
|aij −mij|;

A−M is diagonally dominant. Its diagonal elements are sums of absolute values, and hence
are non-negative. Such a matrix is positive semide�nite (see, for example, References [11,
Theorem 4.9]).

We will be able to prove this lemma even more simply, once we prove the Congestion-
Dilation Lemma for general undirected graphs (Lemma 6.3). Then we could simply state that
each edge in M is supported by the equivalent edge A with congestion 1 and dilation 1.

4. EDGE VECTORS

We now turn our attention to the largest eigenvalue of (A;M). We propose a preconditioner
M whose graph is a speci�c subgraph of GA, which allows us to prove an 4nm upper bound
on the eigenvalues of the pencil.
We use the Splitting Lemma and the Rank-1 Support Lemma to prove the upper bound. We

split A into a sum of rank-1 matrices A=
∑m

k=1 uku
T
k , where each rank-1 matrix correspond to

one edge of GA. We split 4nmM trivially into 4nmM =
∑m

k=1 4nM . We then use the Rank-1
Support Lemma (Lemma 2.5) to show that �(ukuTk ;M)64n, and hence, that 4nM − ukuTk is
positive semide�nite. This shows that each of the m terms in the splitting

4nmM − A=
m∑
k=1
(4nM − ukuTk)

is positive semide�nite, and hence the entire sum.
We use the Rank-1 Support Lemma to show that �(ukuTk ;M)64n by proving that there

exist V and w such that M =VV T, Vw= uk , and the entries wi of w satisfy |wi|62.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

702 E. G. BOMAN ET AL.

We now show how to represent A as a sum of rank-1 matrices and how to represent M as
M =VV T. These representations rely on the following de�nitions of edge vectors and vertex
vectors.

De�nition 4.1
The edge vector 〈ij〉 of a non-zero entry aij¡0 in a matrix A has exactly two non-zeros,
〈ij〉min(i;j) = 1 and 〈ij〉max(i; j) =−1. The edge vector 〉ij〈 of a non-zero aij¿0 also has two
non-zeros, 〉ij〈i=1 and 〉ij〈j=1. The vertex vector 〈i〉 of row and column i of a matrix has
exactly one nonzero, 〈i〉i=1. All of these vectors are n-by-1 column vectors, where n is the
dimension of A.
The next lemma shows how to represent A as a sum of rank-1 matrices ukuTk where each

uk is an edge vector.

Lemma 4.2
If A is symmetric and has zero row-weights aii=

∑
j �=i |aij|, then we can split A into

A=
∑
aij¡0
i¡j

|aij|〈ij〉 〈ij〉T +
∑
aij¿0
i¡j

aij〉ij〈 〉ij〈T

=
∑
aij¡0
i¡j

(√
|aij|〈ij〉

) (√
|aij|〈ij〉

)T
+

∑
aij¿0
i¡j

(√
aij〉ij〈

) (√
aij〉ij〈

)T

Proof
Each term in the sums contributes to exactly two o�-diagonal non-zeros, aij and aji, and
to two diagonal elements aii and ajj. Furthermore, each o�-diagonal nonzero in A receives
contributions from exactly one term in the sums. It is easy to see that the contributions sum
up to exactly the correct values.

The preconditioner M can be written as a sum of rank-1 matrices that correspond to edge
vectors. The rank-1 matrices whose sum is M are a subset of the rank-1 matrices whose sum
is A,

M =
∑

(i;j)∈EM
aij¡0
i¡j

|aij|〈ij〉 〈ij〉T +
∑

(i;j)∈EM
aij¿0
i¡j

aij〉ij〈 〉ij〈T

We de�ne V to be the matrix whose columns are
√|aij|〈ij〉 and √aij〉ij〈 for i¡j and

(i; j)∈EM . We have M =VV T. The preconditioner M that we construct satis�es the con-
ditions of the next lemma. Once we show that it does indeed satisfy the conditions, the
lemma proves the 4nm condition-number upper bound.

Lemma 4.3
Let A=UU T and let M =VV T, where U is n-by-m and V consists of the �rst ‘ columns of
U . If for every column uk of U we have uk =Vwk for some wk with entries whose absolute
values are smaller than or equal to 2, then �(A;M)64mn.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 703

Proof
We use the splitting lemma to split A=

∑m
k=1 uku

T
k and mM =

∑m
k=1M and show that 4nM −

ukuTk is positive semide�nite. This is true because by the Rank-1 Support Lemma, �(uku
T
k ;M)6

wTk wk64n.

5. THE COMBINATORIAL STRUCTURE OF A MAXIMUM-WEIGHT BASIS

Given a set of scaled edge vectors uk =
√|aij|〈ij〉 (or uk =√aij〉ij〈) and a weight �k for each

vector uk , we wish to �nd a maximum-weight basis for the uk . This basis should consist of
a subset of the uk’s and should maximize the sum of the weights of the uk’s in the basis.
This section analyses the structure of the maximum-weight basis. We note that Grossman et
al. [29] analysed the structure of the maximum-weight basis in the special case in which all
the o�-diagonal nonzeros of A are positive. They also described an e�cient algorithm for
constructing maximum-weight bases for this special case.
We begin by showing a simple property of maximum-weight bases.

Lemma 5.1
Let u1; : : : ; u‘ be a maximum-weight basis for the vectors u1; : : : ; um with weights �1; : : : ; �m
(that is, we assume without loss of generality that the basis consists of the �rst ‘ vectors).
Let uk =�1u1 + · · ·+ �‘u‘. If �i �=0 then �i¿�k .
Proof
Suppose for contradiction that for some i, �i¡�k and �i �=0. We show that if we remove ui
from the basis and insert uk , we end up with another basis with a larger sum of weights. We
have

ui=
1
�i
(uk − �1u1 − · · · − �i−1ui−1 − �i+1ui+1 − · · · − �lul)

Therefore, the new subset is also spanning. The sum of weights is larger than in the supposedly
maximum-weight basis, a contradiction.

Our next task is more involved. We show that a combinatorial property of a graph ensures
that its edge vectors are linearly independent. We need the following de�nitions.

De�nition 5.2
The sign of an edge (i; j) in the graph GA of a symmetric matrix A is the opposite of the
sign of aij. (That is, the sign is positive if aij¡0.) The sign of a path in GA is negative if
it contains an odd number of negative edges; otherwise the path is positive.#

We can now state the combinatorial property that guarantees linear independence of edge
vectors.

#De�ning the sign of an edge (i; j) to be the opposite of the sign of aij is somewhat arbitrary, but it allows us to
view the sign of a path as the product of the signs of the edges along the path.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

704 E. G. BOMAN ET AL.

Theorem 5.3
The edge vectors of an undirected graph GA are linearly independent if and only if each
connected component contains no positive cycles and at most one negative cycle.

We shall prove the theorem later using three technical lemmas that characterize various
ways of spanning an edge vector.
The following lemma shows how to span an edge vector using vectors of edges along a

simple path between the original edge’s endpoints. In this paper we use the term simple path
to stand for a path in which each edge appears only once.

Lemma 5.4
The edge vectors of a simple positive path between vertices i and j span the edge vector
〈ij〉. The coe�cients of the linear combination are all either 1 or −1. The edge vectors of a
simple negative path between vertices i and j span the edge vector 〉ij〈. The coe�cients of
the linear combination are all either 1 or −1.

Proof
We prove the lemma by induction on the length of the simple path. The claim is clearly true
for paths of length 1. Suppose that the lemma is true for paths of length ‘. Suppose that
there is a path of length ‘+1 between i and k such that the vertex just before k in the path
is j. By induction, the edges of the path from i to j span 〈ij〉 if that pre�x of the path is
positive, or 〉ij〈 otherwise. There are now four cases. If the edge (j; k) is positive and so is
the pre�x of the path, then either 〈ij〉+ 〈jk〉, 〈ij〉− 〈jk〉, −〈ij〉+ 〈jk〉, −〈ij〉− 〈jk〉 is equal to
〈ik〉 (the others are −〈ik〉, 〈ik〉−2〈j〉, and −〈ik〉+2〈j〉). The second case occurs when (j; k)
is positive but the pre�x of the path is negative, the third and fourth when (j; k) is negative
and the pre�x is either positive or negative. Their analysis is similar and is omitted.

Lemma 5.5
The edge vectors of a negative cycle that contains vertex i and of a simple path between i
and j, where the edges of the path are disjoint from the cycle, span the vertex vector 〈j〉.
The coe�cients of the linear combination are ±1 for the edges of the path and ±1=2 for the
edges of the cycle.

Proof
Let (i; k) be an edge in the cycle. If (i; k) is positive, then the path from i to k along the
cycle must be negative, since the entire cycle is negative. Lemma 5.4 shows that 〉ik〈 is a
linear combination of the edge vectors along this negative path, with coe�cients either 1 or
−1. Since 〈ik〉+〉ik〈=2〈i〉 (if i¡k; otherwise −〈ik〉+〉ik〈=2〈i〉), 〈i〉 is a linear combination
of the edges of the cycle. The coe�cients are either 1

2 or ± 12 . If (i; k) is negative, the rest
of the cycle is positive, and a similar argument shows that the cycle spans 〈i〉. Since the
cycle spans 〈i〉 with coe�cients ± 12 and the path from i to j spans either 〈ij〉 or 〉ij〈 with
coe�cients ±1, the cycle and path together span 〈j〉 with the desired coe�cients.

Lemma 5.6
The edge vectors of a connected component that contains a negative cycle span the edge
vectors 〈ij〉 and 〉ij〈, for any two vertices i and j in the component. The coe�cients are all
±1, ±2 or 0.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 705

Proof
Suppose that there is a simple path from i to j that contains cycle edges. Then we can construct
another simple path from i to j, in which we will replace the cycle edges in the �rst path
with all the other cycle edges. These two simple paths have opposing signs. Therefore, by
Lemma 5.4, one path spans 〈ij〉 and the other spans 〉ij〈, both with coe�cients ±1.
Now suppose that there is no simple path from i to j that contains cycle edges. Let k be

the �rst vertex that is both on the path from i to the cycle and on the path from j to the
cycle. Such a vertex must exist, otherwise there is a simple path between i and j that contains
cycle edges, a contradiction of our supposition. The vertex k may, however, be one of i and
j. The sign of the path between i and j is determined by the sign of the paths between i
and k and between k and j. The vectors 〈ik〉 and 2〈k〉 span 〉ik〈 with coe�cients ±1, which
means that the path from i to j and the path from k to the cycle and the cycle span both 〈ij〉
and 〉ij〈 with the desired coe�cients.
We are now in position to prove Theorem 5.3.

Proof
(⇒) Suppose to the contrary that there is a positive cycle in GA. Let e be an edge in that
cycle. Then the path between e’s endpoints along the cycle has the same sign as e’s. Lemma
5.4 shows that the vector corresponding to e is a linear combination of the vectors of the
edges along the path. Therefore, the vectors are linearly dependent.
Suppose to the contrary that a connected component contains two simple negative cycles.

Let us choose a vertex i in the following way: if the two cycles contain common vertices,
then we choose i to be one of those vertices. Otherwise we choose i to be one of the vertices
on a path connecting the two cycles. Lemma 5.5 shows that 〈i〉 is a linear combination of the
vectors corresponding to the edges along any of the paths from i to itself traveling through
a negative cycle. Since 〈i〉 could be represented as two di�erent linear combinations of the
edge vectors, the vectors are linearly dependent.
(⇐) Let G=(V; E) be a graph, where each connected component contains no positive

simple cycles, and at most one negative simple cycle. Suppose to the contrary that the vec-
tors corresponding to the edges are linearly dependent. Therefore, there exists a subgraph
G∗=(V; E∗)⊂ (V; E) and coe�cients �ij �=0, such that

∑
(i; j)∈E∗

(i; j) is positive
i¡j

�ij〈ij〉+
∑

(i; j)∈E∗
(i; j) is negative

i¡j

�ij〉ij〈=0

The subgraph G∗ cannot contain any leaves. If i is a leaf, only one edge vector contains
a nonzero in position i, so this nonzero cannot be canceled out by the other edge vectors in
G∗. Also, G∗ is a subgraph of G, so each connected component contains no more than one
simple cycle. Therefore, G∗ is a union of distinct simple negative cycles. By Lemma 5.5, each
simple negative cycle of length n0 spans the n0-dimensional subspace of the n0 corresponding
vertex vectors, and therefore they are linearly independent. No vertex appears in more than
one cycle, so the entire set of vectors is linearly independent, a contradiction.

Theorem 5.3 provides a characterization of independent edge vectors. The next theorem
characterizes the combinatorial structure of any basis of a connected graph.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

706 E. G. BOMAN ET AL.

Theorem 5.7
Let GA=(V; E) be a connected graph, let E′ be a set of edges corresponding to a basis of
the edge vectors of E, and let GB=(V; E′). Then GB is either a spanning tree of GA or it is
a spanning set of 1-trees (graphs consisting of a tree plus one edge whose endpoints are in
the tree∗∗).

Proof
Suppose for contradiction that GB contains two or more connected components, one of which
is a tree. Since GA is connected, there is an edge e∈E that connects the tree to another
component. The edge vector corresponding to e is linearly independent of the edge vectors
of GB, because even after we add e to GB, no component contains a positive cycle or more
than one negative cycle. This contradicts the assumption that the edges of GB form a basis.
Therefore, if GB contains more than one component, all the components must be 1-trees (and
in particular, their cycles must be negative).

This theorem makes it clear exactly when a spanning tree forms a basis for a set of edge
vectors:

Lemma 5.8
The edges of a spanning tree of a connected graph GA form a basis for the edge vectors of
GA if and only if GA has no negative cycles.

6. THE CONDITION NUMBER OF MWB PRECONDITIONERS

The characterization of linearly independent sets of edge vectors that Theorem 5.3 pro-
vides will prove useful in the next section, where we use it to e�ciently �nd a maximum-
weight basis. Our remaining task in this section is to complete the analysis of the up-
per bound on the condition number. The next lemma provides the last technical tool that
we need.

Lemma 6.1
Let u1; : : : ; u‘ be a maximum-weight basis for a set of m scaled edge vectors uk =

√|aij|〈ij〉
(or uk =

√aij〉ij〈) with weights
√|aij|. Let uk =w1u1 + · · ·+ w‘u‘. Then wi62.

Proof
Let uk =

√|aij|〈ij〉 (or uk =√aij〉ij〈) be the scaled edge vector we want to support. Let
e=(i; j) and let GM be the graph underlying the maximum-weight basis.
We �rst show how the edge vectors of the edges in the maximum-weight basis support

〈ij〉 (or 〉ij〈). This analysis splits into three cases depending on the connected compo-
nents that i and j belong to. We then show how the maximum-weight basis itself
supports uk .

∗∗In the literature, there are at least two de�nitions of the term k-trees [30, 31]; our de�nition of 1-trees is not a
special case of any of those de�nitions.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 707

If i and j are in the same connected component in the maximum-weight basis and that
component has no cycles, then the path between i and j must have the same sign as e’s, or
else e could have been added to the basis. By Lemma 5.4, the vector 〈ij〉 (or 〉ij〈) is a linear
combination of the edge vectors of the edges in the maximum-weight basis with coe�cients
±1 or 0.
If i and j are in the same connected component in the GM , and that component has a

negative cycle, then by Lemma 5.6 vector 〈ij〉 (or 〉ij〈) is a linear combination of the edges
in the maximum-weight basis (without scaling), with coe�cients ±1, ±2 or 0.
If i and j are in two separate connected components, then these two components must

both include a negative cycle, or else e could have been added to the basis. By Lemma 5.5,
the vector 〈ij〉 (or 〉ij〈) is a linear combination of the edges in the maximum-weight basis
(without scaling), with coe�cients ± 12 , ±1 or 0.
In all three cases, the 〈ij〉 (or 〉ij〈) is a linear combination of the unscaled vectors of the

edges in the maximum-weight basis, with coe�cients whose absolute values are smaller than
or equal to 2. Therefore,

wr = �r

√|aij|√|br|
where �r62 and where the br’s are the weights of the edges in the MWB. By Lemma 5.1,√|aij|=√|br|61 for 16r6‘. It follows that for 16r6‘, wr = �r√|aij|=√|br|62 · 1=2.
This concludes the analysis of the condition number of a maximum-weight basis, since

we can now apply Lemma 4.3 to prove the upper bound on the spectrum. The lower
bound has already been established in Lemma 3.2. We have, therefore, proven the following
theorem.

Theorem 6.2
The condition-number of a matrix pencil (A;M) where A is symmetric, diagonally dominant
with positive diagonals and M is a maximum-weight basis preconditioner is bounded by 4mn.

As a side e�ect of our analysis, we can now formulate and prove a generalized Congestion-
Dilation Lemma. We essentially use the same technique that Boman and Hendrickson used
to prove the original Congestion-Dilation Lemma [8].

Lemma 6.3
Let e=(i; j) be an edge of weight a. Let u0 be the scaled vector representing e. Let V =[u1;
u2; : : : ; u‘] be scaled edge vectors uk =

√|bk |〈ij〉 (or uk =√bk〉ij〈), corresponding to edges
that support e in one of the following ways: either by a simple path whose sign is the
same as e’s, or by two negative cycles and two paths from each of e’s endpoints to the
cycles, or by a path from e’s endpoints through a negative cycle. Then �(uuT; VV T)6
(4a=min{bk})‘.
Furthermore, in the �rst two cases the support �(uuT; VV T) is bounded by (a=min{bk})‘.

Proof
By Lemmas 5.4, 5.5 and 5.6, e’s vector is a linear combination of the vectors in V , with all the
coe�cients ck either ±2, ±1 or ± 12 . Let the linear combination coe�cients be (c1; c2; : : : ; c‘).

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

708 E. G. BOMAN ET AL.

Let w=(c1(
√
a=
√
b1); c2(

√
a=
√
b2); : : : ; c‘(

√
a=
√
b‘))T. Then u=Vw. Therefore:

�(uuT; VV T)6wTw=
‘∑
k=1
c2k
a
bk
6

‘∑
k=1
4
a
bk
6

‘∑
k=1

4a
min{bk} =

4a
min{bk} ‘

In fact, if the support of uk is done by one of �rst two ways, then the coe�cients of the
linear combination are all either ±1 or ± 12 , and we have

�(uuT; VV T)6wTw=
‘∑
k=1
c2k
a
bk
6

‘∑
k=1
1 · a
bk
6

‘∑
k=1

a
min{bk} =

a
min{bk} ‘

As in the analysis of the Congestion-Dilation Lemma for M -matrices, we interpret ‘ to be
the dilation and a=min{bk} to be the congestion.
As we have mentioned, we can use this generalized Congestion-Dilation Lemma to provide

another proof of Lemma 3.2: each edge in M is supported by the equivalent edge in A with
congestion 1 and dilation 1.

7. AN EFFICIENT ALGORITHM FOR CONSTRUCTING MAXIMUM-WEIGHT
BASES

It turns out that �nding a maximum-weight basis for a set of scaled edge vectors is an instance
of a well-studied problem [32, Section 17.4]. A set of m scaled edge vectors uk =

√|aij|〈ij〉
(or uk =

√aij〉ij〈) with weights
√|aij| and the collection of linearly independent subsets de�ne

a combinatorial structure called a matroid. There exists a generic greedy algorithm for �nding
a so-called maximal independent set in a matroid. In our matroid, a maximal independent set
is the maximum-weight basis that we wish to construct.
The generic maximum-weight basis algorithm works by sorting the elements of the matroid

(the scaled edge vectors) by weight and trying to add them to the basis, starting from the
heaviest. The next vector to be considered is added to the independent set if it is linearly
independent of the vectors already in the set.
To apply the generic algorithm, we must provide a routine that tests whether an edge vector

is linearly dependent on the vectors already in the set. Using a rank-revealing factorization,
such as the singular-value decomposition (SVD) is too expensive. The vectors are highly
structured, so we can test for linear independence more e�ciently.
The algorithm that we use for testing independence relies on the characterization of in-

dependent sets that Theorem 5.3 provides. We maintain a data structure that allows us to
quickly test whether we can add a new edge vector to the basis. More speci�cally, we test
whether the new edge closes a positive cycle or a second negative cycle in the underlying
graph. If so, it is linearly dependent on the edges already in the basis.
The data structure that we use is a forest of shallow rooted trees that represent connected

components in the underlying graph. We augment this data structure, which is sometimes
referred to as a union-�nd data structure, with labels that allow us to quickly determine
the sign of paths in the graph. The basic union-�nd data structure was apparently �rst used
by McIlroy and Morris (see Reference [33, p. 169]); The data structure and its complexity

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 709

analysis are presented in several textbooks, such as References [33] and [32]. Tarjan proposed
the augmentation technique that we use [34].
The forest is represented by an array � of length n, where n is the size of the graph. Each

rooted tree in the forest represents a connected component of the graph, although the topology
of the trees has nothing to do with the topology of the graph. The parent of vertex i is �[i].
If i is the root of a tree, �[i]= i. We also maintain an array r; if i is a root then r[i] is the
height of the tree rooted at i; r is unde�ned otherwise. The two arrays � and r are part of
the standard implementation of union-�nd data structures.

Algorithm 1 Finding the representative vertex of a connected component (the root of the
tree) with path compression. The algorithm is an augmented version of the standard union-
�nd procedure that also maintains the sign of paths in the graph when the tree is compressed.
Indentation denotes block structure.
vertex AUGMENTEDFINDSET(vertex i)

temporary vertex j
if (i �=�[i])

j←AUGMENTEDFINDSET(�[i])
s[i]← s[i] xor s[�[i]]
�[i]← j

return �[i]

Algorithm 2 Uni�es i’s and j’s trees, using an edge whose sign is ‘. Returns the root of the
united tree.
vertex AUGMENTEDUNION(vertex i,vertex j,boolean edgesign)

temporary vertices 	i,	j == representatives of i and j
	i ← �[i]
	j ← �[j]
if (r[i]¿r[j])

�[j]← 	i
s[j]← s[i] xor s[j] xor edgesign
return 	i

else
�[i]← 	j
s[i]← s[i] xor s[j] xor edgesign
if (r[i]= r[j])

r[j]← r[j] + 1
return 	j

We augment the union-�nd data structure with two additional bit arrays, s and c. The
value s[i] represents the sign of the path in the graph between i and �[i] (0 for pos-
itive and 1 for negative); it is only de�ned if the connected component is a tree. The
value c[i] is de�ned only for roots and speci�es whether the connected component has a
cycle.
Our algorithm is presented in Algorithms 1, 2, 3, and 4. Algorithm 4 is an instance of the

generic greedy maximal-independent-set algorithm, applied to our case. Algorithm 3 tests for
independence; it uses Algorithms 1 and 2 as subroutines.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

710 E. G. BOMAN ET AL.

Algorithm 3 Given two vertices i and j and the weight w of the edge connecting them,
this algorithm adds (i; j) to the basis if and only if the edge is independent of the current
independent set.
ADDEDGEIFINDEPENDENT (vertex i, vertex j, real w)
temporary vertices 	i; 	j;unionroot
temporary boolean edgesign
edgesign← (w¿0)
	i ←AUGMENTEDFINDSET(i)
	j ← AUGMENTEDFINDSET(j)
if (i �=	j)
== i and j are in di�erent connected components
if ((c[i]= 0) or (c[j]= 0))
== one of the connected components does not contain a cycle
ADDEDGETOBASIS(i; j; w)
unionroot ← AUGMENTEDUNION(i; j;edgesign)
c[unionroot]← c[i] or c[j]

else
== i and j are in the same connected component
if ((edgesign �= s[i] xor s[j]) and (c[1]==0))
== the connected component does not contain a cycle, and
== adding (i; j) does not close a positive cycle
ADDEDGETOBASIS(i; j; w)
c[i]← 1

Algorithm 4 This is the generic greedy algorithm to �nd a maximal-independent set of a
matroid.
GREEDYMAXIMUMWEIGHT()

SORT(edges by absolute value of weight)
foreach (e=(i; j) an edge of weight w)

if (EdgeIsIndependent(i; j; w))
ADDEDGETOBASIS(e)

The correctness of the algorithm relies on the correctness of the generic greedy algorithm,
the correctness of the union-�nd data structure, on Theorem 5.3, and on the correct mainte-
nance of the arrays s and c. The correct maintenance of c is trivial. The correct maintenance
of s is more challenging to prove. We start with a simple technical lemma.

Lemma 7.1
If i, j, and k are vertices in a connected component of GA that contains no cycles and

s[i; j]=
{
0 if the path in GA between i and j is positive
1 otherwise

then s[i; k]= s[i; j] xor s[j; k].

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 711

Proof
Since the connected component is a tree, the paths from i to j and from k to j must meet
at some vertex x; from x to j the two paths are identical (x and j may be the same vertex).
The simple path from i to k is in fact concatenation of the path from i to x to the path from
x to k. Therefore,

s[i; j] xor s[j; k] = (s[i; x] xor s[x; j]) xor(s[j; x] xor s[x; k])
= s[i; x] xor(s[x; j] xor s[j; x]) xor s[x; k]
= s[i; x] xor s[x; k]
= s[i; k]

The next three lemmas show that the algorithm does, indeed, maintain s correctly.

Lemma 7.2
AUGMENTEDFINDSET preserves the correctness of s. That is, if the array s is correct before the
call of AUGMENTEDFINDSET, then it is correct after the subroutine returns.

Proof
AUGMENTEDFINDSET changes the values of � and c along the path from a vertex i to the root. We
prove the correctness by induction on the distance from the root. If i is the root, the algorithm
returns immediately, so the claim holds. Suppose the lemma is correct for all the vertices
between vertex i and the root. By Lemma 7.1, we have that s[i; root]= s[i; �[i]] xor s[�[i]; root].
The parent of �[i] the recursive call is the root, and the parent of i when the subroutine returns
is also the root, so correctness is maintained.

Lemma 7.3
If the arguments i and j to AUGMENTEDUNION are immediate children of roots and if s is correct
before the call, then s is maintained correctly by AUGMENTEDUNION.

Proof
The only change in the array � is �[j]=	i or �[i]=	j. By Lemma 7.1 s[i; 	j]= s[i; i]
xor s[i; j] xor s[j; 	j]. By the hypothesis of the lemma, 	i=�[i] and 	j=�[j]. Since s[i; i]=
s[i], s[j; 	j]= s[j] and s[i; j]= ‘, the lemma is correct.

Lemma 7.4
ADDEDGEIFINDEPENDENT is correct.

Proof
If i and j are in di�erent connected components and both contain cycles, the routine returns
without adding (i; j) to the basis. If they are in di�erent components and at most one contains
a cycle, the routine adds (i; j).
If i and j are in di�erent components, then s[i] xor s[j] is the sign of the path between

them, since both are children of the same root. In that case, the routine adds the edge if
and only if the sign of the edge is di�erent from the sign of the path (i.e. the edge closes a
negative cycle) and there is no cycle in the component.
The correct maintenance of s follows from the fact that we call AUGMENTEDUNION only when

the arguments are children of roots.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

712 E. G. BOMAN ET AL.

The complexity analysis of the algorithm is simple. It shows that the running time of the al-
gorithm is dominated by sorting the edges. The total cost of the calls to ADDEDGEIFINDEPENDENT
is essentially linear in m. The proof is essentially identical to Tarjan’s analysis of augmented
union-�nd data structures in Reference [32]. Note that we do not claim that this algorithm is
optimal; in particular, there may be a way to avoid sorting the edges.

Theorem 7.5
GREEDYMAXIMUMWEIGHT runs in O(m lgm+ m�(m; n))=O(m lgm), where � is the inverse of
Ackermann’s function.

Proof
Sorting the edges takes O(m lgm) time.
We make m calls to ADDEDGEIFINDEPENDENT. Each call makes two calls to AUGMENTEDFINDSET

and at most one to AUGMENTEDUNION. The other costs in ADDEDGEIFINDEPENDENT are O(1). Since
AUGMENTEDFINDSET and AUGMENTEDUNION are O(1) modi�cations to the corresponding standard
union-�nd routines, the total cost of all the calls is O(m�(m; n)).

We can now bound the total amount of work required to solve linear systems using MWB
preconditioners.

Theorem 7.6
The total amount of work to solve a symmetric diagonally dominant linear system with positive
diagonals using the conjugate-gradients method with a MWB preconditioner is

O(m lgm+ n+ n
√
mn)

where n is the size of the system and m is the number of o�diagonal entries in the strictly
upper (or lower) part of the coe�cient matrix.

Proof
Constructing the preconditioner costs O(m lgm+m�(m; n))=O(m lgm).
Factoring the preconditioner costs O(n) work. We eliminate �rst non-cycle vertices using

the minimum-degree algorithm. The vertices that we eliminate always have degree 1 so their
elimination costs O(1) and generates no �ll. We then eliminate the vertices that belong to
cycles. Each such elimination generates one �ll edge (except for the last 3 vertices in each
cycle that generate no �ll), so they also cost O(1) to eliminate.
Finally, the preconditioner has O(n) non-zeros, so each conjugate gradients iteration costs

O(n+ m) work. Since the condition number is bounded by 4mn, the number of iterations is
bounded by O(

√
mn).

8. AUGMENTED MAXIMUM-WEIGHT BASES

Our next step is to apply Vaidya’s augmentation strategy to maximum-weight basis precon-
ditioners. We construct the preconditioner in the following way:

1. We �rst �nd the maximum-weight basis GC of the graph GA. We call this basis the core
basis.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 713

TREEPARTITION

TREEPARTITION

 (vertexi)
comment: si = number of vertices in the subtree rooted at i
si 1
for each child j of i

if (sj > n/t + 1)
(j)

if (sj≥ n/t)
form a new subtree rooted at j
disconnect j from i

else
si ← si + sj

←

Figure 1. The algorithm that we use to decompose the maximum spanning tree. The code splits the
tree T , which is stored in a global data structure. The code uses a global integer array s.

2. We partition each connected component of the basis into connected subgraphs whose
sizes are between n=t and ((d+ 1)n=t) + 1, where d is the maximum degree of vertices
in the MWB. Components whose initial size is at most n=t need not be partitioned at all.

3. In each subgraph, we complete the set of edges induced by the core basis to a MWB
of the subgraph.

4. For each pair of subgraphs, we complete the set of edges induced by the core basis on
the pair to a MWB of the pair. This �nal step is equivalent to the step of adding the
heaviest edge between each pair of subgraphs in Vaidya’s MST preconditioners.

We show that the support of this preconditioner, like that of Vaidya’s preconditioner for
M -matrices, is O(n2=t2).
To partition a connected component of the basis, we remove one cycle edge (if it has a

cycle) and use an algorithm called TREEPARTITION, to decompose the remaining tree into con-
nected subtrees. TREEPARTITION, which is shown in Figure 1, decomposes recursively a rooted
tree T into a set of connected subtrees. We denote the maximum number of children in the tree
by d. The theorem below states that the number of vertices in each subtree is between n=t and
(dn=t)+1, except for the subtree containing the root, which might be smaller. This algorithm
is taken from References [5, 6], where the correctness theorem is proved. The paper [5, 6]
also discusses how certain details in TREEPARTITION a�ect the sizes of subgraphs in practice.

Theorem 8.1
TREEPARTITION(i) splits the subtree rooted at i into connected subtrees. The size of each subtree
is between n=t and (dn=t) + 1, except perhaps for the subtree that contains i, which may be
smaller (but not larger).

The implementation uses a global array s of n integers, where si is initialized before the
�rst call to TREEPARTITION to be the number of vertices in the subtree rooted at i. The initial
call to TREEPARTITION passes the root of T as an argument. Partitioning a MWB is now
straightforward.

Lemma 8.2
Each connected component of a maximum-weight basis whose size is at least n=t can be
partitioned into connected subgraphs whose sizes are between n=t and ((d+ 1)n=t) + 1.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

714 E. G. BOMAN ET AL.

Proof
Each connected component contains at most one cycle. We can remove one edge from the
cycle, and be left with a tree. We choose an arbitrary root for the tree. Running TREEPARTITION
on the tree partitions it into subgraphs whose sizes are between n=t and (dn=t) + 1, except
for the subgraph containing the root which may be smaller. If the size of the root’s subtree
is smaller than n=t, we connect it to one of the adjacent subtrees (whose size is no greater
than (dn=t) + 1). Therefore the basis is partitioned into connected subgraphs whose sizes are
between n=t and ((d+ 1)n=t) + 1.

In addition to partitioning large connected components, we also bundle together small com-
ponents into subgraphs whose sizes are between n=t and 2(n=t), except perhaps for one sub-
graph which might be smaller.
Our next task is to show that we can always complete a subset of the core maximum-

weight basis induced by a subgraph to a maximum-weight basis of the subgraph. We prove
this using a more general lemma that applies to any matroid in which dependence is linear
dependence.

Lemma 8.3
Let S be a group of vectors with a maximum-weight basis M ⊆ S, and let S ′⊂ S. Then M ∩ S ′

can be completed to form a maximum-weight basis of S ′.

Proof
We assume without loss of generality that the basis M was constructed using the generic
greedy algorithm. We prove the lemma by showing that the greedy algorithm, when executed
on S ′, �nds a basis M ′ such that (M ∩ S ′)⊆M ′. More speci�cally, we run the greedy algorithm
on S ′ using the ordering of vectors that is induced by the ordering that was used to con-
struct M .
Let us assume to the contrary that M ∩ S ′ cannot be completed into a maximum-weight

basis of S ′. We consider a run of the generic greedy algorithm to form a basis for S ′. We
start with an empty set M ′, and add vectors one by one to the set, by weight. We add the
next vector if it is linearly independent of the vectors already in M ′. For the assumption to
hold, we must eventually come upon a vector s∈M ∩ S ′ that we cannot add to M ′.
Let s∈M ∩ S ′ be the �rst vector that we cannot add to M ′. This vector must be a linear

combination of the vectors already in M ′. These vectors are either vectors in M or vectors
that were rejected when M was constructed but accepted when M ′ was constructed. Vectors
that were rejected from M must have been linear combinations of preceding vectors which
were accepted into M . Therefore, s is linearly dependent of vectors in M that precede it
in the weight ordering. Hence, s would not have been accepted into M , so s =∈M ∩ S ′, a
contradiction.

We apply this lemma in the following way. The basis M corresponds to GC , the core MWB
of GA, and S ′ corresponds to the set of edges induced by a subgraph of GA.
This lemma allows us to bound the number of edges that are needed to complete a basis for

a subgraph or a pair of subgraphs. The edge subset GC , when restricted to the edges induced
by the k vertices of a connected subgraph of GC , contains at least k−1 edges. Therefore, we
need to add at most one edge to complete the induced subset to a maximum-weight basis of
the subgraph. When the maximum-weight basis is induced upon a pair of connected subgraphs,

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 715

it contains at least 2(k − 1) edges. Therefore, for each pair, at most two edges need to be
added. If the subgraph of GC consists of a bundle of several small connected components,
the induced subset is already a maximum-weight basis. Similarly for a pair of such bundles.
To a pair consisting of one bundle of small components and one large connected component,
we may need to add at most one edge to complete a basis.

Theorem 8.4
An augmented maximum-weight basis preconditioner M supports a symmetric diagonally dom-
inant matrix A whose diagonal entries are positive with support number bounded by

O
(
d3n2

t2

)

where d+1 is the maximum number of non-zeros per row in A, and where t is the parameter
used to partition the core basis. Furthermore, the graph of the preconditioner has n + O(t2)
edges.

Proof
We split A into A=

∑m
k=1 Ak =

∑m
k=1 uku

T
k , a sum of rank-1 matrices corresponding to edges

in GA. We split the preconditioner M into a sum of k+1 matrices, M =R+
∑m

k=1Mk , where
Mk supports Ak and R is symmetric positive semide�nite. For an edge k whose endpoints are
in a single subgraph of GC , Mk corresponds to a scaling of the MWB of that subgraph. For
an edge whose endpoints are in two distinct subgraphs of GC , Mk corresponds to a scaling of
the MWB of the pair of subgraphs. An edge k ′ in GM supports at most d(((d+ 1)n=t) + 1)
edges. Consider an endpoint i of k ′. This vertex is in some subgraph of GC , and k ′ supports
only edges with at least one endpoint in this subgraph. There are at most d(((d+1)n=t)+ 1)
edges incident to vertices in a subgraph, hence the bound.
Therefore, we scale each maximum-weight basis by a factor of d(((d+1)n=t)+1) to form

Mk . This ensures that R remains positive semide�nite.
By Lemma 6.3, Mk support Ak with support number

4 · d
(
(d+ 1)n

t
+ 1

)
· 2

(
(d+ 1)n

t
+ 1

)
=O

(
d3n2

t2

)

We now bound the number of edges in the preconditioner. There are at most n edges in
the core basis. There are O(t) subgraphs of the core basis, and for each one and each pair
we add at most two edges to the preconditioner. This proves the bound on the number of
edges in the GM .

We now analyse the amount of work required for the entire solution process.

Theorem 8.5
The total amount of work to solve a symmetric diagonally dominant linear system with
positive diagonals and with a bounded number of nonzeros per row using the conjugate-
gradients method with an augmented MWB preconditioner is

O(n lg n+ (n+ t6) + (n+ t4) · n=t)=O(t6 + n2=t + nt3)
where n is the size of the system and t is the number of subgraphs that the MWB is partitioned
into. For t= n0:25, the work bound is O(n1:75), which is asymptotically optimal.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

716 E. G. BOMAN ET AL.

Proof
Constructing the preconditioner costs O(n lg n). We �rst build the core basis. We then split
the basis into subgraphs and complete the basis for each subgraph. The total cost of all the
completions is O(n) since we process each edge by weight and determine whether it completes
a subgraph basis in O(�(n; n)) amortized work. Next, we complete the bases for all pairs in
a similar way: we go over the edges in weight order and determine whether each one can be
added to a pair basis. The cost per edge is the same as in the previous case.
The rest of the proof follows almost exactly the proof of Lemma 4.1 in Reference [4]. The

only di�erence is that the elimination of a cycle edge may introduce one �ll edge, but this
does not a�ect the analysis.

If GA is planar, we can show a better work bound. If the graph is planar and the MWB is
a tree, Bern et al. [4] show that the total amount of work to solve a linear system is O(n1:2).
Their bound relies on two observations:

1. Since each subgraph in the partitioning of the core basis is connected, we add at most
O(t) edges to the preconditioner to form basis for the pairs (versus O(t2) in the general
case). This is true since the subgraphs themselves can be contracted to form a planar
graph with O(t) vertices.

2. The augmented-MST basis without the edges that complete the pair bases forms a forest.
We eliminate all the degree-1 and -2 vertices that are not adjacent to these pair edges.
This introduces only O(n) �ll edges, costs only O(n) work, and preserves planarity. The
remaining forest has at most O(t) vertices (those adjacent to pair edges). Thus, after
eliminating degree-1 and -2 vertices, we are left with a planar graph with O(t) vertices.
Using nested dissection, we eliminate the rest of the vertices, which costs O(t1:5) work
and generates O(t lg t) �ll elements.

This analysis remains valid for MWB as long as the decomposition of the core basis into
subgraphs generates at most O(t) connected subgraphs. If, on the other hand, the decompo-
sition generates subgraphs with several connected components (this happens when the core
basis includes many small 1-trees which our algorithm bundles into larger subgraphs), the
analysis breaks down. Speci�cally, we may need to add O(t2) edges to support all the pairs
of subgraphs, as in the general case. We conjecture that there may be a clever way to
bundle small 1-trees into subgraphs that guarantees that only O(t) edges are added to sup-
port all pairs of subgraphs, which would imply that we can solve such systems in O(n1:2)
total work.

9. A NUMERICAL EXAMPLE

We have implemented the augmented-MWB construction algorithm and have used it to solve
a class of synthetic linear systems. The code is an extension of the augmented maximum-
spanning-tree preconditioning code described in References [15, 16].
This section presents a numerical example using a class of synthetic sparse matrices. The

matrices are constructed using a 5-point stencil on a square two-dimensional mesh with

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 717

Figure 2. The graph of A for an 11-by-11 mesh (top left), the maximum-weight basis (top right),
the partitioning into subgraphs (bottom left), and the complete preconditioner (bottom right). Black
lines denote negative edges (vertical in these illustrations) and gray (horizontal) lines denote positive
ones. The edges at the boundaries of the mesh are wraparound edges that connect a vertex at the top
boundary to a vertex in the bottom with the same left-right displacement, and similarly for the left
and right boundary vertices. In the two bottom graphs, ×’s denote the vertices of one subgraph and
�lled circles the vertices of the other subgraph (the basis was split into 2 subgraphs in this case). The
two edges marked by black arrows in the preconditioner were added to the maximum-weight basis to
complete the bases of the two subgraphs. Since there are only two subgraphs, no edges were required
to complete the base of the pair. Note that the maximum-weight basis has a negative cycle in this case.

wraparound edges, as shown in Figure 2. We used the following stencil:

�� �

�

�

+cy

+cy

−cx −cx
��� 2cx + 2cy +
1;1

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

718 E. G. BOMAN ET AL.

5 10 15
0

100

200

300

400

Number of Nonzeros in the Preconditioner Divided by n

Ite
ra

tio
ns

Anisotropic in X Direction

MICC
AMWB

5 10 15
0

100

200

300

400

Number of Nonzeros in the Preconditioner Divided by n

Ite
ra

tio
ns

Anisotropic in Y Direction

MICC
AMWB

5 10 15
0

100

200

300

400

Number of Nonzeros in the Preconditioner Divided by n

Ite
ra

tio
ns

Isotropic

MICC
AMWB

Figure 3. The convergence of augmented MWB versus the convergence of modi�ed incomplete Cholesky
(MICC) preconditioners for the model problem of this section. The mesh size was 1001-by-1001. The
graphs show the number of iterations required to reduce the 2-norm of the residual by a factor of 108

in a conjugate-gradients solver as a function of the �ll in the preconditioners.

We use positive constants cx¿0 and cy¿0; the speci�c values we use are given below.
The value of
1;1 is 1 in the lower-left corner vertex of the mesh, and 0 everywhere else.
This stencil ensures that the resulting matrix has zero row weights in all the rows, except
for the �rst row, where the row weight is 1. The matrix is diagonally dominant but not an
M -matrix. The matrices do not necessarily correspond to a well-behaved discretization of a
partial di�erential equation.
Note that when the mesh has an even number of points in the y direction, the graph of

the coe�cient matrix has only positive cycles. Therefore, in these cases the bases reduce to
spanning trees, as stated in Lemma 5.8.
Figure 2 shows the graph of A for a discretization on an 11-by-11 mesh, the graph of the

maximum-weight basis, the partitioning of the basis into two subgraphs of roughly half the
size, and the edges that augment the MWB.
Figure 3 describes the convergence of augmented-MWB (AMWB) and modi�ed-incomplete-

Cholesky (MICC) preconditioners on this model problem with a mesh size of 1001-by-1001.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 719

The MICC preconditioner was constructed so as to have exactly the same row sums as the
input matrix. We used METIS [35, 36] to order the AMWB preconditioners to reduce �ll. We
do not preorder the matrix prior to the incomplete factorization, so it remains ordered using
the natural row-by-row ordering of the mesh. The �gure shows convergence for isotropic
problems, where cx= cy=1, and for anisotropic problems, where cx=1 and cy=100 or vice
versa.
The graphs indicate that AMWB are more e�ective than MICC preconditioners on this

problem. They converge at about the same rate when the direction of weak in�uences coincide
with the order of incomplete elimination (y-direction anisotropy). The AMWB preconditioners
maintain their performance when the direction of weak in�uences changes, but the MICC
preconditioners deteriorate. The AMWB preconditioners are also more e�ective on isotropic
problems.
This example is meant to illustrate the construction of MWB preconditioners and to demon-

strate that they can be e�ective. We do not claim that this example establishes that MWB are
e�ective and e�cient in practice. To do so would require a more detailed study that exam-
ines several classes of problems, several performance metrics (both convergence and running
times) and perhaps several ordering algorithms.

10. CONCLUSIONS

This paper presents maximum-weight-basis preconditioners for diagonally dominant positive-
de�nite symmetric matrices. The theory presented here proves Vaidya’s claims concerning
these preconditioners, which he proposed about ten years ago. The theory presented here
extends considerably our ability to analyse preconditioners by means of splittings and support
bounds.
Much of the appeal of augmented-MWB preconditioners and other preconditioners proposed

or inspired by Vaidya stems from the fact that their performance can be analysed rigorously.
Theorems 7.6 and 8.5 provide bounds on the amount of work required to solve linear systems
using MWB and augmented-MWB preconditioners. These bounds apply to discretizations with
unstructured grids and to problems with inhomogeneous (variable) coe�cients.
We have implemented the algorithm presented in this paper. We used this implementation to

solve a model problem. Our limited experiments show that augmented-MWB preconditioners
are e�ective.

ACKNOWLEDGEMENTS

Thanks to Haim Kaplan for pointing us to Tarjan’s paper on augmented union-�nd data structures.
Thanks to one of the anonymous referees and to Owe Axelsson for comments that helped us improve
the manuscript. Boman’s and Hendrickson’s work was funded by the Applied Mathematical Sciences,
U.S. Department of Energy, O�ce of Energy Research and performed at Sandia National Labs, a
multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S.
DOE under contract number DE-AC-94AL85000. Chen and Toledo were supported by Israel Science
Foundation founded by the Israel Academy of Sciences and Humanities (grant number 572=00 and grant
number 9060=99) and by the University Research Fund of Tel-Aviv University.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

720 E. G. BOMAN ET AL.

REFERENCES

1. Vaidya PM. Solving linear equations with symmetric diagonally dominant matrices by constructing good
preconditioners. Unpublished manuscript. A talk based on the manuscript was presented at the IMA Workshop
on Graph Theory and Sparse Matrix Computation, October 1991, Minneapolis.

2. Gremban KD, Miller GL, Zagha M. Performance evaluation of a parallel preconditioner. 9th International
Parallel Processing Symposium, Santa Barbara, IEEE: New York, April 1995, 65–69.

3. Gremban KD. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant Linear Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, Technical Report CMU-CS-96-123,
October 1996.

4. Bern M, Gilbert JR, Hendrickson B, Nguyen N, Toledo S. Support-graph preconditioners. Technical report,
School of Computer Science, Tel-Aviv University, 2001, submitted for publication.

5. Chen D. Analysis, implementation, and evaluation of Vaidya’s preconditioners. Master’s thesis, School of
Computer Science, Tel-Aviv University, 2001.

6. Chen D, Toledo S. Vaidya’s preconditioners: Implementation and experimental study. Electronic Transactions
on Numerical Analysis, 2003, 16:30–49.

7. Guattery S. Graph embedding techniques for bounding condition number of incomplete-factor preconditioners.
Technical Report 97-47, ICASE, NASA Langley Research Center, 1997.

8. Boman Eg, Hendrickson B. Support theory for preconditioning. SIAM Journal on Matrix Analysis and
Applications, 2004; 25(3):694–717.

9. Reif JH. E�cient approximate solution of sparse linear systems. Computers and Mathematics with Applications
1998; 36:37–58. See also the errata in vol. 38, p. 141, 1999. Both available online at www.cs.duke.edu=~ reif.

10. Howle V, Vavasis S. An iterative method for solving complex-symmetric systems arising in electric power
modeling. Technical Report TR 00-5, Cornell Computational Optimization Project, Cornell University, 2000.
Available online at http:==www.orie.cornell.edu=~ ccop=reports.html.

11. Axelsson O. Iterative Solution Methods. Cambridge University Press: Cambridge, 1994.
12. Axelsson O, Lu H. On eigenvalue estimates for block incomplete factorization methods. SIAM Journal on

Mathematical Analysis 1995; 16:1074–1085.
13. Axelsson O, Lu H. A survey of some estimates of eigenvalues and condition numbers for certain preconditioned

matrices. Journal of Computational and Applied Mathematics 1997; 80:241–264.
14. Lu H, Axelsson O. Conditioning analysis of block incomplete factorizations and its application to elliptic

equations. Numerische Mathematik 1997; 78:189–209.
15. Magolu MM, Notay Y. On the conditioning analysis of block approxiamte factorization methods. Linear Algebra

and its Applications 1991; 154–156:583–599.
16. Axelsson O, Lindskog G. On the eigenvalue distribution of a class of preconditioning methods. Numerische

Mathematik 1986; 48:479–498.
17. Axelsson O, Lindskog G. On the rate of convergence of the preconditioned conjugate gradient method.

Numerische Mathematik 1986; 48:499–523.
18. Gustafsson I. A class of �rst order factorization methods. BIT 1978; 18:142–156.
19. Beauwens R. On Axelsson’s perturbations. Linear Algebra and its Applications 1985; 68:221–242.
20. Beauwens R. Modi�ed incomplete factorization strategies. In Preconditioned Conjugate Gradient Methods.

Lecture Notes in Mathematics, vol. 1457. Springer: Berlin, 1990; 1–16.
21. Kutcherov AB, Makarov MM. An approximate factorization method for solving discrete elliptic problems on

stretched domains. Journal of Linear Algebra with Applications 1992; 1:1–26.
22. Axelsson O. Bounds of eigenvalues of preconditioned matrices. SIAM Journal on Matrix Analysis and

Applications 1992; 13:847–862.
23. Beauwens R. Upper eigenvalue bounds for pencils and matrices. Linear Algebra and its Applications 1984;

62:87–104.
24. Beauwens R, Ben Bouzid M. Existance and conditioning properties of sparse approximate block factorizations.

SIAM Journal on Numerical Analysis 1988; 25:941–956.
25. Kolotilina L. Eigenvalue bounds for block preconditioned matrices. Technical Report EM-RR 16=94, Elegant

Math, Inc., 1995. Available online at www.elegant-math.com.
26. Magolu MM. Analytical bounds for block approximate factorization methods. Linear Algebra and its

Applications 1993; 179:33–57.
27. Notay Y. Conditioning analysis of modi�ed incomplete factorizations. Linear Algebra and its Applications

1991; 154–156:711–722.
28. Notay Y. Upper eigenvalue bounds and related modi�ed incomplete factorization strategies. In Iterative Methods

in Linear Algebra, R. Beauwens, P. de Groen (eds). North-Holland: Amsterdam, 1992; p. 551–562.
29. Grossman JW, Kulkarni DM, Schochetman IE. Algebraic graph theory without orientation. Linear Algebra and

its Applications 1994; 212:289–307.
30. Awerbuch B, Azar Y, Blum A, Vempala S. New approximation guarantees for minimum-weight k-trees and

prize collecting salesmen. SIAM Journal on Computing 1998; 28:254–262.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

MAXIMUM-WEIGHT-BASIS PRECONDITIONERS 721

31. Narayanan L, Nishimura N. Interval routing on k-trees. Journal of Algorithms 1998; 26:325–369.
32. Cormen TH, Leiserson CE, Rivest RL. Introduction to Algorithms. MIT Press and McGraw-Hill: Cambridge,

MA and New York, 1990.
33. Aho AV, Hopcroft JE, Ullman JD. The Design and Analysis of Computer Algorithms. Addison-Wesley:

Reading, 1974.
34. Tarjan RE. Applications of path compression on balanced trees. Journal of the ACM 1979; 26:668–689.
35. Karypis G, Kumar V. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and

Distributed Computing 1998; 48:96–129.
36. Karypis G, Kumar V. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal

of Parallel and Distributed Computing 1998; 48:71–85.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:695–721

