TEL-AVIV UNIVERSITY
RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT
SCIENCES
SCHOOL OF COMPUTER SCIENCE

Analysis, Implementation, and
Evaluation of Vaidya’s
Preconditioners

Thesis submitted in partial fulfillment of the requirements for the
M.Sc. degree of Tel-Aviv University by

Doron Chen

The research work for this thesis has been carried out at Tel-Aviv
University under the direction of Dr. Sivan Toledo

February 2001






Abstract

A decade ago Pravin Vaidya proposed a new class of precondition-
ers and a new technique for analyzing preconditioners. Preconditioners
are essentially easy-to-compute approximate inverses of matrices that
are used to speed up iterative linear solvers. Vaidya proposed several
families of preconditioners. The simplest one is based on maximum
spanning trees (MST) of the underlying graph of the matrix. The sec-
ond one augments the MST with extra edges to speed up convergence.
A third, which Vaidya only mentions briefly, is based on a maximum-
weight basis (MWB) of the matroid associated with the graph of the
matrix. The first two families apply only to M-matrices, the third to
diagonally-dominant symmetric matrices.

This thesis investigates Vaidya’s preconditioners. We have imple-
mented all of Vaidya’s preconditioners. We have conducted a detailed
experimental study of the first two families, which have never been im-
plemented or tested before. Whereas the first two families have been
analyzed theoretically before, the third was not. We have analyzed
theoretically the convergence properties of the third family. We be-
lieve that the tools that we have developed could be used to analyze
other preconditioners. We have also developed an efficient algorithm
for constructing preconditioners from Vaidya’s third family.

Our experimental study of Vaidya’s first two families show that
they are remarkably robust and can outperform incomplete-Cholesky
preconditioners. Our test suite includes problems arising from finite-
difference discretizations of elliptic PDEs in two and three dimen-
sions. On 2D problems, Vaidya’s preconditioners often outperform
drop-tolerance incomplete-Cholesky preconditioners with similar amounts
of fill and sometimes outperform modified drop-tolerance incomplete
preconditioners. Vaidya's preconditioners do not appear to be effective
on 3D problems. Vaidya’s preconditioners are robust in the sense that
they are insensitive to the boundary conditions of the PDE or to the
original ordering of the mesh.

We present an analysis of MWB preconditioners and an efficient al-
gorithm for constructing them. The algorithm uses the generic greedy
algorithm for finding a maximum-weight basis in a matroid. To use the
generic algorithm, one must provide an algorithm that tests indepen-
dence. We use a sophisticated augmented union-find data structure
that allows us to perform the tests quickly. The correctness of our
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method relies on the analysis of the structure of the preconditioner’s
underlying graph.
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CHAPTER 1

Background

This chapter provides background material for the next two chap-
ters, which describe original research results. This chapter is based on
material from [4], [5], [10], [12], and from Sivan Toledo’s lecture notes
on high-performance computing.

1.1. Iterative Solvers

The term iterative methods refers in this thesis to a wide range of
techniques that use successive approximations to obtain more accurate
solutions to a linear system Ax = b at each step. These techniques
are used when a direct method based on a triangular or orthogonal
factorization of A would require too much time or memory. We restrict
our attention to symmetric positive-definite matrices.

1.1.1. Conjugate Gradient and Krylov-Subspace Methods.
Krylov-subspace methods are a family of iterative solvers that find an
approximate solution to Az = b that lies in the subspace

span{b, Ab, A%, ..., A*b} |

where k is the number of iterations that was performed. It turns out
that this subspace, called the Krylov subspace, often contains a good
approximation ¥ to x even for small k. Furthermore, some Krylov-
subspace methods can find the vector in the subspace that minimizes
the residual » = AZ — b in some norm.

The most widely-used Krylov-subspace methods is called C'onjugate-
Gradient. For symmetric positive-definite matrices, the method finds
an approximate solution that minimizes the residual r in the A~! norm,
that is, minimizes ||r|| ,o. = (r"A™'r) over the Krylov subspace.

In every iteration, the algorithm computes the direction p in which
the approximate solution z will move and the amount « of movement
in that direction. When x moves « units in the direction of p, then
the residual moves « units in the direction —Ap. The direction p is
computed by adding to the previous iteration’s residual some of the
previous direction. This direction basically moves x in the direction of
the previous residual, except that we make the direction p A-conjugate
to the previous search direction, and, in fact, A-conjugate to all previ-
ous search directions (pf Ap; = 0 if j # k).

The number of iterations of the Conjugate Gradient method is
bounded above by the square root of the spectral condition number
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k(A) of A. (The actual number of iterations can be significantly smaller
in some cases.) The condition number is the ratio of the extreme eigen-

values of A, k(A) = ’/\\m‘f‘i"((:g.

1.2. Preconditioning

The rate at which an iterative method converges depends greatly
on the spectrum of the coefficient matrix. Hence, iterative methods
usually involve a second matrix that transforms the coefficient matrix
into one with a more favorable spectrum. The transformation matrix
is called a preconditioner. A good preconditioner improves the conver-
gence of the iterative method, sufficient to overcome the extra cost of
constructing and applying the preconditioner.

The idea is to find a matrix M that is easy to invert and that
approximates A in some sense. Specifically, we want M to cluster
the eigenvalues of A, so that convergence becomes more rapid. The
preconditioner conjugate-gradient method solves

(M~ 2 AM™2)(Mz2z) = M~ 2b

This works well when the eigenvalues of M =3 AM~2 are more clus-
tered than the eigenvalues of A.

By manipulating the conjugate-gradient algorithm, it is possible to
come up with an algorithm that never uses M3 or M_%, and in which

the only operation in every iteration is the solution of a linear system
Mz =r.

1.3. Incomplete Factorization Preconditioners

A broad class of preconditioners is based on incomplete factoriza-
tions of the coefficient matrix. We call factorization incomplete if dur-
ing the factorization process certain fill elements, zero positions that
would be nonzero in an exact factorization, have been dropped. Such a
preconditioner is then given in factored form M = LU with L lower and
U upper triangular. The effectiveness of the preconditioner depends on
how well M approximates A.

1.3.1. Modified Incomplete Factorizations. This factorization
forces the preconditioner to have the same row-sums as the original ma-
trix. Barret et al. explain that in fluid mechanics this has a physical jus-
tification [4, Section 3.4.2]. More importantly, it has been shown that
when A represents a regular 5-point discretization of Laplace’s equa-
tion with Dirichlet boundary conditions, a no-fill modified incomplete
factorization reduced the condition number from O(n) to O(y/n) (see
[4, 6, 16] and their reference). An unmodified factorization reduces the
condition number by a constant factor, but not asymptotically [4, 16].
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1.4. Matrices And Graphs

We normally think of matrices as two-dimensional arrays of num-
bers or as representations of linear transformations. We can also rep-
resent matrices as graphs.

DEFINITION 1.4.1. The underlying graph G4 = (Va, E4) of an n-
by-n symmetric matrix A is a weighted undirected graph whose vertex
set is V4 = {1,2,..,n} and whose edge set is E4 = {(4,7) : @ # j,a;; #
0}. The weight of an edge (7, 7) is a;;. The weight of a vertex i is the
sum of elements in row ¢ of A.

Although the underlying graph is just another representation of a
matrix, sometimes it is convenient to analyze certain marix operations
as operations on the matrix’s underlying graph. For instance, when an
unknown ¢ is eliminated during the factoring of a sparse matrix A, the
structure of the trailing matrix changes (the remaining equations and
variables). The elimination adds edges to the underlying graph between
each pair (j, k), where j and k were neighbors of i in the graph (edge
(7,k) is added if it did not exist before that step).

1.5. Reordering Matrices for Sparsity

When A is factored into triangular factors, the factors usually fill
(they are denser than A). Since PAPT is also symmetric and posi-
tive definite for any permutation matrix P, we can instead solve the
reordered system (PAPT)(Pz) = Pb.

The choice of P can have a dramatic effect on the amount of fill that
occurs during the factorization. Thus, it is standard practice to reorder
the rows and columns of the matrix before performing the factorization.
Reducing fill reduces the amount of memory that the factorization uses
and the number of floating-point operations that it performs.

There is no efficient algorithm for finding an optimal ordering. This
problem has been shown by Rose and Tarjan to be NP-complete[22].
There are, however, several classes of algorithms that work well in prac-
tice, like minimum-degree orderings and vertex-separator-based order-
ings.

Minimum degree is a greedy heuristic which, at each elimination
step, eliminates the vertex with the fewest uneliminated neighbors, that
is the vertex with the minimum degree. In the matrix, this corresponds
to the row and column with the fewest entries in the updated trailing
submatrix.

The minimum-degree heuristic is greedy in the sense that it makes
reasonable local choices, but without considering their global impact.
The heuristic does not even minimize the fill that is generated at every
step. After the elimination of the chosen vertex, there will be edges
between all its neighbors, but some of these edges might have existed
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before this elimination step. Minimum degree minimizes the potential
fill at every step, not the actual fill, which is more expensive to compute.

Another important family of ordering algorithms is based on vertex
separators, sometimes referred to as a nested dissection of the graph.
The basic idea is simple. We find a small subset of the vertices of
the graph whose removal breaks the graph into at least two connected
components, such that no component is very large. We call the small set
of vertices a separator and we call each connected component a domain.
We order the vertices of each domain consecutively, one domain after
another, and we order the vertices of the separator last.

The vertices within a domain are typically ordered using the same
algorithm recursively, by finding a separator which breaks the domain
into subdomains and ordering the separator last.

Dissection orderings use a more global view of the elimination pro-
cess compared to the minimum-degree orderings. Ordering the separa-
tor last ensures that no fill edges is created between a vertex v in one
domain and a vertex u in another domain. The effect of ordering the
separator last, therefore, is to ensure that an entire block of zeros in
the original matrix does not fill. By requiring that no domain is very
large (does not contain more than % of the number of vertices in the
graph, for example), we ensure that the zero blocks are large.

The amount of fill and work in a nested-dissection factorization
can sometimes be theoretically analyzed. For example, if the graph
of an n-by-n matrix A is planar, it has a size O(y/n) balanced vertex
separator. As a consequence, its factors have O(nlgn) nonzeros and it
can be factored in O(n'?®) (assuming it has been reordered using nested
dissection).

For small matrices, minimum-degree orderings are often more effec-
tive than nested dissection. Therefore, modern ordering codes usually
combine both dissection and minimum-degree algorithms.

1.6. Discretization of PDEs

In this section we show how discretizations of partial differential
equations can produce a system of linear equations, which could be
represented as Ar = b where A is an M-matrix.

1.6.1. The Finite-Difference Method for a One-Dimensional
Boundary-Value Problem. Let ("™(I) denote the vector space of
real functions which are m times continuously differentiable over an
interval I C R, m being a non-negative integer. Moreover, f’, f” and
™ for n > 3 will denote the successive derivatives of a function of a
single real variable.

Consider the following problem. Given the functions ¢ and f €
¢°([0,1]) and two constants « and 3 , find a function u € ¢*([0, 1])
satisfying
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—u"(x) + c(x)u(z) = f(x), 0<x <1

u(0) =a, u(l)=7.
Such a problem is called a boundary-value problem, because the un-
known function has to satisfy the boundary conditions u(0) = a, u(1) =
[ at the ends of the open interval over which the differential equation
has to be satisfied.

If the function ¢ is non-negative over the interval [0, 1], then it can
be shown that the problem has a unique solution, which will be denoted
by .

Except for the rarest of cases, there is no known formula for cal-
culating directly the value of the solution at a general point of the
interval [0, 1]. As a result, there arises the problem of finding a way of
approximating the values of the solution as closely as may be desired.
One method of achieving this is the finite-difference method which will
now be described.

Given an integer N < 1, we set h = N+r1 Let us define a uniform
mesh of mesh-size h over the interval [0, 1] as the set of points x; = ih,
0 <i< N+1 (observe that o = 0, 1 = 1), called the nodes of the
mesh. The mesh-size h is meant to tend to zero. The finite-difference
method is a way of obtaining an approximation of the solution ¢ at
the nodes of the mesh, In other words, we look for a vector

U

U2
Up = . - §RN,

un

such that u; is 'close’ to ¢(x;) for i = 1,2,... , N (the values ¢(xy) = «
and ¢(xy41) = [ being known), with the accuracy of the approxima-
tion improving as h diminishes.

Suppose that the solution ¢ is four times continuously differentiable

in the interval [0,1]. By Taylor’s formula, for i = 1,2,... , N, we can
write
2 h3 h4
Plrinn) = pla) + he' () + o) + o0 @) 4 Do o v o),
/ ? " h? 3) ht (4) —
plaimy) = plai) = —he'(w:) + " (@) = =9 (@) + 507 (@i + 67 D),

with —1 < 6, <0< 6 <1, so that

/! h2 —
— (i) + 20(x;) — ez 1) = —h2Q" (3;) — ﬂ{w (z; + 0 h) + W (x; 4+ 07 h)}.
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By the intermediate value theorem,
oD (x; 4+ 07 h) + oW (z; + 67 h) = 20 (z; + 6;h),
with |6;] < max{6;", —0;} < 1, so that finally

—\X; + 2 xT;) — Ti— h2
_90”(1'2‘) _ 90( +1) 90( ) 90( 1) + _90(4)(1'1‘ +Qih),
h? 12
with |6;] < 1,1 <i < N.
To make the notation less cumbersome, we write

i =@(x:), ci=c(z;) fi=f(x;), 1<i<N.

If we replace the values —¢”(x;) by the expressions given above and
taking account of the boundary conditions, we find

Q 201 — 2 h?
—ﬁ + T +cip1 = fl - ESO(4)($1 + th)

2

—i—12¢; — ©; h ;
Pi—124P (p+1+Ci90i:fi_ﬁ(p(4)(xi+9ih)’ 2<i<N-1

h2

—poN_1 + 2 h?
PN flLQ L\ % +cenen = fn — EQO(4)(IN + QNh).

The system of equations given above may be written in the matrix
form

Apon = by, + en(9),

by setting
2+ c1h? -1
—1 24+ cyh? —1
A, = ’ . )
1 24en B2 -1
-1 2 4+ cyh?

1 fi+a/h? W (1 + 601h)

V2 fa oD (22 + O2h)
Pn = : , by = : ,en(p) = :

PN-1 -1 e (wn_1 + On-1h)
©N fn+8/0? oW (zy + Onh)

The method relies upon the following heuristic observation. As the
mesh-size becomes finer, the vector €,(¢) becomes ’smaller’ (because
of the factor h?). Therefore, one is naturally led to neglect it and to
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define the following discrete problem, associated with the boundary-
value problem corresponding to mesh-size h: find a vector u, € RV
which is a solution of the matriz equation

Ahuh = bh.

It can be shown that if function ¢ is non-negative, then the discrete
problem A,u, = b, has only one solution, and the method converges
as the mesh-size h tends to zero, that is, the vector u, — ¢ tends to
zero. If function c is non-negative, then the matrix A, is an M-matrix
(symmetric, diagonally dominant with nonpositive off-diagonals).

1.6.2. The Finite-Difference Method for a Two-Dimensional
Boundary-Value Problem. The partial differential equation—Au(x) =
f(z) for z € Q, where A = 59—;2 + 88—;2, is called Poisson’s equation, or
Laplace’s equation if f = 0. The opgerator A is called the Laplacian.
Let I" denote the boundary of €2. Our problem is that of finding a

function u : Q — R which is the solution of

{ —Au(z) = f(z) z€Q
u(z) = g(x) zel

The unknown function has to satisfy the boundary condition u = g
on [

It can be proved that, if the data f and ¢, as well as the boundary
I, are sufficiently smooth, then the problem has a unique solution, con-
tinuous in Q and twice continuously differentiable in €. Let ¢ denote
the solution.

As in the one-dimensional case, the finite-difference method pro-
vides an approximation of the solution at a finite number of points of
the open region 2. To obtain it, we first set up a uniform mesh of the
plane, the nodes being the points (ih, jh), i,j € Z. Let €, be the set
of nodes of the mesh belonging to €2, and let I';, be the set of points
of the plane which fall on the intersection of the boundary I' and the
horizontal and/or vertical line of the mesh.

The discrete problem consists of finding an approximation of the so-
lution at the points of 2. As a first step, the points are numbered from
left to right and from top to bottom. Although a-priori it may seem
that the order in which these points are numbered is of no particular
significance, in fact it plays a fundamental role in the practical solu-
tion of the associated discrete problem. The first step of the method
consists of obtaining an approximate expression for the Laplacian at
the nodes P € (), by replacing the partial derivatives with appropri-
ate ’finite-difference’ quotients. Let P be a point of €2, and let P;,
1 < ¢ < 4, be the four points of the set €, U I, which are its clos-
est neighbors in the four directions. If the four points have the same
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distance from P, then we can write

h? '

The formula given above is often called the five-point approxima-
tion of the Laplacian operator. Once the Laplacian approximation has
been defined, the discrete problem, associated with the boundary-value
problem being considered and the chosen mesh, consists of finding a
function wu;, defined over the discrete set €, U I';, such that

—Ahuh(P) = f(P) Pe Qh
{ un(P)=g(P) PeT,

Ahu(P) =

After choosing a numbering of the nodes of €, the two previous
relations may be written as a linear system

Apup, = by,

the vector u; having as its components the values u,(P), P € Q.
Notice that the matrix A is a sparse M-matrix.

1.7. Support-Graph Theory

This section describes the basic linear-algebra tools that Gremban
et al. [14, 15|, and Bern et al. [5] developed to analyze Vaidya's pre-
conditioners. These preconditioners are for M-matrices, i.e. matrices
which are symmetric, diagonally dominant (the sum of each row is
non-negative), whose off-diagonals are all nonpositive.

When a preconditioner B is used in the Conjugate Gradient method,
the number of iterations is proportional to the square root of the ratio
between the extreme finite generalized eigenvalues of the pair (A, B),
defined below.

DEFINITION 1.7.1. The number A is a finite generalized eigenvalue
of the matrix pencil (A, B) if there exists a vector x such that Az =
ABz and Bx # 0. We denote the set of finite generalized eigenvalues
by Af(A, B).

Henceforth, whenever we refer to an eigenvalue of a matrix pencil,
we mean a finite generalized eigenvalue.

To bound the amount of work in the Preconditioned Conjugate
Gradient method, we need to bound the the finite eigenvalues of (A, B).
We need to prove two bounds: an upper bound on max A¢(A, B) and a
lower bound on min Af(A, B). We will prove the upper bound directly

and the lower bound by proving an upper bound on max A\f(B, A) =
1
min A (A,B) "

The main tool that we use to bound Af(A, B) is the so-called support
of (A, B), which is the smallest number 7 such that 7B — A is positive
semidefinite, 0(A, B) = min{r : 7B — A is positive semidefinite }.
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If there is no 7 for which 7B — A is positive semidefinite, we take
o(A, B) = oc.

LEMMA 1.7.2. (Support Lemma [15, Lemma 4.4]): If A € A¢(A, B)
where B is positive semidefinite and (A) C (B), then A < o(A, B).

We use this lemma to find upper bound for max A;(A, B). When-
ever we find a value a such that B — A is positive semidefinite, we
conclude that oo > o(A, B), and therefore a > A\;(A, B).

One way to prove that a matrix is positive semidefinite is to split it
into a sum of matrices and prove that each term is positive semidefinite.

LEMMA 1.7.3. (Splitting Lemma [15, Lemma 4.7]): Let Q = Q1 +
Q2 + ... + Qun, where Qq, Qs ...Q., are all positive semidefinite. Then
Q 1s positive semidefinite.

The analysis of Vaidya’s preconditioners relies on a specific split-
ting, where the graph of A is split into individual edges and the graph
of B into paths. Let G4 be the undirected weighted graph underlying
—A and Gp the graph underlying —B. Bern et al. show that with-
out loss of generality, both A and B have zero row sums. Therefore
the graph structure and edge weights determine the matrices exactly,
since all the vertex weights are 0. If the off-diagonal elements of A and
B are all negative, then the edge weights in G4 and G g are positive.
Vaidya and Gremban & Miller interpret such graphs as resistive net-
works where the edge weight is the conductance of a resistor. They
split 7B — A into (7B; — Ay)+ (1By — As) + ...+ (7B,, — Ay, such that
each A; corresponds to exactly one edge in G4 and each B; corresponds
to a simple path in Gz. Both the A;’s and the B;’s have nonpositive
off-diagonals and zero row sums. Each A; represents the entire weight
of one edge, and each corresponding B; represents a path that can con-
tain fractions of edge weights. The endpoints of the path represented
by B; are the endpoints of the edge represented by A;. We will define
the congestion of an edge in A as the ratio between its weight and the
weight of the minimal weight of an edge in the corresponding path in
B. The dilation of an edge in A will be defined as the length of the
corresponding path in B.

LEMMA 1.7.4. (Congestion-Dilation lemma): Let G 4 be the under-
lying graph of a symmetric matriz . Let {A.} be the matrices repre-
senting each edge in A such that A =Y"_A.. Let {B.} be the matrices
representing paths which support the A.’s (the weights of the edges in
the B.’s may be a fraction of the edges’ weights in G4). Let B="__ B,
where Gg is a subgraph of G4 (each edge in Gp has the same weight
as the corresponding edge in G ). Let o, be the congestion of the path
supporting edge i, and let (. its dilation. Then mazx.{a.B.}B — A is
positive-definite.

This Lemma gives a bound of maz{a.(.} on o(A, B).



CHAPTER 2

Implementation and Evaluation of Vaidya’s
Preconditioners for M-Matrices

2.1. Introduction

A decade ago Pravin Vaidya proposed an intriguing family of pre-
conditioners for M-matrices [24]. He presented his ideas in a scien-
tific meeting but never published a paper on the topic. His precon-
ditioners were never implemented or tested experimentally. We have
implemented Vaidya’s preconditioners. We experimentally compare
the effectiveness of Vaidya’s preconditioners to that of incomplete-
factorization preconditioners, including no-fill and drop-tolerance pre-
conditioners, both modified and unmodified. Our results indicate that
Vaidya’s preconditioners are often superior to incomplete-factorization
preconditioners.

Vaidya proposed constructing a preconditioner M for a symmetric
M-matrix A by dropping off-diagonal nonzeros from A and factoring
M (completely). John Gilbert coined the term complete factorization
of incomplete matrices to describe such preconditioners, as opposed to
conventional incomplete factorizations of the complete matrix. Vaidya
proposed a sophisticated dropping algorithm that balances the amount
of fill in M with the condition number of the preconditioned matrix
M~'2AM~12, Perhaps the most remarkable aspect of Vaidya’s pre-
conditioners is that for many classes of M-matrices, the condition num-
ber of the preconditioned matrix depends only on the size of A and is
independent of the condition number x(A) of A.

Vaidya’s preconditioners work on sparse M-matrices (symmetric
diagonally-dominant matrices with nonpositive off-diagonals). Given
a parameter ¢, the method works by constructing a maximum span-
ning tree 1" of G 4 and splitting 7" into roughly ¢ connected components
of roughly the same size. The method then adds the heaviest edge in
G 4 between every pair of subtrees if there is an edge between them in
G 4. If there are ties and one of the candidate edges is in 7', then this
edge is added.

A large value for the parameter t results in a small condition num-
ber, and hence convergence in a small number of iterations, at the
expense of significant fill in the factors of M. (In particular, ¢ = n,
where n is the dimension of A, leads to M = A.) Fill in the factors
slows down the factorization of M and slows down each iteration. A

16
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small ¢ on the other hand, yields a higher condition number but sparser
factors.

Vaidya stated (without a proof; for a proof, see [6]) that for any
n-by-n M-matrix with m nonzeros, ¢ = 1 yields a condition number
k = O(mn). The construction of such a preconditioner costs only
O(m + nlogn) work and its factorization costs only O(m) work. For
general sparse M-matrices with a constant bound on the number of
nonzeros per row, the optimal value of t is around n'/4, which yields
a total solution time (construction, factorization, and iterations) of
O(n'™). For M-matrices whose graphs are planar, the total solution
time is only O(n'?) when ¢ is chosen appropriately.

We have evaluated Vaidya’s preconditioners by experimentally com-
paring their performance to that of drop-tolerance incomplete-Cholesky
preconditioners (ICC), in the context of a conjugate gradients iterative
solver. Both families of preconditioners accept a parameter that in-
directly influences the sparsity of the preconditioner: ¢ in the case of
Vaidya and the drop tolerance in the case of ICC.

In order to fairly compare the two families of preconditioners, we
always compare the performance of preconditioners of equal size, that
is, preconditioners that take up roughly the same amount of memory.
Keeping the amount of memory fixed means that if one preconditioner
fits within main memory so does the other, it implies that precondi-
tioning operations (solving Mz = r in every iteration) take about the
same amount of time, and it usually, but not always, leads to simi-
lar factorization times. In many of our experiments the factorization
times of Vaidya’s preconditioners are significantly higher than those of
incomplete-factorization preconditioners even when both have similar
amounts of fill. We explain this phenomenon in Section 2.3.3.

Our main findings are that Vaidya’s preconditioners scale better
and are more effective than incomplete-factorization preconditioners on
large 2D elliptic problems with Neumann boundary conditions. In par-
ticular, on such matrices Vaidya is more effective than drop-tolerance
modified incomplete Cholesky preconditioners (MICC). (The unmodi-
fied preconditioners were always worse than MICC in our experiments.)
Vaidya’s preconditioners are also more robust on unisotropic problems
than ICC preconditioners. Vaidya’s preconditioners are almost unaf-
fected by the boundary conditions, but ICC preconditioners are more
effective on Neumann boundary conditions than on Dirichlet. Vaidya’s
preconditioners converge at similar rates to MICC on Dirichlet prob-
lems, but they take longer to construct and factor. Vaidya’s precondi-
tioners do not appear in our experiments to be effective on 3D prob-
lems. Finally, the scaling behavior of Vaidya’s preconditioners on 2D
problems shows very slow growth in the number of iterations as the
problem grows, slower than that of any of the ICC preconditioners.
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The rest of this paper is organized as follows. Section 2.2 describes
the theory of Vaidya’s preconditioners and our implementation of them.
Section 2.3 describes the setup, methodology, and results of our exper-
iments. We summarize our conclusions in Section 2.4.

2.2. Vaidya’s Preconditioners

2.2.1. Theory and Construction. In this section we describe
the preconditioners that Vaidya proposed and the algorithms that we
used to construct them. Vaidya’s method constructs a preconditioner
M whose underlying graph G, is a subgraph of G 4. The graph G}, of
the preconditioner has the same set of vertices as G4 and a subset of
the edges of G4. (The underlying graph G4 = (Va, E4) of an n-by-n
symmetric matrix A is a weighted undirected graph whose vertex set is
Va={1,2,...,n}and whose edge set is E4 = {(¢,7) : i # j and A;; #
0}; The weight of an edge (7,7) is — A4, ;.)

The input to the algorithm is an n-by-n M-matrix A, with 2m off-
diagonal nonzeros and a parameter t. We begin by finding a rooted
maximum-weight spanning tree 7" in G4. We decompose T into a set
of k connected subgraphs Vi, V5, ... Vi such that each V; has between
n/t and (dn/t)+ 1 vertices, where d is the maximal number of children
that vertices in 7" have. We form G, by adding to T" the heaviest edge
between V; and Vj for all ¢ and j. We add nothing if there are no edges
between V; and Vj or if the heaviest edge is already in 7". The weight
of an edge (i,j) in Gy is the weight of the same edge (7,j) in Ga.
We assign weight to a self loop (4,4), which corresponds to a diagonal
element M, ;, so that the row sums in M and in A are identical. The
preconditioner M is the matrix whose underlying graph is G;.

We denote by M; the Vaidya preconditioner constructed with the
parameter t. We have M,, = A. The preconditioner M; consists solely
of a maximum-weight spanning tree with no added edges. Bern et
al. [6] show that the condition number of this M; is O(mn).

In general, Bern et al. show that the condition number of Vaidya’s
preconditioner is O(n?/k?), where k is the number of subgraphs that T
is actually split into. They also analyze the cost of factoring M when
(G4 is a bounded-degree graph or a planar graph. The results of these
analyses are summarized in the Introduction; we omit further details.

2.2.2. Implementation Details. There are two implementation
issues that must be addressed in the construction of Vaidya’s precon-
ditioners. One is the choice of the maximum-spanning-tree algorithm
and the second is the splitting of the tree into subtrees.

We use Prim’s algorithm to find the maximum-weight spanning
tree 1" |21] because it is fast and because it returns a rooted tree. The
root 7, which we choose randomly, is an input to Prim’s algorithm.
(Most textbooks on algorithms describe Prim’s algorithm, as well as
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FIGURE 2.2.1. An M-matrix A (top), the graph G 4 of A
(bottom left), and its rooted maximum spanning tree T
(bottom right). The vertices are ordered top to bottom,
left to right. The choice of a root for 7' is arbitrary. Self
loops, which correspond to diagonal matrix elements, are
not shown.

other maximum spanning tree algorithms; see, for example, |8, Chapter
24].) Prim’s algorithm returns a rooted tree represented by an array
m. The integer 7[i] represents the parent of the vertex i. We use 7 to
create two length-n integer arrays that allows us to quickly enumerate
the children of a vertex. Figure 2.2.1 shows a matrix, its graph and the
maximum spanning tree.

We now present a recursive procedure called TREEPARTITION, which
is specified in Figure 2.2.2, that decomposes T into a set of connected
subtrees. The number of vertices in each subtree is between n/t and
(dn/t) + 1, except for the subtree containing the root, which might be
smaller. Ideally, we would have liked to split 7" into exactly ¢ connected
subtrees of nearly equal size, but we are not aware of an algorithm that
does so. TREEPARTITION uses a global array s of n integers, where s; is
initialized before the first call to TREEPARTITION to be the number of
vertices in the subtree rooted at ¢. The initial call to TREEPARTITION
passes the root of T" as an argument.

THEOREM 2.2.1. TREEPARTITION(i) splits the subtree rooted at i
into connected subtrees whose size is between n/t and (dn/t)+1, except
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TREEPARTITION(vertex )
# comment: s; = number of vertices in the subtree rooted at ¢
S; 1
for each child j of ¢
if (s; >n/t+1)
TREEPARTITION(j)
if (s; > n/t)
form a new subtree rooted at j
disconnect j from ¢
else
S; <— 8; + Sj

FIGURE 2.2.2. The algorithm that we use to decompose
the maximum spanning tree. The code splits the tree T,
which is stored in a global data structure. The code uses
a global integer array s.

perhaps for the subtree that contains i, which may be smaller (but not
larger).

PROOF. We prove by induction on the height of the tree a slightly
stronger statement. Namely, that when TREEPARTITION returns, the
tree is split appropriately and that the number of vertices in the subtree
containing ¢ is s;. The claim is obviously true for leaves since s; is set
to 1. Suppose that the height of the tree rooted at ¢ is h and that the
claim is true for h’ < h. Clearly, the height of the trees rooted at a child
j of i is smaller than h. For each child j, if we call TREEPARTITION(j),
then by induction all the subtrees that are formed inside the recursive
call have the right sizes and s; is set to the size of the subtree that
remains rooted at j. Therefore, when we test whether s; is greater or
equal to n/t, s; is correct and is at most (dn/t) + 1. If s; > n/t, then
the subtree rooted at j has a valid size so we can form a new subtree.
Otherwise, it is too small and we leave it connected to ¢ and add its
size to s;. When TREEPARTITION(?) terminates, s; is therefore correct
and at most (dn/t)+ 1. The connectedness of the subtrees follows from
a similar inductive claim. O

Making the recursive calls only when s; > (dn/t) + 1 is correct, but
our experiments indicate that this modification degrades the precon-
ditioner. It appears that if we make the recursive call only when
s; > (dn/t) + 1, the subtrees tend to significantly differ in size. If
we make the recursive call only when s; > n/t + 1, then the algorithm
tends to generate subtrees whose size is close to the lower bound n/t,
so they are more uniform in size. We have no theoretical analysis of
this phenomenon.

In addition, making a recursive call whenever the subtree is large
enough allows the algorithm to partition the graph into as many as n
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FIGURE 2.2.3. The tree from Figure 2.2.1 partitioned
(top left), and the graph G of the Vaidya preconditioner
(top right). The tree was partitioned using TREEPARTI-
TION with ¢ = 4. Two edges that connect the 3 subtrees
are already in the tree; to complete the preconditioner
we added one more edge, the heaviest between the sub-
trees that are not connected by a tree edge. The matrix
on the bottom is the preconditioner M itself.

subgraphs. On the other hand, making the recursive calls only when
s; > (dn/t)+1 typically limits the number of subgraphs that the graph
can be partitioned into, which in turn limits the condition number that
we can reach. Hence, making a recursive call whenever possible gives us
more control over fill and condition number than making the recursive
call only when necessary.

Adding the heaviest edge in G4 between every pair of subtrees is
trivial; we omit the details.

2.3. Experimental Results

2.3.1. Methodology. Both Vaidya’s preconditioners and drop-
tolerance incomplete-Cholesky preconditioners accept a parameter that
indirectly affects the sparsity of the preconditioner. In Vaidya'’s precon-
ditioner the parameter ¢ affects the number of subgraphs that the tree
is split into, whereas in the incomplete-Cholesky preconditioner the
drop-tolerance parameter determines which fill elements are dropped
from the factors.



2.3. EXPERIMENTAL RESULTS 22

We always compare preconditioners with similar levels of fill. The
amount of memory required to represent the factors of the precon-
ditioner is proportional to the number of nonzeros in the factor. In
addition, the number of floating-point operations required to apply a
preconditioner is about twice the number n; of nonzeros in the factor
L of the preconditioner. Hence, the number of nonzeros is a strong
determinant of the running time of each iteration in an iterative solver
(parallelism and cache effects also influence the running time but we
ignore them in this paper). Finally, computing the factors usually takes
more time when they are denser, although the dependence is somewhat
complex. The number of operations in a complete symmetric factor-
ization is proportional to the sum of squares of nonzero counts for each
column.

Thus, one of the input arguments to our testing program is the
number of nonzeros in the factors. The program finds the parame-
ter value that yields roughly the requested fill using a binary search.
The binary search stops when the amount of fill is 5% or less away
from the desired value. The program performs the iterative solution
using this parameter value and reports performance data from this run
only. We carry out these binary searches only in order to compare the
two families of preconditioners fairly. An end user would simply set a
value for the fill-controlling parameter based on some analysis or prior
experience.

We make the search for a given level of fill more robust using a
simple technique. For a fixed rooted maximum spanning tree 7', the
fill in the factors of Vaidya’s preconditioners is not continuous in the
parameter t. This can prevent the program from finding a precondi-
tioner with the desired level of fill. To try to overcome this problem,
we choose a random root for the tree in every binary-search step. Us-
ing this technique, the program is usually able to find a preconditioner
whose fill is within 5% of the desired amount; otherwise, the search
stops after 100 iterations and uses the best parameter found.

We measure the amount of fill in the factors of preconditioners in
terms of fill ratios. We define the fill ratio of a preconditioner M =
LLT to be the ratio between the number of nonzeros in L and the
number of nonzeros in the factors of a maximum-spanning-tree Vaidya
preconditioner. Since the maximum-spanning-tree preconditioner can
be factored with no fill, its factors have exactly 2n —1 nonzeros. Hence,
the fill ratio is the ratio between the fill in L and 2n — 1.

2.3.2. Experimental Setup. The experiments were conducted
on a dual-processor 600Mhz Pentium III computer with 2GBytes of
main memory. We only use one processor. The computer runs the
Linux operating system, which on this machine can actually allocate
about 1900MBytes to a process in a single malloc. The code is written
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in C and was compiled using gcc version 2.95.2 with the options -03
-mpentium.

We use METIS version 4.0 [17, 18] to find fill-reducing orderings.
We use the procedure METIS_NodeND with default options to find the
ordering. When the graph of the matrix to be factored is a tree, we
use a fast special-purpose ordering code that finds a no-fill ordering.
This code is essentially a simplified minimum-degree code. Since our
experiments use matrices whose graphs are regular meshes in 2 and 3
dimensions, we also run incomplete Cholesky with the natural order-
ing of the mesh. We expect that for unstructured meshes, envelope
minimizing orderings such as Cuthill-McKee [9] or Sloan [19] would
produce results similar to natural orderings of regular meshes [11].

We used both the natural row-by-row ordering of the mesh and
METIS’s ordering for the incomplete factorization. We have found,
however, that the modified factorization always break down when the
matrix is prepermuted using METIS’s ordering. Hence, we only use
the natural ordering for MICC. We use both orderings to unmodified
ICC.

We implemented a sparse Cholesky factorization algorithm specif-
ically for this project. The code can perform complete, no-fill in-
complete (sometimes known as ICC(0) or ICCG(0) [20]), and drop-
tolerance incomplete factorization. When performing incomplete fac-
torizations, the code can modify the diagonal to ensure that the row
sums of LLT are equal to those of A [16]. The code implements a
sparse left-looking algorithm. The code is efficient in the sense that
its running time is proportional to the number of floating-point oper-
ations that it performs. However, the code is not supernodal and is
not blocked in any other way, so its performance is poorer than that
of state-of-the-art sparse Cholesky codes. We implemented the factor-
ization code because we were not able to find an existing code that
has all the incomplete-factorization options that we needed for this
experiment.!

The iterative solver that we use is preconditioned conjugate gradi-
ents (see, for example, [3, 13]).

The matrices that we use for our experimental analysis are dis-
cretizations of elliptic PDEs on regular 2- and 3-dimensional meshes.

'We have been unable to find a state-of-the-art C- or Fortran-callable sparse
Cholesky routine that can perform complete, drop-tolerance incomplete, and mod-
ified drop-tolerance factorizations (or an LDLT factorization). We used our rela-
tively slow factorization code since we wanted to use the same code to factor all
the preconditioners. We used SPOOLES [2] in early experiments but it does not
include any modified factorization routine.
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FiIGURE 2.3.1. Total solution times with ICC and
Vaidya’s preconditioners on 1200-by-1200 2D isotropic
problems with Neumann (left) and Dirichlet (right)
boundary conditions. The graphs show the total solu-
tion times as a function of the fill ratio of the precon-
ditioners. The solution times include construction, fac-
torization, ordering, and iterations. The iterative solver
stops when the 2-norm of the residual drops by a factor
of 10®. The solution times with a fill-ratio-1 Vaidya’'s
preconditioner are 14539 (Neumann) and 9432 (Dirich-
let), outside the scale of the graphs. The rightmost data
point in both graphs represents a complete factorization
of A with METIS ordering.

The matrices all arise from finite-differences discretizations of the equa-
tion
2 2
cx%jtcyg—yz =f in Q =|0,1[x]0, 1]

with either Dirichlet or Neumann boundary conditions. We solve isotropic
problems (¢, = ¢, = 1) and unisotropic problems in which either
¢; = 100 and ¢, = 1 or vice versa. We also solve similar problems
in 3D. We use a five-point discretization in 2D and a seven-point dis-
cretization in 3D, which lead to a pentadiagonal matrix when a 2D
mesh is ordered row-by row (the so-called natural order) or to a septa-
diagonal matrix in 3D.

We have been unable to find large unstructured matrices in matrix
collections, such as MatrixMarket and Tim Davis’s collection (over a
million unknowns, say).

2.3.3. Experimental Analysis. Both ICC and Vaidya solve prob-
lems fastest when the preconditioner is allowed to fill somewhat. If
little or no fill is allowed, most of the solution time is spent performing
a large number of iterations. If the preconditioner is allowed to fill
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FIGURE 2.3.2. Convergence of fill-ratio-b ICC and
Vaidya’s preconditioners on 2D isotropic problems with
Neumann (left) and Dirichlet (right) boundary condi-
tions. The graphs show the number of iterations it took
to reduce the 2-norm of the residual by a factor of 108
as a function of the mesh size \/n (i.e., the matrices are
n-by-n). The numbers near the graphs show the actual
fill ratio of the preconditioners when it deviated from 5
by more than 2.5%.

considerably, most of the solution time is spent factoring the precon-
ditioner. Figure 2.3.1 clearly shows that low and high fill ratios lead
to slower solution times than medium fill ratios. The figure also shows
that the solution time of the faster preconditioners, Vaidya and MICC,
is not sensitive to the fill ratio within the range 3-6. Therefore, we
used fill ratio 5 in the rest of the experiments.

In particular, Vaidya’s maximum spanning tree preconditioner (with
no additional edges) is ineffective. It requires a huge number of itera-
tions, as demonstrated by our experiments and shown in Figures 2.3.1,
2.3.4, and 2.3.5.

Figure 2.3.2 shows that when both Vaidya and ICC precondition-
ers are allowed to fill appropriately (that is, to achieve near-optimal
solution times), Vaidya’s preconditioners converge in similar or smaller
numbers of iterations. The next best preconditioner in our experi-
ments is always modified ICC with the natural ordering. (We always
use METIS to order Vaidya’s preconditioners unless their graph is a
tree.) Unmodified ICC preconditioners are significantly worse than
Vaidya’s and MICC.

Vaidya’s preconditioners are not sensitive to the boundary condi-
tions that we impose, but ICC preconditioners are. Vaidya’s precon-
ditioners converge in roughly the same number of iterations on both
Neumann and Dirichlet boundary conditions, but ICC preconditioners
are less effective on Neumann boundary conditions. This is shown both
by Figure 2.3.2 and by Figure 2.3.4.
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TABLE 1. The number of iterations for Vaidya’s precon-
ditioners with fill-ratio 5 on isotropic 2D problems with
Neumann boundary conditions. The data shows that
Vaidya’s preconditioners scale well with problem size.
The numbers of iterations with Dirichlet boundary con-
ditions are the same, except that 51 rather than 56 iter-
ations were required on grid size 700. The same data are
shown graphically in Figure 2.3.2 (but the graphs do not
allow close inspection of the scaling behavior).

Grid Size 300 500 700 900 1100 1300 1500
Iterations 41 44 56 53 63 63 64

The scaling behavior of Vaidya’s preconditioner is remarkable. Ta-
ble 1 shows that the number of iterations grows very slowly with the
size of the matrix. Note that the size of the preconditioner (i.e., the
number of nonzeros in its factors) remains a constant fraction of the
size of A. Therefore, these preconditioners combine linear scaling of
the work per iteration with a slow growth in the number of iterations,
a highly desirable behavior.

Vaidya’s preconditioners lead to faster solution times than all ICC
preconditioners on Neumann problems, as shown in Figure 2.3.1. On
Dirichlet problems, MICC preconditioners are faster, in spite of the
fact that Vaidya converges in similar numbers of iterations. This
is caused by higher factorization times for Vaidya’s preconditioners,
which in turn are caused by a less uniform distribution of nonzeros
in the columns of the factors. In our experiments, we compare pre-
conditioners with similar fill. That is, we keep the total numbers of
nonzeros in the factors similar. The number of floating-point opera-
tions in the factorization, however, is proportional to the sum of the
squares of the nonzero counts in each column of the factor. There-
fore, a preconditioner in which the nonzeros are distributed uniformly
among the columns takes less time to factor than a preconditioner with
a nonuniform distribution of nonzeros. We have found that Vaidya’s
preconditioners require 5-10 times more floating-point operations to
factor than MICC preconditioners, even when the total fill is similar.

A state-of-the-art factorization code would reduce the solution times
with Vaidya’s preconditioners more significantly than it would reduce
ICC times. Our factorization code is about 5-10 times slower than
state-of-the-art codes. Our factorization code runs at about 32Mflops
on large sparse matrices, whereas Matlab’s sparse Cholesky routine
runs at about 190Mflops, about 6 times faster than our code. (Matlab’s
computational rate was measured on the benchmark machine, with
Matlab version 5.3.1; the matrix was generated using delsq(numgrid(’S’,802))
and ordered using symmmd). A faster factorization code would speed
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FIGURE 2.3.3. Estimated solution times of ICC and
Vaidya’s preconditioners on a 1200-by-1200 2D isotropic
problems with Neumann (left) and Dirichlet (right)
boundary conditions. These graphs show the same data
as Figure 2.3.1, but with factorization times scaled down
by a factor of 6. These estimates predict the total so-
lution time with a state-of-the art sparse Cholesky fac-
torization code. The estimates suggest that a complete
factorization would be slower but quite competitive with
an iterative solver, but it uses about 4 times more mem-
ory to store the factors.

up all the solvers, but would benefit Vaidya more, since in Vaidya’s
preconditioners a larger fraction of the total solution time is devoted
to the factorization. Figure 2.3.3 estimates solution times with a state-
of-the-art sparse Cholesky factorization code. The estimates predict
an even greater advantage to Vaidya on Neumann problems. The esti-
mates still predict that MICC would be faster than Vaidya on Dirichlet
problems, but the difference would be smaller than our actual measure-
ments indicate.

Vaidya’s preconditioners are unaffected by the original ordering of
the matrix and are capable of automatically exploiting numerical fea-
tures. On unisotropic problems, Vaidya’s preconditioners are almost
completely unaffected by whether the direction of strong influence is
the x or the y direction, as shown in Figure 2.3.4. The construction of
Vaidya’s preconditioners starts with a maximum spanning tree, which
always include all the edges (nonzeros) along the direction of strong in-
fluence. They are, therefore, capable of exploiting the fact that there is
a direction of strong influence and they lead to faster convergence than
on an isotropic problem. ICC preconditioners, on the other hand, are
sensitive to the interaction between the elimination ordering and the di-
rection of strong influences. Figure 2.3.4 shows that naturally-ordered
MICC converges faster for one direction of strong influence than for the

20
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FIGURE 2.3.4. Numbers of iterations (left) and solution
times (right) of Vaidya and MICC on unisotropic 1200-
by-1200 2D model problems with Neumann boundary
conditions. Vaidya’s preconditioners are ordered using
METTS whereas MICC uses the same natural ordering for
all the problems. Vaidya’s preconditioners with fill ratio
1 took 2127 seconds (1180 iterations) to converge on the
z-direction problems and 1785 seconds (995 iterations)
on the y-direction problems.

other when the matrix ordering is fixed. Therefore, to achieve fast con-
vergence with MICC the user would need to tailor the ordering to the
numerics, whereas in Vaidya’s preconditioners this adaptation occurs
automatically.

Vaidya’s preconditioners are not as effective as ICC precondition-
ers on 3D problems, as shown in Figure 2.3.5 for a 100-by-100-by-100
isotropic problem with Neumann boundary conditions. We expect that
the difference between Vaidya and MICC would be smaller with a faster
factorization code, but Vaidya would certainly remain slower since it
converges more slowly. We have experienced similar results with other
3D problems. We note that these results are consistent with the theory
of Vaidya’s preconditioners. The theory predicts low levels of fill for
2D problems (i.e., for matrices whose graphs are planar), which implies
that we can drop a small number of edges from A and obtain a pre-
conditioner with sparse factors. There are no such predictions for 3D
problems.

2.4. Conclusions

Vaidya’s preconditioners are efficient and robust. On some impor-
tant classes of matrices, they outperform drop-tolerance incomplete-
Cholesky preconditioners (ICC) with similar amounts of fill.

More specifically, we draw the following conclusions from this re-
search:
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FIGURE 2.3.5. Total solution times as a function of the
fill ratio for Vaidya and MICC on a 3D 100-by-100-by-100
isotropic problem with Neumann boundary conditions.
The numbers above the data points show the number
of iterations. Vaidya uses METIS ordering and MICC
uses the natural ordering. Vaidya’s running time with fill
ratio 1 is 13089 seconds, outside the scale of the graph
(fill ratio 1 uses a no-fill ordering).

. Vaidya’s preconditioners are robust when used to solve linear sys-
tems arising from finite-differences discretizations of 2D elliptic
problems. Their construction and convergence are not affected
by the boundary conditions. They effectively and automatically
exploit unisotropy. They are not affected by the original ordering
of the unknowns. In all of these respects, they are better than
all the drop-tolerance preconditioners that we have tested.

. On some of these 2D problems, Vaidya’s preconditioners lead to
faster solution times than all the ICC preconditioners, including
modified ICC. Specifically, Vaidya’s preconditioners are faster on
2D problems with Neumann boundary conditions.

. Vaidya’s preconditioners do not appear to be competitive with
ICC preconditions on 3D problems.

. Vaidya’s maximum-spanning-tree preconditioners are sparser than
ICC(0) preconditioners, but they converge more slowly. We rec-
ommend some fill in Vaidya’s preconditioners. In other words,
avoid M;.

Vaidya’s preconditioners require high-quality sparse-matrix ordering
and factorization codes. The time to construct the preconditioners is
typically insignificant, so a parallel ordering, factorization, and trian-
gular solver should enable the application to exploit multiple processors
(even if the construction of M is not parallelized).

Our code is publicly available. It includes an iterative solver, the
code that constructs Vaidya’s preconditioners, the tree-ordering code,
a sparse Cholesky factorization code, interfaces to METIS and other
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matrix ordering codes, matrix generation and I/O routines. The fac-
torization code can perform complete and drop-tolerance incomplete
factorizations, both modified and unmodified. We recommend that
users replace our relatively slow factorization code by a faster one.

We recommend that Vaidya’s preconditioners be incorporated into
software libraries that offer iterative linear solvers, since in some cases
they are clearly superior to the widely used incomplete-factorization
preconditioners.

We believe that Vaidya’s preconditioners are worthy of further in-
vestigation. Are there effective Vaidya-like preconditioners for 3D prob-
lems? Are there specific maximum spanning trees for problems with
constant coefficients that lead to faster convergence? Can we benefit
from starting from near-maximal spanning trees with better combina-
torial structure? How can we extend Vaidya’s preconditioners to more
general classes of matrices?



CHAPTER 3

Extending Vaidya’s Preconditioners to Symmetric
Diagonally-Dominant Matrices

In this chapter we extend Vaidya’s maximum-spanning-tree (MST)
preconditioners. The new class of preconditioners, which we call mazimum-
weight-basis (MWB) preconditioners, apply to diagonally-dominant sym-
metric matrices with positive diagonal elements. In contrast, MST
preconditioners only apply to M-matrices, which are diagonally dom-
inant with positive diagonals and only negative off-diagonals. In his
unpublished manuscript, Vaidya mentions maximum-weight bases, but
without any details. The development of the theory and algorithms is
original.

It turns out that a recently-proved result by Boman and Hendrick-
son simplifies the analysis of MWB preconditioners. They show that
if u = Vw, where u is n-by-1 and V is n-by-k, then o(uu®, VV7T) <
wlw. Our strategy is to represent A as a sum of rank-1 matrices
A =37 ugul, where each rank-1 matrix correspond to one edge of
G 4. We construct a preconditioner M = VV7T by taking V to be a
basis for the u;’s that maximizes the trace of V1'V. More specifically,
we only consider V’s whose columns are uy’s.

It turns out that the wu;’s define a combinatorial structure known
as a matroid, and the problem of finding such a V' correspond exactly
to the well-studied problem of finding a maximum-weight basis of the
matroid. That is why the preconditioners are called maximum-weight-
basis preconditioners. It is worth pointing out that if A is an M-matrix,
the maximum-weight basis is simply a maximum spanning tree.

This chapter shows that 4mn bounds the condition-number of MWB
preconditioners. We show the bound in two steps. We bound the low-
est eigenvalue with 1 using the fact that A and M are symmetric and
diagonally dominant and that GGj; is a subgraph of G4. We bound the
highest eigenvalue with 4mn using the Boman-Hendrickson lemma, the
properties of a maximal-weight basis of a matroid, and a detailed anal-
ysis of the structure of G;.

We also present an efficient algorithm for constructing MWB pre-
conditioners. The algorithm uses the generic greedy algorithm for find-
ing a maximum-weight basis in a matroid. To use the generic algorithm,
one must provide an algorithm that tests independence. Although
in our case we could use rank-revealing factorizations (say SVDs) to
perform these tests, such an implementation would be too expensive.

31
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Instead, we developed a sophisticated data structure that allows us to
perform the independence tests quickly. The correctness of our method
relies on the analysis of the structure of Gj;. Our method is an appli-
cation of Tarjan’s path-compression method [23].

3.1. Bounding the Smallest Eigenvalue

This chapter analyzes a certain class of preconditioners for diagonally-
dominant symmetric matrices. The graph GG, of the preconditioner M
is a subgraph of the graph G4 of A, nonzero off-diagonals in M have
the same values as in A, and diagonal elements in M are set up in
a way that preserves a generalized row-sum property. For this class
of preconditioners, we prove that the smallest eigenvalue of the pencil
(A, M) is at least 1. That is, Apeq (M, A) < 1.

The preconditioners that we analyze must preserve the generalized
row-sums that we define below.

DEFINITION 3.1.1. The row-weight of row i of matrix A is A; —
Zi;ﬁj ‘Aij’-

We analyze preconditioners whose row weights equal the row weights
of A. If the row weights are nonzero, we subtract from both A and M
a diagonal matrix D so that the row weights in A — D and M — D are
all zero. Clearly, if (A — D) — (M — D) is positive semidefinite, then
A — M is positive semidefinite. Thus, we can assume without loss of
generality that the row weights in A and M are zero.

The next lemma proves that the small eigenvalue of the pencil is at
least 1.

LEMMA 3.1.2. If A is a diagonally-dominant matriz and M s a
preconditioner whose underlying graph is a subgraph of G 4, and whose
row-weights are the same as A’s, then Ay (M, A) < 1.

PROOF. The support lemma shows that if A — M is positive semi-
definite, then A, (M, A) < 1. A and M have the same row weights,

@i — Y lag| = mi =Y |myl

i#] i#]
SO
— My = Z |aij| — Z |mis| = Z |aij| — [mi;1) -
i#] i#] i#]

The matrix M may contain zeros in positions where A contains non-
zeros, but all of M’s non-zeros are non-zeros in A (with the same
values). Since

— My = Z ‘&ZJ’ = Z ’(LZ] Mg s

m;;=0 i#]
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A — M is diagonally dominant. Its diagonal elements are sums of
absolute values, and hence are nonnegative. Such a matrix is positive
semidefinite (see, for example,|3, Theorem 4.9]). O

We will be able to prove this lemma even more simply, once we prove the
Congestion-Dilation lemma for general undirected graphs (lemma 3.3.9).
Then we could simply state that each edge in M is supported by the
equivalent edge A with congestion 1 and dilation 1.

3.2. The Boman-Hendrickson Lemma and Edge Vectors

We now turn our attention to the largest eigenvalue of (A, M). We
propose a preconditioner M whose graph is a specific subgraph of G 4,
which allows us to prove an 4nm upper bound on the eigenvalues of
the pencil. We prove the upper bound using a new tool for bound-
ing support, due to Boman and Hendrickson [7]. Their lemma is a
generalization of the congestion-dilation lemma.

LEMMA 3.2.1. (Boman and Hendrickson) if u € R"™! is in the
range of V.€ R™* then o(uu®, VVT) = minwTw subject to Vw = u.

We use the splitting lemma and Boman and Hendrickson’s lemma
to prove the upper bound. We split A into a sum of rank-1 matrices
A =370 upul, where each rank-1 matrix correspond to one edge of
G 4. We split 4nmM trivially into 4nmM = ;" 4nM. We then use
Boman and Hendrickson’s lemma to show that o(ujul, M) < 4n, and
hence, that 4nM — ugu] is positive semidefinite. This shows that each
of the m terms in the splitting

dnmM — A = Z (4nM — uku;‘g)
k=1

is positive semidefinite, and hence the entire sum.

We use Boman and Hendrickson’s lemma to show that o (uzul, M) <
4n by proving that there exist V and w such that M = VVT, Vw = uy,
and the entries w; of w satisfy |w;| < 2.

We now show how to represent A as a sum of rank-1 matrices and
how to represent M as M = VVT. These representations rely on the
following definitions of edge vectors and wvertex vectors.

DEFINITION 3.2.2. The edge vector (ij) of a nonzero entry a;; > 0
in a matrix A has exactly two non-zeros, (i), ;) = 1 and (i) a5 =
—1. The edge vector )ij( of a nonzero a;; < 0 also has two non-zeros,
yij{; = 1 and )ij(; = 1. The vertex vector (i) of row and column i
of a matrix has exactly one nonzero, (i), = 1. All of these vectors are
n-by-1 column vectors, where n is the dimension of A.
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These vectors can serve as building blocks for symmetric diagonally
dominant matrices,

1 - -1 — TOW ¢
(i) (ig)" =
-1 - 1 — TOW j
1 --- 1 — TOW 1
yij(yii ("t = :
1 -1 — TOW j

The next lemma shows how to represent A as a sum of rank-1
matrices ukug where each wu; is an edge vector.

LEMMA 3.2.3. If A is symmetric and has zero row-weights a; =
> izjlaijl, then we can split A into

A= 3 el @)+ ag)ii(i("

i < 0 ;5 > 0
i< 1<y
= 2 (Viwltn) (Vi <zj>)T Y (ai) (vap)i)"
i < 0 Qij > 0
i< <]

PrOOF. Each term in the sums contributes to exactly two off-
diagonal non-zeros, a;; and a;; and to two diagonal elements a;; and
a;;. Furthermore, each off-diagonal nonzero in A receives contribu-
tions from exactly one term in the sums. It is easy to see that the
contributions sum up to exactly the correct values. O

The preconditioner M is also a sum of rank-1 matrices. The rank-1
matrices whose sum is M are a subset of the rank-1 matrices whose
sum is A,

M = > |aij| (i) (i) + Yo ay)iiOi(”

(27])€EM (Zuj)EEM
a;; <0 a;; >0
i<y <]

We define V' to be the matrix whose columns are \/|a;;| (ij) and ,/a;; )ij(
for i < j and (i,j) € Ey. We have M = VV7T. The preconditioner M
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that we construct satisfies the conditions of the next lemma. Once we
show that it does indeed satisfy the conditions, the lemma proves the
4nm condition-number upper bound.

LEMMA 3.2.4. Let A =UUT and let M = VVT, where U is n-by-
m and V' consists of the first { columns of U. If for every column uy of
U we have u, = Vwy, for some wy with entries whose absolute values
are smaller than or equal to 2, then (A, M) < 4mn.

PROOF. We use the splitting lemma to split A = 3" | wiuf and
mM = >\, M and show that 4nM — ugui is positive semidefinite.
This is true because by Boman and Hendrickson’s lemma, o (ugu} , M) <
wiwy < 4n. O

3.3. The Combinatorial Structure of a Maximum-Weight
Basis

Given a set of scaled edge vectors uy = /|ag| (ij) (or up = \/a;; )ij()
and a weight oy for each vector uy, we wish to find a mazimum-weight
basis for the u,. This basis should consist of a subset of the u;’s and
should maximize the sum of the weights of the u;’s in the basis. This
section analyses the structure of the maximum-weight basis. We begin
by showing a simple property of maximum-weight bases.

LEMMA 3.3.1. Let uy,...,u; a maximum-weight basis for the vec-
tors uy, ... , Uy, with weights aq, ..., ay,, (that is, we assume without
loss of generality that the basis consists of the first € wvectors). Let
Up = ﬁlul + - ‘f‘ﬁgUz. Ifﬁz 7& 0 then (073 Z Q..

PROOF. Suppose for contradiction that for some i, a; < a; and
B; # 0. We show that if we remove u; from the basis and insert u, we
end up with another basis with a larger sum of weights. We have

1
Ui = E (Uk = Brur — = Bicauior — Bipalipr — o — ﬁzuz) .
7
Therefore, the new subset is also spanning. The sum of weights is larger
than in the supposedly maximum-weight basis, a contradiction. O

Our next task is more involved. We show that a combinatorial property
of a graph ensures that its edge vectors are linearly independent. We
need the following definition.

DEFINITION 3.3.2. The sign of an edge (i,j) in the graph G4 of a
symmetric matrix A is the opposite of the sign of a;;. (That is, the sign
is positive if a;; < 0.) The sign of a path in G4 is negative if it contains
an odd number of negative edges; otherwise the path is positive.

We can now state the combinatorial property that guarantees linear
independence of edge vectors.
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THEOREM 3.3.3. The edge vectors of an undirected graph G4 are
linearly independent if and only if each connected component contains
no positive cycles and at most one negative cycle.

We shall prove the theorem later using three technical lemmas that
characterize various ways of spanning an edge vector.

The following lemma shows how to span an edge vector using vec-
tors of edges along a simple path between the original edge’s endpoints.
In this paper we use the term simple path to stands for a path in which
each edge appears only once.

LEMMA 3.3.4. The edge vectors of a simple positive path between
vertices i and j span the edge vector (ij). The coefficients of the lin-
ear combination are all either 1 or —1. The edge vectors of a simple
negative path between vertices i and j span the edge vector Yij{. The
coefficients of the linear combination are all either 1 or —1.

PROOF. We prove the lemma by induction on the length of the
simple path. The claim is clearly true for paths of length 1. Suppose
that the lemma is true for paths of length ¢. Suppose that there is a
path of length ¢+ 1 between ¢ and k such that the vertex just before k
in the path is j. By induction, the edges of the path from ¢ to j span
(17) if that prefix of the path is positive, or )ij( otherwise. There are
now four cases. If the edge (7, k) is positive and so is the prefix of the
path, then either (ij) + (jk), (ij) — (jk), — (ij) + (jk), — (ij) — (jk) is
equal to (ik) (the others are — (ik), (ik)—2 (j), and — (ik)+2 (j)). The
second case occurs when (j, k) is positive but the prefix of the path is
negative, the third and fourth when (j, k) is negative and the prefix is
either positive or negative. Their analysis is similar and is omitted. [

LEMMA 3.3.5. The edge vectors of a negative cycle that contains
vertex v and of a simple path between i and j, where the edges of the path
are disjoint from the cycle, span the vertex vector (j). The coefficients
of the linear combination are +1 for the edges of the path and +1/2
for the edges of the cycle.

PROOF. Let (i, k) be an edge in the cycle. If (¢, k) is positive, then
the path from 7 to k along the cycle must be negative, since the entire
cycle is negative. Lemma 3.3.4 shows that )ik( is a linear combination
of the edge vectors along this negative path, with coefficients either 1 or
—1. Since (ik) + )ik( =2 (i) (if i < k; otherwise — (ik) + )ik( = 2 (7)),
(1) is a linear combination of the edges of the cycle. The coefficients
are either % or j:%. If (4, k) is negative, the rest of the cycle is positive,
and a similar argument shows that the cycle spans (7). Since the cycle
spans (i) with coefficients j:% and the path from ¢ to j spans either
(17) or )ij( with coefficients £1, the cycle and path together span (j)
with the desired coefficients. 0J
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LEMMA 3.3.6. The edge vectors of a connected component that con-
tains a negative cycle span the edge vectors (ij) and )ij(, for any two
vertices i and j in the component. The coefficients are all £1, £2 or 0.

PROOF. Suppose that there is a simple path from i to 5 that con-
tains cycle edges. Then we can construct another simple path from
7 to j, in which we will replace the cycle edges in the first path with
all the other cycle edges. These two simple paths have opposing signs.
Therefore, by lemma 3.3.4, one path spans (ij) and the other spans
)ij(, both with coefficients +1.

Now suppose that there is no simple path from ¢ to j that contains
cycle edges. Let k be the first vertex that is both on the path from i to
the cycle and on the path from j to the cycle. Such a vertex must exist,
otherwise there is a simple path between ¢ and j that contains cycle
edges, a contradiction of our supposition. The vertex £ may, however,
be one of 7 and j. The sign of the path between i and j is determined
by the sign of the paths between ¢ and k£ and between k and j. The
vectors (ik) and 2 (k) span )ik( with coefficients £1, which means that
the path from 7 to j and the path from £ to the cycle and the cycle
span both (ij) and )ij( with the desired coefficients. O

We are now in position to prove Theorem 3.3.3,

PROOF. (=) Suppose to the contrary that there is a positive cy-
cle in G4. Let e be an edge in that cycle. Then the path between
e’s endpoints along the cycle has the same sign as e’s. Lemma 3.3.4
shows that the vector corresponding to e is a linear combination of the
vectors of the edges along the path. Therefore, the vectors are linearly
dependent.

Suppose to the contrary that a connected component contains two
simple negative cycles. Let us choose a vertex ¢ in the following way:
if the two cycles contain common vertices, then we choose ¢ to be one
of those vertices. Otherwise we choose ¢ to be one of the vertices on a
path connecting the two cycles. Lemma 3.3.5 shows that (i) is a linear
combination of the vectors corresponding to the edges along any of the
paths from i to itself traveling through a negative cycle. Since (z) could
be represented as two different linear combinations of the edge vectors,
the vectors are linearly dependent.

(<) Let G = (V, E) be a graph, where each connected component
contains no positive simple cycles, and at most one negative simple
cycle. Suppose to the contrary that the vectors corresponding the
edges are linearly dependent. Therefore, there exists a subgraph G* =
(V,E*) C (V, E) and coefficients «a;; # 0, such that
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> (i) + > ;;)ij(=0.

(i,7) € £~ (i,7) € £
(1,7) is positive (1,7) is negative
1 <] 1<

The subgraph G* cannot contain any leafs. If ¢ is a leaf, only one
edge vector contains a nonzero in position 7, so this nonzero cannot be
canceled out by the other edge vectors in G*. Also, G* is a subgraph
of G, so each connected component contains no more than one sim-
ple cycle. Therefore, G* is a union of distinct simple negative cycles.
By Lemma 3.3.5, each simple negative cycle of length ny spans the
no-dimensional subspace of the ny corresponding vertex vectors, and
therefore they are linearly independent. No vertex appears in more
than one cycle, so the entire set of vectors is linearly independent, a
contradiction. O

The characterization of linearly-independent sets of edge vectors that
Theorem 3.3.3 will prove useful in the next section, where we use it
to efficiently find a maximum-weight basis. Our remaining task in this
section is to complete the analysis of the upper bound on the condition
number. The next lemma provides the last technical tool that we need.

LEMMA 3.3.7. Let uq,... ,up be a maximum-weight basis for a set
of m scaled edge vectors wp = +/|a;j| (ij) (or wp = \J/ai; )ij() with
weights +/|a;j|. Let up = wyuy + -+ -+ wpug. Then V1 <r <L w, <2.

PROOF. Let uj, = +/|ai;| (ij) (or u, = /ai; )ij() be the scaled edge
vector we want to support. Let e = (i,7) and let Gj; be the graph
underlying the maximum-weight basis.

We first show how the edge vectors of the edges in the maximum-
weight basis support (ij) (or ij(). This analysis splits into three cases
depending on the connected components that ¢ and 7 belong to. We
then show how the maximum-weight basis itself supports wuy.

If + and j are in the same connected component in the maximum-
weight basis and that component has no cycles, then the path between
1 and j must have the same sign as e’s, or else e could have been added
to the basis. By Lemma 3.3.4, the vector (ij) (or )ij() is a linear
combination of the edge vectors of the edges in the maximum-weight
basis with coefficients 1 or 0.

If 7 and j are in the same connected component in the G/, and
that component has a negative cycle, then by Lemma 3.3.6 vector (ij)
(or )ij() is a linear combination of the edges in the maximum-weight
basis (without scaling), with coefficients +1,£2 or 0.

If 7 and j are in two separate connected components, then these two
components must both include a negative cycle, or else e could have
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been added to the basis. By Lemma 3.3.5, the vector (ij) (or )ij() is a
linear combination of the edges in the maximum-weight basis (without
scaling), with coefficients £3, &1 or 0.

In all three cases, the (ij) (or )ij() is a linear combination of the
unscaled vectors of the edges in the maximum-weight basis, with coeffi-
cients whose absolute values are smaller than or equal to 2. Therefore,

N V aij)|
v

where v, < 2 and where the b.’s are the weights of the edges in the

MWB. By lemma 3.3.1, \/_VZ” < 1forl <y </ It follows that for

1§r§€,wT:Pyr\/m§2-1:2. O
Vel

This concludes the analysis of the condition number of a maximum-

weight basis, since we can now apply Lemma 3.2.4 to prove the upper

bound on the spectrum. The lower bound has already been established

in Lemma 3.1.2. We have, therefore, proven the following theorem.

Wy =

THEOREM 3.3.8. The condition-number of a matriz pencil (A, M)
where A is symmetric, diagonally dominant with positive diagonals and
M s a mazimum-weight basis preconditioner is bounded by 4mn.

As a side effect of our analysis, we can now formulate and prove an
generalized congestion-dilation lemma. We essentially use the same
technique that Boman and Hendrickson used to prove the original
congestion-dilation lemma [7].

LEMMA 3.3.9. Let e = (i,7) be an edge of weight a. Let ug be the
scaled vector representing e. Let V' = [uy,ug,... ,us] be scaled edge
vectors uy = /|bg| (i) (or ux = /by )ij{), corresponding to edges that
support e in one of the following ways: either by a simple path whose
sign s the same as e’s, or by two negative cycles and two paths from
each of e’s endpoints to the cycles, or by a path from e’s endpoints

through a negative cycle. Then o(uu®, VVT) < miffbk}f-

Furthermore, in the first two cases the support o(uu®,VVT) is

bounded by L.

min?bk}
PROOF. By lemmas 3.3.4, 3.3.5 and 3.3.6, e’s vector is a linear

combination of the vectors in V', with all the coefficients ¢, either +2,
+1 or +1. Let the linear combination coefficients be (cy,ca, ..., ¢).

Let w = (01%,02%, . ,04\/—‘/%)? Then u = Vw. Therefore:
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In fact, if the support of uy is done by one of first two ways, then
the coefficients of the linear combination are all either 1 or j:%, and
we have

¢ ¢ £
T Ty < T _ 2 @ < 1- @ < ¢ = a4
o(uu”, VV?") <ww chb = Z b = Z min{b; } min{bk}g

k=1 F k=1 k=1
O
As in the analysis of the congestion-dilation lemma for M-matrices, we
interpret ¢ to be the dilation and ﬁ{bk} to be the congestion.

As we have mentioned, we can use this generalized congestion-
dilation lemma to provide another proof of Lemma 3.1.2: each edge
in M is supported by the equivalent edge in A with congestion 1 and
dilation 1.

3.4. Constructing MWB preconditioners

It turns out that finding a maximum-weight basis for a set of scaled
edge vectors is an instance of a well-studied problem. A set of m scaled
edge vectors u, = +/|a;| (ij) (or up = \/a;; )ij() with weights /|al
and the collection of linearly-independent subsets define a combinato-
rial structure called a matroid. There exists a generic greedy algorithm
for finding a so-called mazimal independent set in a matroid. In our
matroid, a maximal independent set is the maximum-weight basis that
we wish to construct.

The generic maximum-weight basis algorithm works by sorting the
elements of the matroid (the scaled edge vectors) by weight and trying
to add them to the basis, starting from the heaviest. The next vec-
tor to be considered is added to the independent set if it is linearly
independent of the vectors already in the set.

To apply the generic algorithm, we must provide a routine that tests
whether an edge vector is linearly dependent on the vectors already in
the set. Using a rank-revealing factorization, such as the singular-
value decomposition (SVD) is too expensive. The vectors are highly
structured, so we can test for linear independence more efficiently.

The algorithm that we use for testing independence relies on the
characterization of independent sets that Theorem 3.3.3 provides. We
maintain a data structure that allows us to quickly test whether we can
add a new edge vector to the basis. More specifically, we test whether
the new edge closes a positive cycle or a second negative cycle in the
underlying graph. If so, it is linearly dependent on the edges already
in the basis.

The data structure that we use is a forest of shallow rooted trees
that represent connected components in the underlying graph. We
augment this data structure, which is sometimes referred to as a union-
find data structure, with labels that allow us to quickly determine
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the sign of paths in the graph. The basic union-find data structure
was apparently first used by Mcllroy and Morris (see |1, page 169]);
The data structure and its complexity analysis are presented in several
textbooks, such as [1] and [8]. Tarjan proposed the augmentation
technique that we use [23].

The forest is represented by an array 7 of length n, where n is the
size of the graph. Each rooted tree in the forest represents a connected
component of the graph, although the topology of the trees has nothing
to do with the topology of the graph. The parent of vertex i is 7[i]. If
is the root of a tree, 7[i| = i. We also maintain an array r; if ¢ is a root
then r[i] is the height of the tree rooted at i; r is undefined otherwise.
The two arrays m and r are part of the standard implementation of
union-find data structure.

Algorithm 1 Finding the representative vertex of a connected com-
ponent (the root of the tree) with path compression. The algorithm is
an augmented version of the standard union-find procedure that also
maintains the sign of paths in the graph when the tree is compressed.
Indentation denotes block structure.
vertex AUGMENTEDFINDSET(vertex )
temporary vertex j
if (i # [i])
Jj < AUGMENTEDFINDSET(7[i])
sli] « sli] xor s[r[i]]
mli] —j
return (i

Algorithm 2 Unifies ¢’s and j’s trees, using an edge whose sign is /.
Returns the root of the united tree.
vertex AUGMENTEDUNION (vertex i,vertex j,boolean ¢)
temporary vertices p;,p; // representatives of i and j
pi — li]
pj < 7]
if (rps] > rlps] )
[p;] — pi
slpj] < sli] xor s[j] xor ¢
return p;

else
mlpi] — pj
slpi] < s[i] xor s[j] xor £
if (rpi] = r{p;])
rlp]l —rlpjl +1
return p;

We augment the union-find data structure with two additional bit
arrays, s and c¢. The value s[i] represents the sign of the path in the
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graph between i and 7[i] (0 for positive and 1 for negative); it is only
defined if the connected component is a tree. The value c[i] is defined
only for roots and specifies whether the connected component has a
cycle.

Our algorithm is presented in Algorithms 1, 2, 3 and 4. Algo-
rithm 4 is an instance of the generic greedy maximal-independent-set
algorithm, applied to our case. Algorithm 3 tests for independence; it
uses Algorithms 1 and 2 as subroutines.

Algorithm 3 Given two vertices ¢ and j and the weight w of the edge
connecting them, this algorithm adds (7, j) to the basis if and only if
the edge is independent of the current independent set.
ADDEDGEIFINDEPENDENT (vertex i, vertex j, real w)
temporary vertices p;, p;,unionroot
temporary boolean edgesign
edgesign«— (w > 0)
pi < AUGMENTEDFINDSET(%)
pj < AUGMENTEDFINDSET(j)
if (pi # pj)
// i and j are in different connected components
if ((clpi] = 0)or(c[p;] = 0))
// one of the connected components does not contain a

cycle
ADDEDGETOBASIS(1, j, w)
unionroot «— AUGMENTEDUNION (4, j,edgesign)
c[unionroot| « ¢[p;] or ¢[p,]
else

// i and j are in the same connected component

if ((edgesign # s|i] xor s[j]) and(c[p;]==0))
// the connected component does not contain a cycle, and
// adding (i, ) does not close a positive cycle
ADDEDGETOBASIS(1, j, w)
clpi] <1

Algorithm 4 This is the generic greedy algorithm to find the maximal-
independent set of a matroid.
GREEDYMAXIMUMWEIGHT()
SORT(edges by absolute value of weight)
foreach (e=(i,7) an edge of weight w)
if (EdgelsIndependent (i, j, w))
ADDEDGETOBASIS(e)

The correctness of the algorithm relies on the correctness of the
generic greedy algorithm, the correctness of the union-find data struc-
ture, on Theorem 3.3.3, and on the correct maintenance of the arrays



3.4. CONSTRUCTING MWB PRECONDITIONERS 43

s and c¢. The correct maintenance of ¢ is trivial. The correct main-
tenance of s is more challenging to prove. We start with a simple
technical lemma.

LEMMA 3.4.1. Ifi, 7, and k are vertices in a connected component
of G 4 that contains no cycles and

i, ] = 0 if the path in G 4 between © and j is positive
SHI= otherwise,

then sli, k] = s[i, j] xor s[j, k].

PROOF. Since the connected component is a tree, the paths from ¢
to 7 and from k to j must meet at some vertex x; from x to j the two
paths are identical (x and j may be the same vertex). The simple path
from i to k is in fact concatenation of the path from ¢ to x to the path
from x to k. Therefore,

sli, jlxors[y, k] = (s[i, z]xor sz, j]) xor(s[j, z| xor s|z, k])

= s[i, x| xor(s[z, j] xor s[j, z]) xor s|x, k]

8 8

[
= s[i, x| xor s[z, k]
= sli, k] .

|
w

0

The next three lemmas show that the algorithm does, indeed, maintain
s correctly.

LEMMA 3.4.2. AUGMENTEDFINDSET preserves the correctness of
s. That is, if the array s is correct before the call of AUGMENTEDFIND-
SET, then it is correct after the subroutine returns.

PROOF. AUGMENTEDFINDSET changes the values of 7w and ¢ along
the path from a vertex i to the root. We prove the correctness by
induction on the distance from the root. If 7 is the root, the algorithm
returns immediately, so the claim holds. Suppose the lemma is correct
for all the vertices between vertex ¢ and the root. By lemma 3.4.1,
we have that s[i,root] = s[i, 7[i]] xor s[n[i], root]. The parent of 7[i]
the recursive call is the root, and the parent of ¢ when the subroutine
returns is also the root, so correctness is maintained. O

LEMMA 3.4.3. If the arguments i and j to AUGMENTEDUNION are
immediate children of roots and if s is correct before the call, then s is
maintained correctly by AUGMENTEDUNION.

PROOF. The only change in the array 7 is 7[p;] = p; or 7[p;] = p;.
By lemma 3.4.1 s[p;, p;] = s[p;, | xor s[i, j] xor s[j, p;]. By the hypoth-
esis of the lemma, p;, = =[i| and p; = =[j|. Since s[p;,i] = s[i],
slj, p;] = slj] and si, j] = ¢, the lemma is correct. O

LEMMA 3.4.4. ADDEDGEIFINDEPENDENT is correct.
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PROOF. If 7 and j are in different connected components and both
contain cycles, the routine returns without adding (7, j) to the basis.
If they are in different components and at most one contains a cycle,
the routine adds (3, j).

If  and j are in different components, then s[i] xor s[j] is the sign
of the path between them, since both are children of the same root. In
that case, the routine adds the edge if and only if the sign of the edge
is different from the sign of the path (i.e., the edge closes a negative
cycle) and there is no cycle in the component.

The correct maintenance of s follows from the fact that we call
AUGMENTEDUNION only when the arguments are children of roots. [

The complexity analysis of the algorithm is simple. It shows that the
running time of the algorithm is dominated by sorting the edges. The
total cost of the calls to ADDEDGEIFINDEPENDENT is essentially lin-
ear in m. The proof is essentially identical to Tarjan’s analysis of
augmented union-find data structures in [23].

THEOREM 3.4.5. GREEDYMAXIMUMWEIGHT runs in O(mlgm+
ma(m,n)) where « is the inverse of Ackermann’s function.

PROOF. Sorting the edges takes O(mlgm) time.

We make m calls to ADDEDGEIFINDEPENDENT. Each call makes
two calls to AUGMENTEDFINDSET and at most one to AUGMENT-
EDUNION. The other costs in ADDEDGEIFINDEPENDENT are O(1).
Since AUGMENTEDFINDSET and AUGMENTEDUNION are O(1) mod-
ifications to the corresponding standard union-find routines, the total
cost of all the calls is O(ma(m,n)). O
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