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Abstract. Shape-from-Shading (SfS) is a fundamental problem in Computer Vision. Its goal is

to solve the image irradiance equation. One prominent solution is the Fast Marching Method
of Kimmel & Sethian. When the light source is oblique, Kimmel & Sethian proposed to rotate
the image to the light source coordinate system and then solve an ‘almost’ Eikonal equation.
This paper presents a new iterative variant of the Fast Marching Method which copes better
with images taken under oblique light sources. Robustness is achieved by avoiding the change
of coordinate system. The advantages of the proposed method are demonstrated on synthetic
and real images.

1. Introduction

Shape-from-Shading (SfS) is one of the fundamental problems in Computer
Vision. First introduced by Horn in the 1970s [9], its goal is to solve the
image irradiance equation, which relates the reflectance map to image inten-
sity. An efficient way to solve this equation numerically is the celebrated Fast
Marching Method of Sethian [15], [32].

Various methodologies have been proposed since the introduction of the
field of Shape-from-Shading by Horn [8], [9], [10] in the 1970s. Horn’s
book [11] reviews the early approaches which include characteristic strips
and Calculus of Variations. Zhang et al. [38] categorizes Shape-from-Shading
techniques by their modus operandi. Namely, minimization approaches: [39],
[21]; propagation approach: [1]; local approach: [20]; linear approaches: [26],
[36]. A newer minimization approach is that of Robles-Kelly & Hancock [27],
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which uses the Mumford-Shah functional to derive diffusion kernels. Other
researchers put topological properties of the surface to use (e.g., Kimmel &
Bruckstein [14]) or employ deformable models (e.g., Samaras & Metexas [29]).
These are only examples, as the amount of work in the field of Shape-from-
Shading is too large to describe herein.

Of particular relevance to this paper are works which utilize Level-Set and
Fast Marching methodologies (see [32] for a deep insight). These approaches
refer to the image irradiance equation as describing the motion of a front (e.g.,
[25], [16]). The Fast Marching Method re-orders the computation, to make it
a one-pass solution of the Eikonal equation, based on the observation that
the upwind difference structure of the numerical approximation allows us to
propagate information “one way”, that is from smaller values to larger values
([30], [31]). Sethian [30] proves the Fast Marching Method converges to the
viscosity solution (see: [5], [22] for the definition and properties of viscosity
solutions).

Kimmel & Sethian [15] implemented the Fast Marching Method as an
optimal algorithm for surface reconstruction. They referred to the image ir-
radiance equation as an Eikonal equation for vertical light sources. Solution
of the equation for oblique light sources is obtained by rotation of the image
coordinate system to that of the light source (as inspired by [20]).

While the Fast Marching Method is a highly efficient numerical solution
to the image irradiance equation for vertical light sources, it is suboptimal for
obligue light sources. For non-vertical light sources, the rotation of coordinate
system requires an a-priori knowledge of the depth of the surface. As this
knowledge is exactly the goal of the algorithm, one must employ an approx-
imation, which reduces the robustness of the algorithm. This paper presents
two new ways to employ the Fast Marching Method for oblique light sources
as well. The first algorithm iteratively repeats the rotation with improved
depth maps, while the second algorithm iteratively applies the complete Fast
Marching Method for the Eikonal equation in the case of an oblique light
source and avoids any rotation. Comparison with the original algorithm [15]
would demonstrate that the second algorithm overcomes the limitations of the
original.

The paper is organized as follows. First, we present the notation and basic
assumptions (Sect. 2), and review the Fast Marching Method (Sect. 3). We
then propose the two iterative methods for improved accuracy in cases where
the light source is oblique (Sects. 4, 5). Section 6 compares the original
method with the two new ones on both synthetic and real-life images. Finally,
Sect. 7 draws the conclusions.
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2. Notation and Assumptions

Let us first describe the notation and assumptions that hold throughout this
paper. Photographed surfaces are assumed representable by functions of real-
world coordinatesz(z, y) denotes the depth function in a real-world Carte-
sian coordinate system whose origin is at camera plane. A real-world coor-
dinate (z,y, z(x,y)) is projected orthographically onto image poiat y).

The intensity and surface normal at this image point are dendtedy) and

1\7(35, y), respectively. The intensity functiaf(z, y) is assumed to be a pos-
itive, Lipschitz continuous function and lower than 1 (in order to ensure the
existence of the strict viscosity subsolution) (see [28] for details). The scene
object is Lambertian, and is illuminated by a point light source at infinity
whose direction isL = (ps, gs, —1).

3. The Fast Marching Method

This section reviews the Fast Marching method of Kimmel and Sethian [15]
for vertical and oblique light sources.

3.1. MOTIVATION

The Shape-from-Shading problem for a Lambertian surface under directional
light (assuming orthographic projection) is not well posed and may have in-
finitely many solutions (see, for example: [2], [3], [6], [4], [23], [7], [19],
[18]). Various methodologies were suggested in the literature to deal with the
ill-posedness (one such example is Photometric Stereo: [12], [37], [24], [17]).
However, one may enforce uniqueness by adding the Dirichlet boundary con-
ditions. Indeed, in many applications it is unrealistic to assume that one has
these data, which are the goal of the algorithm. But as we would see, in the
case of Fast Marching, Dirichlet boundary conditions are required merely at
critical image points, not on image boundaries. At critical points it is possible
to obtain the true depth by global topology solvers (e.g., [14]; see [15] for
more details). We are therefore interested in Fast Marching techniques.

The next subsection would present a consistent and monotone (“upwind”)
numerical scheme which lies at the heart of the Fast Marching Method, and
is the key to obtaining a unique viscosity solution. For the Eikonal equation,
Rouy & Tourin [28] showed that an iterative algorithm based on this scheme
with Dirichlet boundary conditions on image boundaries and at all critical
points converges towards the viscosity solution with the same boundary con-
ditions. While the algorithm of Rouy & Tourin [28] requires the Dirichlet
boundary conditions on image boundaries and at all critical points, the Fast
Marching Method needs the Dirichlet conditions only at critical points. Exis-
tence of the viscosity solution was proven in [22] and uniqueness, in [28]
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and [13]. Sethian [30] proved that the Fast Marching Method produces a
solution that everywhere satisfies the discrete version of the Eikonal equation.
We next describe the algorithm.

3.2. FAST MARCHING FORVERTICAL LIGHT SOURCES

The algorithm of Kimmel and Sethian [15] stems from the orthographic im-
age irradiance equation:

R 1
I(r,y) = L-N(x,y) = %%+%%+
HM\z§+%+1

(1)

For a vertical light source, that 6 = (0,0, —1), the equation becomes an
Eikonal equation which can be written as:

P’ +q¢* = F? )

wherep & 2, ¢ & zyandE = \/(I(z,y)) "2 — 1.
Following [15], we use the numerical approximation (originally intro-
duced in [28] as a maodification of the scheme of [25]):

~ — +x

pij ~ max{D; "z, —D;*z, 0}
~ -y +y

qij = maX{Dij zZ, _DZ] Z,O}

def zij—2i—1, def

whereDZ.;‘”z is the standard backward derivative aﬁgxz

ZHLi—%0 | the standard forward derivative in thedirection ¢;; © (iAz, jAy)).
D;;¥z andD;"Y > are defined in a similar manner for thedirection.

Substituting the numerical approximation into Eq. 2, we get the discrete
equation:

—x +x 2 -y +y 2 [2

(max{Dij z, —Dij z,O}) + (maX{Dij Z, —Dij Z,O}) = Fij 3)
where F; % F(iAz, jAy). The solution of this equation at poifit, ),
assuming depth is known at neighboring pixels, is:

min{z1, 22} + Fjj, if | 20— 21 |> Fy
Zij = (4)

%(21 + 20 & \/ZFZQJ — (Z1 —22)2), if |22—21 |< Fij

def . def .
wherez; = mlH{Zi,Lj,ZiJrl’j} andzy = mln{zi7j,1,zi,j+1}.
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a. b.

Figure 1. Demonstration of the invariance properties of the orthographic image irradiance
equation (a) and the equation used after rotation of the image to the light source coordinates

(b).

3.3. FAST MARCHING IN LIGHT SOURCE COORDINATES

For oblique light sources (i.el, # (0,0,—1)), Kimmel & Sethian [15]
adopted the idea of Lee & Rosenfeld [20] to rotate the brightness image to
light source coordinates. This yields an ‘almost’ Eikonal equation (as [15]
called it), which is solved in a manner similar to the vertical case, but in the
new coordinate system.

Rotation to the light source coordinate system is, however, nontrivial. The
image irradiance equation (Eg. 1) is invariant to depth translation. That is,
z(z,y) andz(x,y) + ¢ (for a constant) generate identical irradiance. This
occurs at coordinates:, y) which are the camera coordinates (See Fig. 3.3a).
Following the rotation, one solves the vertical light source case of the image
irradiance equation (Eg. 2), which is also invariant to depth translation. How-
ever, it is now solved in a different coordinate system, so the direction of
invariance is the direction of the newaxis (i.e., the light source direction).
Figure 3.3b demonstrates the invariance following the rotation.

Because of its dependence on surface depth, the rotation of the two sur-
faces:z(x,y) andz(x,y) + cto light source coordinates differ in the general
case. In particular, the neye,y) coordinates, which we denotér’, ),
may be different. But these coordinates are also the new image coordinates.
Thus, the image pixels used for the computation are differnt:, y') vs.

I(z' + cly,y + cly), respectively, wher§ = p,/||L| andly = ¢,/||L]| (the

proof is omitted for brevity). Thus, a depth translation, which should preserve
the irradiance under the orthographic model, requires a translation of the
(z,y) coordinates as well, due to the rotation to light source coordinates. For
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works on the perspective model, see: [33], [34], [35]. This would be further
demonstrated by experimental results (Sect. 6.2).

As a result of the dependence of image coordinates on surface depth, the
new image coordinates may lie outside image boundaries. No doubt, this
results in loss of information. In our implementation, for pixels outside image
boundaries, we duplicated the intensity of the nearest pixel on the boundary.

Another source of error in the calculation of the rotation is the use of an
approximation for the depth of the surface. An approximation is necessary
because the true depth is yet unknown when the rotation to light source coor-
dinates takes place. Kimmel & Sethian [15] suggested to approximate depth
as the minimal depth of neighboring pixels.

The use of the approximated depth for the rotation to light source coor-
dinates results in an inaccurate rotation. Following that, the algorithm solves
the vertical light source problem in light source coordinates, and rotates the
resultant surface back to the original coordinates. The “inverse” rotation,
however, is not exactly inverse to the first rotation, as it uses a more accurate
depth map. An inaccurate rotation affects the shape dfithledomain of the
reconstructed surface. Consequently, a rectangular image is not necessarily
reconstructed in a rectangulaty] domain, even though the projection model
is orthographic.

4. A Rotation Iterative Solution

One way to improve the results of the Fast Marching Method for oblique light
sources is to try and reduce the approximation error of the rotation to the light
source coordinates.

The suggested method is iterative. It uses the depth recovered by the Fast
Marching Method to recalculate the rotation. With this new rotation, rotate
the image once again to the light source coordinates, and solve the vertical
problem in the new coordinate system. From the depth so obtained, recalcu-
late the rotation, solve the vertical problem and so forth. We would call this
method:lterative Rotation

5. The Equation lterative Solution

A different modus operandi to overcome the aforementioned flaws of the Fast
Marching Method is to avoid any rotation to light source coordinates at all.
Instead, we solve a series of Eikonal equations which are approximations to
the image irradiance equation. Each equation should refine the approximation
of its predecessor.
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To formulate the approximate equations, we transform the image irradi-
ance equation for an oblique light source (Eg. 1) into the form:

P+ ¢ = F*(p,q) (5)

F(p,q) < \l 1- (pspf 4o T 1>2
L[ I(z,y)
A significant difference between the vertical and oblique cases is the depen-
dence off’ onp andg.

An important observation described in [15] is that when updating the depth
values according to the discrete equation (Eqg. 3), information always flows
from small to large values. Based on this, the Fast Marching Method recon-
structs depth in an “upwind” fashion. It first sets allvalues to the correct
height values at local minima and to infinity elsewhere. Then, every step
extends the reconstruction to higher depths. Reconstruction is thus achieved
in one pass.

Nevertheless, a single pass may not be enough to solve the aforementioned
formulation of the oblique problem (Eg. 5), because the approximate solution
(the right-hand side of Eq. 4) depends ®Bnwhich depends on bothandg.
Hence, we suggest another iterative method. At each iterdti@calculated
using the depth recovered at the preceding iteration:

where:

Pai1+dopy = F2(pn,an) (6)

wherep,, andg,, are the values agf andq at thent® iteration. The algorithm
is thus:

1. StepO: Initialize (po, q0) by the Fast Marching Method of Kimmel &
Sethian [15].

2. Stepn:

a) Based on the approximati¢n,, ¢,,), calculate the right-hand side of
Eg. 6, namely, evaluat&?(p,,, ¢,).

b) As we computed™?(p,, ¢,), EQ. 6 is now Eikonal. Use Eq. 4 to
obtain a solution(p,,+1, gn+1)-

c¢) Following each iteration we normalize the depth functién, y) (di-
vide by the mean value) to compensate for the lack of knowledge
of grid size(Ax, Ay).

3. Letn :=n + 1, and repeat Step.
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We call this methodtterative Equation

This iterative process results in a series of Eikonal equations, each solved
by the Fast Marching Method. Sethian [30] showed that the Fast Marching
Method produces a solution that everywhere satisfies the discrete version of
the Eikonal equation. Therefore, the Fast Marching solution of each of the
equations in the series satisfies the discrete version of that equation. As a re-
sult, when the series of solutions to the Eikonal equations converges, the limit
is the correct solution of the discrete version of the original equation (i.e., the
solution of the image irradiance equation with an obligue light source).

Empirically, in all experiments the series of solutions converged. In fact,
very few iterations were necessary to obtain this convergence (i.e., to get close
enough to the limit).

6. Experimental Results

6.1. THE EXPERIMENTS

To evaluate the contribution of the proposed algorithms, we compared them
with the original formulation of the Fast Marching Method [15]. The eval-
uation involved both synthetic images and real-life images. The synthetic
images were produced from a given depth map using the image irradiance
equation (Eg. 1). The derivatives in the equation were calculated numerically.

The initialization of the algorithms is based on points of local minima.
For synthetic images, these were extracted automatically from the true depth
map. For real images, they were located visually in each photograph by a
human viewer, and their depths were arbitrarily set to the same constant.
To demonstrate the aforementioned undesired features of the Fast Marching
Method [15] (Sect. 3.3), we ran the algorithms twice for each surface. In
the second run, the depth of the original initialization (described above) was
translated by a constant. Theoretically, this should merely translate the whole
reconstruction along the-axis by the same constant.

In our comparison we checked five iterations of the iterative Fast Marching
Methods for each example. For the Iterative Equation method, we found out
that all iterations (maybe except for the first one) yielded visually-identical
images, which implies the suggested algorithm converges very fast.

To quantitatively evaluate the performance of the algorithms on synthetic
data, we adopted three criteria from Zhang et al. [38]. These are: mean depth
error, standard deviation of depth error, and mean gradient error. For com-
pleteness, we also supply the standard deviation of the gradient error, even
though it is considered nonphysical.
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Table I. Error rates for the algorithms efiz, y) = 100 + cos ( 24 (y — 2)2).

Algorithm: No.of Mean Depth Std. Dev.of Mean Grad. Std. Dev.|of
Iters.:  Error: Depth Error:  Error: Grad. Error:
Fast Marching: 1 0.51687 0.29194 2.20442 1.01374
Iterative Rotation: 1 0.51636 0.29127 2.16523 1.01180
Iterative Rotation: 2 0.51692 0.29179 2.20046 1.01357
Iterative Rotation: 3 0.51697 0.29185 2.20573 1.01359
Iterative Rotation: 4 0.51699 0.29189 2.20869 1.01362
Iterative Rotation: 5 0.51697 0.29186 2.20626 1.01355
Fast Marching: 1 0.51687 0.29194 2.20442 1.01374
Iterative Equation: 1 0.37269 0.28148 1.05731 0.88570
Iterative Equation: 2 0.37213 0.28217 1.05174 0.88535
Iterative Equation: 3 0.37189 0.28203 1.05107 0.88494
Iterative Equation: 4 0.37188 0.28202 1.05104 0.88493
Iterative Equation: 5 0.37188 0.28202 1.05104 0.88493

6.2. COMPARATIVE EVALUATION

Figure 2 compares the original Fast Marching Method with the two iterative
methods (lterative Rotation and Iterative Equation) on the following depth
map:

2(x,y) 1100 + cos ( 22+ (y— 2)2)

where:z,y € [—3.0788,3.0788] (image size50 x 50 pixels). The Iterative
Rotation does not improve upon the original Fast Marching; their reconstruc-
tions are very similar. The original Fast Marching Method reconstructed only
a part of the cosine function (the upper right part of the surface in Fig. 2C,
iteration: 0), due to the translatédy| coordinates in the calculation. This part
corresponds to the lower-left part of the original surface (Fig. 2B). The rest
of the reconstruction is a result of a calculation using pixels outside image
boundaries (as described in Sect. 3.3). The lterative Equation, on the other
hand, reconstructed the right-hand side of the cosine correctly, with more
noise on the left hand side (part of the elevated domain of the cosine appears
almost flat there). Table | presents the error rates according to the afore-
mentioned criteria. As expected, all error rates of the Iterative Rotation and
Fast Marching methods are very close to one another. The Iterative Equation
algorithm obtained lowest error rates according to all criteria.

Figure 3 shows the famous example of the Vasgy(c [—63.5,63.5];
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iter# | Iterative Rotation: | Iterative Equation:
0.
1.
2.
A. Lambertian image
‘ 3.
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B. Original surface. '
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C. Reconstruction comparison.

Figure 2. Three variants of the Fast Marching Method for
z(z,y) = 100+ cos (\ /x? + (y — 2)2). Each row corresponds to a different iteration (Row

0 is the original Fast Marching). Lighting is identical for all reconstructions, and is equal to
that of (A).
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iter# | Iterative Rotation: | Iterative Equation:
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C. Reconstruction comparison.

Figure 3. Three variants of the Fast Marching Method for the Vase example. Each row corre-
sponds to a different iteration (Row 0 is the original Fast Marching). Lighting is identical for
all reconstructions, and is equal to that of (A).
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Table Il. Error rates for the algorithms on the Vase example.

Algorithm: No.of Mean Depth Std. Dev.of Mean Grad. Std. Dev.|of
Iters.:  Error: Depth Error:  Error: Grad. Error:
Fast Marching: 1 7.95881 5.87365 13.99250 26.45452
Iterative Rotation: 1 8.04165 5.84769 13.99933 26.28860
Iterative Rotation: 2 8.07961 5.85130 13.99862 26.29129
Iterative Rotation: 3 8.04709 5.85250 13.99551 26.36240
Iterative Rotation: 4 8.07280 5.85283 13.99254 26.34710
Iterative Rotation: 5 8.05496 5.85172 13.98958 26.34410
Fast Marching: 1 7.95881 5.87365 13.99250 26.45452
Iterative Equation: 1 4.12683 3.36455 5.70288 14.27210
Iterative Equation: 2 4.47005 3.49335 5.48740 14.09266
Iterative Equation: 3 4.52750 3.51408 5.45683 14.09894
Iterative Equation: 4 4.54517 3.51939 5.44802 14.09603
Iterative Equation: 5 4.55495 3.51974 5.44278 14.08841

image size128 x 128; background depth: 100). The original Fast Marching
yielded a sharp bulge at the foot of the vase. The bulge appears in a domain
whose reconstruction was computed from pixels outside image boundaries.
Iterative Rotation recovers similar surfaces. The Iterative Equation method,
on the other hand, reconstructed a much smoother vase. Its stronger resem-
blance to the original is not only visible but can also be quantified by all
error measures (Table II). The Iterative Rotation and Fast Marching methods
equate; the mean depth error of Iterative Rotation is even a little higher than
that of Fast Marching.

Figure 4 introduces a real-world example taken by endoscopy from the
gastric angulus (cropped image sizéi4 x 64). The algorithm of Kimmel
and Sethian reconstructs two of the gastric folds. However, the reconstructed
wall of the gastric angulus seems to consist of perpendicular planes (instead
of small folds on a main low-convexity surface). On the right-hand side of
the reconstruction, the surface appears “higher” (i.e., laygateg) than on
the left-hand side. Thus, they] domain of the reconstructed surface is not
rectangular. As explained in Sect. 3.3, this is due to inaccurate rotation to the
light source coordinate system. Iterative Rotation seems to have improved

! Original is from www.gastrolab.net, courtesy of The Wasa Workgroup on Intestinal
Disorders, GASTROLAB, Vasa, Finland.

2 Recall, that thézy] domain is perpendicular to the optical axis, so the coordinate system
of the reconstructed surfaces s+ to the right;y — up; z — away from the viewer.
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iter# | Iterative Rotation: | Iterative Equation:

e B B e g
E 20 20957

B. Cropped image

a0 20 o

C. Reconstruction comparison.

Figure 4. Three variants of the Fast Marching Method for an endoscopic image of the Gastric
Angulus. Each row corresponds to a different iteration (Row 0 is the original Fast Marching).
Lighting is identical for all reconstructions, and is approximately that of (B). Only (B) was
used for the reconstruction.
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Iteration #19. Iteration #20.
Figure 5. Reconstruction of the Gastric Angulus example by the Iterative Rotation method.

The iterations following the 9t and 20t are repetitions of these two (there is no visual
difference). The running conditions described in Fig. 4 are valid here as well.

the reconstructed shape. After 19 iterations, it begins to flip between two
reconstructed surfaces (Fig. 5). The three gastric folds are reconstructed in
both states, with better results in the odd states. In the Iterative Rotation
reconstruction, some cavities are present near the central fold. The upper-
right part of the surface is also not faithfully recovered. The contours of
the recovered folds are not as smooth as in the original image. The lterative
Equation method seems to have reconstructed the three gastric folds in quite
an accurate manner. Its accuracy appears to be higher than that of the Iterative
Rotation method and in less iterations: only 1 iteration was necessary for the
Iterative Equation to converge.

6.3. COMPARISON OFROBUSTNESS INDEPTH TRANSLATION

In this subsection, we would like to evaluate the robustness of the algorithms
in depth translations. We therefore juxtapose the reconstructions of surfaces
z(x,y) andz(x,y) + ¢ (c is constant) by the three methods. To obtain re-
constructions ot(z, y) + ¢, we increased the initial depth values (at minima
points) by a constant with respect to the initial values employed to recon-
struct z(z, y). Theoretically, the reconstructions should be identical up to
depth translation, due to the invariance of the orthographic image irradiance
equation.

In the following examples, only one iteration of the iterative methods is
displayed, for the sake of brevity.

Figure 6 shows the reconstructions of the Cosine example of Fig. 2 by
the three methods. The reconstructions in the middle column are identical to
those of Fig. 2. The initializations used for creating them were taken from
the original depth map. The rightmost column was created with the translated
initializations, so reconstructions should be translated. Nevertheless, only the
Iterative Equation method reconstructed a surface of the same shape for the
two initializations. The Fast Marching and Iterative Rotation methods were
highly affected by the depth translation. As Fig. 7 demonstrates, the dif-
ference between the surfaces reconstructed by Fast Marching with different
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Algorithm: Reconstruction from Reconstruction from
Original Initialization: Translated Initialization:

Fast
Marching:

Iterative
Rotation:
(Iteration #5)

Iterative
Equation:
(Iteration #5)

Figure 6. Comparison of the three algorithms on the Cosine example. Each algorithm was run
with two initializations which were identical up to a constant translation along-ttheection

(c = —90). Only the Iterative Equation algorithm remained invariant to the translation, while
the two others showed a significant change between initializations. Thus, the Iterative Equation
algorithm better maintains the invariance to depth translations.

— - \ 7 = v\
c=0 c :'24.75 c=49.5 c :‘ 74.25 c=99

Figure 7. Reconstruction of the Cosine example by the Fast Marching method with different
translations of the depth function. Depth translation resultsghtranslation in the calculation

of rotation to light source coordinates. Below each reconstruction is its translajioviti
respect to the original depth function.

depth translations is due to translation in thandy coordinates in the cal-
culation of the rotation to light source coordinates (as explained in Sect. 3.3).
This translation requires some of the pixels to be taken from outside image
boundaries, so in practice their values are duplicated from boundary pixels.
Other pixels are simply shifted in place when the depth map is translated.
The specific translation used (nameaty= —90) seems to have improved
the reconstruction drastically. Indeed, it reduced the amount of pixels outside
image boundaries prominently.

Figure 8 displays the reconstructed Vase (see Fig. 3) for the original and
translated initializations. For the Fast Marching method the translation was so
large that the vast majority of pixels were taken from outside image bound-
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Algorithm: Reconstruction from Reconstruction from

Original Initialization: Translated Initialization:

Fast '
Marching: ol ; ,

L r— . -
lterative ) I ,
Rotation: - :
(Iteration #5) - / -

T ] - e

Iterative . ‘
Equation: ‘ . ‘
(Iteration #5) : / /

W

Figure 8. Comparison of the three algorithms on the Vase example. The initialization was
translated by: = +1000 with respect to the original one. The Fast Marching Method and the
Iterative Rotation methods yielded similar results. Both changed substantially with the change
of initialization. In contrast, the Iterative Equation method maintained the invariance to depth
translation.

aries. Thus, the reconstructed surface is almost planar, showing no sign of the
original structure of the vase. Again, the change in reconstruction is promi-
nent for the Fast Marching and Iterative Rotation methods, but not for Itera-
tive Equation.

Figure 9 presents the original and translated reconstructions for the Gastric
Angulus example of Fig. 4. The depth-translated initialization shifts the re-
constructions of the Fast Marching and Iterative Rotation methods in:the
plane. Thus, some of the pixels are evaluated outside image boundaries. Pay
attention that in this real-life example the true depth at minima points was a-
priori unknown, and the algorithm was initialized based on a human guess. A
different guess could result in a significant change to the reconstruction. The
Iterative Equation maintained its response in spite of the depth translation.

From the figures, one can see that the Fast Marching and Iterative Rotation
methods were highly affected by the translation in contrast with the theoretic
invariance of the underlying equation. This demonstrates the drawbacks of ro-
tation to light source coordinates discussed in detail in Sect. 3.3. As opposed
to these two algorithms, the variation in reconstruction by the Iterative Equa-
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(Iteration #19)
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Equation: o
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Figure 9. Comparison of the three algorithms on the Gastric Angulus example with two ini-
tializations. The difference between initializations was +90. Only the Iterative Equation
method exhibited invariance to depth translation, while the two others showed a pronounced
change between initializations.

tion method was very small. Quantification of the results in the form of depth
and gradient errors appears in Tables Il and IV (for the synthetic examples
only). Table Ill (the Cosine example) confirms the visual impression that
reconstructions by the Fast Marching and Iterative Rotation methods were
improved by the specific translation selected for this example. Indeed, due
to the translation the error rates dropped significantly with respect to those
of Table I. However, they are still slightly higher than those of the Iterative
Equation method (except for the standard deviation of the gradient error,
which is considered nonphysical). In Table IV (the Vase example), all error
rates of the Fast Marching and Iterative Rotation methods altered with respect
to the corresponding values in Table Il. Their change is not as strong as for the
Cosine example, but is still higher than that of the Iterative Equation method.
In both Tables Il and IV variations in the error rates of Iterative Equation are
only minor. Pay attention, that identical error rates do not imply identical re-
constructions. Nevertheless, a significant change to these measures certainly
indicates a notable change in surface shape.

We see, that in all examples, the Iterative Equation method appears to
outrank the methods which rotate the image to the light source coordinate
system: Fast Marching and Iterative Rotation.
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Table Ill. Comparison of algorithms of(z,y) = 100 + cos ( 2+ (y— 2)2), with ini-

tialization translated by-90. Pay attention to the sharp change in all measures of the Fast
Marching and lterative Rotation methods with respect to Table I.

Algorithm: No.of Mean Depth Std. Dev.of Mean Grad. Std. Dev.|of
Iters.:  Error: Depth Error:  Error: Grad. Error:
Fast Marching: 1 0.38683 0.28843 1.43113 0.80%03
Iterative Rotation: 1 0.38089 0.27686 1.40019 0.75335
Iterative Rotation: 2 0.37521 0.28065 1.37679 0.77419
Iterative Rotation: 3 0.35533 0.26359 1.28275 0.72974
Iterative Rotation: 4 0.35734 0.26579 1.29597 0.74782
Iterative Rotation: 5 0.35535 0.26404 1.28020 0.73735
Fast Marching: 1 0.38683 0.28843 1.43113 0.80%03
Iterative Equation: 1 0.36179 0.27772 1.02285 0.86817
Iterative Equation: 2 0.35912 0.27893 1.00283 0.85665
Iterative Equation: 3 0.35695 0.27596 1.00111 0.85411
Iterative Equation: 4 0.35850 0.27733 1.00394 0.85671
Iterative Equation: 5 0.35869 0.27748 1.00448 0.85694

When comparing the complexity of the three algorithms, no doubt the
original one is the fastest, by containment. However, as the examples show,
the speed in this case is at the expense of accuracy. The lterative Equation
method converges very fast and no more than 2 iterations were ever required
to obtain it, so the speed difference turns out to be of secondary importance.

7. Conclusions

This research proposes an efficient and robust solution to the problem of
Shape-from-Shading which handles both vertical and oblique light sources
under the orthographic projection model. The suggested solution is a variant
of the Fast Marching Method of Kimmel and Sethian [15]. It employs the Fast
Marching Method iteratively for oblique light sources. Each iteration solves
an approximation to the image irradiance equation. The resultant solution
serves for successive refinement of the approximating equation. We called
this algorithm: the Iterative Equation method. When this refinement process
converges, convergence is to the correct solution of the original equation.
We compared reconstruction by the original Fast Marching Method, the
Iterative Rotation method (which successively refines the rotation to light
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Table IV. Comparison of algorithms on the Vase example with translated initialization
(4+1000). Note the significant change in mean gradient error of the original Fast Marching
Method with respect to Table II.

Algorithm: No.of Mean Depth Std. Dev.of Mean Grad. Std. Dev.|of
Iters.:  Error: Depth Error:  Error: Grad. Error:
Fast Marching: 1 9.36239 5.74319 14.35475 18.95690
Iterative Rotation: 1 9.36239 5.74319 14.35475 18.95690
Iterative Rotation: 2 9.36239 5.74319 14.35475 18.95690
Iterative Rotation: 3 9.36239 5.74319 14.35475 18.95690
Iterative Rotation: 4 9.36239 5.74319 14.35475 18.95690
Iterative Rotation: 5 9.36239 5.74319 14.35475 18.95690
Fast Marching: 1 9.36239 5.74319 14.35475 18.95690
Iterative Equation: 1 4.60417 3.56963 5.45874 14.25520
Iterative Equation: 2 4.60904 3.57800 5.44469 14.26232
Iterative Equation: 3 4.60800 3.57882 5.44469 14.26547
Iterative Equation: 4 4.60788 3.57916 5.44462 14.26633
Iterative Equation: 5 4.60779 3.57945 5.44472 14.26703

source coordinates) and the Iterative Equation method on both synthetic and
real-life examples (from endoscopy). We also demonstrated why rotation of
the image to light source coordinates, as required by the Fast Marching and
Iterative Rotation methods, is unstable. The Iterative Equation method outper-
formed the two other methods, and remained invariant to depth translations
(due to its convergence to the correct solution).

In terms of runtime, indeed the original Fast Marching Method is faster
than the suggested ones. However, convergence of the Iterative Equation method
is very fast; in all examples no more than 2 iterations were ever necessatry.
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