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1 Introduction

Edge detection was, so far, the core of most state of the art techniques for attentional
mechanisms as well as face detection1,2 . This excludes some recent works which
utilize neural networks3,4 , color histograms5,6 , or shape statistics7,8 for face
detection. Though one cannot disregard their advantages, edge maps sustain severe
flaws such as: sensitivity to changes in illumination, strong effect of surrounding
objects, and inability to delineate objects in a cluttered scene. We overcome these
problems of edge-based approaches by a novel attentional operator which detects
smooth three dimensional convex or concave objects in the image. The operator is
robust to face orientation, scale, and illumination, and is capable of detecting the
subject in a strongly textured background. It is employed for face detection, namely
to detect the eyes and hair, from which the scale of the face can be inferred. The
operator answers the above problems as a whole, demands a relatively short running
time, and its robustness leads to reliable results.

2 Y-Arg: Attentional Operator for Detection of

Convex Regions

We next define our attentional mechanism. We refer to faces as three dimensional
objects with convex and concave regions, and take advantage of this structure.

2.1 Defining the Argument of Gradient

Let us estimate the gradient map of image I(x, y) by:
∇I(x, y) ≈ ([Dσ(x) Gσ(y)] ∗ I(x, y), [Gσ(x) Dσ(y)] ∗ I(x, y)), where Gσ(t) is the one
dimensional Gaussian with zero mean and standard deviation σ, and Dσ(t) is the
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Figure 1: (a) The spheric gray-levels: I(x, y) = 10x2 +10y2. (b) The argument of gradient

of (a). The discontinuity ray is at 180◦ from the positive x-axis. (c) derivation of (b) in

90◦. (d) Rotation of (b), so that the discontinuity ray is at 45◦ from the positive x-axis. (e)

Derivation of (d) in 315◦. (f) Response of D-Arg, the isotropic operator.

derivative of that Gaussian. We turn the Cartesian representation of the intensity
gradient into a polar representation. The argument (also denoted “phase”, and
usually marked by θ(x, y)), is defined by:

θ(x, y) = arg(∇I(x, y)) = arctan
(

∂
∂y

I(x, y) ,
∂
∂x

I(x, y)
)

where the two dimensional arc tangent is defined by:
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and the one dimensional arctan(t) denotes the inverse function of tan(t) so that:
arctan(t) : [−∞,∞] 7→

[

−π
2
, π

2

]

. While the term “phase” is widely used in the
literature9,10 , we use it in a completely different manner: the term “phase” in this
article refers to the argument of the intensity gradient.
The attentional mechanism is simply the derivative of the argument map with respect
to the y-direction: ∂

∂y
θ(x, y) ≈ [Gσ(x) Dσ(y)] ∗ θ(x, y). We denote ∂

∂y
θ(x, y) as Y-Arg.

2.2 Mathematical Formulation of Y-Arg Reaction to

Paraboloids

The projection of concave and convex objects can be estimated by paraboloids, since
paraboloids are arbitrarily curved surfaces11 . Our mathematical formulation refers to
a general paraboloid of the form: f(x, y) = a(x − ε)2 + b(y − η)2, where a > 0 , b > 0
are constants, and (ε, η) is the center of the paraboloid. The first order derivatives of
the paraboloid are: ∂

∂x
f(x, y) = 2a(x − ε) and ∂

∂y
f(x, y) = 2b(y − η). The gradient

argument is therefore: θ(x, y) = arctan(b(y − η), a(x − ε)). Deriving it with respect to

y yields: ∂
∂y

θ(x, y) = ab(x−ε)
a2(x−ε)2+b2(y−η)2

. However, this derivative exists in the whole

plane except for the ray: {(x, y) | y = η and x ≤ ε}. At this ray, θ(x, y) has a first
order discontinuity (in the y-direction), so its derivative there tends to infinity. The
fact that for a paraboloid, ∂

∂y
θ(x, y) → ∞ at the negative ray of the x-axis, while

continuous at the rest of the plane can be clearly seen in Fig. 2.2(c) (we define our
coordinate system at the horizontal and vertical axes of the sphere).

2.3 D-Arg: The Isotropic Variant

We also define an isotropic variant of Y-Arg, whose reaction is to all axes of the
paraboloid, rather than merely the negative part of the x-axis. We do so by rotating
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the gradient argument by:

θα(x, y) =

{

θ(x, y) + (π − α), if θ(x, y) + (π − α) ≤ π

θ(x, y) + (π − α) − 2π, if θ(x, y) + (π − α) > π

so the ray of discontinuity of Y-Arg is transformed to a ray from the origin forming
an angle of α radians with the positive part of the x-axis. We then derive the rotated
argument of gradient in the direction: α − π

2
(or: α + π

2
), to get the response to the

ray of discontinuity (see Fig. 2.2(d),(e)). Repeating this rotation with angles:
α = 0◦, 90◦, 180◦, 270◦ and summing their responses result in an isotropic operator
called: D-Arg (see Fig. 2.2(f)). It is evident that D-Arg is more general than Y-Arg,
but as we shall show, Y-Arg is effective and robust for face detection.

3 Features of Y-Arg

Two dimensional objects of constant albedo form a linear gray-level function, and are
usually of no interest (for example, walls). It can be easily shown, that the Y-Arg
attentional mechanism has zero response to planar objects. In addition, it can be
shown that the response of Y-Arg to edges of planar objects is finite, and is therefore
smaller than its response to paraboloids. Another provable characteristic of Y-Arg is
its linear dependence on scale. We now present several invariants of Y-Arg, followed
by a practical discussion and demonstration from real-life scenes.

Theorem 1 Let f(x, y) [the original gray-level function] be a derivable function at
each pixel (x0, y0) with respect to x and y.
Let T (z) [the transform] be a function derivable at point z0 = f(x0, y0), whose
derivative there is positive in the strong sense. Denote the composite function:
g(x, y) = T (f(x, y)) [the transformed gray-level function].
The y-derivatives of the gradient arguments of f(x, y) and g(x, y) at point (x0, y0) are
identical:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y

Proof: By the chain rule, the composite function: g(x, y) = T (f(x, y)) is derivable
with respect to both x and y at point (x0, y0), and its derivatives are:

gx(x0, y0) = T ′(f(x0, y0))fx(x0, y0)

gy(x0, y0) = T ′(f(x0, y0))fy(x0, y0)

We denote f 0 = f(x0, y0), f 0
x = fx(x0, y0), f 0

y = fy(x0, y0). The argument of gradient
at point (x0, y0) can be written as:

θg(x0, y0) = arctan
(

T ′(f 0)f 0
y , T ′(f 0)f 0

x

)

Since we have required that T ′(f 0) > 0, the point
(

T ′(f 0)f 0
x , T ′(f 0)f 0

y

)

lies in the

same quarter of the plane as point (f 0
x , f 0

y ). It follows that:

θg(x0, y0) = arctan
(

T ′(f 0)f 0
y , T ′(f 0)f 0

x

)

= arctan
(

f 0
y , f 0

x

)

= θf (x0, y0)

The last equation states that the phase of the gradient is invariant under the
transformation T . Deriving the gradient argument with respect to y preserves this
invariance:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y
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Original image: I(x, y) log(log(log(I))) exp(exp(exp(I))

Figure 2: Top row: The original image I(x, y) is compared to log(log(log(I(x, y)))) and

exp(exp(exp(I(x, y)))). Y-Arg is invariant under log and exp. Bottom row: Y-Arg. Simi-

larity among Y-Arg of original image and Y-Args of transformed images is obvious.

2

Let us rephrase theorem 1 in the following manner:

Y-Arg is invariant under any derivable monotonically increasing (in the
strong sense) transformation of the gray-level function.

The practical meaning of the theorem is that Y-Arg is invariant, for example, under
linear transformations, positive powers (where f(x, y) > 0), logarithm, and exponent.
Y-Arg is also invariant under linear combinations (with positive coefficients) and
compositions of these functions, since such combinations are also derivable and
strongly monotonically increasing. The functions mentioned above and their
combinations are common in image processing for lighting improvement. This implies
that Y-Arg is invariant under a large variety of lighting conditions. Figure 3
demonstrates Y-Arg invariance to log(log(log(z))) and exp(exp(exp(z))) in a real-life
scene.
In view of Y-Arg invariants, the suggested model is not only a paraboloidal
gray-levels detector, but also a detector of any derivable (strongly) monotonically
increasing transformation of paraboloids. This makes Y-Arg particularly attractive
for usage in various scenes in which the environment is unknown before hand.

4 Face Detection Using Y-Arg

4.1 Approximation by Paraboloids

One of the underlying ideas of the theoretical model is the estimation of the
gray-levels describing convex and concave objects, in our case—the eyes and hair,
using paraboloids or a derivable monotonically increasing transformation (in the
strong sense) of paraboloids. Figure 4.1 shows such a synthetic paraboloid along with
a magnified eye. The eye gray-levels are similar to those of a paraboloid. The Y-Arg
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synthetic paraboloid. original image.

right eye (zoom). gradient argument. Y-Arg.

Figure 3: The eye exhibits strong similarity to the artificial paraboloidal gray-levels:

I(x, y) = 10x2 + 30y2. The gradient argument of the eye is similar to that in Fig. 2.2.

A clear response of Y-Arg at the negative part of the x-axis is observed.

of the eye strongly reacts to the x-axis; this behavior resembles that of Y-Arg of
paraboloids.
Figures 4.1, 4.1,4.1, demonstrates the robustness to three factors: illumination
direction, scale, and orientation of the head, respectively. Mirrored auto-correlation
serves to detect the face, i.e., choose the window with the best cross correlation
between left and right halves (mirroring one of them) among all possible window
positions; the window is of the same height as the image. Y-Arg robustness to
illumination, scale, and orientation is mainly due to the fact that ∂

∂y
θ(x, y) → ∞ for

paraboloids, which is a very stable feature. The areas of strong Y-Arg response enable
the heuristic detection of the face scale.
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Original Image: Y-Arg

Figure 4: Robustness to lighting. Illumination comes from a single point light source. Each

row relates to the corresponding azimuth: 90◦, 60◦, 30◦, 0◦, −30◦, −60◦, −90◦. Detection by

mirrored auto-correlation is marked.
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Original Image: Y-Arg

Figure 5: Robustness to scale. Several scales of the face. The Y-Arg image strongly reacts

to the eyes and hair regions, regardless of the scale. Largest face is about 6 times larger than

smallest face. Detection by mirrored auto-correlation is marked.
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Original Image: Y-Arg

Figure 6: Robustness to orientation. Capability to detect oblique faces. Y-Arg strongly

reacts to the eyes and hair, even though the face is slanted. Detection by mirrored auto-

correlation is marked.
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Figure 7: A face vs. smiley. Edge-based methods locate the larger object, which is the

flat smiley. Y-Arg detects the three dimensional face, although it is smaller.

4.2 Superiority of Y-Arg on Edge Detection

In this section, we briefly delineate the results of an extensive comparison between
Y-Arg and the edge map (taken as gradient modulus). Following the operation of
each method, mirrored auto-correlation attempts to detect the face.

1. Reaction to 3D Objects: Y-Arg detects 3D objects, so the Y-Arg of a smiley (2D
object) is relatively low, as opposed to edge methods (Fig. 4.2).

2. Insensitivity to Strong Edges: Sharp color changes are likely to appear due to
different object colors (or albedo) (Fig. 4.2). These variations lead to strong
edges, which distract edge-based methods from the subject. Y-Arg does not
react strongly to sharp changes, but rather, to gradual changes of intensity of
the kind exhibited by the eyes and hair12 .

3. Robustness to Lighting : In Fig. 4.2(a), the background is better lit than the
subject. Y-Arg detects the subject, while edge methods, the background. The
improvement of the image by the logarithm (Fig. 4.2(b)) makes edge-based
methods too detect the subject. Note, that the decision to apply this specific
(log) function was made by a human. Y-Arg robustness to illumination releases
the automatic face detector from the need to decide which illumination it is
facing.

4. Stability in Textured Background : The existence of texture in an image makes
the task of discriminating the subject from the background very hard. The
difficulties emanate from the large amount of edges covering a substantial image
area, and the periodicity of the (usually symmetric) pattern composing the
texture. As Fig. 4.2(e) shows, Y-Arg is much more robust than edge based
methods, and is capable of separating the face from dominant textures.
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Figure 8: Small objects with strong edges divert edge-based methods from the real subject.

Y-Arg reacts to gradual variations rather than to sharp color changes.
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(a)

(b)

Figure 9: (a) The background is better lit than the face. Y-Arg is capable of detecting the

face despite the poor illumination. (b) Illumination improved by applying logarithm. Edge

methods as well as Y-Arg now detect the subject.
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Figure 10: A texture of asterisks. Facial edges look negligible near texture edges. In the

Y-Arg map, facial regions attain higher values than textural areas.
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Figure 11: A squirrel on the background of leaves covering the ground, under the shades

of a tree. A human viewer is usually disguised by the camouflage.

5 Camouflage breaking

The stability of D-Arg under various conditions (illumination, scale, orientation,
texture) makes it suitable for camouflage breaking. This section demonstrates one
camouflage example out of several difficult scenes where D-Arg succeeded in breaking
camouflage.
The camouflage of many animals is based on mimicking the environment. Both the
color and the texture of fur of the camouflaged animal fit its habitat. Figure 5 is an
example of animal camouflage. In this image, the squirrel stands on a ground covered
with leaves, under the shades of a tree. Figure 5 shows the response of an edge-based
attentional operator, the radial symmetry transform2 to Fig. 5. The strong
camouflage yields a strong response to a large image area, making it impossible to
detect the quirrel from the symmetry map. No single image region can be isolated
using the symmetry transform in this case. D-Arg, on the other hand, exploits the
convexity of the squirrel (especially - its uniformly colored belly) to detect the
squirrel. D-Arg has two strong peaks, both correspond to the squirrel.

6 Conclusions

We introduce a novel attentional operator (Y-Arg) for detection of regions emanating
from smooth convex or concave three dimensional objects. We use it to detect the eyes
and hair, and thus, the face. Y-Arg is proved invariant under any derivable (strongly)
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(a) (b)

(c) (d)

Figure 12: Detection of the squirrel of Fig. 5. (a) Radial symmetry map (radius=30). (b)

Detection by redial symmetry (90% threshold). (c) D-Arg2. (d) Detection by D-Arg (only

70% threshold are required for detection).

monotonically increasing transformation of the image gray-levels, which practically
means robustness to illumination changes. Robustness to orientation and scale is also
described. The operator is not based on edge maps, and thus free of their flaws (e.g.,
Y-Arg is robust in dominant textures). An extensive comparison with edge-based
methods is depicted. Finally, we have demonstrated the usage of D-Arg (an isotropic
variant of Y-Arg) for camouflage breaking in highly textured environments.
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